Mercurial > repos > ecology > ecoregion_brt_analysis
view claraguess.R @ 6:aba980404954 draft default tip
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/Ecoregionalization_workflow commit 1f5e22a210b8a395f1c7b48f54e03e781a1b34c4
author | ecology |
---|---|
date | Wed, 14 May 2025 13:49:25 +0000 |
parents | |
children |
line wrap: on
line source
##30/04/2025 ##Jean Le Cras ### Clustering with Clara algorithm with an option to determine the optimal number of clusters based on SIH index #load libraries library(cluster) library(dplyr) library(tidyverse) #load arguments args <- commandArgs(trailingOnly = TRUE) if (length(args)==0) { stop("This tool needs at least one argument") } #load data enviro_path <- args[1] preds_path <- args[2] taxas_path <- args[3] type <- args[4] k <- as.integer(args[5]) metric <- args[6] samples <- as.integer(args[7]) env.data <- read.table(enviro_path, sep = "\t", header = TRUE, dec = ".", na.strings = "-9999") data_split = str_split(preds_path, ",") preds.data = NULL for (i in 1:length(data_split[[1]])) { df <- read.table(data_split[[1]][i], dec=".", sep="\t", header=T, na.strings="NA") preds.data <- rbind(preds.data, df) remove(df) } names(preds.data) <- c("lat", "long", "pred", "taxa") development_traits <- str_split(readLines(taxas_path), "\t") #select the clara model with the optimal number of clusters model <- NULL if (type == "auto") { sih_scores <- c() models <- list() for (i in 2:k) { models[[i]] <- clara(preds.data$pred, i, metric = metric, samples = samples, stand = TRUE) sih_scores[i] <- models[[i]]$silinfo$avg.width } png("sih_scores.png") plot(2:k, sih_scores[2:k], type = "b", xlab = "Number of clusters", ylab = "SIH index") dev.off() best_k <- which.max(sih_scores[3:k]) + 2 model <- models[[best_k]] k <- best_k } else { model <- clara(preds.data$pred, k, metric = metric, samples = samples, stand = TRUE) } #saving results png("silhouette_plot.png") plot(silhouette(model), main = paste("Silhouette plot for k =", k)) dev.off() data.test <- matrix(preds.data$pred, nrow = nrow(env.data), ncol = nrow(preds.data) / nrow(env.data)) data.test <- data.frame(data.test) names(data.test) <- unique(preds.data$development) full.data <- cbind(preds.data[1:nrow(data.test), 1:2], model$clustering) names(full.data) <- c("lat", "long", "cluster") full.data <- cbind(full.data, data.test, env.data[, 3:ncol(env.data)]) write.table(full.data[1:3], file = "data_cluster.tabular", quote = FALSE, sep = "\t", row.names = FALSE) write.table(full.data, file = "clustered_taxas_env.tabular", quote = FALSE, sep = "\t", row.names = FALSE)