Mercurial > repos > ecology > ecoregion_taxa_seeker
view brt.R @ 0:e3cd588fd14a draft
planemo upload for repository https://github.com/galaxyecology/tools-ecology/tree/master/tools/Ecoregionalization_workflow commit 2a2ae892fa2dbc1eff9c6a59c3ad8f3c27c1c78d
author | ecology |
---|---|
date | Wed, 18 Oct 2023 09:58:17 +0000 |
parents | |
children | 9dc992f80c25 |
line wrap: on
line source
#16/02/2023 ## Analyse BRT data Ceamarc ### Clean environment rm(list = ls(all.names = TRUE)) options(warn=-1) ### load packages library(dismo, warn.conflicts = FALSE) library(gbm, warn.conflicts = FALSE) library(ggplot2, warn.conflicts = FALSE) #load arguments args = commandArgs(trailingOnly=TRUE) if (length(args)==0) { stop("This tool needs at least one argument") }else{ enviro <- args[1] species_files <- args[2] abio_para <- args[3] } ### load data env = read.table(enviro, header = TRUE, dec = ".", na.strings = "-9999") pred.vars = strsplit(abio_para, ",")[[1]] data_files = strsplit(species_files,",") #environemental parameters #Carbo,Grav,Maxbearing,Maxmagnit,Meancurmag,Meansal,Meantheta,Mud,Prof,Rugosity,Sand,Seaice_prod,Sili,Slope,Standcurmag,Standsal,Standtheta #Load functions make.brt <- function(spe,data,pred.vars,env,nb_file){ brt_step <- gbm.step(data= data, gbm.x = pred.vars, gbm.y = spe, family = "bernoulli", tree.complexity = 2, learning.rate = 0.0001,max.trees = 10000,plot.main = F) #plot if (is.null(brt_step)==FALSE){ pdf(file = paste("BRT-",spe,".pdf")) gbm.plot(brt_step, write.title = T,show.contrib = T, y.label = "fitted function",plot.layout = c(3,3)) dev.off() #total deviance explained as (Leathwick et al., 2006) total_deviance <- brt_step$self.statistics$mean.null cross_validated_residual_deviance <- brt_step$cv.statistics$deviance.mean total_deviance_explained <- (total_deviance - cross_validated_residual_deviance)/total_deviance #Validation file valid = cbind(spe,brt_step$cv.statistics$discrimination.mean,brt_step$gbm.call$tree.complexity,total_deviance_explained) write.table(valid, paste(nb_file,"_brts_validation_ceamarc.tsv",sep=""), quote=FALSE, dec=".",sep="\t" ,row.names=F, col.names=F,append = T)} return(brt_step) } make.prediction.brt <- function(brt_step){ #predictions preds <- predict.gbm(brt_step,env,n.trees=brt_step$gbm.call$best.trees, type="response") preds <- as.data.frame(cbind(env$lat,env$long,preds)) colnames(preds) <- c("lat","long","Prediction.index") #carto ggplot()+ geom_raster(data = preds , aes(x = long, y = lat, fill = Prediction.index))+ geom_raster(data = preds , aes(x = long, y = lat, alpha = Prediction.index))+ scale_alpha(range = c(0,1), guide = "none")+ scale_fill_viridis_c( alpha = 1, begin = 0, end = 1, direction = -1, option = "D", values = NULL, space = "Lab", na.value = "grey50", guide = "colourbar", aesthetics = "fill")+ xlab("Longitude") + ylab("Latitude")+ ggtitle(paste(spe,"Plot of BRT predictions"))+ theme(plot.title = element_text(size = 10))+ theme(axis.title.y = element_text(size = 10))+ theme(axis.title.x = element_text(size = 10))+ theme(axis.text.y = element_text(size = 10))+ theme(axis.text.x = element_text(size = 10))+ theme(legend.text = element_text(size = 10))+ theme(legend.title = element_text(size = 10))+ coord_quickmap() output_directory <- ggsave(paste("BRT-",spe,"_pred_plot.png")) #Write prediction in a file preds <- cbind(preds,spe) write.table(preds, paste(nb_file,"_brts_pred_ceamarc.txt",sep=""), quote=FALSE, dec=".", row.names=F, col.names=T,append = T) } #### RUN BRT #### nb_file = 0 for (file in data_files[[1]]) { species_data <- read.table(file, dec = ",", sep = ";", header = TRUE, na.strings = "na", colClasses = "numeric") nb_file = nb_file + 1 `%!in%` <- Negate(`%in%`) sp = list() for (n in names(species_data)) { if (n %!in% names(env) && n != 'station'){ sp = cbind(sp,n) } } for (spe in sp){ try(make.prediction.brt(make.brt(spe,species_data,pred.vars,env,nb_file))) } }