Mercurial > repos > ecology > iabiodiv_smartbiodiv_med_environ
view med_environ.py @ 2:ca00b2eabdf3 draft default tip
planemo upload for repository https://github.com/jeremyfix/medenv commit e7f6271e297eca69846cac5de375c2085eb209d7
author | ecology |
---|---|
date | Mon, 08 Apr 2024 18:13:40 +0000 |
parents | b79faea33a8a |
children |
line wrap: on
line source
# coding: utf-8 # Standard imports import argparse import os import pathlib from datetime import datetime # External imports import medenv import pandas as pd def environment_observation( row, fetcher, lat_key, long_key, depth_key, date_key, tol_spatial_coordinates, verbose, ): lat0 = ( row[lat_key] - tol_spatial_coordinates / 2.0, row[lat_key] + tol_spatial_coordinates / 2.0, ) long0 = ( row[long_key] - tol_spatial_coordinates / 2.0, row[long_key] + tol_spatial_coordinates / 2.0, ) depth = row[depth_key] date = datetime.strptime(row[date_key], "%Y-%m-%dT%H:%M:%SZ") values, info_values = fetcher.get_values(date, (long0, lat0), depth) if verbose: print( f"Was fetching for date={date}, long={long0}, lat={lat0}," f"depth={depth} and got {values} at the coordinates {info_values}" ) for fname, fvalue in values.items(): row[fname] = fvalue return row def environment_dataset(args): # Note: galaxy is given us, for boolean parameters, the string # "true" or the string "false" that we need to convert to a bool verbose = True if args.verbose == "true" else False if args.keyfile is not None and os.path.exists(args.keyfile): with open(args.keyfile, "r") as fh: key_lines = fh.readlines() cmems_username = key_lines[0].split(":")[1].strip() cmems_password = key_lines[1].split(":")[1].strip() os.environ["CMEMS_USERNAME"] = cmems_username os.environ["CMEMS_PASSWORD"] = cmems_password features = args.variables.split(",") fetcher = medenv.Fetcher(features, reduction="mean") # Loads the input dataset df = pd.read_csv(args.datafile, sep="\t") lat_key = df.columns[args.lat_key - 1] long_key = df.columns[args.long_key - 1] depth_key = df.columns[args.depth_key - 1] date_key = df.columns[args.date_key - 1] df = df.apply( environment_observation, args=( fetcher, lat_key, long_key, depth_key, date_key, args.tol_spatial_coordinates, verbose, ), axis=1, ) df.to_csv(args.out_file, header=True, index=False, sep="\t") def __main__(): parser = argparse.ArgumentParser() parser.add_argument("--datafile", type=pathlib.Path, required=True) parser.add_argument("--out_file", type=pathlib.Path, required=True) parser.add_argument("--lat_key", type=int, required=True) parser.add_argument("--long_key", type=int, required=True) parser.add_argument("--date_key", type=int, required=True) parser.add_argument("--depth_key", type=int, required=True) parser.add_argument("--variables", type=str, required=True) parser.add_argument("--tol_spatial_coordinates", type=float, required=True) parser.add_argument("--keyfile", type=pathlib.Path, default=None) parser.add_argument("--verbose", type=str, default=False) args = parser.parse_args() environment_dataset(args) if __name__ == "__main__": __main__()