view test-data/references/27-frogsfunc_pathways_summary.html @ 0:c5fd7b97c2a4 draft default tip

planemo upload for repository https://github.com/geraldinepascal/FROGS-wrappers/ commit 78ca62b54aee22893d278d9c3d495527be405f8a
author frogs
date Wed, 04 Feb 2026 13:17:34 +0000
parents
children
line wrap: on
line source

<!DOCTYPE html>

<html>
	<head>
		<meta charset="UTF-8" />
		<meta name="author" content="Frederic Escudie - Genotoul/MIAT & Maria Bernard - SIGENAE/GABI & Olivier Rué - Migale/MaIAGE" />
        <meta name="version" content="5.1.0" />
        <meta name="copyright" content="Copyright (C) 2025 INRAE" />
		<!-- JQUERY -->
		<script type="text/javascript" src="https://code.jquery.com/jquery-3.7.1.min.js"></script>
		<!-- ECHARTS -->
		<script type="text/javascript" src="https://cdn.jsdelivr.net/npm/echarts@6.0.0/dist/echarts.min.js"></script>
		<!-- Bootstrap -->
		<link rel="stylesheet" href="https://cdn.datatables.net/1.10.21/css/dataTables.bootstrap4.min.css">
		<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap-table@1.22.6/dist/bootstrap-table.min.css">
		<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.3.2/dist/js/bootstrap.bundle.min.js"></script>
		<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.3.2/dist/css/bootstrap.min.css" rel="stylesheet">
		<script src="https://cdn.jsdelivr.net/npm/bootstrap-table@1.22.6/dist/bootstrap-table.min.js"></script>
		<!-- Extensions Export -->
		<script src="https://cdn.jsdelivr.net/npm/tableexport.jquery.plugin@1.28.0/tableExport.min.js"></script>
		<script src="https://cdn.jsdelivr.net/npm/bootstrap-table@1.22.6/dist/extensions/export/bootstrap-table-export.min.js"></script>
		<!-- Font Awesome -->
		<link href="https://maxcdn.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet">
		
		<style type='text/css'>
body{
    background-color: var(--frogsBackgroundColor);
}
.page-link{
    color: var(--frogsColor);
}
.page-link:hover{
    color: var(--frogsColorHover);
}

/* Titles */
h2{
    color: var(--frogsColor) !important;
}
.pb-2, .py-2 {
    padding-bottom: 1.5rem !important;
    margin-bottom: 2rem !important;
    margin-top: 4rem !important;
}

.nav-link {
    color: var(--frogsColor) !important;
}

.nav-tabs .nav-item.show .nav-link, .nav-tabs .nav-link.active {
    color: white !important;
    background-color: var(--frogsColor) !important;
}

.form-select:focus {
    border-color: rgba(185, 187, 189) !important;
    box-shadow: 0 0 0 .25rem rgba(185, 187, 189, 0.25) !important;
  }

.form-check-input:checked {
    background-color: var(--frogsColor) !important;
    border-color: var(--frogsButtonBorderColor) !important;
  }


/*
.btn-outline-primary{
    color: var(--frogsColor) !important;
    border:  var(--bs-btn-border-width) solid var(--frogsColor) !important;
}

.btn-outline-primary:hover{
    background-color: var(--frogsColor) !important;
    color: white !important;
}
*/
.btn{
    background-color: var(--frogsButtonColor) !important;
    color: white !important;
    border-color: var(--frogsButtonBorderColor) !important;
}

.btn:hover {
    color: white !important;
    background-color: var(--frogsColorHover) !important;
    /*border-color: var(--frogsButtonBorderColor) !important;*/
  }
*/
/* Global */
/*
#dispersion {
     margin: auto;
}
#twofigs{
     height: 500px;
}
     */

#content {
    width: 90%;
    margin-right: auto;
    margin-left: auto;
}
#js-alert {
    width: 90%;
    margin-right: auto;
    margin-left: auto;
}
a {
    color: var(--frogsColor);
}
a:hover{
    color: var(--frogsColorHover);
}
.page-item.active .page-link {
    z-index: 1;
    color: #fff;
    background-color: var(--frogsButtonColor);
    border-color: var(--frogsButtonColor);
    outline: none !important;
    box-shadow: none !important;
}

.pagination{
    --bs-pagination-color: var(--frogsColor) !important;
}
.page-link:hover {
    color: var(--frogsColorHover) !important;
}




/* Checkmarks in tables */
.checkmark {
    position: absolute;
    top: 0;
    left: 0;
    height: 20px;
    width: 20px;
    background-color: var(--frogsButtonColor);
    border-radius: 5px;
    opacity:0.65;
}
.container:hover input ~ .checkmark {
    background-color: var(--frogsColorHover);
}
.checkmark:after {
    content: "";
    position: absolute;
    display: none;
}
.container input:checked ~ .checkmark:after {
    display: block;
}
.container .checkmark:after {
    left: 7px;
    top: 3px;
    width: 6px;
    height: 10px;
    border: solid white;
    border-width: 0 3px 3px 0;
    -webkit-transform: rotate(45deg);
    -ms-transform: rotate(45deg);
    transform: rotate(45deg);
}

/* Circles */
.circle {
    /*border-style: solid;
    border-width: 3px;*/
    border-radius: 50px;
    box-shadow: 2px 2px 2px var(--frogsColorShadow);
    border-color: var(--frogsCircleBorderColor);
    background: var(--frogsCircleBackgroundColor);
    color: var(--frogsCircleFontColor);
    width: 180px;
    height: 98px;
    line-height: 30px;
    text-align: center;
    margin-left: auto;
    margin-right: auto;
    display: flex;
    flex-direction: column;
    align-items: center;
    justify-content: center;
}
.circle-value {
    font-weight: bold;
}

.table{
    --bs-table-bg: var(--frogsBackgroundColor);
}

#byFilters-jvenn svg {
        width: 100% !important;
        height: 100% !important;
}

/* Sunburst CSS */
#sunburst-graph{
    margin-left:auto;
    margin-right:auto
}
.jDistrib-walk-rank{
    height:100%;
    margin-right:2px;
    padding:8px;
    float:left;
    border-top-right-radius:7px;
    border-bottom-right-radius:7px;
    cursor:pointer;
    box-shadow:1px 1px 1px #555
}
.jDistrib-walk-rank-size{
    margin-left:5px;
    padding:4px;
    background-color:#FFF;
    color:#648a89;
    border-radius:9px;
    text-align:center;
    font-size:10px;
    font-family:sans-serif
}
.jDistrib-root-label{
    font-weight:700;
    cursor:pointer
}
.jDistrib-arc-label{
    cursor:pointer
}
.jDistrib-arc{
    cursor:pointer;
    stroke:#fff;
    fill-rule:evenodd
}
.jDistrib-tooltip{
    position:absolute;
    padding:10px;
    font:12px sans-serif;
    background:var(--frogsColor);
    border:0;
    border-radius:8px;
    pointer-events:none;
    color:#FFF
}
.jDistrib-empty-details{
    color:#fff;
    background-color:var(--frogsColor);
    padding:15px;
    margin-bottom:20px;
    border:1px solid transparent;
    border-radius:4px
}
.jDistrib-table-details>tbody>tr:nth-of-type(2n+1){
    background-color:#F5F5F5
}
.jDistrib-table-details{
    border:1px solid #DDD;
    border-radius:8px;
    border-spacing:1px;
    border-collapse:separate
}
.jDistrib-table-details td,th{
    padding:2px 8px
}
.jDistrib-table-details .number{
    text-align:right
}
.jDistrib-export-toggle{
    height:30px;
    width:30px;
    padding:1px
}
.jDistrib-export-toggle div{
    background-color:#636363;
    border-radius:2px;
    height:3px;
    margin-top:2px;
    margin-bottom:2px
}
#sunburst-detail {
    text-align: center; /* centre le contenu inline et inline-block */
  }
#sunburst-detail .jDistrib-table-details {
    display: inline-table; /* permet de centrer la table */
    margin: 0 auto;
  }
/* End Sunburst CSS */

#boxplot-container, #sequences-distrib-chart, #samples-distrib-hc {
    width: 100%;
    min-height: 300px; /* ou 400px */
    height: auto;
}</style>
		
		<script>
/**
 * Returns the string representation of the number. 
 * @param pValue {Float} The number to process.
 * @return {String} The string representation (example: 12856892.11111 => 12,856,892.11).
 */
var numberDisplay = function( pValue ){
	var new_val = "" ;
	if( ("" + pValue + "").indexOf(".") != -1 ){
		new_val = pValue.toFixed(2).replace(/(\d)(?=(\d{3})+\b)/g, '$1,');
	} else {
		new_val = pValue.toFixed().replace(/(\d)(?=(\d{3})+\b)/g, '$1,');
	}
	return new_val ;
}

function numericSorter(a, b) {
    return parseFloat(a.replace(/,/g, "")) -
           parseFloat(b.replace(/,/g, ""));
}


var get_dispersion = function( values, counts ) { 
    var dispersion = new Array();
    
    // Unstack list
    unstacked_list = new Array();
    for( var idx = 0 ; idx < values.length ; idx++ ){
        for( var nb_add = 0 ; nb_add < counts[idx] ; nb_add++ ){
            unstacked_list.push( values[idx] );
        }
    }

    // Process metrics
    var nb_elt = unstacked_list.length ;
    dispersion['min'] = unstacked_list[0] ;
    dispersion['max'] = unstacked_list[nb_elt - 1];
    if( nb_elt % 2 == 0 ) {
        dispersion['median'] = unstacked_list[(nb_elt/2) -1] ;
    } else {
        dispersion['median'] = (unstacked_list[parseInt((nb_elt/2) -1)] + unstacked_list[parseInt(nb_elt/2)])/2 ;
    }
    // Deciles
    for( var idx = 1 ; idx <= 9 ; idx++ ){
        if( idx != 5 ) {
            dispersion[idx + '_decile'] = unstacked_list[Math.floor(idx*(nb_elt/10) + 0.5) -1] ;
        } else {
            dispersion['5_decile'] = dispersion['median'] ;
        }
    }
    // Quartiles
    dispersion['lower_quartile'] = unstacked_list[Math.floor((nb_elt/4) + 0.5) -1] ;
    dispersion['upper_quartile'] = unstacked_list[Math.floor((3*(nb_elt/4)) + 0.5) -1] ;
    
    return dispersion ;
};


function recreateChart(oldChart, elementId, option, theme, height = null) {
    const chartDom = document.getElementById(elementId);
    if (!chartDom) return null;

    if (oldChart) {
        oldChart.__ro?.disconnect?.(); // débrancher ResizeObserver
        oldChart.dispose();
    }

    // S'assurer que le conteneur a une taille visible
    if (!chartDom.style.height) chartDom.style.height = (height || 600) + "px";
    //if (!chartDom.style.height) chartDom.style.width = (width || 600) + "px";
    //if (!chartDom.style.width)  chartDom.style.width  = "50%";
    //chartDom.style.width = chartDom.clientWidth ? chartDom.clientWidth + "px" : "90%%";


    // ⚡ pas de width/height fixés ici
    //const chart = echarts.init(chartDom, theme, {renderer: 'canvas', devicePixelRatio: 3});
    const chart = echarts.init(chartDom, theme, {renderer: 'svg'});
    chart.setOption(option);

    // Resize auto sur mutation du conteneur
    const ro = new ResizeObserver(() => !chart.isDisposed() && chart.resize({animation:false}));
    ro.observe(chartDom);
    chart.__ro = ro;
    return chart;
}


$('#themechoice').change(function() {
    var $select = $(this);
    var selectedIndex = $select.prop('selectedIndex');
    
    // Activer toutes les options
    $select.find('option').prop('disabled', false);

    // Désactiver l'option sélectionnée
    if (selectedIndex > 0) { // Ignorer l'option "Switch theme"
        $select.find('option').eq(selectedIndex).prop('disabled', true);
    }

    // Réinitialiser la sélection à "Switch theme"
    $select.prop('selectedIndex', 0);
});




function hexToRgba(hex, alpha = 1) {
	// Supprime le # si présent
	hex = hex.replace(/^#/, '');

	// Gestion du format court (#123 → #112233)
	if (hex.length === 3) {
		hex = hex.split('').map(c => c + c).join('');
	}

	const r = parseInt(hex.slice(0, 2), 16);
	const g = parseInt(hex.slice(2, 4), 16);
	const b = parseInt(hex.slice(4, 6), 16);

	return `rgba(${r}, ${g}, ${b}, ${alpha})`;
}

var table = function (pTitle, pCategories, pData, footer = undefined) {

    var isNumericColumn = pCategories.map((_, colIdx) => {
        return pData.every(row =>
            row[colIdx] === null ||
            row[colIdx] === "" ||
            typeof row[colIdx] === "number"
        );
    });

    // Header
    var table_header_line = "";
    for (var idx = 0; idx < pCategories.length; idx++) {
        let sorterAttr = isNumericColumn[idx]
            ? " data-sorter='numericSorter'"
            : "";
        table_header_line +=
            `      <th data-sortable="true"${sorterAttr}>${pCategories[idx]}</th>\n`;
    }
    var table_header =
        "  <thead>\n" +
        "    <tr>\n" +
        table_header_line +
        "    </tr>\n" +
        "  </thead>\n";
    var table_footer = footer
        ? "<tfoot>\n" + footer + "</tfoot>\n"
        : "";

    // Body
    var table_body = "";
    for (var data_idx = 0; data_idx < pData.length; data_idx++) {
        var table_body_row = "";
        for (var category_idx = 0; category_idx < pCategories.length; category_idx++) {
            let val = pData[data_idx][category_idx];
            if (isNumericColumn[category_idx] && typeof val === "number") {
                table_body_row +=
                    `      <td data-value="${val}">${numberDisplay(val)}</td>\n`;
            } else {
                table_body_row +=
                    `      <td>${val ?? ""}</td>\n`;
            }
        }
        table_body +=
            "    <tr>\n" +
            table_body_row +
            "    </tr>\n";
    }
    table_body =
        "  <tbody>\n" +
        table_body +
        "  </tbody>\n";

    var table_caption = pTitle
        ? "  <caption>\n" + pTitle + "  </caption>\n"
        : "";

    // Table
    return `
        <div class="table-responsive">
        <table
            class="table table-bordered table-striped"
            data-toggle="table"
            data-search="true"
            data-pagination="true"
            data-page-size="10"
            data-page-list='[5, 10, 20, 50, "All"]'
            data-show-export="true"
            data-export-types='["excel","csv"]'
            data-export-data-type="all"
        >
            ${table_header}
            ${table_body}
            ${table_caption}
            ${table_footer}
        </table>
        </div>
    `;
};

var heatmapOption = function(data_type) {

    if (data_type == null) data_type = "clstr";

    var clean_type = {
        "clstr": "ASVs",
        "seq": "sequences"
    };

    var categories_ident = [1, 50, 80, 90, 95, 99, 100, 101];
    var categories_cover = [1, 50, 80, 90, 95, 99, 100, 101];

    var heatmap_data = get_alignment_heatmap_data(categories_ident, categories_cover, data_type)
        .map(function(item) {
            return [item[0], item[1], item[2] || 0];
        });

    //var frogsColor = style.getPropertyValue('--frogsColor').trim();

    return {
        title: {
            text: 'Number of ' + clean_type[data_type] + ' by BLAST identity and coverage',
            left: 'center',
            textStyle: {fontWeight: 'normal'}
        },
        tooltip: {
            position: 'top',
            formatter: function(params) {
                return 'Identity: <b>' + get_displayed_categories(categories_ident)[params.data[0]] + '</b><br>'
                    + 'Coverage: <b>' + get_displayed_categories(categories_ident)[params.data[1]] + '</b><br>'
                    + 'Nb ' + clean_type[data_type] + ': <b>' + params.data[2] + '</b>';
            }
        },
        grid: {
            height: '70%',
            width: '70%',
            top: '15%'
        },
        xAxis: {
            type: 'category',
            data: get_displayed_categories(categories_ident),
            name: 'Identity',
            nameLocation: 'middle',
            nameGap: 30,
        },
        yAxis: {
            type: 'category',
            data: get_displayed_categories(categories_cover),
            name: 'Coverage',
            nameLocation: 'middle',
            nameGap: 50,
        },
        visualMap: {
            min: 0,
            max: Math.max(...heatmap_data.map(d => d[2])),
            calculable: false,
            orient: 'vertical',
            left: 'right',
            top: 'center',
            inRange: {
                color: ['#ffffff', getCssVar('--frogsColor')]
            },
            show: true,
            text: [
                Math.max(...heatmap_data.map(d => d[2])),
                0
            ],
            textStyle: {
                color: getCssVar('--frogsColor'),
                fontSize: 12
            }
        },
        series: [{
            name: clean_type[data_type],
            type: 'heatmap',
            data: heatmap_data,
            label: {
                show: true,
                color: '#000',
                fontSize: 12,
                formatter: function(params) {
                    return params.data[2];
                },
                textBorderColor: '#ffffff',
                textBorderWidth: 2
            },
            itemStyle: {
                borderColor: getCssVar('--frogsColor'),
                borderWidth: 1
            },
            emphasis: {
                itemStyle: {
                    shadowBlur: 10,
                    shadowColor: 'rgba(0,0,0,0.5)'
                }
            }
        }],
        toolbox: {
            feature: {
                saveAsImage: {}
            },
            right: '10%',
            top: 'top'
        }
    };
};

var histogramOption = function(pTitle, pYTitle, pCategories, pSeries, unity) {
    //var frogsColor = style.getPropertyValue('--frogsColor').trim();
    const frogsColor = getCssVar('--frogsColor');
    const frogsColor2 = getCssVar('--frogsColor2');
    return {
        title: {
            text: pTitle,
            left: 'center',
            textStyle: {fontWeight: 'normal'},
          },
          tooltip: {
            trigger: 'axis',
            axisPointer: {
              type: 'shadow'
            },
            formatter: function(params) {
              let header = `<span style="font-size:12px"><b>${params[0].axisValue}</b></span><br>`;
              let body = params.map(p => 
                `<span style="color:${p.color};">${p.seriesName}:</span> 
                 <b>${p.value} ${unity}</b><br>`
              ).join('');
              return header + body;
            }
          },
          legend: {
            top: 'bottom'
          },
          grid: {
            left: '8%',
            right: '5%',
            bottom: '10%',
            containLabel: true
          },
          //color: [frogsColor, frogsColor2],
          xAxis: {
            type: 'category',
            data: pCategories,
            axisLabel: {
              //color: frogsColor2,
              rotate: 45,
            },
            axisLine: {
              //lineStyle: { color: frogsColor2 }
            }
          },
          yAxis: {
            type: 'value',
            name: pYTitle,
            nameLocation: 'middle',
            nameGap: 40,
            axisLine: {
              //lineStyle: { color: frogsColor2 }
            },
            splitLine: {
              show: true,
              lineStyle: { color: 'rgba(0,0,0,0.1)' }
            },
            axisLabel: {
              //color: frogsColor2
            }
          },
          series: pSeries.map(serie => ({
            name: serie.name,
            type: 'bar',
            data: serie.data,
            barMaxWidth: '50%',
            emphasis: {
              focus: 'series'
            }
          })),
          toolbox: {
            feature: {
              saveAsImage: {
                title: 'Download',
                name: pTitle.replace(/\s+/g, '_')
              },
              dataZoom: {}
            },
            right: '5%',
            top: 'top'
          }
    }
}

var lineOption = function(pTitle, pXTitle, pYTitle, pXCategories, pData) {
    let xMin = Math.min(
        ...pData.flatMap(serie => serie.data.map(point => point[0]))
    );
    /*let colors = Array.from({ length: pData.length }, (_, i) =>
        `hsl(${(i * 360 / pData.length)}, 70%, 50%)`
    );*/
    return {
        title: {
            text: pTitle,
            textStyle: {fontWeight: 'normal'},
        },
        //color: ['#d87c7c', '#919e8b', '#d7ab82', '#6e7074', '#61a0a8', '#efa18d', '#787464', '#cc7e63', '#724e58', '#4b565b'],
        tooltip: {
            trigger: 'item',
            axisPointer: { show: false },
            formatter: function (params) {
                let tooltip_head = '<b>Length ' + params.value[0] + ' nt</b>';
                let tooltip_body = '<tr>' +
                '<td style="color:' + params.color + '">' + params.seriesName + ': </td>' +
                '<td>' + numberDisplay(params.value[1]) + '</td>' +
                '<td> seq</td>' +
                '</tr>';
            return tooltip_head + '<table>' + tooltip_body + '</table>';
            }
        },
        toolbox: {
            feature: {
                dataZoom: { title: { zoom: 'Zoom', back: 'Reset' } },
                saveAsImage: { title: 'Save as PNG' }
            }
        },
        xAxis: {
            type: 'value', // car on a des valeurs numériques (longueuheatmapChart_optionsrs)
            name: pXTitle,
            splitLine: {
                show: false
            },
            min:xMin,
            nameLocation: 'middle',
            //nameGap: 50,
            minInterval: 1,
            axisLabel: {
                formatter: function (value) {
                    return Math.round(value); // arrondi à l'entier le plus proche
                }
            }
        },
        yAxis: {
            type: 'value',
            name: pYTitle,
            nameLocation: 'middle',
            nameGap: 50,
            minInterval: 1,
            splitLine: {
                show: true
            },
            axisLabel: {
                formatter: function (value) {
                    return Math.round(value);
                }
            }
        },
        legend: {
            type: 'scroll',
            //type: 'plain',
            orient: 'horizontal',
            //bottom: 20,
            //height: 100,
            //pageButtonGap: 5 // espace entre les boutons de navigation
        },
        /*legend: {
            type: 'plain',
            orient: 'horizontal',
            bottom: 0,
            width: '100%',
            itemGap: 10,
            itemWidth: 25,
            itemHeight: 10,
            textStyle: { fontSize: 11 },
        },*/
        dataZoom: [
            {
                type: 'inside',   // zoom à la molette ou pinch
                xAxisIndex: 0,
                filterMode: 'filter'
            }
        ],
        series: pData.map(function (serie) {
            return {
                name: serie.name,
                type: 'line',
                data: serie.data,
                symbol: 'circle',
                symbolSize: 4,
                smooth: false,
            };
        })
    };
};

var radarOption = function(pTitle, categories, my_series) {
    return {
        title: {
            text: pTitle || ''
        },
        tooltip: {
            trigger: 'item',
            formatter: function (params) {
                const values = params.value.map((v, i) =>
                    `<tr><td>${categories[i]}:</td><td style="padding-left:8px;"><b>${v}</b></td></tr>`
                ).join('');
                return `<b>${params.seriesName}</b><br><table>${values}</table>`;
            },
            confine: true,
            backgroundColor: 'rgba(255,255,255,0.95)',
            borderColor: '#ccc',
            borderWidth: 1,
            textStyle: { color: '#333' }
        },
        legend: {
            type: 'scroll',
            bottom: 0,
            orient: 'horizontal',
            data: my_series.map(s => s.name)
        },
        radar: {
            radius: '70%',
            center: ['50%', '50%'],
            startAngle: 90,    // 90° => premier axe en haut
            indicator: categories.map(c => ({
                name: c,
                min: 0, // tu peux ajuster selon ton échelle
            })),
            splitLine: {
                lineStyle: { color: 'rgba(0,0,0,0.15)' }
            },
            axisLine: {
                lineStyle: { color: 'rgba(0,0,0,0.25)' }
            },
            splitArea: { show: false },
            axisName: { fontSize: 12 }
        },
        series: my_series.map(s => ({
            name: s.name,
            type: 'radar',
            data: [{
                value: s.data,
                name: s.name
            }],
            lineStyle: s.lineStyle || { width: 2 },
            itemStyle: s.itemStyle || {},
            symbol: 'circle',
            symbolSize: s.symbolSize || 9,
            areaStyle: { opacity: 0 }, // pas de remplissage
            smooth: s.smooth || false
        })),
        toolbox: {
            feature: {
                saveAsImage: { title: 'Save as PNG' }
            }
        }
    };
};

var lineOptionDualY = function(pTitle, pXTitle, x_values, y_axis_infos, my_series) {
    const frogsColor = getCssVar('--frogsColor');
    const frogsColor2 = getCssVar('--frogsColor2');
    return {
        tooltip: {
            trigger: 'axis',
            axisPointer: { 
                type: 'cross',
                label: {
                    backgroundColor: frogsColor
                }
            },
            backgroundColor: 'rgba(255, 255, 255, 0.95)',
            borderWidth: 1,
            borderColor: '#ccc',
            textStyle: { color: '#333' },
            confine: true,
            /*grid: {
                left: '5%',
                right: '5%',
                top: '15%',
                bottom: '10%',
                containLabel: true
            },*/
            extraCssText: 'box-shadow: 0 0 8px rgba(0,0,0,0.2); padding: 8px;',
            formatter: function (params) {
                if (!params || params.length === 0) return '';

                // Récupérer les max de chaque série
                const seqSeries = my_series.find(s => s.name === "Sequences");
                const asvSeries = my_series.find(s => s.name === "ASVs");
                const maxSeq = seqSeries.data[seqSeries.data.length - 1];
                const maxASV = asvSeries.data[asvSeries.data.length - 1];

                let tooltip = '<table style="border-collapse:collapse;">';

                params.forEach(p => {
                    const val = p.value; // juste le Y
                    let pct = 0;
                    if (p.seriesName === "Sequences") pct = maxSeq ? (val / maxSeq) * 100 : 0;
                    if (p.seriesName === "ASVs") pct = maxASV ? (val / maxASV) * 100 : 0;

                    tooltip += `
                        <tr>
                            <td style="color:${p.color};padding-right:8px;">${p.seriesName} :</td>
                            <td style="text-align:right;">
                                ${val.toLocaleString('en-US')} 
                                (${pct.toFixed(1)}%)
                            </td>
                        </tr>`;
                });

                tooltip += '</table>';
                return tooltip;
            },
            useHTML: true
        },
        title: {
            text: pTitle,
            textStyle: {fontWeight: 'normal'},
        },
        //grid: { right: '20%' },
        toolbox: {
            feature: {
                //dataView: { show: true, readOnly: false },
                dataZoom: { title: { zoom: 'Zoom', back: 'Reset' } },
                saveAsImage: { show: true }
            }
        },
        legend: {
            data: my_series.map(s => s.name)
        },
        xAxis: [
            {
                type: 'category',
                axisTick: { alignWithLabel: true },
                data: x_values
            }
        ],
        yAxis: y_axis_infos,
        series: my_series
    };
};

function boxplotOption(pTitle, pXTitle, pYTitle, pXCategories, boxplot_series) {
    return {
        title: {
            text: pTitle,
            left: 'center',
            subtext: 'N.B.: Use slider to zoom in.',
            textStyle: {
                fontWeight: 'normal'
            }
        },
        tooltip: {
            trigger: 'item',
            formatter: function (param) {
                let d = param.data;
                return [
                    `${pXCategories[param.dataIndex]}`,
                    `Min: ${d[0]}`,
                    `Q1: ${d[1]}`,
                    `Median: ${d[2]}`,
                    `Q3: ${d[3]}`,
                    `Max: ${d[4]}`
                ].join('<br/>');
            }
        },
        toolbox: {
            feature: {
                restore: {},
                saveAsImage: { title: 'Save as PNG' }
            }
        },
        xAxis: {
            type: 'category',
            name: pXTitle,
            data: pXCategories,
            boundaryGap: true,
            nameLocation: 'middle',
            nameGap: 30,
            axisPointer: {
                label: {
                    show: true,
                    backgroundColor: 'red'
                }
            }
        },
        yAxis: {
            type: 'value',
            name: pYTitle,
            min: 0,
            nameLocation: 'middle',
            nameGap: 45
        },
        grid: {
            containLabel: true,
            bottom: 0  // ajuste selon ton cas pour éviter les débordements
        },
        dataZoom: [
            /*{
                type: 'slider',
                fillerColor: "rgba(230, 234, 240, 0.4)",
                filterMode: 'none',
                yAxisIndex: 0,
                start: 0,
                end: 100,
                zoomLock: false,
                minValueSpan: 1,
                maxValueSpan: null
            },*/
            {
                type: 'slider', 
                yAxisIndex: 0, 
                zoomLock: false,
                minValueSpan: 1,
                maxValueSpan: null,
                width: 20,
                filterMode: 'none', 
                start: 0, 
                end: 100, 
                backgroundColor: "rgba(211,211,211,0.2)",
                fillerColor: "rgba(211,211,211,0.2)", 
                dataBackground: {
                      lineStyle: { color: "rgba(211,211,211,8)"},
                    areaStyle: {
                        color: "rgba(211,211,211,0.5)",
                        shadowColor: "rgba(211,211,211,0.5)"
                    }
                },
                borderColor: "rgb(211,211,211)",
                handleStyle: {
                    color: "rgba(211,211,211,0.2)"
                },
                moveHandleStyle: {
                    color: "rgba(211,211,211,1)",
                      opacity: 1
                },
                selectedDataBackground: {
                    areaStyle: {
                        color: "rgba(211,211,211,0.8)"
                    }
                },
                moveHandleSize: 4,
                emphasis: {
                    moveHandleStyle: {
                        color: "rgba(211,211,211,0.8)"
                    }
                }
            }
        ],
        series: boxplot_series.map(s => ({
            name: s.name,
            type: 'boxplot',
            boxWidth: "70%",
            data: s.data,
            /*itemStyle: {
                color: frogsColor,
                borderColor: frogsColor,
            },*/
            emphasis: {
                itemStyle: {
                    borderWidth: 2,
                    shadowBlur: 8,
                    shadowColor: 'rgba(0,0,0,0.4)'
                }
            }
        }))
    };
}

function barOption(pTitle, nb, yTitle, categories, series, unity, is_stacked) {
    const frogsColor = getCssVar('--frogsColor');
    const frogsColor2 = getCssVar('--frogsColor2');
    return {
        title: {
            text: pTitle,
            textStyle: {fontWeight: 'normal'}
        },
        tooltip: {
            trigger: 'axis',
            axisPointer: { type: 'shadow' },
            formatter: function (params) {
                let s = '<b>' + params[0].axisValue + '</b>';
                let sum = 0;
                params.forEach(function (point) {
                    s += '<br/><span style="color:' + point.color + ';">' + point.seriesName + ' : </span>'
                    + numberDisplay(point.value) + ' ' + unity;
                    if (!is_stacked) {
                        s += ' (' + (Math.round(point.value * 100 / nb * 100) / 100) + '%)';
                    }
                    sum += point.value;
                });
                if (is_stacked) {
                    s += '<br/>total : ' + numberDisplay(sum) + ' (' + (Math.round(sum * 100 / nb * 100) / 100) + '%)';
                }
                return s;
            }
        },
        legend: { show: true },
        xAxis: {
            type: 'category',
            data: categories,
            axisTick: { alignWithLabel: true }
        },
        yAxis: {
            type: 'value',
            nameLocation: 'center',
            min: 0,
            max: nb + 10,
            name: yTitle,
            splitLine: { show: true },
            axisLabel: { formatter: '{value}' }
        },
        series: series.map(s => ({
            name: s.name,
            type: 'bar',
            stack: is_stacked ? 'total' : null,
            data: s.data,
            label: {
                show: true,
                position: 'right',
                color: 'inherit',
                formatter: function (params) {
                    return numberDisplay(params.value);
                },
                fontWeight: 'bold'
            },
            // 👉 Ici on insère ton markLine
            markLine: nb ? {
                symbol: "none",
                silent: true,
                data: [{ yAxis: nb }],
                label: {
                    show: true,
                    position: "insideStartBottom",
                    padding: [0, 20, -30, -100],
                    rotate: 90,
                    color: frogsColor,
                    fontFamily: "Arial",
                    formatter: () =>
                        `Input sequences:\n${nb.toLocaleString("en-US")}`,
                },
                lineStyle: {
                    color: frogsColor,
                    type: "solid",
                    width: 1.5,
                }
            } : null
        })),
        toolbox: {
            feature: {
                saveAsImage: { title: 'Save as PNG' }
            }
        }
    };
}

function pieOption(value_1, value_2, label_1, label_2, title, unit, value_3 = null, label_3 = null) {
    const data = [
        { value: value_1, name: label_1 },
        { value: value_2, name: label_2 }
        ];
    if (value_3 !== null && label_3 !== null) {
        data.push({ value: value_3, name: label_3 });
    }
    
    let option = {
        title: {
        text: title,
        textStyle: {fontWeight: 'normal'},
        left: 'center' // 'left', 'right', 'center', ou valeur en %/px
        },
        //color: [frogsColor, frogsColor2],
        tooltip: {
        trigger: 'item' // 'item' (pour pie), 'axis' (pour bar/line)
        },
        legend: {
            show: false
        },
        toolbox: {
        feature: {
            saveAsImage: {}
        }
        },
        series: [
        {
            label: {
                color: "#000000", // ou "black", ou en hexadécimalup
                fontSize: 13,
                fontWeight: 'bold',
                fontFamily: "Arial",
                formatter: function(params) {
                    const name = params.name;
                    const value = params.value;
                    return `${name}: ${value.toLocaleString('fr-FR')}`;
                }
            },
            tooltip: {
                formatter: function (params) {
                    return `${params.name} <br>${unit}: <strong>${params.percent}%</strong>`;
                }
            },
            type: 'pie', // 'pie' est le type pour camembert
            radius: '50%', // peut être ['40%', '70%'] pour un donut
            data: data,
            itemStyle: {
                    borderColor: '#ffffff', // couleur du trait
                    borderWidth: 2 // épaisseur du trait
                    },
            emphasis: { 
                    focus: 'self',
                    blurScope: 'series',
                        itemStyle: { // paramétrage des ombres ( épaisseur), épaisseur de la bordure et de la couleur des ombres
                    borderWidth: 0, // supprime la bordure au hover
                    shadowBlur: 10,
                    shadowOffsetX: 5,
                    shadowColor: 'rgba(0, 0, 0, 0.5)'
                }

            },
            blur: {    //(opacité des différents effets de blurs)
            itemStyle: {
                opacity: 0.5
            },
            label: {
                opacity: 0.7
            }
            },
        }
        ]
    };
    return option;
}

function scatterOption(pTitle, mySeries, alignmentData, coverageData){
    const frogsColor = getCssVar('--frogsColor');
    const frogsColor2 = getCssVar('--frogsColor2');
    const maxIdentity = Math.max(...alignmentData.map(p => p[1]));
    const maxCoverage = Math.max(...coverageData.map(p => p[1]));

    let option = {
        tooltip: {
            trigger: 'axis',
            axisPointer: { 
                type: 'cross',
                label:{ backgroundColor: frogsColor }
            },
            backgroundColor: 'rgba(255,255,255,0.95)',
            borderColor: '#ccc',
            borderWidth: 1,
            textStyle: { color: '#333' },
            confine: true,
            formatter: function(params) {
        
                if (!params || params.length === 0) return '';
        
                let tooltip = `
                    <div style="font-weight:bold;margin-bottom:4px;">
                        ${params[0].data.name}
                    </div>
                    <table style="border-collapse:collapse;">`;
        
                params.forEach(p => {
                    const valueX = p.value[0];
                    const valueY = p.value[1];
        
                    tooltip += `
                        <tr>
                            <td style="color:${p.color};padding-right:8px;">
                                ${p.seriesName} :
                            </td>
                            <td style="text-align:right;">
                                ${valueX} → ${valueY}%
                            </td>
                        </tr>`;
                });
        
                tooltip += '</table>';
                return tooltip;
            }
        },
        title: {
            //text: "NSTI vs %identity and %coverage between kept ASVs and their closest PICRUSt2 reference sequence",
            textStyle: {fontWeight: 'normal'},
        },
        xAxis: {
            type: 'value',
            nameLocation: 'end',
            name: 'NSTI value',
            axisLine: { show: true },
            splitLine: { show: false },
            nameGap: 10
        },
        yAxis: {
            type: 'value',
            nameLocation: 'center',
            name: 'alignment metrics (%)',
            axisLine: { show: true },
            splitLine: { show: true }
        },
        toolbox: {
            feature: {
                //dataView: { show: true, readOnly: false },
                dataZoom: { title: { zoom: 'Zoom', back: 'Reset' } },
                saveAsImage: { show: true }
            }
        },
        series: mySeries,
        legend: {
            data: mySeries.map(s => s.name),
            bottom: 10

        }
    };
    return option;
}

function areaplotOption(pTitle, pXTitle, pYTitle, pXCategories, pData) {
    // Trouver le max des X
    let x_max = 0;
    for (const serie of pData) {
        for (const [x] of serie.data) {
            if (x > x_max) x_max = x;
        }
    }
    const tickInterval = Math.max(1, Math.floor(x_max / 10));

    // Créer une map des séries -> data X pour retrouver les index
    const seriesIndexMap = {};
    for (const s of pData) {
        seriesIndexMap[s.name] = s.data.map(d => d[0]);
    }

    let option = {
        title: {
            text: pTitle,
            left: 'center',
            textStyle: { fontWeight: 'normal' },
            subtext: 'N.B.: Use sliders to zoom in.'
        },
        grid: {
            left: 60,
            right: 60,
            top: 60,
            bottom: 120  // espace supplémentaire pour titre + dataZoom
        },
        tooltip: {
            trigger: 'axis',
            axisPointer: { type: 'cross' },
            useHTML: true,
            formatter: function (params) {
                if (!params?.length) return '';

                const xValue = params[0].value[0];
                let tooltip_head = `<caption><b>Clusters with size ≤ ${xValue}</b></caption>`;
                let tooltip_body = `
                    <thead><tr><th>Sequences</th><th>Clusters</th></tr></thead><tbody>
                `;

                params.forEach(p => {
                    const allX = seriesIndexMap[p.seriesName] || [];
                    const pointIndex = allX.findIndex(x => x === xValue);
                    const percCluster = (pointIndex >= 0 && allX.length > 0)
                        ? (((pointIndex + 1) / allX.length) * 100).toFixed(2)
                        : 'NA';

                    tooltip_body += `
                        <tr>
                            <td>${p.value[1].toFixed(2)}%</td>
                            <td>${percCluster}%</td>
                        </tr>
                    `;
                });

                tooltip_body += '</tbody>';
                return `<table id="tooltip-seqdepth" class="table caption-top">${tooltip_head}${tooltip_body}</table>`;
            }
        },
        toolbox: {
            feature: {
                restore: {},
                saveAsImage: { title: 'Save as PNG' },
            }
        },
        xAxis: {
            type: 'value',
            nameGap: 50,
            boundaryGap: true,
            name: pXTitle,
            nameLocation: 'middle',
            min: 1,
            max: x_max,
            interval: tickInterval
        },
        yAxis: {
            type: 'value',
            name: pYTitle,
            min: 0,
            max: 100
        },
        dataZoom: [
            {
                type: 'slider', 
                xAxisIndex: 0, 
                height: 20,
                filterMode: 'none', 
                start: 0, 
                end: 100, 
                backgroundColor: "rgba(211,211,211,0.2)",
                fillerColor: "rgba(211,211,211,0.2)", 
                dataBackground: {
                      lineStyle: { color: "rgba(211,211,211,8)"},
                    areaStyle: {
                        color: "rgba(211,211,211,0.5)",
                        shadowColor: "rgba(211,211,211,0.5)"
                    }
                },
                borderColor: "rgb(211,211,211)",
                handleStyle: {
                    color: "rgba(211,211,211,0.2)"
                },
                moveHandleStyle: {
                    color: "rgba(211,211,211,1)",
                      opacity: 1
                },
                selectedDataBackground: {
                    areaStyle: {
                        color: "rgba(211,211,211,0.8)"
                    }
                },
                moveHandleSize: 4,
                emphasis: {
                    moveHandleStyle: {
                        color: "rgba(211,211,211,0.8)"
                    }
                }
            },
            {
                type: 'slider', 
                yAxisIndex: 0, 
                width: 20,
                filterMode: 'none', 
                start: 0, 
                end: 100, 
                backgroundColor: "rgba(211,211,211,0.2)",
                fillerColor: "rgba(211,211,211,0.2)", 
                dataBackground: {
                      lineStyle: { color: "rgba(211,211,211,8)"},
                    areaStyle: {
                        color: "rgba(211,211,211,0.5)",
                        shadowColor: "rgba(211,211,211,0.5)"
                    }
                },
                borderColor: "rgb(211,211,211)",
                handleStyle: {
                    color: "rgba(211,211,211,0.2)"
                },
                moveHandleStyle: {
                    color: "rgba(211,211,211,1)",
                      opacity: 1
                },
                selectedDataBackground: {
                    areaStyle: {
                        color: "rgba(211,211,211,0.8)"
                    }
                },
                moveHandleSize: 4,
                emphasis: {
                    moveHandleStyle: {
                        color: "rgba(211,211,211,0.8)"
                    }
                }
            }
        ],
        
        series: pData.map(s => ({
            name: s.name,
            type: 'line',
            data: s.data,
            areaStyle: {},
            symbol: 'circle',
            symbolSize: 8,
            emphasis: {
                focus: 'series',
                scale: true,
                itemStyle: {
                    //borderColor: getCssVar('--frogsButtonColor'),
                    shadowColor: 'rgba(0,0,0,0.3)',
                    shadowBlur: 10,
                    shadowOffsetX: 0,
                    shadowOffsetY: 0,
                    borderWidth: 2,
                    borderColor: "#fff",
                    //color: getCssVar('--frogsColorHover')
                }
            }
        }))
    };

    return option;
}</script>

		<script>
//## COMMON CODE TO HTML AND RMD (not remove!)

const DEFAULT_THEME = "DefaultTheme";
var CURRENT_THEME = DEFAULT_THEME;

const logo2 = "iVBORw0KGgoAAAANSUhEUgAABkoAAAhPCAYAAACXR9fmAAAACXBIWXMAAC4jAAAuIwF4pT92AAAgAElEQVR42uzd7XYcZ5kv/H9YfLf2AQh1eEmi2MadAP7qniOwOAK3NQzDyxqsDG8r2cOkM2GSNTPwRIE1L89+ZsutI0A+AlpfGSASCWhgJqSFDmBbJ7D1fKhSZCd+kazu6qrq328trQRIQvqqKvu++l/XfT91dHQUgHm1sXfQK/+0d89/3fvIXzYuf5LkbpKdJOPV5cWxCgIAAABAsz0lKAHmxcbeQTdFCNJL0k2yNIF/7HaK4GQnydbq8uJdlQYAAACA5hCUAK22sXewkuT450IF/5e7SUZJhqvLizuuAAAAAADUm6AEaJ1ycmQt1YUjD7ObZJgiNDFpAgAAAAA1JCgBWmNj76CfpJ/kWg3/9TaTDJxrAgAAAAD1IigBGq8MSAaZzJkj0yYwAQAAAIAaEZQAjbWxd9BLsp7kSgP/9d9OEZjYkgsAAAAAZkhQAjTOxt7BQoqA5EbDP8phkrXV5cWhqwoAAAAAsyEoARplY+9gJcUB6Rda9LG2k6yYLgEAAACA6glKgEYop0gGSW619CMeJumvLi9uudoAAAAAUB1BCVB7G3sHnSRbaeZZJGf12ury4sBVBwAAAIBqCEqAWtvYO+gmGaVdW209zmaKs0tsxQUAAAAAU/YJJQDqamPvoJ/5C0mS4pD6UbndGAAAAAAwRSZKgFoqQ5Lbc16G3SQ9kyUAAAAAMD0mSoDaEZJ86EpMlgAAAADAVJkoAWplY+9gJcnPVOI+JksAAAAAYEpMlAC1UR7cPlSJj7mSZEsZAAAAAGDyBCVALZTbS40yfwe3n9a1jb2DoTIAAAAAwGQJSoC6GEVI8jg3yvNbAAAAAIAJEZQAM7exd7CeYnspHm+93KIMAAAAAJgAQQkwUxt7B70kt1Ti1C7EOS4AAAAAMDGCEmBmynNJhipxZlc29g4GygAAAAAA5ycoAWZpkGRJGZ7Iq7bgAgAAAIDzE5QAM1F+yW/LrfNZVwIAAAAAOB9BCTArvuQ/v2sbewcrygAAAAAAT05QAlSuPMD9mkpMhMAJAAAAAM5BUALMwkAJJmZpY++grwwAAAAA8GQEJUClTJNMxUAJAAAAAODJCEqAqq0pwcQtOasEAAAAAJ6MoASozMbeQSfJdZWYir4SAAAAAMDZCUqAKpkmmZ7rZRAFAAAAAJyBoASoku2h1BcAAAAAakVQAlRiY++gm2RJJaaqrwQAAAAAcDaCEqAqfSWYuiu23wIAAACAsxGUAFXpKUElbL8FAAAAAGcgKAGmrpxyuKISlegpAQAAAACcnqAEqEJXCSrTUwIAAAAAOD1BCVCFnhJU5oJzSgAAAADg9AQlQBVMlKg3AAAAANTSJ5UAqIAv7quv95YyAAAANM/G3kHvnv+4s7q8eFdVAKZLUAJMe4G3kOSCSlRKMAUAAFDfHrmbYovqzj0/S4/4e+79j9tJ7ibZKX/Gq8uLOyoLcD6CEmDafGlfvQUlAAAAqIeNvYOVFMFIL8mVc/7jrpV/vH7PP/8wyaj82VpdXhyrOsDZPHV0dKQKwDQXhL0kP1eJSh2uLi8KSwAAAGbXC68kOf6pepeF3STDCE0ATs1ECTBtJkqqZ6szAACAim3sHXSS9MufpRn+q1xJ8laStzb2Du4kWV9dXhy5QgAPJygBps1kAwAAAK1VBiSDJDdq+K93Pcn1jb2D/SSD1eXFoSsG8HGfUAIAAAAAOJuNvYOFjb2DYZIPUs+Q5F5LSW5v7B2Myy2yAbiHoAQAAAAAzmBj72CQZJz6ByQftZTk5xt7B6NyEgaACEoAAAAA4FQ29g66G3sHO0leTbPPh7yW5IMy8AGYe4ISAAAAAHiMMlR4J8Vh6W3x6sbewY7pEmDeCUoAAAAA4CHKs0hGKaZI2uhKkp2NvYMVVxuYV59UAgCoRfPVSdJ5zF82Xl1eHKsWAABUtk7vJhml2dtsncaFJD/b2Dt4e3V5cc2VB+aNoASYth0lgI81Wvf+dFIcqHjavz9JDstn68Of1eVFzxoAAEx27b6SZJj2hyT3urWxd7CQZG11efGuuwCYF08dHR2pAjDNhWUvyc9VolLbq8uLPWWozTOwkGQlSa/847SarMMUb7ptJRmZPAEAgHOt4/tJbs9xCXaT9IQlwLwQlADTXlx2knygEpUSlNSnsVpJcn1W90GKt9+2NDcAAHDmtfxtlRCWAPNDUAJUscj0C021XltdXhwow0zu9U6StST91Gc8/zDFlMnAlAkAADx2Td+PkORewhJgLnxCCYCKFlZUZ6wElTdTnY29g2GK6albqdcexheS3EjywcbewbA8IwUAAPj4un4lQpKPupJiUh2g1QQlQBUcMl2tsRJU1kgt3BOQ3GjAv/KNJO+UgUnHFQQAgA/X9t0IBB7metn3ALSWoASogqCkQqvLiyNVqKSRWksRSt1o4L/+8YTJwJUEAMDa/mAhxXa1F1Tj4T1EuS0ZQCsJSoAqjJSgMttKMPUmqruxd7CT5K0WNFKvbuwdjG3HBQDAnNtKsqQMj3Vb7wC0laAEmLrV5cWdFAdKM30jJZiecopklGKf3rZYSrEd18AVBgBgDtf4gyTXVOLUtsoJHIBWEZQAlS2mlECdG9w8LWzsHWylHVMkD/Pqxt7BSNMDAMAcrfO7SV5ViTNZSjJQBqBtBCVAVXyBP3375fQOk22eOimmSK7Pwce9lmTHOD0AAHNiqARP5NbG3kFPGYA2EZQAlVhdXtyK7bemTRg1YWVgsJN2bbX1OEtJRht7ByvuAAAAWrzWX5uzdf6kDZUAaBNBCVAlX+RbqDapceqmmCS5MIcf/0KSn23sHfTdCQAAtHCtvxDbR53XknMOgTYRlABVGirB1Nh2a7KN0zyHJPe6LSwBAKCFBtb6E7HmjEOgLQQlQGVWlxdHSfZVYmoLfSZASPIxwhIAANq03u8kuaUSE3EhyZoyAG0gKAGqNlCCiTuMbc0m1TQJSR7stgPeAQDQk/IApkqAVhCUAJVaXV4cxlTJpK2vLi/eVYbzKRf3WxGSPMxIWAIAQAvW/DdUYqJMlQCtICgBZmGgBBNzmGRdGSZilGRJGR7ZAA29LQYAQIP5Ql9dAR5IUAJUzlTJRJkmmYCNvYP1JFdU4rGuRDAHAEBz9ZVgKi441xBoOkEJMCsDJTi3/fjS+tw29g56cZjjWdzQBAEA0MB1/0pMkE/TihIATSYoAWainCrZVolzWTNNcu5maSHJUCXObH1j76CjDAAANIgv8qfrum16gSYTlACz1FeCJ7a9ury4pQznNoi3yp7EhQiYAABoFkGJGgM8lKAEmJnV5cVxktdU4swOI2Q6N1tundu1cvsCAABowtr/gkpMnf4AaCxBCTBTq8uLg9iC66z6ZcjE+QyU4NyckQMAQBP4Ar8a15UAaCpBCVCXReuhMpzKpi23zq88jPyaSpzb0sbewUAZAACouZ4SVNZrqTXQSIISYObKA8m94fN4u6vLi31lmIiBEkzMmkMbAQCouStKUJmeEgBNJCgBamF1eXGU5KZKPNShBedklNMkDnCfnAtJ1pQBAICarv/1UdXqKgHQRIISoDZWlxeHSd5WiY85TNIrJ284P1/qT15fCQAAqClf3Ks3wGMJSoBaWV1eXEuyqRIfOg5JdpTi/Mq3yYzdT95SOakDAAB101GCansDJQCaSFAC1E55DoewREgyDX0lUFsAAOaKCYeKbewdqDnQOIISoJaEJUKSKSzWF5KsqMTUXNvYO+goAwAAzL0FJQCaRlAC1FYZlrw0hx99P0KSaVhJcfA4060xAADUyTUlqFxHCYCmEZQAtba6vLie5MspJizmwW6SrpBkKnyJP319JQAAgLnXUQKgaQQlQO2tLi9uJemlCBHa7O3V5cXu6vLiXVd9KnpKMHVXyi3OAAAAABpDUAI0Qjlh0Uvydgs/3mGSL68uL6650tOxsXfQi223qmJyBwAAAGgUQQnQGKvLi3fLMOHPUpzj0Qb7STrl1AzT01MCtQYAAAB4EEEJ0Diry4ujJN0kr6X5Z5eMbbVViZ4SVKarBAAAAECTCEqARiqnSwZJHHrOafjyvjpXlAAAAABoEkEJAK22sXfQifNJqq55TxUAAACAphCUANB2HSVQcwAAAICHEZQA0Ha23apeRwkAAKiJfSWo3EgJgKYRlADQdgtKULmOEgAAUBNjJQDgcQQlALRdRwnUHACAuTVWgsrtKAHQNIISgNmyLdT0dZQAAADm1lgJKnW4urx4VxmAphGUAMzWBSUAAACYmpESVMo0CdBIghIAYNKcCwMAQF344r5aIyUAmkhQAjTdWAmgdq4oAQAAdVBuA7WvEpURTAGNJCgBmm6sBFA7u0oAAECNjJRArQEeRVACAEyawxsBAKiTLSWoxK6D3IGmEpQAAAAA0GYjJVBngEcRlADQdvbIBQCAOVZOOdxRiakbKgHQVIISANrO6Hf1xkoAAEDN2H5ruvZXlxe9pAY0lqAEgLYTlFRvrAQAANTMVpJDZZiadSUAmkxQAjBjG3sHPVWYKm81VW+sBAAA1Em5/ZapkulRW6DRBCUAtJ2gpHpjJQAAoIYGSjAVm6vLi3oAoNEEJQC0WvnmmBH7ams+UgUAAGq4Th0n2VaJiRsqAdB0ghKg6UwLcBojJajMrhIAAFBjAyWYqG0vSgFtICgBms5B3ZyGQE2tAQDgePrZVMnkDJQAaANBCQDzwMGC1RkpAQAANbemBBNxxzQJ0BaCEgBab3V5cSfOKamKUAoAgCb0B5sqcS6HETgBLSIoAWBe+AJ/+nZXlxdthwcAQBOsxctU57G+urw4VgagLQQlAMwLQcn0DZUAAIAmKF/w6avEE9ldXV4cKAPQJoISgNnrKEEljdBWvDE2bcIoAACa1iPcUYkz6ysB0DaCEoDZ6yjB9G3sHSwksS3U9GwbvQcAoIH6SfaV4dReKs94AWgVQQkA82KUZEkZpmaoBAAANE25Bde6SpzKndXlRbUCWklQAkDrbewdDJNcUYmp2V9dXhwqAwAADbWmBI+1G1tuAS0mKAEabXV5caQKPEoZktxQiakaKgEAAA3tF/oxef44h0lWyukbgFYSlADQ5qZnPUKSKpom4/cAADTVQAkeu97vOY8QaDtBCQCtVL4Zdkslpm7dm2UAADS4ZzBN8nDHIYnD24HWE5QA0NaG57ZKTN3+6vLiQBkAAGgoa9mHE5IAc0VQAkCrbOwdrERIUhWHXgIA0NS+oR/TJA8jJAHmjqAEgDY1O904WLwq26vLi1vKAABAQw2U4IF2k3SEJMC8EZQAzF5XCc6vDElGSS6oxtQdJukrAwAADe0d+jFN8iCbKSZJnEEIzJ1PKgHAzC0owbkbnU6EJFVaW11eHCsDAAANNVCC+xwmGawuL64rBTCvBCUANNrG3sFCkq0ISaqyubq8OFQGAAAa2j/0Y5rkXrtJ+rbaAuadoARog30L3bltchZSTJJcUY3KmigHuAMA0GQDJUhiigTgPs4oAdpgrATzR0gyk0aqb79iAAAa3EP04yW7pDiLpCMkAThhogSAplqPkKRKPeP4AAA03GDOP/9miimSsVsB4H6CEgAaZ2PvYJjkhkpU5qaQBACAhvcQ/cznNMlhijMdBSTzc6/3knTKnyTpPeIvH+dkl45Rkrt6P+aVoASApi36hhGSVOmmw9sBAGiB/px93t0UU/hbts9tdX/cTRGE9JJ0c/Yw8No9f/5q+c9Mku0kOynCk5F7iHkgKAGgSYvAfoQkVRKSAADQhj6il/u/EG6r7RTTI1umR1p9P3dTBH8rmd6U1LXy51b5/+neovUEJQA0ZTHYT3JbJSpxfHD7llIAANACg5Z+ru2cvPE/cplb3Q93UoQj/cxmC7nj4OStjb2DOykCk6ErQ5s8dXR0pApA0xcMozT87aDV5cWnXMlHXuN+hCRVOYyD2wEAaE8v0Uvy85au2zu2RGr9/dtNspZ67qywn2SYZN19SBuYKAGgCQvDdZWoxHaSFYtcAABaZNDSz+XL6Xb3wZ0UIUSdXwpdSnGuydrG3sG6e5Km+4QSAFDjxWE3xSj5BdWYutdWlxd7FrYAALSon+ilnWeTHMbLZG29Zxc29g6GST5o0L17IUVgMi53g4BGEpQAbWCLoHYuEIUk1dhP8sLq8uJAKQAAaJm2rnG9ud/OHngtyTj13GbrNC4kub2xdzAq+3loFFtvAW1ggdi+BeJCkq0ISabtNQEJAAAt7Sl6MU1CM+7VTuq/zdZZXEvyzsbewUury4vuVRrDRAkAdVskLqSYJFlSjanZTPK0kAQAgBZr61rXNEm7+t+VFLtktDHUe6ucLllwpWkCQQkAdVokHockV1RjKu6k2Garv7q8OFYOAABa2lf0YpqE+t+ngyQ/S7t3UriW4uwSW3FRe7beAqBOhhGSTKOZ2koyEI4AADAnBi39XKZJWqB8QXA9zT2L5KwupNiK6+bq8uLQHUBdCUoAqMticZjkukpMzG65+N7STAEAMEd9RS+mSajv/TnPuyjc3tg7iLCEuhKUANRjsdSZ57f9y5Dkhjvh3I3TKMX0yMj0CAAAc2rQ0s9lmqT5fa+tpouwpLu6vLjmjqBuBCUA9dBJMp7TxeJahCRndZjiwL8Pf1aXF3eUBQCAeWaahBrfm0KSE7fKyRJhCbUiKAFglovFfpK3VCKbSdaSPO6Au7FJEQAAeKhBSz+XaZJm971Cko+7tbF3sGMbLupEUALArBaL/SS3VSLbq8uL/fLPR8oBAABP1F/0YpqEehpGSPIgziyhVj6hBEALjJSgcU1MN0KSpDhwfUUZAADg3AYt/VymSZrd+64nua4SD7+/y+8HYOYEJQBUvVDsRriVFCFJT9MDAADn7jF6MU1C/e7LlSS3VOKRLiTZKrcng5kSlABQ5ULxOCS5MOelOIyQBAAAJmXQ0s9lmqS5vW8nxZZbPN6SWlEHghIAqlooHh9gJyQRkgAAwKT6jF5Mk1A/W3rfM7m+sXewpgzMkqAEgCqaFyHJSbPTW11e3HFXAADARAxa+rm2vFzV2P53EIe3P9GzXE7iwEwISgCY9iLxOCSxUBSSAADAJHuNXto5TZK0NwBq+z3ZSWIy4slciC24mCFBCUA9dFv82bYiJEmSm0ISAACYqLZ+Ib25urw4dnkbaT12UjiPaxt7ByvKwCx8UgmA5jtqw4dYaOOV2dj70zDtfcPrLG6uLn9qqAwAADCxXqOT5HpLP97AFW7kPdlr8T1ZpfUUL1xCpUyUADCtReIwyQ2VyEtCEgAAmLhBSz/X5uryp8Yur3tyji1t7P2prwxUTVACtIFFZM1s7P1pECHJcZOzrgwAADDRfqPT4n5j4Ao38p7sxW4KngMazdZbQOOtLn9q/L9/9yeFqIn//bs/9ZO8qhLZ/PPnP9VXBgAAmKyjo/ZOk/z586ZJ3JMkWfrfv/tT/8+ftzsD1TFRAsDElCHJbZXIHSEJAABMpefoxDQJ9bonuzFN4nmg8QQlAExqcdiLkCRJdpP0lQEAAKZi0NLPZZqkudaUYCqWyu8ZoBKCEgDOrXyDZkslspuk9+fPf+quUgAAwMT7jk5Mk1Cve3IhyYpKTE1fCaiKoASA8y4Mu0lGSS7MeSn2IyQBAIBpGrT0c5kmaa4VvfB061uGUTB1ghIAnlj5RtfIwjCHSVaEJAAAMNXewzQJdWOaZLouJOkpA1UQlADUQ+N+4y/f6tiKkOQwxSTJjtsYAACmZtDSz2WapKHKnvi6SkydMIpKfFIJgDY4UoJK/XuxIBwluTLnpThM0vuKkAQAAKbZf3RimoSaOTLpUBVBCZUQlADwJEYRkiTJmpAEAACmbtDSz7X5FdMkjfLvv/tTL0VAsqInrsyFf//dn7p6b6ZNUAK0xa5FSmULw6FaJ0lufuX5Tw2VAQAAptp/dGKahNndf90UwUgvttmapV4SQQlTJSgBWuLIIdqVLBL3hy1uUs7i5leeXxoqAwAATL3XG7T0g21+5fmlsetbu553IcW0SK/8WVKVWuglWVcGpklQAsBpF4zrEZIcNzRDZQAAgKn3IJ2YJmH691kvJ+GI3RPqqaMETJugBIDTLBz7SW6pRDa/8vxSXxkAAKASgxb3FWOXd2b97fF2WitJrqlIIwiwmDpBCdAKR0dqMC3/32/3+0luq0Q2/+KikAQAACrqQzoxTcLk7qVeTsKRC6rSyOvY/YuLS84pYWoEJQA8aiHSj5AkSXaTrCkDAABUZtDSz7X5FxdNk1TQy957zohphHZYUAKmSVACUA+dGi4su3FYWlKEJL2/uLh0VykAAKCSXqQT0yScvX89Dkdsp9VO3SQjZWBaBCUA9bBUw0XmKEaShSQAAFC9QUs/1x3TJBPrWTs52Uqrp3edCyZKmCpBCQAfXXAKSQqHSfpCEgAAqLQf6aS90yQm9p/8vljI/eeMLKkKMEmCEgA+uvgcRkhymGKSxEFxAABQrUFLP9f2X1xcGrm8Z+pPezkJR2ynBUyVoARoi5GF07kXoQtlHef9oDshCQAAzK4nWWnpxxu4wo+9/p2cbKXVixf4gAoJSoBWOMqRIpzD//rtWEhyov/Vix0hCQAAVN/XraWdX45vf/ViZ+QKP7AP7eUkHLGdFjAzghIAkmKvXCFJcvOrFztbygAAANUqvzRfa+nHG7jCH17nXk7CET0oUBuCEgAL1WHae1jiWdz86sXOUBkAAGAmTJO0s9/s5mQrrV5spwXUlKAEYI4JST70tpAEAABm1peYJmnXtbz3nBHbaQGNICgBmN9mpB8hSZJsfvViZ00ZAABgZkyTNLu37OUkHLGdFtBIghKA+iwuu1UdIl6GJLdVPZtfvdjpKwMAAMysDzJN0sDeNScTI9fdxVRkpARMk6AEoD4WKlrU9iMkSZJdIQkAAMycaZKa+1+/HXdyEoysxDkjQAsJSgDmSPnmj5Ak2S0X+QAAwOz6E9Mk9b02954zYjstZm4etrFjtgQlQFuMleCxC91ujKomZUjy1Yudu0oBAAAzZZqkXv1iL8XEyDW3JjWzrwRMm6AEaIuxEjx20TuKEenDJCtCEgAAmHmPYppktvXv5CQY6ekVqbkdJWDaBCVAKxwpwUP9v0UDsmXhm8Mkvb+82Bm7KwAAYOY9XGunSf6yhtMkZV/Yy0k4suQupEEEJUydoASgxcrF8Mgi+MOQxOIKAADq0aeYJpl+nbs5mRixnRZNNlICpk1QAtDu5mMUB+8lyYqQBAAAasM0yXR6wE5sp0X7HP6lg9ypgKAEoL2GEZIkyU2LKgAAqAfTJBOvZS8nwYjttGgj/TyVEJQAtLP5GCa5rhK5+ZcXO0NlAACA2jBNcr5er5eTcMSLccyDLSWgCoISgProZQJvSpQhyQ3lzGtCEgAAqA/TJE9Us05OJkZ6sZ0W80dQQiUEJUArHB2pQZL823vjtQhJkmTza5c6A2UAAIBa9W2tnSb52qXJTJP823vjhdwfjNhOi3l252uXOneVgSoISgBa4t/eG/eTvKUS2fzapU5fGQAAoFb9immSh9eml5NwxHZacGKoBFRFUAK0xc6cNx39JLfdBtkWkgAAQC21dZpk96zTJP/23ribk4kRZ0vCg+1/7VLHtltURlACtMLXLnXu/tt747n87OXbR0KSZDfFW1gAAEC9epY2T5Osn+Lzd3ISjPRiOy2YyLMFkyQoAWh2w9GNg82SIiTp2bsUAABqqa3TJPtfu9QZPqRXu/ecEdtpwdkcxrZbVExQAtBQZUgyamnDcabmJEISAACos9afTXLPdlorSa655HAu63p8qiYoAWigcnR9FCHJYZIVCygAAKht79Jvad9yWH6+YYpw5IKrDRN7tmy7ReUEJUBrHOVoLj7nv773gZDkZPHU+/qlp3fc/QAAUNs+bdDSj3YhzoqEaVj7+qWnvQxJ5T6hBAC10XncX3BPSGKPWyEJAADU2r++90E/Di4HTm/765eeHioDsyAoAaiPzin+mq0ISZLkppAEAABqb6AEwBmsKQGzIigBaIh/fe+DYRwKmBQhyVAZAACg1v1LP6ZJgNN7zQuRzJKgBKAZTcYwyQ2VyEtCEgAAaISBEgCntPv1S0/7NYOZEpQAbbLdxg/1r+99MIiQJEk2v37p6XVlAACA2vcw/ZgmAU7nMMmKMjBrghKA+jcYr6pENr9+6em+MgAAQCMMlAA4pZWvX3p6rAzM2ieVAGiLo6N2fZ5/efeDfpLbrmzufOOykAQAABrUx5gmAU7j5jcuPz1SBurARAlAPZuLlQhJkmQ3SV8ZAACgMQZKAJzC5jcuO4OU+jBRAlAz//LuB90kFgtFSNL7xuWn7yrFue+phSTdh/zPd79x+ekdVQIAYALrzn5MkwCPt2nnCOpGUAJQr8aim2SU5MKcl0JI8mT3Ty9FINJN0in/eOEUf9+9db9b3oPjJKNvXLZXLAAApzZQAuAxhCTU0lNHbdvUH5hb//LuB6Mk1xr8EQ7LP857SHKYIiQx5fD4e76bZCVJb4r3/mGK4GQryZbwCgCAh6xN+7F9MDzObvnHK3P6+YUk1JagBGjTwnyUZgclCElOc593U5zbspLZbGuwnWJrOKEJAAD3rlPHse0WfNR+Tl48G33j8tN3y62RR5m/sOSlb1x+et0tQV0JSoDW+Od3/ziKoKTJDpP0vnn500KSB9/f/SRrNVpMH5aL/cE3L3967AoBAMz9WtU0CZxM5I+SbD2qV/rnd/84THJjTmrS/+blT2+5PagzQQnQpsX5vCwy2urmNy9/eqgMD2w6B6n323nbKQKTkSsGADCXa9ZxTJMwv7ZzEozsnPHZ6SdZT3u34N5NEZJ4IZLaE5QAbVqcD5K8qhKNJCR58IJ50LCGc7tcBI9dQQCAuVq3miZhnuyn3Eoryeiblz9995zPUDfF9sZt24rr7RQv1NmymUb4pBIAMGNCko8vktfTzG3kriX54J/f/ZqtMEYAACAASURBVKMFMQDA/BgoAS13vJ3WVopgZDzJf3g5bdFt0cuf+yleoBu5dWgSEyVAa5goaaTNb17+dF8Zkn9+948LZZN5qyUfyeIYAKD9a9h+TJPQTts5CUZ2KnymOimmS5r44txhipf+1r00RxOZKAFgVoQkJ4vhNo5aLyX5uekSAIBWGygBLbGbk620ZnboeDmt0vvnd//YK5+vpgQmm2XfN3Yr0VQmSoDWMFHSKEKSk/u2n3Yf3nfcdKxYNAMAtG4da5qEpjrM/eeMjGv6nPVS78BEQEJrmCgBWuP/KkFT7CZZU4bkp+/+cZjkxhx81CtJdn767h9X/spWXAAAbem/BqpAw9xJGYz8VYXbaZ1HuZVx76fFLgRrSVYy+5fs9lO87Df8KzsH0CImSoDW+KmJkibYTdKb98XUT4vzSLbSzH1nz+vmX13+9NCjAADQ6PVsL8nPVYIG9J+jJFtteWGr7CVXyp/rFf5f75c97LApIROclYkSAKpcpApJioXtKO06j+Qsbv/03T9GWAIA0GgDJaCG9stea5QiHGld71l+pmH5k5+++8eVJL0k3Uz2RbzDe2o5Eo4wD0yUAK1hoqTWDpN0/2rO9y0VktzHZAkAQDPXtL2YJqE+feYovsy/9/nsJumkCE4Wyj8e6yRZKv98+yN/6yjJ3SQ7SXZsqcU8EpQAbVoQrCT5mUrUcvHam/dFq5DkgYQlAADNW9eOMp9byFIPuykPYXf+ITBJtt4C2sQbD/UjJDmxFSHJR9mGCwCgQcppEiEJVTreTus4HNH3A1MhKAFgmvpCkuSn7/5xqKF8qNs/ffePY2+DAQA0wkAJmLJ7t9Pamvftm4HqCEqA1rCVYO3c/NbnP7M170X4yW/eX0tyw+3wSFs/+c373W99/jOaIACA+q5re/HyD9OxnTIc+dbnPzNSDmAWBCUATMPNb33+M0PN5PvdJG+5HR7rQopR+q5SAADU1kAJmJD9cv0/ShGO2E4LmDlBCQCT9raQJPnJb95fKBf/nM6Vn/zm/fVvff4za0oBAFC7tW0vpkl4csfbaW2lCEbGSgLUjaAEgEna9EX3hwZJlpThTG795Dfvbxm3BwCo5doWzuJ4O62tb33+MzvKAdSdoASASdn81uc/01eGD9+4u6UST2SYpKMMAAC1WtuaJuFxdnOylZbJeqBxBCUATGRRLCS5z1AJntjST37z/uBbn//MQCkAAGrBuowHOcz954yMlQRoMkEJ0BpHSjAru0l6ylB4+zfvD2LLrfNae/s37w9vabYAAGa9tu3FNAkntlOGI7dspwW0jKAEaI1bn//M6O3fvK8Q1dpN0rv1+c/cVYrk7eIAd2e0nN+FFG8u9pUCAGCmBkow9/3eKMnWLecIAi0nKAHgSR1GSPJRaym+5Of8brz9m/cHpkoAAGbDNMlc2k+5lVaKcESvB8wNQQkAT0JI8vFG0jTJ5A1iqgQAYJZrMdrvTspwxHZawDwTlABwVschiUX0/UyTTJ6pEgCAGTBN0mq7OTlnZKQcAAVBCQBntSIkeaC+EkytrgNlAAColPVXexxvp3UcjtgVAOABBCUAnMVNbx193Nu/eX8lyZJKTMWaRh0AoNK1bS+mSZrsMPefMzJWEoDHE5QArXJ0dKQI03Nz7cpnh8rwwPuurwpTc2F9979X1q58dkspAAAqWdsOVKFxPtxOa+3KZ0fKAXB2ghIATuM1IcmDre/+90KS6yoxVStl4wcAwHTXtr2YJmmC/XJ9PEoRjthOC+CcBCUAPM7m2pXPDpThoVaUQI0BAJpuffe/15K8pRK1dLyd1vHUyFhJACZLUAK0zX6cFTFJm2tXPttXhkfyJf702X4LAGBKygnprZgkqZvtlOHI2pXP7igHwHQJSoC2GUdQMil3hCQPbSZ7SY5/NJTV6MX2WwAAk17XriQZJrmgGjO3m5ND2G2nBVAxQQkAD1uk95Xhwwaym2JypBfByKz0lAAAYGLr24UkgyS3VGNmDnP/OSNjJQGYHUEJ0CpHSjAJu0l6L83xG0xvFcFI754fb9jN3hUlAACY2Fp3KybxZ2G7rP3oJdtpAdSKoASAe+1nDkOSt3b/u5MiEDmeGhGM1PM69V668tmRSgAAPPF6apDkVZWozIfbab3kvD2AWhOUAHDsMMnKPIQk9wQjxz/epmuGbtloAgBw9vXvMLaRnbb9nJwzsvWSc0YAGkNQAkBShCS9to5/v1XswdzLycSIYKSZOkoAAHDmtbAD26frTk6mRmynBdBQghKgZZxS8oR6L135XGsW9W/t/tdxMHL843yLdugqAQDAmdbE60luqMZEHW+ntfXSlc+NlAOgHQQlANxsQ0jy1u5/9XIyNSIYaacFJQAAONXa2IHtk3WYZC1FOGI7LYAWEpQAzLebL1353LChzV8vJxMj9lqeDwIwAIDHr5MHcWD7JG0nWRGQALSboARolaOj7MSX5qf10l93Pzdsyr/s/7PzX93cv52WPZYBAOBkvdxJMUXi5ZLJOEwy+Ovu59aVAqD9BCVA23jL53Q2677gLxu948PXexGMAADAw9bO/RTnkVgzT8Zukv5fdz/ncHaAOSEoAZg/m3/d/Vy/hs1dJ/dPjNhPGQAAHr2GXkgyTHJdNSbmtb/ufm6gDADzRVACMF9qE5KUTV0vJ1MjghEAADj9erqXIiSxjp6M/RRTJCOlAJg/ghKA+bGbZG2GjdxxMHL8Y+9kAAB4srX1IA5sn6Q7KUISWzkDzClBCcB82E3Sq3rhX77l1ksxNSIYAQCA862vO3Fg+yQdpghItpQCYL4JSgDar7KQ5J5gpJfkmtIDAMDE1tr9OLB9krZThCRjpQBAUAK0ypESfNRhkv63pxSS/Hjnv7q5fzstTRsAAEx2ze3A9sl76dvdz60rAwDHBCUA7XWYpPft7ud2JtikdXJy+HovghGqta8EAMA8+bED2ydtN8WLZDtKAcC9BCUA7TSRkKQMRnr3/GjQmKWxEgAA8+LHDmyftLeTDL7twHYAHkBQArTM0UgzkSRZ+3b3mTOHJD/e+cNC7p8YEYxQJ2MlAADa7sc7f+jEge2TdJhk5dvdZ0ZKAcDDCEoA2ufmt7vPDE/ZhC3k/okRzRh1NlYCAKDNfrzzh34c2D5Jd5L0v919xhQJAI8kKAFol8eGJD/e+UMvJ1MjghGaZKQEAEAblS8wDePA9kk5TDL4dvcZB7YDcCqCEqBVjub7429+5wEhyY+KYOT455q7hAZz6CYA0Drlen0Y295Oym6Sle90nxkrBQCnJSgBaIfN73Sf6ZeNVjcnwYg30miL/e/YMgEAaJkf7fxhEGcsTtJr3+k+M1AGAM5KUAK0TW8OP/Nukp0f7fxhq/z89jOmjUZKAAC0xY8c2D5p+0n633FgOwBPSFACtE13Dj/zlSRvufS03JYSAABt8CMHtk/aZpI108cAnIegBGibrhJAK42UAABosh85sH3SDlNMkXihBoBz+4QSAC1rPByACO1zxxuCAEDDe5Vekp0ISSZlO0lXSALApJgoAdqkpwTQShpgAKCxHNg+cS99p/vMujIAMEmCEqBNekoArXMYQQkA0EAObJ+43RRbbe0oBQCTZustoE16SgCts2XbLQCgacoD23ciJJmU7SQ9IQkA02KiBGhLI7KgCYFWGigBANCwvmQYZ5FMymGSfpIdL88AME2CEqAVjo6yogrQOtvffeGZsTIAAE3wT+/8oZciJFlSjYm4k6T/3RcEJABMn6AEaIueEkDrDJQAAGiCf3rHge0TdJhk8N0XHNgOQHUEJUBb9JQAWmX7uy88M1IGAKDO/umdP3RSTJFcU42J2E0xReIsEgAqJSgB2tCcdGO8HdpmTQkAgJr3ISspQpILqjERb3/3hWesAanbc76QpJvk+I/HOuVPkow+8reNksSLX9AsghKgDZxPAu2y6S1CAKCuyi9O15PcUI2J2E8xRTJSCmrwfPdS7FjRSxGMnCYI/ehE2avlP+v4/t5JEZ6M9DlQX4ISoA0EJdAehzFNAgDUVDnNvhUT7ZPiwHZm/Ux3Unyn0EtyfQr/F0vlz/Xy/++w/DVklGTLvQ/18dTR0ZEqAE1f1HygEtAaX/7uC89sKQMAUMPeYxAHtk/KYZK1777wzFApmNHz3E8RkFyf8XOwlWRoogpmT1ACNNo/vvP7tSRvqQS0wp3vvfCsCTEAoG49x0KKLzMd2D4Zu0lWvvfCs2OlYAbP8lr5U7ezhfaTDL73wrNDVwpmQ1ACNH2hM9KwQCvsJ+l+74VnjZ4DAHXqNxzYPlmvfe+FZwfKQMXPcZ0Dkgf1RQITmAFBCdD0xc7/UQlohRe+98KzDjYEAOrUawyS3FKNidhP0v/eC8+OlIKKn+W18lm+4JkBHsVh7kCT2aIH2uGmkAQAqIt/fOf33RRTJFdUYyI2k6yZHKbi57iXZL3Bz/FSkp//4zu/v1M+P2NXFabrE0oANFhfCaDx3jZWDgDURfn2+TsRkkzCYZIvf++FZ/tCEip+jteT/Lwlz/H1JDv/+M7v+64sTJett4CmLnw6ST5QCWi0ze+98KwFPwBQh/7Cge2TtZ1i26CxUlDhc9z2abA75XMleIQpsPUW0EhHR7bdgobb/P6LQhIAYPb+4de/76UISRzYPhmvff9FB7ZT+XO8kiIkafNzfD3Jzj/8+vcr33/R1sUwabbeApqqrwQ02OGcf34hCQBQC//w6w+36BGSnN9+kheEJMzgOV5L8rM5eY6XkozKYAiYIFtvAU1cBHVi2y2a1zSOUrypOCr/u1Hmc+9rIQkAUIeewoHtE17jJVn7/ou2BKLyZ3mY5Macfvyb33/ReY8wKbbeAppoTQmoueNgZJRk9P0Xnx0/YEHfK5vz6xbyAADV+Ydf/76fZD2mSCbhMEn/+y8+u6UUzOBZHmZ+Q5Ikuf0Pv/599FgwGSZKgCYuhsYpxk2hTg3iqPzZelAw8oj7eT3JrTmoz8r3X3x25FYBAGbYRyxk/l5UmabtFCHJWCmYwfM8zHyHJPfyQhpMgKAEaNpiqJdiD2GYpXuDkdF5D9Jr+cGD2ylCEtswAACz7iOG8cLVpDiwnVk+z8MIST5KWALnJCgBLIjgdLZzEoyMpnBvt+0Nx8Mkg++/+Oy6WwcAmHEPMUjyqkpMxH6Kl2B2lALPc+182TZ48OQEJUBjvFl8kTyOvYSpxm7Kw9dfrnDLqDeL6ZL1NPttx+0k/ZdtwwAAzLZ/6KR4EeWaakzEZpK1l00KM7tnup/ktko81GGS3suCTHgighLAoggKu7lnO61ZNoBlKLhW/jQpGNwvm2dvMQEAs+4d2ry1adUOU7wEY43HLJ/pbtmreaYf35N1BZpwdoISoEkLo50kV1SCCS4gRzmZGrlbw3t+IcV0yY0G1HLwsj1xAQDrp7YxKUxdnuudOGPotO68/OKzK8oAZyMoARqyMPrPbpJ3VIJzOA5GRklGL7/43LhB939dJ0y2kwxffvG5odsLAKhJzzCMl6sm5bWXX3xuoAzU4NkeRvh5Vi+9/OJzzouEMxCUABZGtNVh7psYaU4w8phnoZ9kJbM79P0wxRcQw5dffM7etwBAXdZIa0neUomJ2E+yYq1HTZ7tlSQ/U4kn6tu6bemDoQqCEqAJCyOHuHPaheAoJxMjO3PwXKyUP70pPx/H57dsvfzicyO3GgBQszXRVhzYPsl13yCJ8w2oi2FsufWktl9+8bmeMsDpCEqAJjQ//TjEnYcs/HLyBf7OnD8n3RSBSTdJ5xxfFuynCCZHKfYBHr384nMaZQCgjuufXoqQxAtVAA/25ZdffG5LGeDxBCVA7b3x6/90iDvHjoOR0SsmG077/PTu+Y/dJAv3/OednLwtOH7FWDYA0Jw1znqSWyoB8Ej7r7z4XEcZ4PEEJUDdGyCHuM+34y2fRinCEZMNAADz3R90UkyReJEK4HRuvvLic0NlgEf7pBIANbemBHNlv2x8RxGMAABwjzeKLXnXY6stgLMYpDjrBXgEEyVAnRuhhST/RyVabT/3T4yMlQQAgAf0BetJbqgGwBMxVQKPYaIEqLO+ErTOYcrD1yMYAQDgMcqteLeSLKkGwBMbxFQJPJKJEqDOTdFYQ9R4x8HIKEUwsqMkAACcsh8YJHlVJQAm4s9eefG5kTLAg5koAWrph7/6z5UISZpqO+XUyN98QTACAMCZe4GFFFMk11QDYGL6Za8OPICJEqCuzdFIY9QYx8HI6G++4O0UAADO1QespNgexoHtAJP3P/7mC8/dVQb4OBMlQB2bo06EJHW2m3u207LIAgBgQn3AepJbKgEwNcdhNPARghKgjgZKUCuCEQAApuaHv/rPboov7q6oBsBUCUrgIQQlQK38/a/2Fp5KbqjETO3nnmDkf35heawkAABMaf3ffypZj622AKrQUwJ4MEEJUDdrSlC5wxSHZY4iGAEAoAJ//6u9hRRvNV9XDYDKXPj7X+31/ucXlkdKAfcTlAB1IyiZvsPcPzGyoyQAAFTl73+1103xos6SagBUrld+HwDcQ1AC1Mbrv9rrx8j9tGyXzejoB4IRAABmt+YfJHlVJQBmpqcE8HGCEqBOBkowMdspJ0Z+YKQWAIAZe73YamsryTXVAJiprhLAxz11dHSkCkAdGqeVJD9TiSe2m5NgZEs5AACo0Vq/lyIkMT0OUA//4wdfWL6rDHDCRAlQF84mOZsPg5EU4YgFDgAAtfP6r/bWk9xSCYBa6cY5JXAfQQlQh+apFyP4j7Of+4ORsZIAAFDjNX4nxRTJFdUAqJ0FJYD7CUqAOjBN8nGHZWM5imAEAIAGef1Xe/0k67HVFkBddVN85wCUBCXArJuoTpLrKpHD3D8xsqMkAAA0bG2/kCIguaEaAECTCEqAmTo6OhrM8cffTjk18rdffF4wAgBAY/3dL393/HbykmoA1J6tt+AjBCXALJupTubrbbPtlBMjf/vF50fuAAAAWrKuX0vylkoANEZXCeB+ghJglgYt/3y7KYKRLcEIAABt83e//N1CkmFspQsANJygBJhlU9XGaZLNnGynddeVBgCgpev5XrnudWA7ANB4ghJgVtZa+Jn2//aLz/ddWgAA2uzvfvm7QZJXVQIAaAtBCTCLxmoh7QxKhq4uAAAtXsd3yjXvNdUAaDQ7YMBHCEqAyv3fIiRp44j+uqsLAEAbDX75u5UUIYmttgCab0cJ4H6fUAKg4garrdMkmwNnkgAA0M41/HqSn0VIAgC0lIkSoGptnSYZuLQAALRqgfvL33VTTJFcUQ2AVvGiJ3yEiRKgykarrdMk24MvPj92hQEAaNHavZ9kFCEJQBvZegs+wkQJUCVnkwAAQI2VLzetJ7mhGgCtNVYCuN9TR0dHqgBU1XCN076gZH/wxec7rjAAAC1Ys3eTbCVZUg2AFv96/8Xnn1IFuJ+tt4CqOJsEAADquqj95e/WkrwTIQlA220rAXycrbeAqXv1P37b1rNJDl/70sWhKwwAQMPX6sMk11UDYC44nwQewEQJUAVnkwAAQM28+h+/7aX4wkxIAjA/RkoAHycoAabdfLV2miSCEgAAmrtOHyT5eWy1BTBvRkoAH2frLWDa2jpNsvXaly7edXkBAGiS8kWmrSTXVANg7uz6LgMezEQJMO0mbK2lH2/gCgMA0LD1eS/JOEISgHk1VAJ4MEEJME1tnSbZfO1LF8cuLwAATfHqf/x2PcVWWxdUA2BubSkBPJitt4Cp+EG7p0mcTQIAQFPW5Z0UX4xdUQ2Aubb7upc+4aFMlADTsp52vq22/fqXLu64vAAA1N0P/uO3K0l2IiQBwEuf8EgmSoBpNGSdJDda+vEGrjAAADVfjy+U69ZbqgFAksPYdgseSVACTMOgpZ9r+/UvXRy5vAAA1NUP/uO33RSH9ZoiAeDY1utfunhXGeDhBCXApBuzTto7TWJMFR7+7PeSLCTplv9V757/uZNk6SF/6/Y9fz5KcjfFFiE7FvIAcObfj/tp7xa4ADy5gRLAoz11dHSkCsAkm7OtJNdb+NH2X//SxY4rjGf8t90UYci9P9P6MmY/RXgyijegAOBRvz8vpAhIbqgGAB+x+fqXLvaVAR5NUAJMskHrJfl5Sz/ezde/dHHoKjNnz/RCismQXopA5NqM/5XupNhXV2gCACe/X9tqC4BHefr1L10cKwM8mqAEmJi/+cV7o8z+i9Rp2P/h1UsdV5g5eIbvDUZ6qe8XLscHEQ5+ePWSBT8A8/x791qK7VRstQXAg7z2w6uXBsoAj+eMEmBSTVov7QxJEnt50u5nt5tkJUUw0pRn+EKKrUVu/M0v3tuMwASA+fv9eyHFFMl11Ti3OynOR2uSNvdeH3UYZ0XOu1eV4Inte37g9EyUAJNq1nbSznF/0yS08XldyUk4stSSj/VakvUfXr1kSy4A2v77eDfFZOWSapzLYYqXLdYbeA8spAh35uUeeKmJ14mJ3e+DCEue1Jd/ePXSljLA6QhKgEksXPpJbrf049384dVLQ1eZhj+jx1tqHQckbd2eYz9J/4dXL41cdQBa+nv6WpK3VOLcdss1w06D74Ve2ns+5EcdJumaIJ7rXmYU5zCd1Z0fXr20ogxweoISYBILl3Ha+TaTaRKa/mweByM35uyjv53iDVHTJQC05fd0W21ZJzzovlhPcmtOrtvuD69e6rp95/bXwG6Sd1Ti1PZThIv6ITgDQQlw3gXLIO0dgzVNQhOfyeNwpM2TI6dqppOsePMQgBb83m6rrck4TDFFstWy+6OtWyA/iEOp5/vXQhN1p/dnpuzh7AQlwHkWKgtJxmnnl7GmSWjSs9hN0k8RjvgS5cRhkl6Tt9UAYO5/jx/E3vyT0NoXKObwTfsXrO3m+tfEYeZvWv6snOkDT0hQAjyxV1o+TfKGaRLq/fwtpAhG1mK/3kc5TNJ7Q0MNQPN+n99Kck01zu21N1o+hfDKfL1pv5+k+4Ytheb518aR/uehNt+4eqmvDPBkBCXAky5QOkk+aOvi+w3TJNT32eulmB7xJtXpCUsAaNrv9VuZ7y00J/X7/8obc7L9zCu/eG+U+QnW3n7j6qU1t/jc/hq5kGQnJuk/avuNq5d6ygBP7hNKADyhgc8G1TUDr/zivbVXfvHeOMnPIyQ5qwtJRq8UW1MAQJ1/zx+Uv9cLSc7nTpLOG/O1R38/RTg0D26VgSJzqJwmWpmj+/00dsuaAOdgogR4kgauVzZwbWSahLo9a/0IRiblMMWXJrZqAKBuv+fbamtyXnpjTvfnf+UX7/WT3LauY07u926KbbjmPVjeTTE971mAczJRAjyJgc8GU1vwL7zyi/f6pkem4kLZTAFAnX7v7yUZR0hyXvtJXnhjjg8xLs9YvDNH67qh235+ldvq9spnf14JSWCCTJQAZ23kVpL8rK3NlWkSZvhsdVIczN6Pt6KmrfWHugLQmN//B0leVYlz20yy5svCD6eTxnO0nrxZBkTM9z0/yvwd8O7gdpgwQQlw1kXIOO09NM0im1k8U70UAcl11ajUCw53B2CGv//bamsyDlMEJNbwH19f/nyO7oHuG1cvjV35uf81dThHPZUXv2AKbL0FnGXxsZb2hiT7Giwqfp7u3V5LSFI9zzsAs1oD9GKrrUk43nLG7+kfUR5i//acfFxbcJE3rl66+8bVSytJXmv5Rz1M8mUhCUyHiRLgtA1d20e4TZNQ1XO0Vv7YXstzD8D8rQUGsdXWJLz9xtVLa8rw2HXnKPOzHZE37Dm+93spwrO2veS5naRvegqmR1ACnHaxsZ7kVks/3u4bVy91XWWm+Px0kgziYPa6cS4RAFWtBWy1NRmHKb4o3FKKU9133STvzNFHtrUq9/6aO0g7vsM4TDJ44+qldVcWpktQAjzWy794t5PkgxZ/xD978+rlkSvNFJ6dXorD2QUk9XXzzauXh8oAwJTXA1sxTXpe20n6b169PFaKM91/g8zPFNNukt6bVy/fdeW559ff9TR3supOkjW/7kE1BCXAaRYXW2nvGQrbb1693HOVmcKCfBBvjTbB/ptXL3eUAYAprQkGsdXWJLz25tXLA2V44vtwNEfr0rffvHrZtmx89Bnol/1ZU7bj2k4y8EInVEtQAjxuQdFLcdh0W5kmYZ4X4Ph1AIDprAlstTUZh0lW/D597vuxk2Qn8zPVZG1HU/s1AQnMkKAEeNxCYiftPQDQNAnzsuDm0TbfvHq5rwwATGhd0IuttibhToqttmyjNLn16u05+biHSTpvXr18twyJOo/563fcZ3P3PKyk2CL5ek3u160k629eveyMHZghQQnwqMXDWpK3WvwRvWnEeZ6PhSQrEZC0opl+8+rlBWUAYALrg0FstTUJL7159bKDiyd/f7Z5S+VJ2E1yN8koxQTOSIDS+meiU/Z0/VT/guidFAHJlvsM6kFQAjxswbCQZJz2vgnnDXLO82yslT/eFG2PL7959fL/z979hth1n/ei/zrk5b1oWigEAvWUQKHQWNt2EkuypNmSbMdWOGhCKYTSg7Z7OC093IPHLSd96a2XaUg8IiUhCY330FACJWREWtupbWmP4/hP68YzTiFQCJkJBAKBXm3u62bui7Unkm3Jmj9771lr/T4fGJymTdv1rDVrfr/1/J7nWRUGAA6wPtBq6+C2UrXacqraHq9Oz+RqqqSJtWK7fz/mk3Rv+pn0YbiNVEm4YSThoJYkSoBb+qs3frSc5IkWX+LvfO6Bj2660+zhd0KCpN0uf+4Bgz8B2NcaoRuttiZhJcnS5x7w8XAGz+s1kdiXnRZJg889oDNBAb8r86natnWTzCXpjP9bC3d4RnYSvcNUFUrrnhdoBokS4HYLgp+2eRP2uQdUk7Dr3wcJkjJsfO6Bj3aEAYA9rhP60WrroEapEiQDoZjZc9v2Q3GzsJWqBe+q5B5AO0iUALdaOA/T3rYBoyTzFrPs4vdAgqQ8o9yFcgAAIABJREFUv+HdAMAe1glabR3cRpLe5x7QausQnt9hZj+Toa37y+Uky9aRAM32ASEA3rVoXmz5hs8CljtuHMenQzdTnRCVJCmHihIAdrNW6I7XCZIkB3M5SVeSZPbG+6GeSEzEkfGeYfOv3viRNq4ADSZRArzbcouvbdTy6+MAJEiIRAkAd14v9FPNd7BOONia/NOfe+Cj5pEconGC6pJITMyRJE//1Rs/2hwnUwFoGK23gHdv/NrcY/nJzz3wUYkS3v3ca7HFjkufe+CjfWEA4DbrBa22Dm4jyeLnHvjoplDU5tlejxZc03A5SV8yEKA5VJQAOwvk+VQfittqS5KEWzz3vagg4YauEABwi/VCN1ptTcLlzz3w0Y4kSe0spqryYbKeSLL+V2/8SMUyQENIlABJku1keTs5sl396zb+9N1ldnz2jR/1PvvGjza3k2da/tz72eMPALxrzdDfTq5ZLxzoZ7SdnPncAx81v6GGPvfARze3k77ndCo/d28nb33W7BKARtB6C8hnq1Ny11p8iWt//cBHu+40n60qSPpJ7hYNvCsAeJ81g1ZbE/rbmmTxr7UfasIzv5rkgkhMzUqSJb8LAPX1QSEAkgxafn19t7j4jV93/JxLkPB+5oQAgM9WrXJWrRsO7NJfm/3VJL1ULea0o52Oi0k6n33jR13JEoB60noLbAT7Ld8EXvnrBz46dKeLfb67n33jR8NUFVM+dnAnBpkCWDssJXnLuuFARknOSJI0y/jjfU8kpr7WHI4r1gCoGa23oOyN4Fzaf2rod/7awMgSn+1OkuVol8HePxLcJQoAxa6LB9F66KCuJOk5Md/o34XlVIPImZ6NJCpLAGpG6y0o23LanSS5LElS3MZuPlWrtYuiwT43rQCUt37QamsynvzrBz66LAyN10+y6PdhqnYqSyRLAGpERQkU6v+8/nY37R7gPkoy//lj91h4lvE8z403dU6/cRBrnz92T1cYAIpaQ/SSPCMSB7KVZPHzx+5ZF4rW/F50UrWgY7o2knTtWQHqwYwSKNeg5de3bMFZxCZu7v+8/nY/VQs5SRIAYC9riEEkSQ7qSpKOJEm7jO/nJZGYuqOpujwAUAMSJVDmxrCfdpdSb33+2D19d7r1z3EvyXqSp9LuFnIAwGTXEJ0kw2jVeVBPfv7YPYsOJ7XTeD+lLen0XRzvzwE4ZBIlUN7GcD7JUssvc8mdbvUz3P0/r7+9meoEqN7JTNJQCABav47ojd/3R0Vj3zaS3Pv5Y/c4Cd9+i6laGjNdT41bYwNwiCRKoDxtH+C+9vlj96y6ze0zTpAMU83WkSABAPa6lhikOmihEnX/VlLNVNBqqwCfP3bPZqo5gEzf6njuIgCH5INCAEVtDrtJLrT8Mi3k2/fczo/vq/YYTNtQCABau5ZYjSqSgxglWfr8sXsGQlGWzx+7Z7mQfeRhO5JqjuiiUAAcDhUlUJa2b2xWPn/snqHb3A43DWr/aSRJmA091gHat55YTDXTTJJk/zZSVZEMhKJYvWjBNQsXxu8sAA7BXdvb26IABfjL6oPzUy2+xFGSzheq8nCa/7wupaoi0RqDmfnCsXvuEgWAVq0nlpM8IRIHspJk6QsGtvt9qj7gf0ckpm5rvK/1OwcwY1pvQRmL2vm0O0mSJMuSJK3ZgC3HDBJmb00IAFqznpiLge0HNUqVIBkIBUnyhWP3rP7l629fjuTjtN2dZOfQGAAzpPUWlKHtG5ytLxy7x0Kywf7y9bc7f1kNav9OJEk4HIbSArRjTdFNshlJkoPYSHWifSAUvEs/VcUD07X0lwa7A8ycihJo/WZxYzHJQtsXku50Y5/P+RjUTj1IlAA0f13RT/urqKft8heOHbW25pa+cOye63/5+kYvyTXRmKojqarse0IBMDtmlEC7N4tzqU7UtXnOw9oXjh3tutuNfDaXxj/mkFAH937h2FHJEoDmrisGSS6Ixr6NkvS+cOzoqlCwi9+5fiQlZ+E3vnDsqFklADOi9Ra0Wz/t/wjtxFvzNla9VKf3n4okSRONklxJ8niSy225JkkSgMauKzrjdYUkyf6NW21JkrA7Xzh2tD9+brDXBWgNrbegvZvGbto/aG/Fx83GPZP9tL8VXBuNkqwmWb35I8pfvr7Rlt+/oVsM0Mi1RS/JMyJxIFptsV+98RrKwafpMdQdYIYkSqCltrez3PJLHMUJm0b4i9c25lL12DWHpHm/Y6tJVr94/L0nTP/itY1O2jMod+h2A1hbFPh3vnerv/GwG184dnT9L17b6Cd5WjSm5shfvLbR++LxowOhAJg+iRJo5+axn/Z8wLyd/heP69fakGfRHJJmuZIqOXKnDVmvRdc8dNsBGrO26KSaR3JUNPZtI8niF48f3RQKDuKLx48u/8VrG4tRMT5Ni+N3HgBTJlEC7ds8zqf9lRYbXzx+dNndrvVz2B0v6O8WjWb8To3v12APCcjFllz71hePa+EH0JD1xc4HQwcw9u/yF49rtcVEObw2XRf+4rWNOYcEAaZPogTap4TNo81dTY0TdcsxULUJdlprLe81UTBOhLUlCTb0KAA0Yo2xnPbP35v2332ttpj07+Wcdf9MqCoBmAGJEmjXQrWEsucrXzx+dOhu1/L560ebrSZYS1U5cpDNVq9F8fA+Aaj3+mIuVWJfa5/902qLaekKwUxIlADMgEQJtGsT2fbFkwHu9Xz2uqmqSPQKr/fvzr6qR27zrllsUWycrAWo9xpjNQ5hHIRWW0zTohDMRFcIAKZPogRa4ldJv4BN5PKyk3C1sVR9MF9OclE0amsr1bthdXlCfY1/VW2I2/Ku2VjW7xmgruuMpSRPi8S+jZIsLqvEZrp70K4ozMSRpdc2Osvm6gFMlUQJtGMj2U37ezZvLR8/2ne3a/PM9VIlSZzwrKcrqRKLwyn87+61KE4DjwpA7dYYO1XS5h7s31qqJInDAEz7d/VukZiZbhKJEoApkiiBdhgUcI09t7kWG6JOqgSJPuH1s9Neqz+tyqul1zbmW3bvtd0CqN86YxDtPA/iksNFzEhHCMQboE0kSqD5G8p+2n+S54q2AYf+nM2lmg/zlGjUzlaq5NVgBidH29TjfEsrP4BarTV6Ua16EFptMWtdIZgpiRKAKZMogUZvKNc7af+HawPcD/8566Y63am0vl42kiwvH+8MZvd/crvXovipJgGoz1pjOe1vIztN41ZbHa22mKFtH+5nS6UdwJRJlECzLZdwjcvHO5tu9ewtvbauR3g9rSXpLx/vDGf8PLRpiHtiPglAXdYaw/gAeBCXlo93+sLAIZgTgpm/M+ftjQGmR6IEmrtIWkr750Rs2fgd2vPVi/YXdbOSKkFyWJujXsveLYZhAhzuWqObqrrPWmN/xq22ZntwAm6iomT25pNsCgPAdEiUQAM98er6fJJ+AZfac7cP5dkaxLD2OllJ0r984vBOj42fizZVFmm7BXC4642lJE+LxL5tJOlePqHVFodne1uSE4B2kSiBZhqk/afvrlw+4YTcLD3x6no/hrXXxShVRc9yTT6C9Fr4DgVg9muNufHft4uisW+XL5/omN8HZeqkalcIwBRIlEDzNpiLaf9pfwPcZ/tMdVN9tNAfvB7Pfp0SJDt6LYrx1uUT2m4BHMJ6o5MqUW29sf81Qu/yiY6qSOry+8zsmQsDMEUSJdCsBenOcO22Wz7MNkOFPU/9JE+IRi2Mbvr9Xnri1dp8y59PcneL4uwDE8Ds1xyLKaMielo2kixaH1MjPtgD0DoSJdAsJWwwNy6fMMB92sZVJIO06wN40x2JpNWs3qMAzG7N0Y/Wngeh1RYAwAxIlEBzNpmLadcw5duxEZzuc7RTlXRBNCiQtlsAs11zrKb9LWOnRastAIAZkiiB5mw0BwVc6ooB7lN9jrS9oHTLQgAwkzVHJ1WSROXq/mi1Rd1dFwIA2kaiBBrgV9UcibZ/3DbAfUr+96vr86k+EKsioXRO5QJMf93RG687HMzYn8tf0mqLuj+kJzrr//tVRbqHQIIKYIokSqD+m81uyphb0P/SiY6F3+Sfn6WUkWiDO1n7kpO5ANNedyzHvK39GiXpfUmrLeD2ZKcApkiiBOq92Syl5dbal050tMSZ7LMzP3529AWHykAIAKa6Zh0mOSoa+7KRZFFCHwDg8EiUQK1t91NGb2ftBSbof7/6Vn8cU1UkcIMTugDTWXd0UiVJrDv25/KXTtxrLUwT96prcShr1jaFAGB6JEqgvpvObspoXXDpSyfuVUI8mWemk+rUvNOc8E4rXzpxr9Z+AJNfe/SSPCMS+zJKsvSlE/cOhIKGsraasS+duHdTFACm5wNCALXcdJbScmsr1bBPDv7M9JO8FUkSuJWBEABMfO0xiCTJfm0k6UqS0HAOu83+vQHAFKkogRraroZvl9Byq/c3TnkfyP+jigTuZOtvTtw7FAaAia09zCM5mJUkS9bAtGDPKlEyW+INMGUSJVC/zWc3ZbTcuuLj5YGflX6Sp0QC3tdACAAmtvYwj2T/RqkSJP4u0RY+3Is3QKtovQX12nyW0nJrlKTnju/7Oen+P6++tRlJEtiNgRAATGT90UvV5lOSZO82knQlSWiTv6nmZWyJxMwMhQBgulSUQL30U0bLrb52A3s3TqT1U0bFEUzC2t8YegkwiTXIIMlFkdgXrbZos6F3w0yM/ubEvSpKAKZMogTqswHtpowP4Gt/c+JeA9z393wMUkYiDSZlIAQAB1p/mEdyME9a99Jyw0iUzCrOAEyZRAnUZxM6KORyl9zxPT8b/agigb0aaXECcKA1iHkk+7eVZNEJcAqwmuQZYZhJnAGYMjNKoB76KaNS4JIN4+6Nq0jWI0kC+zEQAoB9r0F6MY9kv64k6VjzUoJxS7kNkZg6iRKAGVBRAofsf/3gh92U8SF868sP3td3x3f1TKgigYPT6gRgf+uQQbTS2a8nv/zgff7+UJRfbW8vR1XJNF358oP3mXEEMAMSJXC4G9GSWm713PFdPRPdmEUCB7X25Qfv2xQGgD2vS4cxj2Q/RkkWv/zgfUOhoEDab00/vgDMgNZbcLj6KeOD+GUbx/f3v37ww7n/9YMfLie5FkkSOKiBEADsaR3SSdXuU5Jk79aSzFvrUqpxtcOKSEzF6MsP3mddCzAjKkrg8Dak3ZTRWmmUKiHE+z8Lg0iQgA0lwOzXIb1U7QrNI9m7S1rLQjJ+h2jZN524AjAjKkrgcDakRbXc0lP19s+BKhKYuIEQAOx6LbIzW0CSZG9GST4tSQKVLz9433qq6iomS6IEYIZUlMDh6KeMD+NXvvzgfXqq3oIqErChBDjEdcjOoZ0LorFnG6nmkWwKBbxnj3tNGCZmxYFDgNmSKIEZ+/Mf/HAx5bTcWnLH33P/58abiCdEAybuyld8uAK401qkkypJYh7J3l3+yoP3Wd/CLXz5wfuGf/6DH64lWRANe2mAJtJ6C2a7MS2p5VbfB8v33P9uqkGpkiQwHQMhALjjWmQYSZK9GiV5XJIE7rwHFIKJWP6KahKAmZMogdkapIwe0GtfefA+7W/G/vwHP5z7c7NIYNq2vqLVH8D7rUeWxmsR80j2ZiNJ9ysP3jcQCnh/X3nwvmGSFZE42Jo2WskCHAqJEpjd5nQx5fSB7rnjv77v3agigVmwoQS4/XpkkORpkdizlVRJknWhgF1bSlWFxT7jp5oE4HDctb29LQow/c3pXJLNlHGC79JXHryv756bRQIz9hs2lQC3XI8Mo9XWfjypQhr2/e5ZTPIdkdizK1958L5FYQA4HCpKYDZWU0aSZEOSRBUJHIIVSRKA96xHOuP1iCTJ3mwluVeSBPZv3A71ikjsySg6MwAcqg8KAUx9k7qUZKGQy+0Vfq9VkcDh8DEL4J1rkt743Wgeyd6sJVmUfIeJ7Q3XY0bjbnn3ABwyrbdgupvU+fHiUMut9t/rbpKBjQDM3NpXHryvKwwAv16T9JM8JRLWslCD91EnyVsi4f0D0AQqSmC6tNxq/+JfFQkcroEQAPx6TbKc5KJo7Mko1UnuoVDAZH3lwfvW//wHP3w8yTOicVsrkiQA9WBGCUxvs9pPOT2hlwq9x92YRQKHaesrD943EAbAuvPXQ9slSfZmI0lHkgSmZ7xWuyQSt30HLQkDQD2oKIEp+LNXfthJOS0PLn/1ZFmbyz97RRUJ1MRACADrzh92UiVJzCPZm5WvnryvJwwwfV958L7+n73yw/lI5t5sI0n3qyfNJQGoCxUlMPnN6lzK+Xi3lSphUNL97UYVCdSFIe5A6evOxUiS7NUoyeOSJDBb49+5FZFIIkkCUEsSJTB5/ZTTcqtX0uLuz175YT/JtRjYDnWwYnMJlOzPXvnhUpLvRJJkL7ZSfZwcCAXMnmRJEkkSgNq6a3t7WxRgchvWbqoP6SW4/NWT9y0Vcl87qaqEjnrKoTbu/erJ+9aFASh0zTmIFjZ7dSWFHfKBGr/DllNmhb4kCUCNSZTA5BZ7c0k2U8apvq0knRIWeOMqkqc84VAra189eV9XGIBC15vDOLyxV5e+evK+vjBArd5nvSTPFHTJK0mWJEkA6sswd5icQcppfdD603iqSKDWzCYBimNtsi+jJItfPXnfUCigXr568r7Bn73yw/WUMWfpya+evM/6FaDmzCiByWxcl5JcKORyL7d9szmuInkrPkRAHW199eR9q8IAFLbW7EQlyV5tpKqAHgoF1NO4jep8krW2rltTtYuVJAFoABUlcEB/+sq/zaca4F6CrTZf65++8m9OakL99YUAKGyt2UtZ7WkmYeVrJ+/vCQPU37hTQfdPX/m3pfE6ry3VJZeT9L928n6ttgAaQkUJHNxqCmq51daF3nhhPowkCdTZaPzOBSjCn77yb/1Ikuz178TjkiTQPF87ef9ykk6SKw2/lK0kZ7528v4lSRKAZjHMHQ6+eS1l0Pflr528f6mF93A+VRXJgicaau/S107e3xcGoJB15iDJRZHYta0ki187ef+6UEDj33/dVDPpmnSIbZSqgkSbLYCGkiiBgy3erhW08ey07URMC8u7oe1+52sn798UBqDla8y5qHLdqytpceUzFPw+7I33a3fX+P/NUaqkzrJ3EECzSZTA/jew6zVfsE3Sma+dvH/Yovs3H1Uk0DT6zQMlrDHnU7UYlCTZPdWG0P53YzfJUpILNfp/a2d+56oECUA7GOYO+zNIOUmSyy1LkvRSnfhRRQLNoo0B0Gp/+sq/dVJVklij7M4oVRWJ2VXQcuP96HCcTO6Nfw5jP74zL2/Qpj0yABUVJbD3TWwv5QzVbE3LrXEV0CD1OoUE7M7a107e3xUGoMXry8XxOkWSZHc2Us0j2RQKKPa92UnSTbKY6XYK2EqVHBlKzAK0m0QJ7MH//P6/zadquVXKJvbM1081/6TM//y+jw/gXQRQ23VKL+UcwpmElSRLXz+l1Q3wjndpN1XiZH78s5/kyUaS66mq+9aTDL1rAMohUQJ7W3ytp5ye0Ze/fur+pYbfL1Uk0HxbXz91/7wwAC1dW/aTPCUSu/bk10/drxUjsJf3bCfJ3B3+x9YlRAAwowT2tpEtJUmykWowXZPvVzdVibQqkskbJel9/ZTS85o9872080Ry390FWvreHiS5KBK7Xnssqi4E9urrp+5fFwUAdkOiBHa3ke2mrNN+vaaeqBlXkfSTPOHJnYrLSfpOXNVSv4XXtPX1U/cP3FqgZetKFa97s5Gka+0BAMA0SZTA7jazJZ2cv9TUUzfjhNYgyd2e3InbSpVAGwpFLZ/9xZY+9wN3F2jhunKYcqqUD2rl66fu7wkDAADTJlECdzZIOe2bNr5+6v5+0/6fVkUydapI6m+phdc0SqIPPdAa//P7/zaf6vCNJMnuPK6qEACAWZEogffxP77/5lLKaovQa+A96qRKZvnoMHlbSXp/e+pjQ6Go9e9AN8lCCy9t+W9PfUxyDmjLu7qTqpLE7LQ7GyXp/u2pj5krAADAzHxACOB9N7RPF3TJTzZtQ/o/vv9mP8lbkSSZhstJOpIkjdBv6XUN3FqgRWvKYSRJdmMjybwkCQAAs6aiBG69od0ZslmKtb899bHlBt0fVSTTo4qkWe+qbtpZTbLyt6c+tukOAy15T69GkmS37/6eMAAAcBhUlMCtLaecj/CjNKjl1rgdmiqS6bgUVSRN03ddALVds/SSXIskyW48LkkCAMBhUlEC793ULia5WNAl95twcvt/fP/N+VRVJAue0onbSFVFos1Fs95V3Zb+PlxRTQK04B3dS/KMSNyReSQAANSCRAm8c1M7n7Jabl1pQsutcRVJP05kTsOlvz31sb4wNFJb79uyWws0fD3ZiyTJbmykSpJcFwoAAA6bRAm8U0k9pGvfcms8K2Y1qkimQRVJg43n9LTx92JN6zeg4e/npSRPi8QdmUcCAECtSJTA2J+8/GZJc0mSpPeN0/U9wfcnL7+5mKq6RxXJ5F36xmlVJE22vZ2lll6a5xJo8lpykLLat+7X4984/bGBMAAAUCd3bW9viwI2ttVH+e8UdMkr3zhdz1N8f/Lym3OpEiQXPJkTt5EqQaaKpNnvq/kkP23hpW194/TH5t1hoKHv5kEkSe5klKRrHQIAQB2pKMHG9saH+VJsJfU8jf4nL7/ZTVntz2ZJFUl79F0XQK3WL4NIktzJRqokiXkkAADUkkQJlPdhvnYtt8bJqn6SJzyOE6eKpEXG1SRt/Bi3pQ0L0ND38iCSJHdS20pmAADYIVFC6ZvbfsoaFH7pG6frNSh5XEUySHK3J3Iq97svDK3Sd10AtVnDDCJJcidPfuP0x5aFAQCAujOjhJI3t90k1wq65I1vnP5Yp2b3YDmqSKZyr6OKpI3vrPm0czbJ6BunPzbnDgMNeycPIknyvu/2JIt1O6ADAAC3o6KEIvVe/te5VC23Stqs9moU/06qKpKjnsapuJ5kuffyv4pEu8y39LqcNAaato4cRJLk/WwkWRyc/vimUAAA0BQSJZSqtLkk/cHpj9eiuqD38r/2kzzlEZyqBSGgIUaRKAEaRJLkjq4k6Q1Of9zQdgAAGkWihBI3uP2U9SF5bXD648s1iPt8qioSH/GBHcs+pgENWkP2Iknyfi4NTn+8LwwAADTRB4SAwja43ZRVzTBKsliDuC8lWY8kCfDO95NqEqApa8hekmdE4rbv88clSQAAaDIVJZS0wS1tLklyyK0Pboq5BAnwbqpJgKasIXuRJLmdUZJuXVq8AgDAfqkooSSlzSW5PDj98UNLDPVe/tfFJJuRJAFubSAEQN31Xv7XTlS/3c5GknlJEgAA2kBFCaVscvsp64P9RpL+IcV6LtUH0AuePOA2VganP74pDEDN14+dJMOUddBm1+/xJEsqAwEAaAuJElrvYnlzSZKkt3IIG9dxrEur3AH2ri8EQM3XjzsHP6xp3uvSinkkAAC0jEQJJWxyS5tL8uTKjFsgjOPcT/KEpw64g5UV1SRA/a0mOSoM7zBKsrRy+uMDoQAAoG0kSmi7Yco6Cbi2cvrjM+2jfbFqS7Ga5G6PG7ALfSEA6uziy/+6HDPW3m2UpLtiHgkAAC1lmDtt3+SWdBJwlGRxxjHuJ3krkiTA7qgmAeq+flyMCtl320gyL0kCAECbqSjBJrc9ZjaXZFxFMoiWFMDe9IUAqPH6cX68vuGGlVTttgxtBwCg1SRKsMlth8srpz++OqP4LqX62Gm4KbAXV1STADU3sL55z/pySRgAACiBRAmtctPw9pI2uRuZwSntmxJQenYD+7EsBECN15A9a5x3eNzQdgAASiJRQqv8anu7xLkkvb9b+MRU2yH897V/WYxTlsD+rf3dwieGwgDU0X9f+5e5SObevLbs/t3CJ8wjAQCgKBIltGmT20tysbDL7k9zIzv+cDBIcsETBhzkXSUEQI0txWGQJNlKsihJAgBAie7a3t4WBRrvv6/9SyfJsLBN7pW/W/jE4hRj2k15bcyAyVv7u4VPdIUBqOkaci7JpvVONlJVkhjaDgBAkVSU0JYNbmkf9LeS9KYYz36SJzxdwAT0hQCoMdUkyUqSJUkSAABKJlFCGwyS3F3YNU9lLsm4Mme1wHgC02E2CVBb48MhS4WHYeXvFj7R8zQAAFC6DwgBDd/gLqW8+RmXpvHh8b+v/Us/yVuRJAEmpy8EQI31UnY1yeOSJAAAUFFRQmP9cTVD4+nCLnvtmwuf6E84jp1UVTlHPVXAhN9XQ2EA6mq73GqSUZKlby58YuApAACAikQJjfTHN+aSlLap7U04jkupTnwb2A5MWl8IgBqvJTsps4p2lKT7zYVPrHsKAADgBokSmmqY8j7u97658InNCX0cmE9VRbLgUQKmQDUJUPt1VYHXLEkCAAC3YUYJjfPHa/8ySHltoi5/c+ETqxOK32KS9UiSANPTFwKg5hYLu96NJPOSJAAAcGt3bW9viwKN8cdrb/SSPFPaxvabCw90JhC7uVRVJBc8ScAUrX1z4YGuMAA1Xk/OJ/lpSWvJJN1vLjxw3d0HAIBbU1FCkza1nSTLhV32ROaS/PHaG90km5EkAaavLwRAzXULuta1SJIAAMAdmVFCI4yrIVZT3lySpW8uPLB+wLj1kzzhKQJmYO2bCw8MhQGouU4h17nyzYUHem43AADcmUQJjfCr7awmubuwy175++4Dg/3+h/9o+EYnVauto54gYEb6QgA0YF1ZQqJk5e+7kiQAALBbWm9Re380fKOf8gaPbyRZOmDM3ookCTA7a3/fVU0CNELbEyWSJAAAsEcqSqi1Pxq+sZjkqcIue5Sk9/fdvfeS/qPhG/OpWpRJkACz1hcCoCHa3MpVkgQAAPZBRQm1dVPrqNIs/X1373NJ/mj4xlKS9UiSALOnmgRoyvqy2+LLkyQBAIB9UlFCXTexc6mSJKUNb9/zXJJxrFZTXnsyoD76QgBw6GvInjBTq21BAAAgAElEQVQAAMD+qCihrgYprzJiz3NJxq3JNiNJAhwe1SQAh0uSBAAADkhFCbUzHkR+obDL3tNcknEVyXKSi54Y4JD1hQDg0EiSAADABEiUUCufKXN4e5IsfWuXc0k+U/XWHiS52xMDHLK1b6kmARrkV+26nJVvSZIAAMBEaL1FbXym3OHtK9/a5VySz1TVNtciSQLUQ18IAA7FhiQJAABMjooSauEz5Q5v39VckpuSSEc9LUBNqCYBOLz1Y1cYAABgciRKqIntQcpLAoyS9L7VPfa+c0k+M3x9KcnTnhGgZvpCADRwzdmGi7h+p/UjAACwNxIlHLrPDF/vp7zh7Umy9K3usfX3ict8qiqSBU8JUDNr3+oeGwoDwKGwNgQAgAkzo4RD9Znh66UOb1/5VvfY4A5xWbcRBmqqLwRAQ222aA0NAABMiIoSDs0fXnu91OHtt51L8ofXXt+Z1XLBEwLU1No/nFFNAjTTt7rHNv/w2uttuJTFJKvuKAAATIaKEg7FTQmB0oa3j5Is/sOZ9/aV/sNrr3dTVZFIkgB11hcCoAXrsaZTUQIAABMkUcJhWU15w9uTpPcPZ45tvvvf/MNrry8nuZbkbo8GUGOqSYA2WG/BNRz5w2uv99xKAACYDK23mLlxUqDE2RuX/+HMsdV3xWKn/dhRTwbQAH0hAFqgLXPgeimzjS0AAEycihJmanzy7YkCL33jH84cW3pXLPpJ3ookCdAMqkmAtthsyXUsjA/dAAAAB6SihJkZb+SWC7z0UZLuTXGYT3X6b8FTATRIXwiAllhv0bUspaosAQAADuCu7e1tUWDqxsPbN1Pe8PYkObNzCntcUbNcaByA5lr7hzPHusIAtGht2qZN0O/cagYeAACweypKmIlfJcOUmRy49O0zx4Z/UCWKBkkueBqABloSAqBla9O1tKe6d8l7GgAADkaihKn7g2uvD1LmHI4r3z5zrP8H117vJlmNKpJJ2kp7+ovTDnMtfs+tfPvMsXW3GGiZYdqTKOn9wbXX+98+c+y62woAAPsjUcJU/cG115eSXCzw0reSLP3BtdeXU+bw+mm6nMTHAOr2rhukvYmSvjsMtNAwyVMtuZYjqSpKvK8BAGCfzChhav7g2uuLSb5T4KWPcqMFwlFPwkTj2vv2mWOrQkHN3nXzSX7a0stb+faZYz13GWjp+7tNG6FRknkHSQAAYH8+IARMaePZSTWTo0TXkzwTSZJJujLe/EuSUEdtftf13V6g5euLtjjinQ0AAPsnUcLE3TS4vNSZHHd7CiZmlOTxb585tuiEJDV933XTnh7377by7TPHNt1loMXadgDjiXGVIwAAsEcSJUxr06magoNaS9L59pljA6GgxvquDaCxht7dAABAYkYJEzYeaHxRJDigJ7995tiyMFDz9103ybWWXp7ZJEAp7/L1tO+Az73fPnNs3d0FAIDdU1HCJDeavUiScDAb4829JAlN0NbndBQnkoFyDPx9AgAAJEqYiPHJ6mdEggO49O0zxzpOQNKQd14v7W0xuGw2CVCQ1RZe08J4bQ4AAOzSB4WAg1q89lqnpZtMZmMrSW/1zPGhUNAU/5XtfksvbRQnkYGCfPvMsc3Fa69dSXKhZZc2SDLvDgMAwO6oKOFAFq+9NjfeiB0RDfbhcpKOJAkNe+/1ktzd0stbXj1z/Lq7DBSmjQd+7l689tqSWwsAALtjmDsHsnjttWGSBZFgj0apqkhUItG0d95cks20Mzk8SjIvUQIU+n6/3sJ3u/c6AADskooSDrKhHESShL27Mt60S5LQREtpbwWdahKgZIMWXtORaKcIAAC7IlHCvoxL+S+KBHswSvL46pnjiz7G0tD33lyqRElbfz99TANK1tZ34MXFa6913V4AAHh/EiXs2eK11xaTPC0S7MFaqlkkA6GgwdpcTbIkgQmUbPXM8c3xeqWNJMIBAOAOzChhT/7b1dc6SYYxvJ3du/Tds8f7wkDD333zSX7a0svb+u7Z4/PuMuBd/1ovyTMtvbwnv3v2uIQJAADchooS9rJ5nIskCbu3keReSRJaou/aANrtu2ePD5JstfVdP17LAwAAtyBRwq5IkrBHl7979njnu2ePrwsFLXj/zae9M5m2xh8GAai0teriSNo5sB4AACZCooS9bBqPCgN3sJXkzHfPHl8SClpk0OJr67u9AO95549aem0X/ttVg90BAOBWJEq4o/929bXltPc0NZOzkqTz3bPHh0JBi95/3SQLLb28DdUkAO/03bPHr6fdw8+99wEA4BYMc+d9tXyoJZNzOcmqMNBC/bQ3UXJGYhPgluvf+SQ/bfElXjJDDgAA3kmihPfbJHaTXBMJgNZZ++7Z411hALjtOniQdldU32uWHAAA3PBBIeBWzl99rRMVAgBt1RcCgNv7r+o92eZEyXKSrjsNAAAVM0p4j/NXX5tLlSQ5IhoArbP2rJZbAO/r2bPHN1PNX2urhfNXX1typwEAoCJRwjuMkyTDJHeLBkAr+TAGsDv9tl/f+WoeCwAAFE/rLd5leznJUXEAaKWVZ8+e0JMeYBeePXt88/zVV1fS3hZcR5IMogUXAACoKOGG81dfXU67ezEDlK4vBADemzdZOH/11Z7bDABA6SRKSJKMN0hPiARAa608e/bEpjAA7N74vbnS8stcPn/11Tl3GwCAkkmUkPNXX11M8oxIALTWKKpJAPZrafwebaudFlwAAFCsu7a3t0WhYI++9Gon1fD2I6IB0FqXnj93oi8MAPteM/eTPNXyy/z08+dOrLrbAACUSEVJ2Ru++UiSALTdKMmyMAAcyHLaXVWSJINHX9KCCwCAMkmUFGq8CVqNJAlA2y0/f+7EdWEA2L/xe7Tf8svUggsAgGJJlJRrmOSoMAC0mmoSgAl5/tyJ5SRbLb/MC4++9Oqiuw0AQGkkSgr06EuvDiJJAlCCJdUkAJN9rxZwjVpwAQBQHImSwjz60qvLSS6KBEDrbT1/7sRAGAAmZzzsfK3ll6kFFwAAxfmgEJTj4Zde7SV5QiQAitAXAoDJ+6/q/Xqt5Zd54eGXXu29IOEOAEAh7tre3haFAjxc9Rr+jkgAFGHjhXMnOsIAMLW19SDtr9IeJem8cO7EpjsOAEDbab1VxkauE+XzACVZEgKAqb9nRy2/Ri24AAAohoqSlnv4pR90kgzHGx0A2m/thXMPdoUBYOrr7H6Spwq41CdfOPfgsjsOAECbqShp9+ZtLtUpMEkSgHL0hQBg+l4492A/yVYJf1fGh68AAKC1JEpaapwkGSY5KhoAxVh54dyDQ2EAmJleAdeoBRcAAK0nUdJeg0iSAJSmLwQAszNOTl8p4FKPjluNAQBAK5lR0kJnX/rBIMlFkQAoysrVcw/2hAFg5mvv+STrKaPd7b1Xzz247q4DANA2Kkrat1HrR5IEoDSjJEvCADB7V889uJmklGHnq2erFr8AANAqEiUtcvalH/SSPCUSAMVZvnruwevCAHA4rpYz2P3uaPMIAEALSZS0xDhJ8oxIABRnlHJOMgPUWa+Q63zi7Es/WHS7AQBoE4mSFjj70g868ZEMoFR91SQAh+9qNdh9pZDLHWjBBQBAm0iUNNw4STJMGcMjAXinravnHpQoB6iPpVSVfm13JMnA7QYAoC3u2t7eFoWGWnjxlbkkm5EkASjV42sPnRwIA0Ct1ui9lNMS98m1h05K2AMA0HgSJc3dgM2lqiQ5KhoARdpYe+hkRxgAarlWHyZZKOBSR0m6aw+dXHfXAQBoMq23mrnxkiQBYEkIAGqrFy24AACgMSRKmmkQSRKAkq2tPXRyKAwANX1JP3RyM0kpLamOLrz4ivZbAAA0mkRJwyy8+MogyQWRACiaahKAmlt76GQ/yUYhl/vEwouvdN11AACaSqKkQcZJkosiAVC0Fb3gARqjV9C1ro5bBAMAQONIlDTEwouvLEWSBICkLwQAzTBObF8q5HLNKwEAoLHu2t7eFoWaO/niK70kz4gEQPEuv/LQSW23AJq3nl9POTMGn3zloZNmlgAA0CgqSuq/qepFkgSAZBTVJABNVVKS++mTL77SccsBAGgSiZIaG28wJEkASJLlVx46eV0YAJrnlYdODpNcLuiSByfNKwEAoEEkSmpqnCQZigQASbaSaGMC0Gz98fu8BEejChIAgAaRKKmhm5IkR0QDgCR91SQAzTZ+j/cKuuQnTr74yqI7DwBAExjmXjPjEvXNSJIAUNl65aGT88IA0Jr1/nKSJwq53FGSzisPndx05wEAqDMVJfXaNM1FJQkA79QTAoBW6aecFlxHkqy65QAA1J2Kkpo48cL3d5IkR0UDgLG1Vx8+1RUGgNat/btJrhV0yZdeffhU350HAKCuVJTUY6MkSQLArSwJAUD7vPrwqWGSSwVd8lPj5BAAANSSREk9DCJJAsA7rbz68Kl1YQBop3GFxUZBl7w6PiAGAAC1I1FyyE688P1BkgsiAcC79IUAoPV6BV2reSUAANSWRMkhGidJLooEAO9y6dWHT20KA0C7jSsHS2rBtXDihe9rKwkAQO0Y5n5IJEkAuI1RkvlXHz51XSgAitkbrKesVrz3ai8JAECdfFAIZu+BF77fjyQJALfWf0OSBKAo/5UsJllP1Z6qBKsPvPD9jr93AADUhYqSGXvghe/3kjwjEo00SrKUZFMo4NB0kjzd4uvbeuPhU/NuM0CR+4Sllv+Ne7crbzx8atGdBwCgDiRKZrv56UWSpKnWkiw69QaH/h4dJllo8SV++o2HTxl0C+DvXCmefOPhU8vuPAAAh02iZHabnl4kSZpolKoNjg0ceI9O29obD5/qutMARf+tm0tVvXykoMu+9w3zSgAAOGQfEIKZbHh6kSRpoo0kXUkSqMV7dC5J238X++40QNnG1cu9wi57dfx3HgAADo1EyZQ98ML3FyNJ0kSX33j4VMfpNqiNpbT7dO3KGw+fGrrNAIxbMK4UdMl3Jxm48wAAHCaJkil64IXvdyz6G2cryZk3Hj61JBRQm3fpfJKnWn6ZfXcagJssjdelpbgwHmYPAACHwoySKfnYP7/cSTJMWf2Fm+5Kkt6bj5w2sB3q9T4dpt2DbS+9+cjpvjsNwC32E28Vdtn3vvnIaRXdAADMnIqS6W1qhpEkaYpRksfffOT0oiQJ1O59uph2J0lGaf/sFQD2YZwwuFTYZa9+7J9fNq8EAICZkyiZMEmSxllL0nnzkdMDoYDavU+LGOAuQQvA7YwrDjcKumTzSgAAOBQSJRMkSdI4l9585HT3zUdObwoF1NJSqg8mbbX15iOnVZMAcCeLqSoQS3HhY//8snklAADMlETJhEiSNMpGqv7HfaGA2r5T59P+Ae49dxqAOxkf6iktcfD0eH8FAAAzIVEyAZIkjXI5SdeQSKi9Qcuvb+3NR04P3WYAdmPcJvZKYZdtXgkAADPzQSE4mPHifRBJkrobJem9+cjpVaGA2r9X2z7APVFNAsD+/nasp91tKW+2M69k0a0HAGDa7tre3haFfbq3SpIMkxwVjVq7kqT3loHJ0JT3ats/Al1+65HTeq8DsJ+/k50kbxV22U++ZaYXAABTpvXW/jcpkiT1NxpvrBYlSaAx2j7AfZSk7zYDsB9vVe1jLxV22U/fa14JAABTpqJkHyRJGmEjVRWJWSTQnHfrfJKftvwynYoFYBJ/M4dpf5vKm20l6Tj8BADAtJhRsvdNiSRJ/V1665HTfWGAxhm0/Po2JEkAmJBeqlaVpcxJvDvJapKuWw8AwDRovbUHkiS1t5XkjCQJNPL9WsIAd3NJAJiItx45vZkqWVKShXv/+WXrfAAApkLrrV2SJKk9A9uh2e/Xtg9wv/LWI6cX3W0AJvw3dDnJE4Vd9pm3Hjk9dPcBAJgkrbd24R5JkjobJem9/cjpVaGAZvqvarh52we4qyYBYFp/Q7uF7VNW7/nnl+ffdkAKAIAJ0nrrDiRJam0tSUeSBBr9ju2k/Sdhl9+uWqQAwESNkwW9VEn5UhxJNa8EAAAmRqLkfUiS1Nqltx853fXxERqv7cPNtwq4RgAO0duPnF5PeZWLC/dUbccAAGAizCi5DUmS2tpI1WprXSig8e/ZXpJnWn6Zn1b1BsCM/q6uJrlQ2GX7OwsAwESoKLn1JkOSpJ4uJ+lKkkBr3rNtPwm65uMNADPUS1XJWJLBPf/88rxbDwDAQakoeRdJkloysP3wfy/mk9y8CX33f51d/vfqanP8c1DDffxnrpeY/Bu3y2j7bJJ7JXYBmPHf106Stwq77I1Uh6kMdwcAYN8kSt65sZAkqZ+1JIs2PlN75udTJTXmknTG/3Z3/M/5JHeLUm0/COz2d2Izu08Cre/yf+/6QX4nC/mIc/ntR04veVQBOIT13VKSpwu77JW3Hzndc/cBANgviZIbGwpJknoZJem//chpQxoP/mx3UiVCurmREJmPJAjTt3abf7/tz98oybwELwCHuP4rcV7J428/cnrg7gMAsB8SJZEkqSED2/f3HHdyIwnSTZUU8UzD7PlQA0Ad9jfrKetgzCjmGQIAsE/FJ0okSWpHu5rdPbfdVEmRnR/PL9TD2tuPnO4KAwA1WS9eK+yyt5J0VHUCALBXHyz54n//e2uSJPXa1PT+/ZMLQ6F4z3PajaQINIVELwC18PYjp4e//721S0meKuiy704ySLLoCQAAYC+KrSj5/e+tzSdZjY/OdXAlVZKk+JNf4+Rdd/zTSbLg8YDGWPn3Ty70hAGAmq0vhwWuKS/9+ycX+u4+AAC7VWSi5Pe/t9ZJVUlyxCNwqEZJlv79kwuDgjeu87mRGOnGgHVo8vtsXsIXgBquN+eSbBa49zmjWh0AgN0qLlEiSVIbG0kW//2TC5sFblQXIzECbfPkv39yYVkYAKjpGrSb8uaVjJJ0SttvAACwP0UlSiRJaqOoUvjf/97azYkRrd6gfTb+/ZMLHWEAoOZr0n7KmlfibzQAALtWTKJEkqQWtlJVkawX8Kx1U1WOmDEC7ae1BwBNWacOC1yfmiEGAMAdFZEokSSpxwYl1TyS6y19xhZzo6WWdlpQ0LvNxxcAGrRmLXVeyeMlz0UEAODOWp8o+T1JksM2StL78ScXVlv2XM3nRtXIBbcZin2/zf/YAHcAmrWO7abMeSXdH7e8sh0AgP1rdaLk97631kvyjNt8aNZSJUk2W/I87bTU6sWsESB58scGuAPQzHVtP+XNK9lK0nHAAQCAW2ltokSS5NC14gPiODnSS1U5oqUWsGPjx4bDAtDsde5qyquMvvLjTy4suvsAALzbB1u66O9FkuSwbKSqIllv8PMjOQLcyZIQANBwvSTrha13L/ze99b6P/7kQt/tBwDgZq2rKJEkOVSXk/SbWM4uOQLswcqPDXAHoB17p06Stwq89DM//uTC0BMAAMCOViVKfu97a8tJnnBbZ66RA9slR4B9vu8McAegTXuopSRPF/j3vNOWWYoAABxcaxIlv/v8cJDkols6c1eS9P7j0e71hjwnkiPAQTz5H492DXAHoFV+9/lhifNKNpJ0m7KPAQBguloxo0SS5FCMkvSb8MHwd58fzqdKjCxFcgTYvzVJEgBaqpfy5pUcTbI8vnYAAArX6IqS331+OJdkkPJOPx22jVRVJOs1fzZ645+jbhkwAffW+b0HAAdcP3eSDJMcKezSH/+PR7sDTwAAQNkamygZfwgfxkfwWbv8H492l2r8XPRSVY9IngHFvPsAYIJr6WcKvHSHIQAACtfIRIkkyaEYJVn8j0e7wxo+D93cmDtyxK0CpvD+m9fDHIASFNrW2N96AIDCNW5GybgkfDVmTcxS7Qa2j+eOLMVQdmD6lnw4AaCkv3tJOinrUNqRVAfxOm4/AECZGlVRUnDf3MMySvWBcFCT+z+XG0PZVRMBs7D2H492u8IAQEkK3ndptQkAUKjGJEo+UrVXWo0kyaxsJFn8yaPdzRrc+8VUCZKLbgswY/f+RM9yAAo0XoN/p8BLf/wnhrsDABSnEYmSj5Q7VPCwXPrJo93+Id/zTqq5I71IjgGH4/JPnCoFoGAfeX64nOSJwi57lKTroAQAQFlqnyj5yPPDpSRPu1UzsZWk95NDGtj+Ea21gHq9Dzs/MZsEgMJ95PnheoFrc+sAAIDC1HqY+0eevzaIdkuzciVJ7yePnrl+CPdZay2gbpYO430IAPWz3U2ymbKqvO9O1fa56/4DAJShlhUlH3n+2lySQZILbtHUjVIlSFZnfI/nU1WOLI43IgB1sfaTR890hQEAfr127ya5VuClX/7Jo2e04QQAKEDtEiXjJMkwWi/NwlqqJMnmDO/tYqq5IwvCD9TU78zqvQgATfGR56/1kzxV4KV/etaHygAAmL1aJUo+8vy1TqoSZxUG03fpJ4+e6c/ovnZTJUcWYzA74N0IAI30keevraa8qv/xcPczhrsDALRYbRIl89XH9NX4kD5tW0kWN6e80J+vWmvtDGaX+AKa8n7sbJpNAgC3W+PPJVkvcH2/kaRrjQAA0F61SJTMP3+tl+QZt2PqVpIsTXOBP76XizFfBmieM5uPnhkKAwC873q/k+StAi/9yuajZxY9AQAA7XToiZL5cnvdztIoSW9zSr11x5ul3vhHRRDQRD5+AMDu1/+9lHnQ7dKmFp0AAK10qImS+eevDZJcdBumai1VkmRzwvduLjeSI0eFGWiwUaqWW5tCAQD2cnfw6U3D3QEAWudQEiXjj+zD+MA+bRM/8TT//LXFVMkRrbWAtnhy89Ezy8IAAPZ0uzBKNa/EcHcAgBaZeaJkPOR7NZIk07SRqopkfYL3bClaawEtfF9uPnqmIwwAsO99wnqBewTD3QEAWuaDs/w/9tvPXeukOnXkY/v0XE7S/9ljB1u0//ZzWmsBRVgSAgDYn81Hz2z+9nPXekm+U9ilH00ySGK+GQBAS8ysomS8gF6OJMm0jJL0fvbYwfrl/vZzWmsBxVj52WNnesIAAAfe6/WTPFXgpV/+2WNnHLoAAGiBmSRKfvu5a0tJnhbuqVlLsrjfKpJxpU8vWmsB5RglmT9o9R0A8Os9xTDJQoGX/vjPHjsz8AQAADTb1BMlv/3c1UGSi0I9NU/+7LGzy/u4L/OpSsWXktwtjEBhHv/ZY2cHwgAAE9v3zaWaV1La3mKUpPuzx84a7g4A0GBTS5SMF8qDaOE0LRtJentZkI/vyeL4x30BSrX2s8fOdoUBACa+Byx1JuVWks7PHjurUhUAoKE+MKUF8tx4gexj/HRczh5OLf32c1cXx5U9m0mecV+AwuklDgBTMN6flPh39u4kq54AAIDmmnhFyfgU0Wq0c5qG8cD2s6u7vA+9mDsCcLNLP3vsbF8YAGB6Cm6/fPlnj511IAMAoIEmmij5cLml1rOwlmTx5+9Tzv3hau5Ib/wjUQXwTltJOj/XFgMApu7Dz11dT3K0wEt//OfmoAEANM7EEiUffu7qYqqZJJIkkzVK0v/5bQa2f/jGUPZeoRsRgN369M93UZEHAExkfzifarh7afvDUZLuzw13BwBolIkkSj783NVeqtkXTNZGkt67F9kfvjGUfSmSIwC7ceXnj51dFAYAmJ0PP3e1m+RagZc+SjKvihUAoDk+OIHFby+SJNNw+ec39be9KTmyGMPYaY6NJHXaIM5FcrFEoxjgDgAz9/PHzg4//NzVJ5M8XdilH0nVkrrjKQAAaIYDVZR8+LmrSwUueqdtlGoWyVByhBrYSXRcT9U6IUk2xz+/3gCXGJjxTKa5ffxH58c/e7GX/1uSQe/15O3aFwK1fcfO5fYfGPfzHr1Zd/zPg/z9Ws9tDgKU+ncR7vA7vVrofmbl54+d7XkCAADqb9+Jkg8/d3WQ5KIQTtSVVKeeu5EcYTZGqT72bI5/dj78rGsV0H4ffu5qP8lTLb/MjZ8/dtZpTpjtu+XdSY53J3vf/V/PJ7m77e+ivDOxcvMBhMQhBMp4LwxjuDsAADW1r0TJh56VJJnSBnozkiNMx05CZCcpsp5k/RfnJUNK9aFnixmweuYX531whAm8M7rjf3lzEmQ+Nyo75tP+ZMdhrhF3/l7fXMmy8267/ovzhkbTiPdIZ/zcHinw8q1HAABqbs+JEkkSqL2dpMgwNxIim8LCu97lwyQLLb/My784f9ZsEnj/d8FOdcd8biQ9uuN/zkfyo2lu1TJzOP6nAxLU4Z2zmOQ7ha7PO9bkAAD1tadEyYeevbqc5Alhg1rZyI2kyNAGjF28y0v4SDFKMu+jIIX/ru9Uf9xcBdId/3NBhIq1lRutvt7xYw3BjN5Npe4pN5J0rU0AAOpp14mSDz17tZfkGSGDQ7eWKjEyVMLPXo0/nG6m/W0vHv/Fef3AKeJ3eicR0h3/Wzv/lAhhv3YSKb+eW5aqvZc1B5N8dw0LfU9d+cX5s4ueAACA+tlVouRDz77UiyQJHJabEiPnhsLBQXzo2ZdKOMW59ovz57ruNi36vb05GbJTHTIfbbGYvZ32npvjn2GS6784f86MFPb6XpsbP0slvscu/eL8ub6nAACgXu6YKBlvzt8SKpiZnVZaw1+cP7cqHEzKh559qZvkWgGX+ju/OH9u0x2nYb+fNydA5nMjKXJUdGjQ+uX6eA2zmWTTAQ92sc8cpszh7o//4vy5gacAAKA+3jdR8qFnX5pPddLniFDB1IzGm8TVVMmRTSFhGj707Evraf9HV6c0qfvv4U5CZCcpsvOvrbVoq51WXsPxvmJTBQo3vRN7KbNzwShJ1+8CAEB93DZR8lvVRn4YJxlhGrZSJUZWf+m0JTPwW8++1E/yVNt/r355/ty8u02Nfu+6eWeFiIQI3LCRG228hknWf3n+nCHXZb4rB0kuFnjpoyTznnsAgHp4v0RJCX3sYdYfBAapkiObwsGs/FZVHfjTAi71jMQjh/g7Np8byZD5OGgC+7EzA2U4/ue6NVMx79ESql5vuWMMuSwAACAASURBVD/45flzHU8AAMDhu2Wi5LeefWkxyXeEBw7sSm5UjjgtxqH4rWdfGiZZaPllrvzy/Lmeu80Mfp/mc6NdVjeqRGDaJE/KeLfOpaouKvF9ag0DAFAD70mUFL5IhUmQHKE2fquM3t9aVzCt35+dhMjOz4KoQG3e+zcnT4b+BrTmnftWoZf/5C/Pn1v2FAAAHJ5bJUoGKbNHLByE5Ai1U1Di28cFJvH7Mh+VItBkW7kpeaIVY2Pfxb2UOdw9ST79y/PnVj0FAACH4x2JkvHQ0WvCArsiOUKtFZL4Xvvl+XNdd5s9/m7M5Z0JkW4kRaCVfyPyzuTJppBYv9TYKEn3l+fPrXsKAABm792JkmG0lYD3IzlCIxSU+L7XBwV28fvw7koRg9ahTFupkibDVIkTfz/q+94udrh7qmSJfQYAwIx9cOdf/OazL3YjSQK327AMkgz+8/xDNi00wn9le1DAZV76z/MP+cjFe4zXNN2oFgHe6e5UlQoXx++KUW4kTob+ptRqHdNNmXMzj6Y6lNX1FAAAzNavK0p+89kXV5NcEBJIUp04HKRKjmwKB03ym8++2E/yVAG/ox3JS37z2RfnUn1Q6sbAdeBgJE7q9X4vebj7yn+ef6jnKQAAmJ27tre385vPvjif5KfCgc3xr5MjNsY0UkHv8zP/ef6hoTte7DPejTZawGzWhsNInBzmO7+Xcoe7P/6f5x8aeAoAAGZjJ1GylORp4aBQV1IlR1aFgqb7zWdfHKb9J+qv/Of5hxbd7WKe6fncSIx0U7XOATgMNydOVlUdz+zvwCBlDndPHAwBAJiZnURJqcPyKNdGkuXxJlfrHlqhkFOXoyTzfm9b/RzPR2IEaIad4fCrqSpO/G2a3t+GUveroyRd1UwAANN312/80wtzSf5foaCQzexqkmUnAGmb8ZyGzbR/6OmT/3n+oWV3vHXPbjfJYiRGgGbbyI2kyVA4rHMm+Fx1JeIAAKbrriP/+MJiku8IBS22kmT1+qe01qK95v7pxdUkF1p+mWvXP/VQ191uxfO6kxTpRkUr0E47bbpWkwyvf8ohnQn87Sh5uLs1EADAlN115B9f6Cd5SihomV+31rr+KaevaLe5f3qxm+RaAZd67/VPaT3R0Ge0kxsVIwsiAhS6Nh2O16ZD4dj335Neyh3uvnL9Uw/1PAUAANNx15F/fGEYHy1oh1+31nJqj1LM/dOLc0nW0/52RZeuf+qhvjvemOdyPu9sp3VEVAB+bTResw7jUM9+/sYMUu5w98evf+qhgacAAGDyJEpoA621KNbcP73YT/urAreSdHxIqv2z2M2NxIh2WgC7t5FkMF7PbgrHrv7mlLyHPaMqCQBg8u468o8vbAsDDd5QDnw8pVQF9er2QaCez998biRGLogIwETsVEhr0fX+f4NKqai9lVGSrnakAACTJVFC0zYFg1TJERsDfCQo4zTlleufemjR3a7NM9eNqhGAWa59d5ImKqff+zepk6p9WYntHVXbAgBMmEQJTXBlvEEcCAX8+uPAUpKnW36ZoyTzPgIc6nM2lyoxYtYIwOH/TRzmRuLE38YUP9x94/qnHup4CgAAJuOu/0uihHraSrKcZPX/06sZ3uH/rloeraf9H62f/P/Zu/scOapDb/zfjiJd/aL7yJMV0KzAzQrcSBdIwPb0YGPsYMntFTCsgPYKGK/AbcnEDiHxOBDuveGR6FkB4xUws4LHo0iRIkWp3x9Vgwfjl3npnq6Xz0dqGXKVG9epOqfOqe95+ft7/7Xhjp/68zVIGYqMY9UIQF09ShWa/L3jocn/+ev/3UjycUcv/+7f3/uvseoAAHByghLqZH97genf7ckML/sgsJn2nwmx9ff3/mvobp/aM7W/YmSUbu73DtBknQ9NOtI3ehETSwAA5qD3n19/+yS20mC5tlKePdL5GXFwiA8BoyQPO3Cpb/zdWUSLfI5W8jQYGekHALRGJ0OT6r02S3dXQt78u22KAQBOpPefX387S/sPA6Z+dqtB3IatteBIHwG20/4Z/7f+/t5/TdzxhTw/+8HIqhIBaL1OhSb/p9uHu+8lGZpkAgBwfL3//PrbLi9T5vTdrQZrm4oCjvwBoAt7cO8mGVhdNrdnpp8yGBnHeSMAXfYo5fa2re6Dd2jl7fPsJenrQwEAHE/vP7/+dpLkU0XBAj3O04PZddzheAP/YZLvOnCpbzqj6MTPSj/CEQCeb/9MwNZOXPo/f/2/60k+6/C4a2jMBQBwdL3/76u/DdONj2+crh+31vrH+bd2FAeczK++/nY77f/o/egf598audvHej4GKc8cGUc4AsDR+uvTf5x/q1VbNv3q62+nSW509L7qTwEAHEOvKIr86utvC0XBnNxNsvmP82/ZWgvmN9ifpP0r//aS9P9x/i0zIA//XAxSBiOjtP/cGgAWazfVCvA2THL61dffdv1w99v/OP/WuscaAODw9oMS55RwEo8PDKx85IT5DvT7KQ9wb/vBpJ/84/xbG+74oZ6H9QhHAFicrSTTpvftq7BkJ9083D1Jbv7j/FtTjzMAwOHsByXjJHcUB0ewWw2gprbWgoUO8mdJzrX8Mrf+cf6tobv9wmegH2eOAHD69s8zmf7j/Fuzhr5DB0m+7/A9fLOp9w4A4LTtByUrSf6f4uCQg6WNtu1jDDUd3I/TjRD7DW3Kz+59P8IRAOpjN2VgMtGfatz4baifBQDwar2iKPY7kNN098A7Xu5RNTBy7gic3qC+K9tF3GriR5cF3vNRyq21hCMA1FEjt3P61dffbiT5uKP3bDfJwBbJAAAvdzAo6Sf5QZFQacXexNBUHQmvOz9wPxCOjOKsMADqb696d+808J3b5XM5H6dcWWJcBwDwAr/c/4d/nH9r51dff3s3VpV02eM8DUd2FAcsbSA/7EhbPO7qgP1XX3+7H46M0t1DZgFonjMpt+IdNLHfkWSWbq7aPJtkoyoDAACe48cVJcmPq0q246NNl+zm6SGN9q6FJatWGGwnea3ll/roH+ffGnXs3g5SfqAYe88C0HC3/3H+rfWGvotnHX4PN/K+AQCchp8EJVXncZLkU0XTasIRqO8Avgtt8F6SfhdWkxw4lH097Q+/AOiWtSaeYVit3P2uw/etkefMAAAs2s+CkiT5j6+/3Y6DZNtmL2U4svlPh7JDLf1HOcvx+w5c6if/PP/WRovv4/65I+Mk5zzZALR4fDH4ZwO37P2Pr78dJ7nT4Xv35j/PvzXzCAMAPPWioKQfW3C1ZfAiHIHmDNpnaf+H9a1/nn9r2NL7N0wZjjh3BICuaOx7/T++/naa7p7PuZdk+E+7CwAA/Oi5QUnVcRym20uSm9zpFY5A8wbr60k+68Clvt7EmacvuW/9PD13xNZaAHTRrX+ef2vS0Pd4l3dS2E25IuiJRxgA4CVBSdVxHKfbS5KbQjgCDdahVXyN/ZDyzP2ytRYA/FQjt3Kq3unb6e5kh8cpV5YISwCAzntpUFJ1HscRltTR/oHsM+EINNt/fP3tZpLVtrdZ/zz/Vr/h92mQ8lB2W2vB/DxOcvAD3U71O+hJyg+Zz/PktLaOqVZbv8jz/m+DJCsH/r0fK89or70k/SZ+cK/e77MOv9vv/vP8W2OPMADQda8MSqrO4zjCkjrYD0em9pOFdviPr78dJXnYgUtt7KGh1YqfWXzghFfZqv58Ntg4WPd32rT93gnbloNBykrKYGXf8MB/flZp0RCP/nn+rZH+WCPd/uf5t9Y9wgBAlx0qKDnQeZzGLNrT9rgq900fFqBdqu0edjrQrjZ6pmJHVvzAi+zlaegxq/7cydNVH9u2bDm1tqifclVK8jRI2f/PBCrUxSf/PP/WRkPrWFfOi3uRm/88/9bUIwwAdNWhg5Ik+eVXfxuk/GhvILZYj1Jtq/WvC2/vKA5op19+9beNJB+3/DL3kvT/deHtJw29R8Mk33laabH9VSCz6s/tlCtCdvRBGvtuGVb/uL9i5eCfJjxxGt7414W3txtaf6ZJbnT43q3968LbtnUGADrpSEFJ1XlcSTJJ+z/unabdlB8oNnVMoRs69AG+0QPuX371t+2YHEDz+xg7eRqAbCd58q8Lb88UTWffP/vBybD6j4axIoX5tzuDBk+S6PK7fy/JsKlBFwDASRw5KDnQgRymXF1iz/bjeZxy1cimjih0T0cG4Vv/uvD2sMH3aBznc9EMB8OQH/+0IoRjtHv9lFt5DZ75U3+fo3r0rwtvjxpaD1aqdrSrz32jVwMDABzXsYOSA53I9epnKf/L7a8amaUMR3Q8oaN++dXfJkk+7cAge9DUD7XV+23Hu42a2crT80H2wxCTLTitdnGYp1t47QcoVqHwMjf/deHtaUOf90E1butqP+BxypUlxqwAQGecKCg50JFcSbKRbu/n+qy9PA1GZj5kAFV72U/yQwcu9da/Lrw9afB96sL5MdTXwUBkFqtDqHd7eTA4GcYKFH46Hho2+LySUZKHXX4XNXllMADAUc0lKDnQmezyChPBCHCYdnKW5FzLL/Pxvy68PWjwPeqnG2EWNagrebo6ZDvJtkCElrzrDq482Q9RzimZzrZzwwafV7Ke5LMO37+7/7rw9thjDAB0wVyDkmc6leMk4xYPih6n/KgxS/lhQzACGGyX3mzyQdEdCbM4fVs5cIaIw9Tp6HvwYHgy0NZ2xu1/XXh7vcHP7TTd3jmh0auEAQAOa2FByb5flDNzR9WvqYOhgzM+Z//2cQM4elvYlTMvbv+7wR9DflHuwf+dJ5YT2MvTiRQ7Sbb/bTIFvKzdFZ50w9q/L7y92eDndNbxZ/Pmvxt63gwAwGEtPCh5poO5knLv4v1f3Q6A3M1Pt8DYEYoAc2r/NpOstvwyd5MM/t3ggz9/8dXfdmJvfY5m60C/YfZvW2fBPNriYZ4GJ0PtcivsVX2EnYY+kyspA/CzHb6HbxobAwBtdqpBySsGQv0Dfy5yMLRV/bmd5Mn+nzp9wALbua4cBtr02aJd34ecV/vJtptWisCptc/7k632gxOrThrahv67wWeYVaufZuneWZz79pIMvfsAgLZaelDyigHRfkf64D8f1uzAP++Y4QkssS3bTvtnwz7694W3Rw2/Tzvp7scPfm6v6kvYdhPq2W7vhybDapxg1Ukz2KKz+e/GfpNXDwMAvEhtgxKANvjFV3/bSPJxBwbNgyYH0r9wUCvlapFZbKEFTW3H+/npFr+Ck/pq9BZOv/jqb+Mkdzr+vhwKSwCAthGUACxuID1MN2YdfvLvC29vNPg+DZJ874ntnK2Uwcgs5TZaPvhAu97B/QhO6qrxqxI6MhHmpe/Qf194e+hRBgDaRFACsKgG9qv/3U77D/3cKi68M2z4fZrFfvdtt7+N1izJrLjwjv3VoXvv5H4EJ/oP832mNpOsdvge3i0uvDP2KAMArRkzCEoAFjJ4niT5tAOX+kaTPzr3vvrfUZKHntjWEYwAr2r/+3kamozijKpluFVceGfS4GdopXrPnO3wPbxdXHhn3aMMALRijCAoAZj7wLmf5IcOXGobPnBsx6ziNhCMACd9J+wfDj+KVYanqekTLlaS7KTbQdvN4sI7U48yAND4MYGgBGDug+ZZ2v+RZTfJoLjwzpMG36dJurHqp60eRTACLO4dMcrTFSdnlYj+xEuelUH1PupyWLJWXHhn0+MMADR6DCAoAZjrYHmc5E4HLvXN4sI7swbfp37K1SS2WmmOHw9fb/KzBzT2nTFMudpk6N0xd4+KC++M9P8abS/J0MQFAKDRfTpBCcDcBsld2X6h8Yd39r7632mSG57aWttNspmn4cgTRQLU5B0yTBmajGL7xnn5pLjwzkbDn4v1JJ91+B4KSwCAZvfzBSUAcxsgbyZZ7cAguN/wLTKGSb7zxNby2ZqlCkeKC+/sKBKgAe+Ufp6GJs42OZk3mv6R3USMPE4ZlpjcAAA0ry8nKAGYQ2P6l858fF8rLjZ7D+reXzpxhkxTPM5+MHLRdlpA4/sCK3m6Pdcotug6zjthWFxs9kd2/Yx23EcAoIP9eUEJwIkHxCspz7to+/YbW8XFd4YNv1fjdHsP8WU7uGpk00cUoOX9g4OhiS26DuducbHh23uW/cJZkrMdvo+PiovNPncGAOhg/11QAnDiAfFGko9bfpl7SQbFxXd2GnyfunKGTN08ThWOWDUCdLivMEgyjtDkMG4WF9+ZNvx+91NOoulyn6PxoRcA0LE+u6AE4EQD4UGS7ztwqbeKi+9MGn6vJkk+9dSeikd5Go7sKA6An/UdhimDk7NK5GcaPznjwH2epdthye3i4jvrHmkAoBH9N0EJwIkGwdtp/0eOx8XFdwYNv0/9JD94YhdmL9V2WinPG7GlFsDh30+jCE1a1/eo7u84tvxs/AohAKAjfXNBCcCxB7+TdGOFwhvFxXe2G36vNpOsemrnajdlMDJt+vMBUJN3VT9Ck4NasRqh95f/XU/yWcfvpbAEAKh/v01QAnCsQW8/3Vih0PiPFL2//O8wyXee2rl4nGQaW2oBnEY/Q2iSrBUX39lswf2cJrnR4fu4l2RoYgUAUOs+m6AE4DgD3v+ZJTnX8svcTTIoLv7mScPv1U4cnHsSB84b+c2O4gA49fdYlw+Cr84raf77pyN9x1fdy2Fx8TfCEgCgnv01QQnAkQe6XdlC4c3i4m9m7lUnPUp15kjTgzKAlvVB9kOTcbpzSPhWcfE3wxbcu5WUEw+6vEJoL0lf3wIAqGV/TVACcORB7k7a/3HiUXHxNyP3qlOEIwDNes+NUq4yGXXgXXeruPibSQvuWT/Jdsf7Jo9TrizR1wAA6tVXE5QAHGmA24VDwVsx26/3l//ZSPKxp/alhCMAze+brORpYNLmPkrjV7pW92uQcmWJsETfAwCoUz9NUAJw6IHtKMnDDlzqJ8XF32w0/F71k/zgqX0u4QhAe/sq/ZSByXrad55Ja7Zt6v3lf8ZJ7nT8cb1bXPzNWK0FAGrTRxOUABxqQLuScquEth+i2pZ9wGfp9oGpzxKOAHSv7zJIGZi0aWuuxm8NeuD+jCMsEZYAAPXpnwlKAA7RWD7qzDZOrxerv9lp+L3qysqfV3kajqwKRwA63o8Zpz1bc31SrDZ75euB+zJNcqPjj+ftYvU362opALD0vpmgBOCVg9hhku86cKm3itUWHJT66H920v6VPy/yOMk0yVQ4AsBz3pH9JOPq1+R35RvF6m+2W3JPunD+3avcLFZ/M1VDAYCl9ssEJQCvHMBuJznb8st8XKz+ZtCCezVJ8mnHHtH9cGSz6auBADjVd+b+AfBNXNGwm2TQhkkBvUf/s5LycPezHX8khSUAwHL7ZYISgJcNXv97km58eH+zWP3trOH3aiXJTtqzD/vL7KbcVmtarP52W00F4ITvz3GadwD8o2L1t6MW3YMunIXX+v4oANDgPpmgBOCFg9Z+kh86cKm3i9Xfrrfgfk3T7n2+9/I0HJmpoQAs4F06TBmaNOV9erNY/e20JWU/SLmy5EyHH8G9JEOTQACApfTHBCUALxywzpKca/llVltX/PZJw+/VMO09R+ZRks22fAgCoBHv1aasMmnVh/UqLPm+44+fsAQAWE5fTFAC8NyB6nqSzzpwqWvF6m83W3C/ZmlXqHXg3JHf7qiRACzxHTtKGZrU9cDxxyk/rD9pSXmPk9zp+GPXiok8AEDD+mGCEoCfDVC7ctZFK/b2btEHhb2U4YhzRwCo4/u2n6erTOrWR2rFNqIHyrorE3ZeplUBGNC6d+IgyUr1r/3qd1hPUp5LlSSxrTLUqG4LSgB+1unZTH1nTc7LXpJ+C7bcasPhp49ShiObah8ADXn/jlMGJmdr9Ndaa9O7tANnrx2GsARYVhu8H4QMqz/3/32R773dlBM293/bSXZMooNTrPuCEoCfdIhGSR524FI/KVZ/u9GC+zVJ8mkD/+q7STZSBiQG/wA09T08SBmY1OGD/l7K7Zp2WlS+XZi88ypbxepvh2obsMC2dpgyCNn/na3hX/NxyuBkO8m2VSiwoPZAUALwYwepK1tutWLAWW0Bst2g+7WXZDPJhllBALSwD7We5W/L9bhY/e2gZeU6Sz0/2p2mu8Xqb8dqGjCndnWYMhAZptnnXG5V4+GZ3QlgTm2EoATgx07TRpKPO3Cpr7dhtmWDZlk+Trl6ZNPqEQA60J8aZ7nbcrXtvJI2bDM6D8IS4Ljt6CDJKM0PRl5lK+XEvJmJeXDM9kJQAvDjctvvOnCpt4rV307cr4XbP5h9o01bgADAEd/V61nOpIY327QtSfWRb5b2r3p+lVaFYMBC281RnoYjXQyad1OGJlOhCRyh7RCUACS9R/+904EOVGu2o+g9+u/t1HMbiq2qMzpVqwDgx60yJyk/WJ3Wh/69JP02reQUlvzopn4W8JJ2cly9b15TIj/aD01M4oNXtSOCEkCHqrEHgh9VK2ZXVlt63KnRX8nqEQB49fv7tM8xad0h4DXsAy2LsAQ4+G4ZZblbPjaJbaHhZW2KoAToeMdqkOT7DlxqK7YqqDrCO6nHbEqrRwDgeO/zccpVJoue8duKLUefU3bCEmEJGMeX4chprlZsk72Uq0wmJvvBgbZFUAJ0vIM1S7sPdEvKpbaDNswY6T36740kHy+5QzmN1SMAMI/3+v4s4EX2xd5o2/7svUf/PU1yo+OPz16Sob33oXPvjXHK7bXOKY252UoZmMwUBZ1vYwQlQHc7Wd+sJ/msA5e6Vqy+u9mC+9VP8sOS/ucPLFF+1xJlAJjvO36YcoXJIj58VRNG2vX+7j36ZhphSRWWvCssgXa/I1ZShiPrcfbIwse8xeq7U0VBZ9sbQQnQ0c5WP8l22r9M91Gx+u6oJfdsltOfOXQ3ybRYfXem1gDAqfTPJpl/ANCa/tAz5bUde/ILS6Dd74RxTu9sK0q7SSYCEzrZ7ghKgI52umZp/3LdvST9NsygrGaafneKHcNpytk0Vo8AwOm/9/uZf2DySbH67kbLymklySzCkr2Uq4Z21B7wDmCu4+KxSYN0qv0RlACda/g2vxklediBS/2kGLXjg0Bv85udLH6Z9VaSjWLU/G3KAKAl7/9+5jub+I1i1K6VB73Nb1aS7MRs68dJhsXIJBdocHs2rNp8AUm9lGeYjAQmdKAdEpQAHet8dWUwuVWM3h225J4t8iyZvSSbVcdvRw0BgNr239Zz8sCklR/Te5vfDFKuLBGWCEugiW3YMIs7p4r5uWvcTOvbI0EJ0LFO2DTdmKHyehs6MAsMtnZTHs4+NZgGgEb1C04amNwtRu+OW1g2gyTfe0qEJdCgdmsYAUnT7KXchWGiKGhluyQoATrWEfuuA5d6qy0dlwUEW7bXAoDm9w9OGpjcLEbtO6S2t/nNOMkdT4iwBBowLp9EQNL0dnbddly0rn0SlAAdGlBvZ/HnXCy9w1KM3h205J7Nc2bk3ZQBybbaAACt6t8dJzApD/9u4fYhwpIfPSpG744UA9SqfRpGQNI2t1NuxyWYphV+oQiAjpik/SFJqg8FbXHSg+j3ktxK8uti9O5YSAIA7VKM3n1SraLtV+/8vUP+V8+kPKOsjWUyTfnhqutWq5XJwJL1Nr8Z9ja/maXc3UFI0i4fJ9muQjBofntlRQnQgY5ZV/Zsvl2M3l1vyT0bJXl4zP/6bspZLQbHANCtPt9RV5i0pu/0nLKYphvn8r1KK8+kgYa0Q8NYQdIlt5xdQuPbLUEJ0IEO2naSsy2/zN2UW0g8acH9Ou42aVspA5KZpx4AOt33O0pgstbWs8t6m99sJln1RAhL4JTbnmEEJF31OMmojVtb0pH2S1ACtLyTNknyaQcutTWD/GPcM+ePAADP61PsByYv61e0+bySlSSztH/C0KH6i8ISWHibM4yAhPK9Om7rJARa3o4JSoAWd9T6SX7owKW25rDK6p5t59WzP/eSTFMGJDuedgDgFf2LSV68FdVWMXp32NJrF5Y8ZVsYWEw7M4yAhJ9r7faWtLg9E5QALe6wzTrQWdtL0m/DllvVPZvm5ftp76U85H2jLdcMAJxaP6OfFwcmrf2IfoSJKF1w0zl2cCptKiTl9tgjY3ca064JSoCWdtrWk3xmsNeoezZM8t0L/s8OaAcA5tXnGKScePHshJo323rWWXXNswhLWtV/hiW1J/0ISDi83ZRhia2yqX/7JigBWthxW0my04GBYKu2iXjBCqDHKVePGMwCAPPuewzz0+1iWrVS9znXKyx5SlgCR29D+hGQcDzOLaEZ7ZygBGhdw/bwm80kqx3oaAyKtXacz9F7+M04yZ0D/9FWkkmx1s5ZnQBA7fohkySvJXlUrLXj7LdD9rm67GaxJiyBQ7QbKylX4QlI0O7S7vZOUAK0rBM3SvKwA5d6q1hrxz7aVcd7J+XsxkdJNgQkAMAS+iTrKQOTSbH27kaLr3McYck+H+3g5eO09epnJRrzcrtYc8g7NW33BCVAyzpyOx3oxD0u1t4dtOi+TZL0U36U2PEkAwBL7k+up5y48aTF1zlJ8qk7nqRFE5Bgzu2ggIRFuVusvTtWDNSu/ROUAC3q0G0k+bgDl/pGsdaeg9B6D79ZafOHCACAmvbBprGVzr7dJGOrmul4myAg4TQJS6hfOygoAVrSqRsm+a4Dl2qZKgAA8+pDTyMsOehuknWTeOhgWzDO07Oa4NTaXGEJtWoLBSVACzp1K0m2O9Cp2015gLuBGwAA8+pLz5KcUxI/2ksZlkwVBR2o/+MISFguYQm18QtFALTAekc6dmMhCQAAczZK8lgx/OhMkju9h9/Meg+/GSgO2qj38Jtx7+E3O0nuREjCct2oVjfC8ttGK0qAZnfw/jpI8n0HLvVusfbe2B0HAGABfeqVJLMkZ5XGz9xOMinW3jNhiTbU9WGSDXWdGvLNg6WzogRoumkHrnEv5aoZAACYuyoEGFb9Tn7q4yQ7S6K0qgAAIABJREFUvYd/HSsKmqr38K/D3sO/zlKe6ykkoY5u9B7+daoYWGpbaUUJ0ODO3iTJpx241LVi7b1NdxwAgAX3rwcpV5acURrPtZVkvVh7b1tR0JA6PUx5BolziGiK28XaeyaKspw2U1ACNLTD1095gHvbB3Fbxdp7Q3ccAIBT6mcLS17tbsrAxHZc1LUeDyMgobluFmvvTRUDp83WW0BTTTsweNtLMnarAQA4LdVqiaGSeKkbKbfjmigK6qT38K/93sO/bqbcYktIQlPd6T3860gxcOptqBUlQAM7f+tJPuvApX5SrL234Y4DALCEPvc4yR0l8Uq7KVeX2CqXZdbXfsoVJDeUBi2xl2Roq0NOtS0VlAAN6wCuJNmJLbcAAGDRfe9xhCWH7r8nmRRr780UBadYR/sRkNBeu0kGtjnktNh6C2iaabqxX7LDywAAWKpqj/ibSuJQziX5rvfwr9Pq4zUsTLXF1jTJDxGS0F6vpTwzC06nbbWiBGhQZ3CU5GEHLvVWsfbexB0HAKAm/fCNJB8riaP16ZNsmAnNnOtiP1aQ0D23i7X3TCZl8W2soARoSIewK1tu7RZr7/XdcQAAatYfn8bH2aPaS7kdl3MHOWn960dAQrfdrFY5wsLYegtoikm6seXW2K0GAKBuirX3xknuKokjOZPks97Dv+5U573AkdhiC360YVtDFt7mWlECNKBzOEzyXQcu1XJSAADq3jefxgfb43qcZN2B7xyinvVjBQn8rA0t1t4bKAYW1vYKSoCadxBXkmynPMSrzXaTDOxhDABAA/rnsyRnlcaxbaXckmumKHimfvUjIIGXMcGUxbXBghKg1o3Un7+eJPm0A5e6Vrx/ftMdBwCgAX10Ycl8lIHJ++dniqLzdaofAQkc1pvaTRbSFgtKgBp3FgdJvu/ApT4q3j8/cscBAGhQX11YMj93UwYmO4qic/WoHwEJHFW5I8f75+3IwVw5zB2os2kHrnEvDnAHAKBhqg9Uw5TnbnAyN5L80Pvz19Pqwzkt1/vz1/3en7+exiHtcByvpQwYYb5tsxUlQE07jpN0Y8utT4r3z2+44wAANLTf3k95puAZpTE3Vpi0u75MIhxpuq0kT6q2LylX1x3GIMnKgT/PKcoTsQUX822jBSWAwdbyOlfF++eH7jgAAA3vvw9SfigUlsyXwKRdY9xJBCRN9Lhq37aTbBfvn99eQPu5/xvGdoZHYQsu5ttWC0qAGnYiZ2n/zIq96oVu0AMAQBv68MKSxRGYNLdeDFMGJFYONGusPkuymWTztD/CV+c/jarfqtvxSreK989PFANzqX+CEqBmHcn1JJ95mQMAQOP68sKSxbqbZGqrmUbUhWEEJE2zlfKc1M26rFAQmhzaG/Ne6UNH225BCVCjzuRKkp0ODKweF++fH7jjAAC0sE8vLFm8rZQrTGaKonbP/zjJemyf1BR7KcORjbqv2Kq2b9t/vrSvz7SJtjVnLvVMUALU6MW/mW7MkjDbAQCANvfrR0keKomF20q5wmSqKJb+zI9TriB5TWk0wm51vzabeL6F5+25bmoLOXHdEpQABlOnypZbAAB0oX8/TnJHSZyK3ZQrTKaK4lSf8ZWUs/vN8G+OVoWLApOftYMOdudkdUpQAtSkg7nTgc6lFzcAAF3q548jLDlNe0k2Um4jZMyxuOe6n/Lj9CgCkqZo9XZ1vT9/PYnALjExlZPWJUEJUIOX+kaSjztwqW/aRxgAgI719ccRlpy2vSSbKT8M7yiOuT3Lw5RnRNxQGo1xN+UKklkHns+VlOetdPnQ970kfUExx65HghKgBp3N7zpwqbeL98+vu+MAAHSwzz+OsGRZtlKuMNlUFCd6fsdJzimNxribjgaF1TeWabq7HZdvLxy//ghKgOW9wL9aSbLdgRd4NavhglkNAAB0te8/jrBkmXZTbss1NS459Fh1PWVA4vyH5qgCkgs7nt9Ory55vevPAMesO4ISYIkv72m6sWx5rXj/ghlcAAB0vf8/jrBk2fa35doo3r+wrTh+9owOUgYkttdqFgHJi9vcjXTv7JK7xfsXxp4AjlxnBCXAEl7W/apzfrYDl/uoeP/CyF0HAICk9+ev1pN8piRq4XHKj6ibXV9lUn1QHsf2Wk0jIHn1sz1IubrkbMcu3aoSjl5fBCXAEjqgXZnRYMstAAD4+ZhgGjP26zZu6dwqk2oC3/72Wmc8Bo0iIDnas75S1fEuBYFWlXD0uiIoAU6lsflTJ/fI/KS4dGHD3QcAgJ+ND6YRltTR/lkmm8Wldn6E7v3J6pEGKwOSSwIS7e6h/Lq4ZOIqR6gjghLgFF7Gw5QhSZcOwdsqLl0YuvsAAPDCccI0wpI6e5RyFvpm0z829v701SBlODKO1SNNJCCZX12YJPm0I5d7q7h0YeKuc+j6ISgBvITnbi/JQCcOAABeOV6YRljSBI0LTXp/+qqfZJRye63X3MLGPnfrxtZzrxvjJHc6cKnlduhWlXDYuiEoARbYKe3Kge3PMmsBAAAOP3ZYTzKJmf5NUdvQpNryeT8cOetWNdZWyhUkM0WxsLoyTjfCkpvFpQtTd5xD1QtBCbCAF+4o5VZbXRzoPC4uXRh4CgAA4EhjiH7KszFWlUajbKUMTWbFpeUcBH9g5cgozh1pw/MkIDm9ujNO+8OS3eLShb67zaHqhKAEmONLdqUa3HR56fwbyxogAABAC8YUXZ501XS7SWb7v0Vul1SdgzlKMoyVI20gIFlemztN+7/hvOnZ4lD1QVACzOfl+pdBNaDpcif1VnHp4sTTAAAAJxpbmIDVDnspQ5Pt6s+d4tLFnWM+E8OUocig+lOQ1g67ScbFpYszRbHUNnfa8vb2UXHp4sid5pV1QVACzOGlak/hsoM3KC5ddEgYAADMZ5wxTDkZy0Hc7bKV5EnKACXP/HNSBiFJGYr0Y8VIW8fPk+LSxamiqE17u93yuvb6cYNaOlQPBCXACV6kK9XAxT7CyZtmwQAAwELGHZMknyoJaDwBSX3b2ZUkO2nvBNhPiksXN9xpXloPBCXAMV+ig5SH9pndldwuLl1cVwwAALCw8Uc/5SQth3VD8whImtHODpJ839ZnsLh0se8u8zK/UATAMV6e69XLU0hS7rs7UQwAALA4xaWLO8Wli8MkN6s+ONCM8fKtlNtUTxVH7dvZ7SSftPTyXquCIHghK0qAwzcYttp6nrXi0sVNxQAAAKc6Lpkk+VhpQC3tJdlIsuEcz0a2sbO0c/Xe3eLSxbE7zAuffUEJcMgXpa22fu5RceniSDEAAMDSxigbsR0X1IWApB1taz/Jdtp3XsleceniijvMC599QQnwyobiy7+sJ/lMSfysA9gvLuv8AQDAkscr45QfZ88oDViau0nWjZFb06629TvQWnHZriC84LkXlAAveTHaauvFPikuX9xQDAAAUJuxyyS244LTdjfJpLh8cUdRtK5dnaV9K/buFpdtv8ULnnlBCfCCF+IgZUhyVmn8zFZx+eJQMQAAQC3HMbbjgsUTkLS/Pe0n+aFll7VXXLb9Fi945gUlwHNehuNYuv7Cl2qSgc4gAADUekwzqsY0zliE+RKQdKstnST5tGWXZfstnusXigB45iU4TXInQpIX0SEEAICaKy5f3CwuX+wnuZVyshNwMltJ3iwuXxwbE3fKRgvb0LHbyvNYUQKUjUG5pHIzttp6mcfF5YsDxQAAAI0b60yS3FAacGRbKScMzhRFZ9vQccoJtW3y6+LyxSfuLgdZUQLsL0vfjpDkVcaKAAAAmqW4fHGnOrz3jZQffYFX219BMhSSdL4NnSbZbdlljdxZnvVLRQDd1vvy0STt229yEW4Vl1e3FQMAADRTcfnidpJh78tHzi+BF6tWkKzOFAUHWtBJ2rWqZJxk6r5ykK23oKuV/8tHK9VLYVVpvNJucXm1rxgAAKBVY6L1lFtyOZ8RBCS8us3cSbsC5teLy6s77iz7bL0F3Xy5DVJutSUkOZyxIgAAgHYpLq9uJOnHge90226SN4vLq0MhCa+w0bLrsf0WP2FFCXSt0n/5aFy93MyaOpzbxeXVdcUAAACtHif148B3umU35QqSqaLgkO3kSpKdtOd7kt1D+OkzLiiBTr3UNpJ8rCSO1HEcFJdXnygKAADoxJipn3JimdX3tHmcKyDhuG1k274rveE8Wn58vgUl0IkX2UqSzSTnlMaRvGnpMQAAdHIMNUy5wsQYirYQkDCPtrGf5IcWXdLd4vLq2J0lEZRAF15ig5QhyWtK40geFZdX7VcJAADdHk8NIzCh2TobkFT1l/mbpj3fmPaKy6srbimJoATa3ikYx3kkx3pRJunbcgsAADgwtprEBDSao1MBSbWTxqj6DdRVjuCmlVYkghJocyfBeSTHt1ZcXt1UDAAAwDPjrHEEJtTbVpJphwKSYZJxkhtuPcdkRxHK9kRQAq3rJDiPxAsSAABY7LhrHIEJ9bKVcgXJrCN1sJ9yCyjfPpiH14vLqzuKodt+oQigVR2FQZJtHYVj20uyrhgAAICXKS6vTovLq/0kN1NucQTLspXkzeLy6rBDIcl6ygPFfftgXsaKACtKoD0dhVHK2RTOIzm+T4rLqxuKAQAAOOJ4bBwrTDhdnVpBUtWzlZTfPVbdfuZstwq/6fK7XFACregsTJJ8qiSOba/qYApJAACAk4zNxhGYsFh3U55BMutY3VpJMkty1iPAgjivtuvvcEEJNLgC/3FzJclGHFp2EltJxsUHox1FAQAAzGmsNk65ra+PuszL3SSTLo5dq28fM/WJRdex4oPRWDF0+N0tKAEdhQ67VXwwmigGAABgQeO2YcoVJs5S4Dj2kmymowHJgXo0U4c4Jb8uPhg9UQwdbWsEJdDITsIgZUjiPJLjeZxyFcm2ogAAAE5hDDdMucLE2Qocxl7K3SM2uv7RtvfHzUlsNc7p+aT4YGRb9q62N4ISaFwnYVx1mIQkx3M75WwcMwQAAIDTHs/1U64wsX0yz7NbPR+bxqw/ThL93mPBadbB4oNRXzF0tM0RlECjOgmTmElxXHspV5E4mAsAAFj22G4l5QqT9ZgER3l25rT4YDRVFD+pJ7PYcovTt+bbUUfbHEEJNKaDMI1ZR8f1KGVIYhUJAABQt7HeOOUqgteURifHqhvFB6OZovhZvRgm+U5JsIx6WXwwGimGDrY7ghKofefAoe3Ht5dymy37SwIAAHUf+w3jHJOujFM7f0D7IerDLFaTsDyvq58dbHcEJVDrjsGg6kCZWXR0DmwHAACaOA7spwxMxrEtV5vspjxvdGq3g0PVgR+UBEt0q/hgNFEMHWt7BCVQ247BMGVIomN8dLeLD0brigEAAGjwmHAlyShlaGKHgebaSrm9ljMPDv/sryf5TEmwRHvFB6MVxdCxtkdQArXsFIyT3FESR3+RxYHtAABA+8aIg5SBySgm0zVlbGp7reM/77PYdovlu1l8MJoqhg61PYISqF2HYCPJx0riyLaSjCxhBgAAWjxetMqk3naTTJJsGpue6Dn3sZI62Co+GA0VQ4faHkEJ1KozME1yQ0kcmb0jAQCAro0fBynPMRnHKpNlu5vy7JGZopjLc/29kqAm3nD2bYfaH0EJ1KIjsJJkFjOCjmo35SoSLy0AAKDLY8pRysBkVWmcmsdJpnE4+7yf5WGS75QENXG3+GA0VgwdaX8EJbDkSvjFZj/l3qVCkqN5lGRcXNEhBQAAqMaXtuZarP2zRzaKKybsLegZdpA7dfN6ccVZQ13wS0UAS+0ADFKuJLFM+mgd00lxZbShKAAAAJ6qJpJNk0yrSXn7K02EJifzKMlmccXBzqdgRRFQM+OUZw/RclaUwLIq3xebo6oDKyQ5vMcpV5GYuQMAAHD48Wc/QpPjjD+nSaZ2MjjVZ3WS5FMlQY3sFVdGArwutD+CEljKi3+c5I6SoKZ2k+ykXO20KZgCAIBWjUf7KUOTYZxp8qz9cGTTVjtLez7H8b2E+rlpRVkH2h9BCZz6S38SsyNolr1qsLBhsAAAAK0an66kDExG1a+LOx4IR+r1TA7jMHfqZ7e4Muorhpa3P4ISONUX/jTJDSVBg91NeUaMAQQAALRvzDrI0+DkXIsv9VGerqA3tqnXM9hP8oOSoIbeLK6MZoqhxe2PoARO5UW/knKGimXNtMFeyrBkQ1EAAECrx7LDlMHJMM0OTnaTbCaZFVdGm+5s7Z+7J3GeK/WzVVwZDRVDi9seQQks+gX/cCXlTBUH5tE2j5KMiytrDjYEAIBujG/3V5wMql9dx7m71Th8lmRWXFnbcfca9ZxtxkRT6unN4sraTDG0tO0RlMBCX+5CEtrucZKhsAQAADo77h2mDE36eRqgnOZqgL0k29XYeztlMGJ80uxnahwHulNPd4sra2PF0NK2R1ACC3uxD6qOmuWitJ2wBAAAeHZMPEyykjI4ScqVKKn+s6NOJtwPQ1KNs59U/75jtUgrn52VJP9PSVBTr2t3Wtr2CEpgIS91IQldIywBAACOO4Y+GKjE1jb0vng4TXJDSVBDVpW0td0RlMDcX+ajlAe3C0nQWQAAAIAj6n3xsJ/kByVBTf3aRNH2+YUigLm+yMdJHkZIQjfdqIJCAAAAOLZqa6O7SoKaWlcE7SMogTlx2BgkSTaqZfMAAABwEuspz6eB2j2bvn20j6AE5qD3xcP1CEkgSV6LmRUAAACcULW1kV0LqKMz8e2jdQQlcELVAWOfKQn40VgRAAAAcFLFlbVZkltKghqyqqRlBCVwAlVIckNJwE+8Vm1FBwAAACdSXFmbxHkl1I9VJS0jKIFjEpLAS1keDQAAwFwUV9bGEZZQP1aVtIigBI6o98XDld4XDzcjJIGXWVUEAAAAzEsVltxUEtSIVSUt0iuKQinAYStMmRLPkpxVGvBKb1b7yQIAAMBc9L54OEgyjW8z1MNekn5xZe2Jomg2K0rg8C9iIQkczUARAAAAME/FlbXt4sraIOXqkl0lwpJZVdISghI4BCEJHIt9OgEAAFiI4sratLiy1k8ZmGwpEZbIWSUtICiBVxCSwLFZUQIAAMBCVYHJMMmvU4Ymt1MGJ1abcFqsKmkBZ5TAyyrIH/4sJIHj2yo+fH+oGAAAAIB9vT/8eSfJay27rPKskg/fd1ZJQ1lRAi9utAcRkgAAAADAPG208JqsKmk4QQk8h5AEAAAAABZimnIFRtusV7vT0ECCEnjGgZDkjNKAE5kpAgAAAOCganuqtq4q2XCHm0lQAgcISQAAAABg4aYtva4bvT/8ue/2No+gBCpCEpi7mSIAAAAAnlV8+P5OkrstvbyJO9w8ghKIkAQW1OmZKQUAAADgBSYtva4bvT/8eej2NoughM4TksBCPFIEAAAAwItYVUKdCEroNCEJLMymIgAAAABeYdrS6zpnVUmzCEroLCEJLMxeBCUAAADAK1Tbdm+19PKm7nBzCEropN4f/jRIillSnEmK+Pn5zfW3UXz4/hMtDQAAAPBqxaSl30de6/3hT2P3txkEJXROGZJYSQILspdkQzEAAAAAh1F8eGmW9q4q2ej94U8r7nL9CUroFCEJLNyk+PCS1SQAAADAUUxael1nkqy7vfXXK4pCKdCNh/2BkAQWbKu4emmoGAAAAICj6j34006S11p6ea8XVy/tuMv1ZUUJXWloV1IeoCQkgcXYTTJSDAAAAMAxTVp8bVO3t96sKKH9D3kZksySnFUasBB7SYbF1UvbigIAAAA4rpavKnmzuHpp5i7XkxUltL1xFZLAYglJAAAAgHmZtPjapm5vfQlKaC0hCSzc4yQDIQkAAAAwD8XVS9OU23u30Wu9B3+auMv1JCihlYQksHC3U64k2VEUAAAAwBxNWnxt670Hf+q7xfXjjBLa91ALSWCRtpJM7KkJAAAALErLzyp5VFy9NHKX68WKEtpoI0ISmPtLPOWhY0MhCQAAALBgkxZf22rvwZ+GbnG9WFFCux7oB3+aJrmhJODEdpNsJ9lMMrPFFgAAAHCaeg/+tJ32TobeTXnu6xN3uh5+qQhoUeM5jZDkWY+TrCsGjmBHKAIAAADUwHqS71p6ba9V1zdxm+vBihLa8SA/+HIaIcmz7iZZL65elkwDAAAA0Di9B1/Okpxr8SW+UVy9vO1OL58VJbShwRxHSPKsu8XVy2PFAAAAAECDTdLeVSVJMk0ycJuXz2HuNFoVktxREj8hJAEAAACg8Yqrl2dJtlp8iWd7D760bX4NCEpoLCHJc90UkgAAAADQIpO2X1/vwZd9t3m5BCU0Uu/Bl4MISZ51s7h6eaoYAAAAAGiLalXJ3RZf4pmUW3CxRIISGqcKSWZK4ieEJAAAAAC01aTl13fOFlzLJSihUQ6EJGeURpJkL8makAQAAACAtiquXt5Ju1eVJLbgWipBCY3Re/DlSsplaEKS0l6SYXH18qaiAAAAAKDl1lN+D2srW3AtkaCERqhCklmSs0ojydOQZFtRAAAAANB2xdXLT5JstPwybcG1JIISmmIzQpJ9QhIAAAAAumgjyW7Lr9EWXEsgKKH2eve/nKbIuRSJX/ZSCEkAAAAA6J7i6uUnKTJp+fe/Myliq/1T1iuKQilQ3wf0/pcbST5WEkmSx0nGxTUhCQAAAECX9O5/2U/SVxI/2kz7zzG+VVy7PHGrT6mOCUqo8QtgnOSOkkhShiTD4trlJ4oCAAAAoL16978cJRkmGSQ5p0Q67Q2Tpk+p3glKqPEL4aGSSCIkAQAAAGi1asXIJMko7V8pweHtJhn4Lrh4v1QE1O/F8MdBkqmSSPJjSPKBxhAAAACgZXr3/9hPGZDcUBo8x2spD7AfK4oF10UrSqjhy2E7kvNESAIAAADQWr37f1xPGZL4Dsar3CyufTBVDAusj4ISavRyWEkyS3JWaQhJAAAAANqo+gY2TbKqNDikvZTfCp1XsiC/UATUyGaEJImQBAAAAKCVDkwUFpJwFGeSTKvnhwUQlFCXl8Q0yTklISQBAAAAaCO7qXBCZ1OeV8ICCEqow0tiPQ6sSoQkAAAAAG02i5CEk7nRu//HsWKYP0EJS1VV7M+UhJAEAAAAoK169/+4ESEJ87HRu//HgWKYcx11mDtLfEEMUibpZzpeFEISAAAAgJbq3f/jMMl3SoI52k0y8D1xfqwoYVkviP09GYUkQhIAAACANpsqAubstSSbimF+rCjh9B+633/h4KpSGZL87oqQBAAAAKCFer//YpzkjpJgQW4Xv7uyrhhOzooSlsGejEISAAAAgC6YKAIW6OMqjOOEBCWcqt7vv5gkudHxYhCSAAAAALRc7/dfjFJukQSLtNH7/RcOdz8hQQmn+XIYJ/m048WwFyEJAAAAQBeMFAGn4EySWXXcAcckKOFUVKnmRseLQUgCAAAA0B2CEk6LsOSEBCUs3IHD2890uBj2Q5JtTwQAAABAu/V+/0U/3f4Wxuk7GxPVj01QwmmYRUgiJAEAAADoDmdGsAw3er//QlhyDIISFqr3+y+mKdPMrhKSAAAAAHSPoIRl+bg6K5ojEJSwMFWFvNHxYhCSAAAAAACn6Y6w5GgEJSxEdXj7nY4Xw00hCQAAAACwBBvVN1oOQVDC3B04vL3Lbha/uzL1NAAAAAAAS3AmyUxYcjiCEhZhlm4f3i4kAQAAAACWTVhySIIS5srh7bktJAEAAAAAauJMkmm1CxAvIChhbhzenrvF766sexIAAAAAOs+5tdTJ2ZQrS4QlLyAoYS4c3p67xe+ujD0JAAAAAERQQv0IS16iVxSFUuBkD1FZubaTvNbRInhc/O6Kff4AAAAA+FHv91/spLvfy6ivx0mGxe+uPFEUT1lRwjxsdrjRf5xk6BEAAAAA4BkzRUANWVnyHIISTqT3+y8mSc519PJ3I30FAAAA4PmmioCaEpY8w9ZbHP/h+f0XwyTfdbgIdpPseBIa6UnK7eJ2ksyK311xHwEAAIC5s/0WNWcbrv26KijhmI18P+WH5jNKgxbYTbmF3IbQBAAAAJiX3u+/GCe5oySoMWFJBCUc98H5/IvtlEu0oG3uJpkUHwlMAAAAgJPrfW5VCbW3m2RUfHRlu6sF4IwSjtO4b0RIQnvdSPJD7/MvNnqf26cRAAAAOLGxIqDmXksy633+xaCrBWBFCUd7YD7/YpTkoZKgIzqfpgMAAAAnV008/lhJUHN7SYZd/BYmKOEoDXo/ziWhmy+I9eKjK9NG19979/tJ+m4nDfCkuH5te8H1YaiYa2u7uH7tiWKgE33re/cHSQ61erW4fm2mxGC5fQL1kNNq89tMPbKVPY1ys+nfwo5cPwUlaMyh/S+I3r37kySfuo00wFZx/dpwwfVB56chz0L15yzJk5STNQQpNOGdu/8xbL8t2/+zn/nsTb6bZOdA/UhVP574AAU/1sNhVQ8Hp1gPZzmFCR/Uvv0fVM/Z/jPoG8rL69D2/p9deYdVW3zPPBs0xCfFR1c2OtOOC0o4ZENueSAkbxYfXWlk501QQoMISjjMwHq7GmDOfJBiie/W/Y+wwzz9MHa2JnVkp6oj+wHjjjtGS+thv6p/+3Wxn3oclrz/rtpWD1v9/A2r526Y5JwSmYvHB/p4m619doQlNMvd4qMr406064ISDtGAO5cESntJBsVHVxo3yBGU0CCCEo7TNs+SbFaD6h1FwoLajoOhyDD1+Bh71Hoyi4CRdtTD/brYpHoo6G/HMzhKsv+zLfniPar6eJttW1VchSXTJKtuM00Yp6c8w7fVq/sFJbyi4f5DP84lgZ+8HIqPPhw2sEM/iaCEptQxQQkn87gadG4KTThhW7GS8kPYMM0LRl5FwEhT6mG/qn/7dfFMy+rh5n5dtLVkrZ/DQZL1CEeW7VGSadtWmvQ+/8N6kolni4aMs8bFRx+2NugXlPCqBnsWS0jhWZ8UH33YqD0aBSU0iKCEuT5PeRqa+ADFYdqHfp7OFO5SH3g/YDTSx6IKAAAgAElEQVTLnTrVw3G6tS2NoL9+z+I4ZUBie6R62a3qykZb+nfVJOVJkhtuLzW3l2RUfPThrJXtvqCElzTUk/iwCi96MfSLjz5sTKdMUEKDCEpYVLu9mWTi4xPPaRNWUn6QHcfHsMTHWpZTD/vpZjjyqno4FfQv5Xkcp/xo/ZrSqH3/biPtDEysXqLubhYffThtXfsvKOEFjfMwyXdKAl7oVvHRh5MGdfYnEZTQDIISFu1RNaCeKYqO93fLfebHsTf4S9vklB9qp4qCBdXDccoPgurhy99b0zYfbF2z53ESAUnTtC4wSZLe53/Y33JwUP0EJ9TN3eKjD8eteg8ISnhOY7yS8lwSnQN4sd3iow/7Der0TyIooRkEJZzas5ZyhclMUXSon1uuHllPGZDo6x7eXp5uc7KjODhhPexXdXA9PvwdafyRlm03VKNncliVrfdC899V68J9FtZWlN9LZ7Hy8aBHKc8taceqLkEJz6n4mzGjBw5jrfjow0bM7BKU0CCCEk79masG1c5laHP/tvwwO4m9v+c1ILYqi+PUw2HKgEQ9PLm7sZ3kPJ7JlZQBie8f+nZwuHbj8z8MUoYlgv6nHicZtiEs+YV7yTMVfqyTAIc2VAQAjXcuyfe9e/en1QcT2tS3vXd/2Lt3f5bkh/g4Oy+rSb7r3bs/qz58w2Hr4Xfq4dzcSPKDenii53KUZCe+f7S5bzdRFMxb8dGH2ym3jOSps0m2qxCp0QQlPO0olIdGbSgJODSDEoD2uJFkp3fv/rqiaEG/9qcfZs8pkYU4F4EJ6qF62LzncqV37/5mkocxI7ztPq3qRl9RME/FRx/OknyiJH7itSSzpoclghIO2tRRgCOxLyVAu5xJ8lk1qB4ojubp3bvf92H21PlQy7P1UECy3Hro/fXiZ3OQ8jxWq0i6VTe2qxVEMDfFRx9upNwGkZ+OpWa9z//Q2PomKKHsMHz+h0l89IXj1B0fBADaOaj+3uqSBr2PyxnC05RbbPkwu7x6853Zu52uh/1qpr6AZPnvr6l6+LPnc5zyXAEHtnfPmSQPbcXFvBUffThOeSYOz9a38miHxhGUkN7nDwZJ8WlSxM/P7zg/AFpqf3WJs0vq3JctP3zsxNkHdXEu5dkJG+pOZ+rgSlUPf4iZ+nVxI+Us+ol6+ON74k7soNF1n1aTKmCOilFSPPZd7Ge/O73PH4ybdjcFJV3vMHz+YCXlllvA8fgAANBu51KeXTJUFDXrx5bb++wk+TQ+ftXRx1Xdsd1Ju+vhKOVWRp8qjdo5U92X7S6/w6oP455P9t3o3bu/LUBkXoqPrj5Jebj7ntL4mTu9zx9Mm/QXFpQwiaWncBL2AAZovzMptxSaKIrlO7DN1nf6sY2oOw9tx9XKerh/HtBD9bD2XqveYZtd+zhcvSusNuRZZ5NYMczcFB9d3UkyjLDkeW40KSwRlHS5c/v5g2HKmV7A8c0UAUBnfFrt+25gvaz+azl7fSc+fDXN/mG6zv1pRz1cT7mKxDkkzbKaDq3yqoI87wpeRFjCXBUfXd1Oop/zfI0JSwQlXe3clltuTZUEAMDROvoG1kvou5arSDZTzl63zVYzncnTc3/6iqOx9XCW5DP1sNH18GHbV5dUK0kEebyKsIS5Kj66Ok1yU0k8fwzVhLBEUNJdk1giDfPwRBEAdHJgvd27d9/2i6eg2lt/Ow6Jbov91SXOLmlWPdxfzeXjczvsry4ZtvBZncZKEo7WpxOWMDdVWHJLSTxX7cMSQUkXO7m23IJ5vgS3lQJAJ71WDayFJYvst5bnwjiLpH32Z7Xbyq4Z9XAjVnO1tR5+V93fNj2rQhKO6mzsuMIcFR9dnSS5qySeq9ZhiaCkc53cByspMk2R+Pn5nfi3pVUB6PxHJmHJQvqsP27x86nSaPdgWR2qdT3s9+7d345Jdm33cbUl3krDn9exZ5UTWG1TaMjyFR9dHafIXd/Nnvu70btXz7BEUNI9k5iRB/MyUwQAnScsmbOqLB0U3R37257Yiqte9XBY1cOzSqMTzqXcimvQ0Od1kOSO28gJfVwFbjAXxfWr48QE2xeoZVgiKOlUZ9eWWzBnm4oAgAhL5thfvT9OORHBxJ7u1aGH1VZrLL8erqfc8s5WW92rh9837UNxtRJm5vYxJxv6c8zZKMljxfBctQtLBCWd6ew+WIk9F2GeHhfXnU8CwI+EJSfur97fSDkj2MfZ7vq0OoiZ5dXDaZLPlESn3WlYPdz03mDO/TnnZzE3xfWrT5IMIyx5kVqFJYKS7liPmXkwT/YvBeB5g+uZwfXRVR/lrHymGjDf31aPTr0OrlTnkTgIm/16uFn3elitfrJNI/N2NuW29TAXwpLDvHPqEZYISjrR6X0wiIMwYZ52i+tXp4oBgOcQlhypn+rjLM+1f25JX1GcTj1MuXWR80g4aLXO77OqfZi4TSzIx9VZTTAXwpJXutG792B92X8JQUk3quM0KeLn5ze331i7AsBLnI0tT1/Jx1kOUY+2bWe38Ho4iEPbeXk9rGtYMo0tt1jwM2biC/NUhiXFMCke+6723N9nyz4nS1DS/o7vuk4vzNXt4vq1mWIA4BVWHUz90j6qkITDcPbPYuvhoKqHtmjmZWoXWlYf0my5xaK9lnIbe5ib4vo1K0te7k7v3v3R0t4vRVG4Be3t+PZTzg4yywLm43GSYfVia1p7MMkpb8FXXL/W88hQ0/pw2p2fW8X1axMl/9J7MkiyUv0G1a+fdnxEXyuuX9t0l392vzfTnY+zj5M8SflBOgf+zGEmXxyoH6nqxsqBP7vyoXCv6oNtq0FzrYezDo0Vn62H29W/J8lOcf3aziHr4Moz9bDfobasFvWwCtp3GvLs7lXP2uzAM7fdxPHkHO7bsPrHYVV3hg1qf15/WRsBJ2jLZjFpqFbvG0FJuyvdZsp9RYH5NNSDpnaQBCXwk/ogKGnWAGKQZFQNqJs4kGj0+2MB97TtH2cf5+kHse3TGOBVk6P2A8Zh2hueCEvUwzrXw2HK0GTQ4PdVI95pyxjXHKOMpkk27URwqLZoXPXz6hw4PiquXxu5YyxorDOLsKQ27xtBSXsr2yjJQyUBBubLGlAISqhxfRCUNPfe9avB9LhhA4qt4vq1ofvXysHg/gfZWZJZXWYJVx9th1V9aVN5C0tO/my0MSTZr4e1+TBdtXfDA79WtXvF9WuDJZbrTk2f360k0+L6tamW5lj3dpRym6u6hv1vCr7QP17K+/1Ud3URlLS3km3HXrMwr4Z51PSZwIIS+El9EJS04z4OqgH1jYb8lTv9HLRsEPg4T2cL7zSk7EfVrw2rzYUlJ2s3Z2lHSPIoT8ORJtTDfpoZ9L/I7eL6tfUllOO0hu/93SRjH9Hndo+HSSapX2Bi0gv6yR2oe4KSdlawSeq9FBWaNAAbt2EPWUEJ/KQ+CEraN7BYr351//j3Rhc/7rZk8LebMhyZNnnyRHUvxmn+x1pb2h3v3jd9Ml2jQsqX3It+ytBkveH341TfaTVcTbKXZFJcv7ahhVnI/R4n2ahZ386qEhb93E/TnElgp+lucf3a+FTugaCkdZWqn+QHJQEnsptkvU2H7wpK4Cf1QVDSzvu6knIG4sc1/msubbuSJd+b7TT3o/yjJBtt/DDSwFVZP6tPOeXtGBrePs4aXA/vVvVwu4X3ZpgyuGxaPTz1MxtqNiG0FbsONKTt2kx9Vpec2sdaOv3cTyMseZ6bp7G14S+Uc+tMFQEc227V+PbbFJIAdEFx/dqTahuQ11PuE15HZ3v37q936b5Ug72mfZzdS3I7yevF9Wujts4eLa5f264++Pw6ya3qupvkbMqP/7zaZkPr4a0kvy6uXxu3dTVecf3arKqHrzeoHu6mDHdOW13en3eL69esaDu9vt2wqht1cKOanAyLfO7HVT+Un7pTTfJZKEFJuwaiw9T34Cuoc0f/bspltH2H7wE0fnCxUw2q11LPD06TaoZkF/qmkzRrRtz+h9l+cf3aelc+glUfoiZJ+mleYHK2CuN4cT2cNmyMeLAeTrqyYqh6dzWlHp761sTVNkx12ILpphUFS6kfkyQ36/L8uyOcwjO/XqNnvk42Fz2O+qUybpWuDBLeqP5cSTJ02zmGJyn3aN62XQNAawcYm9Wsvzpt2ZCUH3o22j7Qrj5qNenMvFspt/Z50uE68yRlkLeR5pz7k5QzfHdscfjcetikrdX2qrZRPax3Pby5pFV245pc+1TLsrS6Me3du58kd5b8Vxmn3OoVTuuZr9tZPcv0WjW2Gy6s7+SMklZ1gj/rwKV+4rA0OFYbMYkzSmC/PjijRBtYB609ELRaFj9ryKDuUcpzyXbUlJ/dxyac+3PQmq1Tf3L/hkm+a8hf93bKQ7FNYHp+PdxIPQKvpQQFNTmHVUhSnzoxzvLDEu8b9KuXa2Hja1tvtWsQ03ZbQhIA4KiqjnTdtuJqZd/twMGrdR/M7aYMqxzG++J6s3/uzxup77k/B03tHf9jPexX9bD247skb1Rb3QlJXlwPx1U9fLzEv8oyg4LRkm/DbSFJrerENMknS/5rjNwJTvGZ304yWPI7oG4+rSaEzJ2gpB1d4UnSO5P00uLfXtIbu9cAwDEHGfvLtOsSlpxbVAd/yaYpl8XX2a3qXLKZmnG4AXp17s8nqfe5CWdyCntXN0Tdw8q9lDsFDNt6SPuC6uFgSfVw2asplvkdYKsKjKlXfdhIec7osghKOO1nfifpDZPeVsu//R7lt9m792DufT5BScP17j3opznL4U/UOSquX91xxwGAEwwytlOvsGTSrn7p/fUkqzX+Kz5OOXt9ojYcq/5spJzRWOfVJWdTblPU4fHh/Y2qHOpqK8nATgGNqYdLDUmq1VHLep734oN4na2nXB26DGd69+57Njjl9v/qk+L61WGWGxLWyZks4KxuQUnzdaGD+ai4ftX+jwDAHAYZ17aT9Jc4uD6oNatKqv2T63xe3u3i+rWB2esnrj87B1aX1NWNrn7Aqq67zpPo9leR7KhNc6mHtxb8P1WHczmWWZfHtoSrdT14kuWuNhq6Cyzn2b86rnk/7DSt9u49mOuqv18q0yZ3hB8MU+9Ze/Owu+SXHwDQwsF19UFxluVvTzNp+mD7wLkkdbSXZGSbrbnXoY3evfuzlDP56rh6Ydq7d3/QpQ/yVT2c1nhMNxJUzr0eTnr37m9W7e+8tzysy+Hly3o/bjmsuxF1YNa7d/9ukhsdejZr8s55MEgZZA5STkA664lkWWOp3r0Hm/PahciKkoY/DB24xnFx/apZHADAvAfXddmG61y1GqPpfdI6nkvyOOUWPzNP/ELr0KMa/vUWsh1DzdX1XJJHVT0UkiyuHs57K66bNTq8fLik/13nkjSrD7IMZ7t2Jlbv3oN+796Djd69B0+SfJ/k05STt4UktKbPJyhpbgM1SnKu5Zd5u7h+1cAWAFiI6gPTuAZ/lcZ+kKm2DqvjVj93k9jiZ/F16Elx/dooi98C6DjOVefmdGBseH+9pmPDW8X1ayPbF51KPRwmuT2H/3e1CUmqSQTLCP/uCvYa9fzvZHlnNgy78Y550O/dezBN8kPV5zvjyaN+fb75bMElKGmutp9NspturJgBAJY7wN7M8j/y3mjirMQab/XzSXH9mr3lT7ceTZLczPJXaD1rUh0G3VrV9dVx3PT/s3dvuW0c+77Hfx0EOMB+kc4IxIxAzAjUecjdsijHUcKEgFojMD0Ct0cQegSmAMZ0lDimkpWcvbMfTI0g1AhCjWCJLwtYQLD6PHTRpm1dKbLr9v0AwsrKWWeTrEt3Vf2r/rVn2gWq64dt0w9vUmcuPdNtnbbs0Jq8k0fWRit8xzzNVQZIdmlmcP05kPSe3njMR6DExwfV908zJVpTIgX8R8otAABQCbOYd2T5a2SeLky4lnJrr2g1WeSy04+6ciOd3awYUnB15Nbu3omk9x1bcI+tH27P0Q/3HKwzG4vQx5wm8bLdj2UnDWQaapkm3z9dTb5/OlSiB4GvPfIXzt+KkpuP+QiU+CkP/Pc9Kr4l5RYAAKhUQ3YXeDOvJtBlShSXUm5NJG2zOGuXQ3f/zNpIev1GiOVtfteWY/0wZaHZej8cXLMf7jn67LQRKCHQ7i8bbbgW5Lvl+6d1SSOFn+4f4dlIvn96ozEfgRL/HliZ3Lwsc1FIuQUAACpn0jRlFr/CumeXuncd+i7TxdkBLdmJvuRisKQT2qW75vd0HOyHBEn86od7DgeYbbwTeY/42+YHFt47wa3NmSDJUGGvOyJs3eT7p3OP+QiU+CcP/Pdlxbek3AIAANYm2YcWv0LmxSS6188krTvydVicdbMvuRYsWZMU2sXubbmzkEU/dLsfHp/zP9lz/BRe1SnljrnbyntDC2OiNJTCM4vLXXFZO/y2cpMxH4ESvx5amcKO6u6TcgsAAFhmczHV+fRAju1iZ3HWYQ4GSx6EcrG7+R0P6Ie4Rj/cf+P/yekgiaXFZ06T+G9IEdy4D6xTDAjAg+T7+S52J1Dilzzg3zZReLu8AACAZ8yFoA8tffyaBwu5bbmz07DN4qzz/cm1YEko9w+4Mi8kSOJHPzwtWs1M0n3zr/a4z+lMtGPqcB5pCAWXfP+0Le4kQVjmGvMRKPHnoZUp7NMkpNwCAAAuDaxtLew6e6rEsV3sLPR5YiZY4oIt39OkmO+/68jXIUjiV1/sSPq/njw7axY+k7bsfxsfUgpzvFfKlFs5JYHAbCXfP732mI9AiT+PrlxKFOjfUfHt1xxzBQAArky0T2Vv57nL6bdcmUQ/JEjiXZ8aSdqjHQf1/fcIknj7fvNBzULZjGkhQTihCK4r6UjJSsBrjvzF+3ftMROBEh8eWd//kCnc0yQTeXJxKQAAiIqtUyVOpj0wp0lc2MW+X7SaOc3TPya49dCBr7Lh66kS871deEYQrERoWFwPx7jiz6v5XFjJ9z+syp1TisDix3zf/3CtMR+BEj+EPBnsFN9+NaaKAQCAS8yu266VSaubi7gujEePxZ12vverXNIh7dnr731IsBIBGlMEmFPN8++fUYUI3LXGLARKHGciX6GeJjkpvv2KQTYAAHCVrfRbqVPjUTdOk0wkNTxKG4PzZbK/e9u7UyWOnCY5EYtqABDaOxkI2bVOlRAocV/OAxkAAKB6Jl/5sYWPTh0rChfGoxn544PpV6dy4y4e3+ZZLnxfgpUAEIjk+x9qktYpCUTgymMoAiVuP7RSOZqnegEOi2+/GlLLAADAcTZOldSdGY+6cZpkv2g1BzTFcJhLwO9b/hrenCox/dD2vPA+l7cDQFBSigCRuPKpEgIlbssC/V0TkV8aAAD4wcYC/YpZGGU8Wqb6YdwYoKLV7Eg6Yr51Jbnlzz8y9QWEapUiQIRqFAEicqWxFIESR5kjcLuB/jwucAcAAF4waWZspN9yZfJqO0iRkeonaJnKTVS27DoUlDx7Xtjrr1qeF05EymSEj/RDiFFKESAiG2at/UIEStwV6s65E9m7GBUAAGAeNk6VWJ+8Jr1+JmnF4ld4VLSaQ5pfuMy9M7nlr5ExL7xQzv1AsKDyALkJSgIAwnXpmPNdysg9yfc/rCrcXTt58e1X7AoEAAA+GUp6UPFn1hz43TYXaE/k32XbmEPRanaSXr8he3dwtB1vazbnhaTcgi027sOpm/c9/H6npJQCgHM0ku9/WL1oXZoTJY5WnOzu3lveQPvbr7pULwAA8GzSPbTwsTWbvznp9euym4qkTcqtqNgMyq2Y01POMQGktUjrBahaShEAQNBWVK65n4tACROFKuVULQAA8FTVl07XLP/ezGZZF63mgCYXj6LVHEl6ZPErNBwtGpv9cN/UC2CDrRMlAICwXbjmTqDEMcn3P9jevbcsh8W3Xw2pYQAA4KmqF23WLP/ezOJn5zS3KOWyd7H7lmuXupv7ErYsffxEnCaBRZZOFG5R8gAQvHWz9n4mAiXOSdpSogD/GGgDAACfRZMGyqT7sZUGdp8L3ONkFkZt3ofh2qkSm9+nQ+o7OODY0vsPiGXENwp0/ZE//i77y87rFQRK3BPii3m/+HZnTNUCAACPDS0s2KQRjkdzmlrUOrJ3qiRzrCxsbTSbyG7ACpga8RwAlmpMESBS5z7rCZQ4JPn+IFOYl7gz4QUAAPBhPFqm+9m19PH7RavJpD1ilk+VrLuSfst8D1vpmDlNAlfYeB84l4YPWKIhRYBIrSTfH5y5MYxAiVMzUzUCPNH0kNMkAADAdxGlg0otfnZOS4Psnipx5XS/re/BaRK4xNZ7N6PoEcXY9tudkRKdkIWJv0j/CJS4LHlyYPOyPgbaAAAAkOwt0HKaBOXCjd1TJVnk/ZDTJHDpWTC09NFtc7oSiMGAIgBznlcIlDApXe5A+5sdBtoAAACMSS/TpegxO4+w9LnW02+ZBdoN+iEgSTqy8Jkr4oQjeN8CoVtJnrydfotAiTvSwH4Pp0kAAAA8Yi6Pt3Ff3nFEqc1wBeZUw36k8zJOdQGv2Ho33Et6/TrFj+Dft9/sjGUnIAm44K0xH4ESd4R2ooTTJAAAAJ5PFqoaN1L0cKhdNCLth12aHBxkMy0QfQKxaFMEiBQnSlyUPDlIZWf33rJwmgQAACCAyUJF40byY+MtRas5knRs4aNTyz/dxuefcKoLDj8HJpY+fj3p9VnXQPj97JudkaRHlAQitJY8OajN/gsCJW5IA/s9A06TAAAA+MPci7BuZdzI5dE4X9fCZ67YSrlj7kdZs/DRLAbDZTaD6feSXj+jChCBXNIJxYAIpbP/hUCJg5USyAMWAAAAjEcvw2kSuNg+Uvoh4Iyu5c/vcF8JQmc2Ozdk7wQXYMtrJ+rfpTycsBHQbzmRlCVPDqhVv51KGkk6NccwAQCImtnpHTIbi0AnRavJAi3OVbSa46TXP5S0VfFHp7JzyiK18JnHXOIOx58Dw6TXP5Gd01ZSmSZ9mPT6qUkFBoTZ177ZGSVPDjJJzykNROS1sReBEtuT7vJ+kpCsSXpAzQbVRiXpSOVOs0HxzQ4TKQBAjGoxTRIqMqRZ4QoGshMoiaUfdmli8EBXdtcZCJYgCsU3O4PkycGepMeUBiKxkjw5qE3XOkm9FeekFLiuDUnfSforeXLQDTDABwDAZWoWPnNc8bu+apwmwVUMrUyaKz5FZu4JWqMfAmfqOvAdpsGSjOpAyIpvdrqS3hdpuBCPdPoPBEocqgzAE7uSXiRPDgbJk4MaxQEAiETl77yq0uFYyr0+Ie0WrtEPji18dD3wz5PK9HdjWhk8eQ7sO/BVViQ9Tnr9DrWCoPtcmYK9pjK7CBC6l2MwAiUOVQbgmS1J0xyWAACELmU8ulBDmhQcby9V9wsbzxiClfBJ16Hvci/p9Udc8o6QFd/snBbf7KSS9lTeRwwEPxciUGJR8uRgVeWOBMBX5Y6aJwddigIAEMsAuiJV7uCrWSjPIU0K12BjQT8N/BlDP4RXilZzKLd2t69L+jPp9TsmdR4QZt/7ZqdbfLNTUxkwOaZEEKCXKYgJlMQ14QaWZZdgCQAgVOaugqo3t5xW+FmphWId0rJwVWaBNPS5Wo1+CFwqd/A73ZM0Tnr9vOq7jYBK38VlwKSu8v6ShyoDl9xjgjDme08O6pL0LkVhVUoRICC7yZMDFd/sZBQFAIAx242NKvysWsW/bVK0miOaFa7pSDM7/ipQdXB0veLPOylazVOaFXxStJrDpNc/VJkG2iUrkh5IepD0+vuSBtzDhWD7YXl/yctxnMmWw0bweOUVj8+WOR8aESixi+OZCM1u8uRgXHyzk1MUAICANCx85rjCz1qr+LcRJMG87abSiXjS66dVnGaxdM/BkCYFT7XlXqDktTmxpN2k15+YfjY0z68RwUmEqPhm55R3SrxMdpkQAiV1SQMCJfYrAQjNg+TJwbD4ZocXZewvzF6fNuDYpJId3MDcUgufOa7oWW3jt/F+wDxsvMNWA/sc2+WJ5TzH65I6VX5m0Wqmtn5v0WqOk17/kcqUVy5bURnQ2ZqpK8mte1Zsvv+Hkk6ZnwDeG0h6HMDvqEmk3nKiEoAAdZMnB3WzswDx2qAInMIpRmAOSa/fUPUpeGzdyVAVFkXgS7upq5qL5FP6IW44xott3J2rPO255uF3j3mONPvbH5hxliSdmGfSSNIw8DEQEJTim53T5MnBsapPIbpoNYnL3G1bowgQcNtuUwwAgADYSLt1XOFnpRZ+35hmhWtPxO3sOg55kwGBEvj8PDhlvhmUNZUnbx5IepH0+kXS6w+TXr+d9Po1igdwXgh3MtUkAiXWmMuOgJC1aecAAK/Ha73+qspc41UbhlyupNnADRxX/Hn1wD5nasJdCQjgXTKQdEhJBGtD0neS/kp6/TFBE8BpIcxd1iQCJTZxPwlCtyIpoxgAAB6z9R6rMpBQ9Zj0hGaFGwh1cb/qzUUEKxHSe5r3SvjW9CpoMkx6/YwiAdwRyh3FyZODVQIlAJaJ49AAAN5j11flZKPqBdoxzQqe9A2pursE6IfAHMzJqAYlEZUNSY9nTpmQxQJww3EAv6FOoMSWJFlVkog//gL/W0v6P3J6CgDg31Ct3K1o4z65k6LVHAdctOxkB95W9QWoY4ocoTDpHO9TEtGZnjIZJ71+TsAEsD15SkYhrGMSKLGHxWPEIqUIAAAeyi19btWXIVY9JuVeBNzEkCIA8Kai1exI2qckorSi8hL4MSm5AKvGAfwGUm8BWLqUIgAA+MTiaRKp+oXgFWocuPB5UAvwZw2pWYSmaDUzhZH6BfOPZx4nvf4o6fVTigOoXAinxkm9BWDpahQBAMAzuaXPnRSt5iDwsh3SvMBY9pVAAzGALakIlsRuXdKLpNfvkI4LqFQQp8YJlACoYqACAIAXkl4/l73TJANqALhQiHfc1KhWYDHM5e6ppAmlEb17kjhdAlSHQAkAAAAQCrOz+4HFr0CgBLiAWTlT3D0AACAASURBVAQFgMueE6kIlqDc+PLCbIIBsMxnb/PLIDazECgBAAAASl2Lnx1D2i0AbhhRBAhZ0WqORLAErzxIev0hqbgAXIZACQAAAKJndhtuWPwKXWoBQBU4mYNI2vlIZWo77iyBzBhvmPT6dYoCwHkIlAAAACBqZtL8wPLX6FITAAAszkwaLoIlkMr7UwmWADgXgRIAy3ZCEQAAXGXSMAwtf40js/MVAAAsUNFqnhatZl3SPqUBSSuS/kx6/YyiAPAmAiUAlm1MEQAAXDQTJFmx/FW61AaACp99NUoBsSlazUzSfUoCxmOCJcACxxb9H4O4A4hACYBlG1IEAABHdVSmYbDppGg1u1QFgArVKALEqGg1O5LeF1kPUCJYAixOECntCJTYQ3oF0NYBALAk6fW7knYd+CodagO4cr9dpRQA3IRJdUkqLkwRLAHwEoESe04pAkRgUjS/HFAMAACXOBQkmSi+tFssdOMmQryAl01FQMXMvSWZpG1xugRlsIQL3oGbSUMYkxEosTdF54+/GP4IkgAA3BqBuRMkkaRO0WrGtnmGhQh4N2le5v9xS88AApZA2f8G5r30kNKI3pBgCXCjWdZqAGuYpwRK7BlTBIhAThEAAJwYuvf6q0mvP5Q7QZKJ3Ei7xU5a+KTyBf5Ag5ksBgIzfbxoNXNJ70k6pESitSKpS4pHIO6xBYESWy/j5t0xpYDAHdHOAQAuMDsEh5I2HPpabUcWYKt+V9dokYh9Eg7APUWrOS5azYakDyQdUSJRWld8KVGBRdkI4DeMCZRYnbVrQmYm/gL+y+jkAADrw61ev6EySLLu0Nc6KVrNWCfiNVolbqDqnb6Tij6n6kVZAk7AOYpWc1i0mqmk98WF7zHaSnr9nGIArjHfevpTGsI6ZtG8S6DEMi7uQ6geFl9zmgQAYHHAXqba6kh6rjKdgksyh75L1e/rGq0TN1D1An+o8zVSywCXKFrNkbnw/T2Vd5iQqjIeD7ivBLiWNIDfMJFIvRXbxBSownHx9d2cYgAA2JL0+qnKBc57Dn69w6LVHEY8Hl2jheIGaoH+rqrT8G3QlICrMSm58qLVrKlMy7Wv6k6bwZ4B95UAV9YI4DeMJAIlsU1MgWU7URiRZACAh5Jev5b0+gNJL+TmgvxEUtux73RqoZ4YK2BeVffrUWCf89rzkuYEXI9Jy5UVreaqytRcD8V9JiG/b3KKAbhkPPH0p5rcSnE8r7EkvUuVWkXqLYRkIqlRfH33lKIAAFQ6QC8X/HJJu45/1bxoNceMR0m/hbn6eWrhY08D+5w3++GYlgXMp2g1R7PvUPOMSk3fqomTWyG4l/T6XVPXAM7WCOR3jCUCJU5UAhCAY0lZ8fVdBhCY9ZAi4J0DLJNHARJJOipazY6D38vGAi15vzGPmoXPDPZEicoF3SHNClgMk1Zz+MY4ZXXmnVdXvPcD1Wb+fEvB2RFZM4CLZIH8jpFEoMTui/Tru6Pk6U8UBHx3JE6S4OzJQk4pAFg0s+jQMINyX3ZrTlydRBSt5ijp9av+WAIlmEdq4TOrGt+OLfw2+iGw/HfsqV4FT4aUyMuxXGqe6akHY7mNpNfPilazS80Bb/Tlpz+lCiPt1suxGIES+47EkUz4aSIpL76+26EoAABLnlDXzGS6IWnLw5+QOZhya9aJqt3hydgX86h8Yd/sEK/ic8YELAHEYvb0jdkAk6m8w83V0ya5pC41B7w9xwnmuWQy5BAosW/MZBGemUgaSGpzigQAsGgzaSqmf6n8S9Mwa79oNQcejEfXKq7ntKpFaATzXKh6x+JJxZ9X9Qa6taTXrzkexAUQOHPqpiOpY06a5HJvjWwt6fVzMiYAM2Oz8hL33UB+ztH0HwiU2DcMqGEhbMcqd1F0CZAAwLWkSa/PxOqC8pn559A2jxyr3CHpw3h0w0K9D2n+mOM5UZWq7w0ZW+qHXZoXABeYDRRp0us3VAZPXNoo01YZxAFQCqk/vBzzESixLgnt8usj6jQYp+ZhMZI0Kr7+YkyRAMBcNsTp0RhNJDXMTklvJgcVSmkicLy9jCx83q6Fcu3SvAC4pGg1B0mvP1S5EHvPka+1wl0lryRPn9XMO6TGmC7aVhDS/JZAiTMvgK+/GCVPn00krQTyk/Li6y+G1CwAAIhc6lFKGxuBko2k11/1JJAE+xoR9ItRJOUKAJcy44N20usPVKb+dmHNLFfEweXk6bPpfTKZwrnAG5BmTrm/Q1m4VSEByKhOAAAQub2i1fTm1LAJ6EwsfHRKU8Flkl6/JjvpV0YV90Mbc8KVpNfnUncALo9RhirvrDt24OusmbRgcb2Hnz5bTZ4+y1WmiPxOBEkQlpPZDDoEStwwDOi37JojeAAAADG672laBnazw1U22smJpRNhNhYCM5oYAJeZ53EqN4IlUT0zk6fPGioDJA8UTiYcYNZw9r8QKHGwUgKQU6UAACBC+0Wr2WE8emUESnAVWUTzM/ohAJzBpOJKZT9YsmVOOgbNnCLpSnouAiQI22tjLwIlLjzwv/5iJDvpDpZl1+QuBAAAiMV+0WpmoUwSKrISYwoLXJ1ZjLKR4sNW6jwbn7tG+i0APnAoWBL02MWs5w0l7dLqEIHB7H8hUOJoxQSgTZUCAIBI+B4ksXU/gkTaH7g5pxhG9rn0QwC+jFdOzTPL5mbjYJ+ZM0ES7iFBDI6Lr784nf0XBErcEVyghFMlAAAgAt4HSWYcWfjMraTXZ8yI89i6n8TKiRKTh597SgDg4mflyPJzaz3E9FsESRCh7pv/gkCJO4aB/Z4VcaoEAACE7VFAQRLJ3sadjKaEN5m0bGsRzstsfP5K0uvTDwF4o2g1B5IeWfwKaYDF2hFBEsTlrbkPgRJXHvLlUZ/DwH4Wp0oAAECo9opWM7RNIUNbY0aaE86QRdYPbH9+RpMD4Jlc9lJwBXVPSfL0WUPcSYK4HBdffzF+818SKHHqyaSBEimgvxUl6lCxAAAgIBNJ20Wr2Q3th5lUFicWPnqNS93x2rSoTGmyZenjB5b74UB2Fv42QkwlAyBc5r4SW5st0mDeuT88W1WibmDrkfzxd9nfmXM5AiVuGQT4m3aTH54x4AYAACE4kZSahUzGo4vFqRLMyi197qFZeLNtGFm5A8BczMYVG5s8VpJevx5IMbZVps8HYnLmnIdAiUsP+K+CTL/FgBsAAITgUFLd1iXPFRpa+tyNpNdPaWZIev1V2Uv/MXSkGGwFLHc5VQLAQ7mlz/V+3JL88GxVbFZBfI6Kr95OuyURKHHxMTUI8DzTbvLDz0x8AQCAr+4XrWbDkZ3mS2Ux7Y/E5hqUbC7YuHJazOb3oB8C8G3s0pWdUyUBnChJGlKyQh4m/iL7657XIwiUuCfUVA4MuAEAgG+OJb1ftJqx3blmazzKqZLImdMMtgIlR0WrOXahHExQ1lamAU6VAPBR18JnhvCs5DQJYjO5aK5DoMQxxVd3TiXtB/jTNpIffuaSTgAA4ItHKu8jGUX4220GhnKaXtRy2cuT3nWsLDhVAgBuP8M3fC6w5IefVyWt03QQ27PCrL2fiUAJD/hYJt0AAABXMT1F0o4h1dZZTHDoxNLHbyS9PptrImROMexa/AoDx/phV/bS4HGqBIBvY5exGcPZeHf5KqXlIEIXrk0TKHHxAf/VnaHFyekyrSU//JxTwwAAwEETlXeR1CM9RfKmrqsTGNDmlmDf0cDoINL6AIB5DC18Zs3j8qrTZBCZo+KrO+OL/gcESpgoVK2d/PBzjeoFAAAOeSSpFuFdJK6ORdeSXj+nCuJh7qbZiLS9X8TmM4nTXQB8M7Twmasel1dKk0FkLp1fvEsZOasj6UGAv2vF/DYG3QAAwLZDSW1XLnB2SdFqjpNe/1DSlqWv0E56/S51E76k11+V3UDFSdFqDh3th6Ok1z+WvRzynaTXH8aahhBWnws1VbtT/5TTpEGwUYd1OZa6EcA5470yg9OFCJS4Ojn96s5p8sPP+7Kbp3dZtpIffk6v0kABAACWaMxC/IW6shcoWTGfn1INwWtLWrP4+a6fJOtIemzps9dU7r5s00xRsUzVbhw94n3jP7PJg4IAcJb8Kv8jUm+5PznltwEAACzHPVLLnK9oNQeye28eqX8Cl/T6ddk9RT9xfV5i+VL36XMypbUC8MQRRQDgDSfFV3euNN4jUOLyoLg8cRHqQ56L3QEAgAu6JsUHzpZTP1gGB1JuSdLAk7RSHQf64SqtFgDewoXoQEDzGQIlHkzeA/5tXOwOAABsWxEnXS8ykN3d7NRP2JPWdQe+gw9sB0rWPCorAKgSQWTAbVc+TSIRKHGeqcyTQH/eitzPCQwAAMK3kfT6OcVwxli03G3foX6wSCal2j3LX2PflzuKTD/ct/w1SFUIAGEZUwSIwLXmEARKAqxUz2wlP/zMgBsAANj2gDz85+rI7qkS6icgJpValzmWl9+3a+6VAQD4b0QRIHDH1zlNIhEo8WQ2kQyUJBMliQL96yQHzzmuCAAAbCMP/xkcOVUiSQPuK/F8WlP2r4HKk+U2eXOaZKYfjmX/VMkKz0kACOWlnIwCXmfkjz8pSdrX7Rbv8mTwYFC8s32aHDzvSHoQ6E+c5rxtU9sAgACdiKPtV7HhyJikK4nTrm/rmLGazQXuFZXBktSTC7hxdjtad+B75J6WXy5p1/J3WOc5iQBxUgrz8vZURrGzPUwOnk9kf/MCsAxHxc728Lr/nwiUMDl1xb3k4Hm32Nnm6B8AIDTdotXMKYaLJb1+V/YXACVpK+n1s6LV7FIrM5PpVvM06fVd2LizbsbFGbXiXR/PHenj3p0mmemH46TX33egHLeSXr9TtJpsdEMoWCgOR9VBL983bgwceTcDizbXXIHUW74Mine2XUl5sExdahoAgGi1VZ6+cUGHPPxnl4vs31UiSbsmsAZPJL1+JndOx+eeF2fuSD+8Z+oVWIaxhecU733/3zWrIuh1XYynEKJHxc72XO8RAiVMTl2ynhw8z6lmAADiY1IpuZLKZYWJ47l15MoO8l0Waf1g6umxMxNnT0+TzPTDsdzZQPeYfoglsdFPCZT4z0Yden2ixKQmOqLpICAT3WBTDIESvx5gMZwqeZAcPK9R2wAARDjWaTVHkh468nXWTaopvF5HXblz8odFWseZHdquBEluNHF2jEsb6OiHCAWBEv+lFj4zhPTxOU0HAWmb9fO5EChhUOyiLtUMAECczH0uruxsu5f0+im18pbMoe/CIq2jTJBk6NBXys2pqBCeky6d7pJIV4jFt3Ebz44GJe89G2M2798r5lTJIc0HATgqdra7N/k/QKDEvwfYqcKP9m4kB8+5GBAAgHg15M7GkIHJeY3peLRcwHJpQk2wxDEmwDiUO7nij4tWsxNYP+zKnaDyiqQh/RALVvU4YC3p9WsUu7fvnVVJGxaexaNAijBT+JuyEf4748bjEAIlPg6Kd7Y7ciflwbLkpOACACDSsU65Wzpz5OusSBpQK29pOzahJljiCFMPL+TWhbrtgPuhK1boh1gwGwvQtF9/2TgRFMy6nNmUzakq+Kwz7wXuswiU+CsP/PdxiSoAABErWs2BpEeOfJ2NpNfntOvr9TN2cDz6OOn1GT9a5NjF7VOPLKXxqaIfunSv02w/zOgNWAACJXC97kYhFaBJwbVHU4KHjoud7YXMSwiU+PsA68qdo9bLQgouAADilks6duS7fEcO/jfGo2UqI9fGo7tJr98lXVr1kl6/I/eCJCcKf4OZi9kGHpv2ANyEjUXotaTXZ1e9f++fuiyk3VJggRLp5VojwRL4ZCEpt6YIlPi/eBD8byQFFwAAcZpJweVKiicW4N/mUv1M7aq8L4ExZAWSXn816fUHku652D5DucD9Cs9J19xLen3ueMJNDC19Lps1/dOOrI0u973yKljCnSXwQV7sbC8saEmgxO+H11BuXaS5DOQFBwAg5vFOmVomd+TrrKvcvY1X9TOWm5t31iWNzKXiWBKzi3coacvBrxdsyq0z+uFQ7qQqnLWlMmjJabzlWg20XY9lZ6F2g3eHd++hXYvP3jDfK2WwJJU7J7uBsxyZe7wXhkCJ/2LY7bCeHDzPqWoAAOJkUjy5sjlkl7QcZ9aPiylhVyS9SHp9xpFLYO6hGKoMSrkmhpRbb/bDttxc0FpXGSzhubmcftiW9Dzgnzi09LldWpc3bG1gCT6AUOxsj4qd7brKu7A4XQLXTCQtfGxBoMT/B9dY7l3gtwwPkoPn7EQCACBemdxKwVWjSl7TcHgS/SDp9UnFtSAm1VZX5X0kK662x9BTbnnwnJy1Iuk59wctvB8OJH0X+E+1lV1ijSC7F/2gLTt3k9hsm5Uzl2TXRMAEjo15ip3thY/1CJSEwcUL/Jahmxw8Z2ANAECEzKKnKzuSSQ16dv1kDn/FDZWpuNjVfgMmHc1IltKcXNF9k7Ivxn44ktsZB3ZFSrxF9MOGpLHcTHm3aEOLn/2AtHFO94Oa7J4cjGocWOxsnxY723mxs70qaVvSvuJYh4SbHhU720vpg0lRFBRvCC+Jg+eZyl1dMXSGtvnNNZVRbWAeo2VEnx0eSOaSHlQ8WU9oZnC0P1Q9+HlYtJo5Je/v84y6vVb9dOTmpd6zjlRe8j2mxq5cr6sqF6Rcr9vDotVsUF/9rtwOZknlnSp5pCd/btIPu3IgQFLlOD/p9Ueyl+LvWFJKO3WyP9hsFydFq1mjFiSzmXkaUKwr0DuTLKorjqD4tZ7LJiXccto0gZKQHlCDoewdO6x6crtBjWMBJip3KQ0kDYqdRrADYAIlwGv9gUAJk+NF+iCWC6OvUT8+jEknkjr0zSvVZ6byBPuK41+VBc1XdbYqd++PmXUiqV20mpzQu7xO2yqDlU70w4oDJW3ZTTFGANa9/tCV3WDwI3MvFLC8dn4waKgMjq9QGq+N32vLXLsj9VZYYnlQEyTBoqyojM4/lvTP5GAwSA4GKcUCAM5z6T4Mcu6fXT+up2NYUZlWZUw6rnMm6L1+aoJeLt9FMjtxzgiSlGZS4bmeS35N5d0l3CF0cT8cqQwUxLpYZjuQtmUW5uFGn+jK/ok52gOW284PBpmk5yJI8tYcY9kbnAmUhDQg3mmMVB5hBjDnIFjSi+RgMEwOBkzWAMDVMU+ZMilz5OusMWF+q36m98n4cOHn7EJtSu2Ved/NQtQL+bNBKYv1XpIL+uFI7tzrdJkNSX+Zy94Zg7/qhwPTD9cjb8tjSYeWv8YuwRIn+kUu+0GSE943WGo7L4MkjymJt9wvdhrDZX8IgZLw5OJCJWAxk7WDAcdpAcBRJlXLviNfZ8ukBsGr+nH9Uumz3v0vYg6YzARI/pL791u8PnEmddN5/XAoac+jr7yryAMmb/RD8tK/0nWhfRIssdo3unLjjroOtYGltfODQVcESc6yX+w0Kul7BEpCGwyXR5CYqAOL8Z1Jx0VKFQBwU1vubBDJk16/TpXMjEtbza6k+5597dmASRbFpLxM7TOQfwGScuLcarJodXk/3Pfsa88GTOr0Q5hgqAvv+92k1x+RcrPSvrFq+oYL/WIiThFjWW29DJLw/H/bcbHTqGxMTqAkxEHETmOg8sJzADe3JWlIsAQAHBzzvErx5IIVJs9n1lFH/i3SSmXA5LG5wyQPbVHMLDxl5u6DF/Jz5/ph0Wpm9LIr9cPM0364K+nPUAOXgfTDKrkSFF2XxP1W1fSRVNLIob4x4C4sLKWtEyQ5z4mktMoPJFASbC9TpkQTJRJ//PF34791JRomPxIsAQDXmBRPrpxaWE96fXa3v11HmfxcpJXKO0weSPpn0usPfF+sTXr9hklfMlaZ2sHXuw+O5c49RT71w2NPv/40cHma9Pod30+ZJL1+PZB+WLWu3Ln7akXl/VZdTpcspY+smvHUC/MedkVO7WDh7f3HQVeJdll3e+tvomT5l7e/VR9FUdAqw+1sudzI4QiE4rD4suHlziFz8V2lz4Oi1UxoMnC0P1Q9+HlYtJpMrJZfr0O5c/H0NncmnFlHA4WxY3oiaSBpKA92l5pdz9O/lQDK/1hSyq7eudrCqmm3ISzMn5h+2PXhYmWzM37aD9d8L3xb43wbc5orvhM6kjo8lxbyjGqbP9feV/ucYsRC23u5EXfg0PzFNe8XXzYqf78TKAm/443EDhVgkR4WXzZyDwedlU8qCJTA4f5AoCTcyfXYkYn1RFKNBZMz62gY4Nj0yPyuobk823Y511WmKUgVXiofgiT0w/OeuUOZAGbRao4d64epwghSWh/nO/auP6sddlUGTMbCdeq1pvKUYNvhvvIe9YqFtfkySBLimHhR9oovG10rdUOgJPjOV5f0JyUBLJSVyPYNB5+5CJQA0/5AoCTcum1Ieu7I1zkqWs2UWnmrjmKYGB6pzKk+kjReZvDELMbWJdVULsaGvCuRIAn98Kompv8Np31xmQucZpF32hdT858rIbchm+P8pNdvS/rOg+dVV+Wpw7FwXr+ZnrJy/d31qGg129QaFtL2CZJcxlqQRCJQEksn7Ei6R0kAC3NUfNlIPRuI5iJQAkz7A4GSsOvXpXHPfXOZOV6voxgniNOF21Pzn5r575dZVbnwKpUBkenfWkTlR5CEfriodnQ60/dm++NV1E1/XJ355ygXumyP85Nef+zRM3A2cDc2fzGa9pnUs3cYp4SxuGcXQZLL7BdfNjKbX+Bd6iAKuQLJhQo4YiP5cZAWXzaGFAUAuKVoNdsmF7wLE5Dvkl5/6EP+/Irr6NTUUVfhpYY6z4pe7ZjdohVcC0GS5fbDoeJZsJn+TvLB+y9TedG3T89/2p2fct4/WKCuCJKcx3qQRJLeoR4iGAR/2ThVmesRwAIHTBQBADgrU7kD0AUDs3Mbs+PTVvO0aDUbkvYpDVyAIMmS+6HK3d1HlAY8a7tDSYeUBJbsiJPBWJTkx0FXbJY5jxNBEolASTwDiS8bAwYSwEJtJD8OahQDADg47ilPcLiySWRNEpPs8+sqE8ESnDNpFkGSKvrgqblPiX4I32RyZ1MEwjMxbQy4MRMk2aUkzh7vuRIkkQiUMJAAcBMNigAA3FS0ml25s0lkN+n1mWyfX1eZpD1KAq9NmlvNjCBJ5f3wESUBj9rsqVjIxvLkRas5phhwUwRJLnTsUpBEIlAS10CiTMHFQAJYHAIlAOC2TNKJI9+lk/T6NarknHFqGdjaE5t6IO2ZRXtU3w/bImgJv9rsQJyGwuKRcgsLQZDkQscq0386hUBJbAOJMgUXOWiBxeBCPgBwedzj1m7TFUkDauXC+uqaCdMJpRGliaQPTDuA3X74vghawh9tlQtuwKLeRWyIxI0lPw7aIkhynvIOunJDv1MIlMQpY+ALLOzlV6MUAMBd5sLXh458nfWk18+plQvraySpLjb2xDlhLvsr3OmHLD7Dh/Y63RTBGgcWgbuxcGPJj4NM0neUxAVjPgeDJBKBkjgHEl82xpKYpAOLUaMIAMDxsU+rmcudhfcHSa+fUisX1tf0cmnuS4jD9NL2EUXhVD8cF61mXaQ1gh/tdSROAeDm9ngX4aZMkOQxJXGmQzkcJJEIlMQ7kPiy0RE79QAAQDwyubPbdJD0+qtUySXj1fK+hG2xSzhUE5n7SNi963Q/zMT9QfCjrQ7FHTuY3yNSP+Kmkh8HdUncb3O2/eLLRsPlIIlEoCTyHpxkSpKJkkT88cff3H91HiYA4MUCylhu3VfCZPxq9TZQeXqTDT5hmabaoh/40Q+7IhUX/GmrDykJXNO+2ZwBzC356bCuJBkqSVZYJ3vrb7/4spH5UI8ESmIeRNzdGosUXMBNsQMSAPxZQBnInTQyW0mvz6T8avU2TcV1X+xqD8HDotWsk97Eu344TcXFIjRcb6u5SBmHq9s3J+eAuSU/Ha6q3AS1Qmmc0cfubnnTxwiUxD6IuLtFCi7gZsYUAQB4pS13dkXnSa/PycSrjltbzY646N1nJ5I+MIuY8Lcf5pLeF6dL4HY7zUSwBJcjSIIbM0GSoaR1SuMtj3wKkkgESlDKxO48AAAQAXMXgisD9hVJXe4ruVb9jTld4qWHRatZM3cIwP9+OJo5XUI/hKvtNBPBEpyPIAkWpSOCJGfZK+5ueXd6nkAJpim4eEEA8yFtBAD4NvYpU/7cd+TrrItUqPPU4fR0ySGl4bQjSe9xiiTYfpiLU15wu41mDr3v4Q6CJFiI5KfDXNIuJfGWveLuVtfHL06gBOUA4u7WgIkmcG0nxd0t7igBAB/HPuVCuytjn3tJr9+gVq5dh+Oi1WxI+kCkAXJujCRpr2g106LVHFMcwffDVNK2qXfAxff9njj9hNIeQRIsQvLTYSbpASXxmomkD3wNkkgESvC6jMEDcC1DigAAGPssCCm45lS0mkOTBoiFMDcmyA8l1YtWs0txRNUPB0WrWRPpuOBm++xKSmmb0b+ftnk3YRGSnw7rKlNu4fU+lhZ3t4Y+/wgCJXg1eCh3xmeUBHBlQ4oAADwe+5T3lbhykmNF0oBauVF9diXVxEKtLY8k1YpWMzd9C3H2w5x+CEfb5si0TVLFxedYZQCfcRZubOby9hVK440+dnfL+9T0BErw+uChTMH1iJIALjXx+TghAMCMfcrLpV0Z+2wkvX5OrdyoPk9ZqK3cvsp7SNoESEA/hAdtMzXtEnF4VLSaddJAYoGGIkgy60jlSZIg+hiBEpwlF/llgct0KQIACEPRarblzh0XD5Jev06t3LhOWahdronKAON7RauZsQAF+qG1fvhQ5f0wuF7bzCW9L+63CtmJpA/MGA9YiOSnw66kdUripf3i7lYa0t29BErw9qChbOBcKApcjHyUABCWhtxZxBtwX8mCxrWvL9Tuic1AN3WicmG2Zk6QjCkSXLMf3qcfLqQf7pl+mEviJNd87XJk7rciiBeeRypTbQ0pCiyKubx9l5J46X5xdysL7Ue9S73izEHD3a1RtZ9CWwAAIABJREFU8tPhQ0kPKA3gLQ9DOVYIADBjn1ZznPT6bUmPHfg6aypPLrJxZXH1e2rKtJv0+qmktqQtSubKjiR1uQQXC+iHHUmdpNdvqLwfk354dYemH3LPwmLbZZ70+l3TNmmP/r+r2uY+GmBhzOXtjykJSWVguR1qKnpOlOD8AcPdrVxcdAa86UScJgGAMMc+5SLwoSNfZyvp9TNqZSn1PCxazYak98Tu9svGPNP0WilBEiy4Hw5m+uFD+uGF/fCh6YcNgiRLa49j0x4/EGsgvvaTD8y7iiAJFmrm8naUQZI05Pt6OVGCy2SSRuKiImCqEVL+RQDAuWOfNQe+Syfp9YekN1oOU67T3e11U/cNR+re5gR4IGnAgiwq7Ie5pNz0w7bphzHPP09MP+yy6Ft5exxKSs3Jw1zSBqXitGNJHQL5WLKBWBOd9rc09PUwAiW4eKBwd2ts8vA9pzQA7RV3t5isAEDIY59W89SkhPnTga+zYiZnXO6+/HofqVygbUcYNDlRuVOS4Ahc6IeZJJnncBpZPyQ44k5bHKoMmEyDd9xL4JZDlQGSYeg/NPnpsGaehTUzHuQOu2qtisvbJWlfZbqt4DcNJ0VRUN24ysO5I+keJYGIPSrubrW97cO9fq6K7xwqWs2EZgNH+0PVg5+H5rJV8Nyc/x3UarapFSvtoKZyoTZVWLnrj/QqOMKiLFzvh3XTB0PqhxPTB6f9cHyD8kklvWCcv9Q2uKoyiJeJRVNbpimwB6GftDX3YWTilCtcmYd4vBZ27f5HoARXe1D/Ms3Jx6AAMXpY3L2dez64z0WgBJj2BwIluGpbGcqdtBsfxLBz0oM2kapcrJ0u3PqQimGiMp3cUNKQdgT6obV+ODR/o0X2QwIllbe/msoF7EysjyzbsV6lgww+qJ/89EsqUr7BLXvF3dvdmH4wqbdwtYHQ3dunyU+/ZGZgR24+xGIiqR3biwEA8FKuihefLjBIev1a0WpyT5bNMXG5uDmc/nezYFaf+avJ7sLZiaSx+Y4jlQuyY2oO9MNKHZt+OKIfBtn+xnp1v9WqXp12qosF7kX0nen7axDLmMdsTO4qrJOr8NtEUlbcvR1dSlYCJbj6gODu7VHy0y9tSY8pDUTgyLwYmNRcb2A7nRAOKQ7wDNHY/HUpDk/HPq3mMOn1j+TGwseKaUsNasapNjLt569NJM3C7ezfql7dNTNvvutjSdNFo+nnnpr37ikptEA/PLcfTvP6L7ofjsw/Tz9/HHBAZDIzzidg/6rtnZp2N5hpd/WZdjf7DuD0SenkjffXtO9EOX9MfvqlYcZ3bEiGS8/7tLh7O8pxJam3MM+DvCsuM0PYA7ecUyQAAAAAAGAZzEbk7ygJOCTqIInEiRLMp63yaCmXSiEkh5IGBEgAAAAAAMCysAEZDjqR1Ig5SCJxogTzP9Tr4r4S+Gt6ZH4okyaquHubI+QAAAAAAGBpzP2/pLSHS45VniSJfl2MQAl4uM9nv7h7O6MVAAAAAAAA4DLJT7+kkl5QEnAIQZLZPkqgBDdqQM+iPi64X3xBsAQAAAAAAADnS579sqry8noys8AVZZDkC4IkU+9QBLihtulYMdpNnv2S0QQAAAAAAABwgY4IksAdBEnOwIkS3LwRPYv+vpK94gsuAAcAAAAAAMDrzLrZn5QEHEGQ5BycKMGNFV/cHqk8WRKrx8mzXxq0BAAAAAAAALwhpwjgCIIkF+BECRbXmJ790pF0L9KfPzEPmhEtAQAAAAAAAMmzX2qS/qIk4ADWLi/BiRIsTPHF7ZjvK1mRNDTHKQEAAAAAAAAykMAFBEmugEAJFixJpWQiJYrwb0VKhsmzX2u0AwAAAAAAgNglWaRrZPy58zeREoIkV0CgBAtVfLF5KimNuAhWJA2SZ7+u0hoAAAAAAADiZNaG1ikJWNYovtgkSHIFBEqwcKbz3Y+4CNYlDQmWAAAAAAAARIv07LBtr/hic0gxXA2BEixF8cVmR9J+xEVAsAQAAAAAACBeBEpg0/3ii80uxXB1BEqwTDFf7i6ZYAnNAAAAAAAAIDpsnoUt+2YTO66BQAmWxtxX0pA0ibgY1pNnv3ZpDQAAAAAAAACW7LD4YjOjGK6PQAmWqvhic6y4L3eXpF2CJQAAAAAAAACW6FhSRjHMh0AJls5c7r4XeTEQLAEAAAAAAACwDBNJDZPhB3MgUIJKmMuD9iMvBoIlAAAAAAAAABYtNZl9MCcCJaiMyY93FHkxECwBAAAAAAAI35giQEX2TEYf3MC7FAEqlaghaSRpLeJS2E1+/lXFHS5WAgAAAAAACFJCoASVeFTc2exSDAvoskVRUAqottH9/Gtd0lDSSuRFsU+wBAAAAAAAIEzJz7+y8IplOirubKYUw2KQeguVK+5sjiRllIR2k59/pRwAAAAAAADCdEgRYEkmkhoUw+IQKIEVxZ3NgaT7lIQeEywBAAAAAAAI0oAiwJKkxZ3NU4phcUi9BbsN8Od/dCXtUhLaK+7c6lIMAAAAAAAAYUh+/seqpH9SEliw+8WdWx2KYbE4UQKriju3MklHlIQeJz//I6MYAAAAAAAAwlDcuXUqaZ+SwALtEyRZDgIlcEFD0jHFQLAEAAAAAAAgMDlFgAU5ltSmGJaDQAmsM9H1hspLiGJHsAQAAAAAACAQxZ1bY0kPKQksQGbWUbEEBErg0ksjFcESqQyWEB0GAAAAAAAIQHHnVi6yqeBm7hd3bo0ohuUhUAKXXhojcXxs6jtz0T0AAAAAAAD8l4kNwpjPIfeSLB+BEjiluHOrK+k+JSFJ2iVYAgAAAAAA4D+zQTijJHBNJ7SbahAogYsvjo6kfUpCEsESAAAAAACAIBR3bg0k7VESuAbuJakIgRK4+uLIJB1SEpIIlgAAAAAAAATBZFPZFmm4cLmHxZ1bQ4qhGgRK4LJMXHQ1RbAEAAAAAAAgAOZkSSrWvXC+4+LOrZxiqA6BErj80jjlpfEagiUAAAAAAAABKO7cGhV3btUlPRSnS/C2jCKoVlIUBaUAtxvpz/+oSxpKWqE0JJX3t7TJTwgAAAAAAOC/5Od/rErKVS6Os/6F++YOZ1TZDwmUwJMXBsGS1x1LSgmWAAAAAAAAhMEETBrmLxXrYDE6Ku7cSikGC/2PQAm8aazPf2tIek5JvFQGS7Y/J1gCAAAAAAAQmOT5b3VJNUl1SkNSGUBaD/j3TSTVi+3Px1S1hf5GoASevSAySY8piZcIlgAAAAAAACBoyfPfapL+Cvxn3i+2PyflliVc5g6vFNufdyXtURIvrUsampcFAAAAAAAAEKI88N93RJDELgIl8I4JluxTEi+tSxqZ45gAAAAAAABAMMwG4d3Af2ZGTdtFoAReKrY/z0SwZNaKypMlBEsAAAAAAAAQkm7gv+8h95LYxx0l8LsBP/+tq/AjytcxkdQotj8fUhQAAAAAAADwWfL8t1TSi4B/4nGx/Tkbnx3AiRL4rq3yQnOUViS9MJfeAwAAAAAAAD7LA/99GVXsBk6UwP9G/Py3VUlDlXd14JVHkk4pBsxpKGlUbH9OGwIAAAAAAJWL4DTJo2L78zY17Uh7I1CCQB6cBEuA5ThWmQt0QL5MAAAAAABQleT5b0NJG4H+vBNJdTaoOtTeCJQgoIfnqqSRpDVKA1iKQ0kd7sABAAAAAADLFMFpku1i+/MBNe1QmyNQgsAeonWVJ0tWKA1gafYltdn1AAAAAAAAliHw0yRHxfbnKbXsFi5zR1CK7c9HklJJE0oDWJpdSWOzuwMAAAAAAGBhkue/NRRukETiAncnEShBcAiWAJVYkfQief4bL3cAAAAAALBInYB/20PugHUTqbcQbuN+/jtpuIBq7Bfbn2UUAwAAAAAAuInk+e+ZpMeB/jxzgftnpDJ3ECdKEKxi+zNOlgDV2DUDGQAAAAAAgJvIAv5tbYIk7iJQgqCZYEmbkgCW7nHy/PcGxQAAAAAAAOaRPP89VdAXuH82oJbdRaAEwSu2P+tK2qMkgKXrJs9/X6UYAAAAAADAHPKAf1tG9bqNQAmiQLAEqMSKpC7FAAAAAAAAriPw0ySPiu3PxtSy2wiUIBoES4BKbJnBDQAAAAAAwFXlgf6uicI+KRMMAiWICsESgMENAAAAAABwR+CnSXIucPekHRZFQSkgvoY/+D2T9JiSAJbmvaLBsVIAAAAAAHCxZPD7UGEGSk6Kxmc1atgPnChBlIoGJ0uAJWtTBAAAAAAA4CLJ4Pe6wj1NwtqIRwiUIFoES4ClalAEAAAAAADgEqEGE46KxmcDqtcfBEoQNYIlwNKsJYPfaxQDAAAAAAA4i1k32A305+XUsF8IlCB6BEuApalTBAAAAAAA4Bx5oL/rsGh8NqR6/UKgBBDBEmBJCJQAAAAAAIC3JIPfVxXuaRLuJvEQgRLAIFgCLFyNIgAAAAAAAGcINZiwXzQ+G1O9/iFQAswgWAIsVI0iAAAAAAAAs8xpklADJTk17CcCJcAbCJYAAAAAAAAAS9OQtBLg73rIaRJ/ESgBzkCwBAAAAAAAAFiKPMDfNJHUoWr9RaAEOIcJlrxvHnQArm9MEQAAAAAAgKlk8HtD0lqAP61TND47pYb9RaAEuEDR+GwkKRXBEmAeY4oAAAAAAADMCPFuEk6TBIBACXAJgiXA3EYUAQAAAAAAkKRk8Htd0kaAP43TJAEgUAJcAcESYC4ESgAAAAAAwBSnSeAsAiXAFREsAa7lpGh8NqYYAAAAAABAMvh9VdJugD+N0ySBeJciAK6uaHw2MscEB5LWKRHgXAOKAAAAAABQNbNuU5dUozScUg/wN3GaJCAESoBrKhqfjZPD31NJQxEsAc7TpQgAAAAAAMuWHP6+Kqlh/raUUCaoTKfY4jRJMM+SoigoBWD+F/FQBEuANx0VW5+lFAMAAAAAYFnMukzb/K1QIqjYRFKNQEk4uKMEmJN5EKaSjikN4DU5RQAAAAAAWJbk8Pe2pLGkByJIAjs4TRLac4UTJcBCXtBdhXkhFXBdh8XWZw2KAQAAAACwaOYUyUDSBqUBizhNEiDuKAEWoNj6LEsO/59EsAQMFDKKAQAAAACwaMnh/6tLyVCcIIF9g2LrU4IkgSH1FrAgxdanmaR9SgIRyxgoAAAAAAAWrQySaCiCJHBDThGEh0AJsEAmWLJHSSBC94utTwcUAwAAAABgkQiSwDH7xdanY4ohwGcNd5QAS3mJZ5IeUxKIaJCQUQwAAAAAZubFqfnH6X/WJa2af77u/RLHkk7N30jlJd7jYuvTISUdfDtaNfVNkASueI9ASaDPGwIlwNJe5g1JXV7mCNz9YuvTDsUAAAAARDv3TVUGQWrmP+sVz4NPVAZPRpKGBE+Ca19DcXE73HFYbH3aoBgCfd4QKAGW+kLneChCNVF5JwnptgAAAIC45ripXgVE1h39qsdmLj5UGTzhLkU/21smsnXALR8QjA34mUOgBKhkIDmQtEZpIBD7ktpMNgAAAIDg57OpysBIKr939R+beTknTvxpe6sqTwmxlgJXHBVbn6YUQ8DPHQIlQGUv+KHc3W0DXGlQIClnYgEAAAAEO3ednhhpKNx0RxOZoImkARvAnG2LbUnfURJwyDZZNQJ/7hAoASp7ya+awRi5NeGT6ZH1DpeVAQAAAEHOU1OVgZGG4kwbfahXp02Y87jTNsfiNAnccVJsfVqjGAJ/7hAoASp/2Xcl7VIS13ZEESzd2PxJZXBkxO4qAAAAILg5aU1lUCSVtEWJvOZYUkecNLHdRlNJLygJOGSv2Pq0SzEE/uwhUAJYeel3JN2jJK7lSFKDwSoAAAAAXHsOWlMZHMlESuirmp40IWhSfXtlzQQumUiq8RyI4NlDoASw9uLPJD2mJK79cmpwRwYAAAAAXDrnrIngyKLsqwyYcD9BNW13LNJuwR0Pi61Pc4ohgmcPgRLA6su/IamrOPPA8pICAAAAgMXOMVdVBkYyERxZhhOVp0y4w3G5bfiflAQc8h79PZLnD4ESwPYg4L/rKu+DIFhyPceSGsXWJ7ysAAAAAMQ+r8xUnh7hzpHqHEnqFlufdCmKhbblVNxPAnfsF1ufZBRDJM8fAiWAEwOBmspdKez4uZ6JpKzY+oTjzwAAAABim0fWJbVVBkjYeGd3XjqQlLORbyHtOhWBErjjg2LrkyHFEMnzh0AJ4MxgYNUMrjYojWt7ZAalXKwFAAAAIPR5Y0NlgISNdu7hlMnN23gu6QElAQccF1uf1CmGiJ4/BEoA5wYFXUm7lMT1X2AqT5eMKAoAAAAAgc0Tp6dHmCv6YSKpozJoMqY4rtXWcxEogRv2CHpG9vwhUAI4OTBoS/qOkphrMJoXW590KAoAAAAAns8LOT0ShkNJHdL3XLnd5yJQAvsmxdYnqxRDZM8fAiWAs4ODTOUOFHLNzjcQzUjFBQAAAMDDuWBNZXAkYz4YlBOVG/u6FMWF7T8Vd5TAvkfF1idtiiGy5w+BEsDpAUJd0pDB8dyD0IxdOwAAAAA8mf+lKgMkW5RG0EjLdXk/IFAC296jf0b4/CFQAjjeSX/575rKS945aj2fh8XtT3KKAQAAAICD871peq1c0holEp19SZ3iNndtvtEn/klJwKLD4vYnDYohwucPgRLAm4FCV+wsmtexpEZxm90AAAAAAJyZ47XNHxkEcCQpL26TEcH0j7EIHMKe7eL2JwOKIcJnD4ESwKvBQkfSPUpiLhMz8OSidwAAAAC25nQ1ladHdikNnOHEzFu7kfeTLn0EtvpgcfuTGsUQ6bOHQAng3YAhk/SYkphbedH7bS56BwAAAFDZPC4V94/g6k40vcckwrlr8st/NyQ9pxnAAtK3x/yuJlACeDlo4JL3m5moTMU1pCgAAAAALHHulqo8QbJBaWDOuWtH5T0mp5H1nbFIv4XqvUfa9ojf2QRKAG8HDTVxyftNPVJ5rJnTJQAAAAAWOV/LVJ4gYb6GRZiY+X8eyyJu8st/55IeUPWoEJe4x/7uJlAC+Dxw+B8ueb+5E0mN4vbHI4oCAAAAwA3naJnKEyTshMey7EvKi9sfjwPvS6uSxiKTBqqzXdz+mEvcY36HEygBghhA5GKnxU09LG5/nFMMAAAAAOaYk2UiQIJqBR8wSX75n7ak76hqVOCkuP1xjWKI/F1OoAQIamDeEbstboJgCQAAAIDrzsNyESCBPUcqAybDQPvYUNzxg+VjPQgESoDABhB1lXlLGaTP773QjzADAAAAuPHcKxMBErglyIBJ8sv/1CSNxKZQLBdrQSBQAgQ4YF9VGSxhx8Wcg8vi9scpxQAAAADgjPlWJgIkcHxOq8ACJmZT6J9ULZbVZ1gHgkSgBAh5AN+RdI+SmMv94vbHHYoBAAAAgJlfNVSmOiZAAl8EFTAxQcrHVCuWYK+4/XGXYgCBEiDswXwm7i2Zx0RSnWOXAAAAQPRzqlTlCRJO7MNXwQRMTH8ciDUOLM5EUq24/fEpRQECJUDonfxX7i2ZdzBZbHL0EgAAAIh0HpWKAAkCm+NKyotNvwMmZo2jK2mdKsUC7BebH2cUAyQCJUAsg3zuLZnPdrH58YBiAAAAAKKZO9VUBkh2KQ0EKpSASS7pAdWJG/rA976ABT5XCJQAUQ36ubfkesojmJscwQQAAAACnyutqkxbTIAEsfA+YEJgEzd0Umx+XKMY8PKZQqAEiG4CkIl7S67jsNj8uEExAAAAAEHOj1Yltc0fcyTEKISAyaqkzPyRkgtX9bDY/DinGPDyWUKgBIhyMkBOz+vhKCYAAAAQ3rwoE5vIgKlQUnKtSqpLSs2/qktapXoXIrR07u8Vmx+PqVa8fH4QKAGinRSsqgyWbFEalzqRVCcFFwAAABDEXCg1c6E1SgN4SxABEyz8uZlJehzQTzouNj+uU7N4rZ0TKAFif9n90Zb0HSVxqUfF5kdtigEAAADwdu5TUxkg2aA0gEuZgMlHQ4oCya9/jBVWcHmv2PyoS83itXZOoARA8usfqaSBOHJ+mQ8YJAIAAADezXe4qB2Y377KgMmYooj2GZoprNMkkvR/i82PyBqC19s6gRIAM5OHobi35CInxeZHNYoBAAAA8Gaek4uL2oFFIGAS5zN0VdJIYZ0mOSw2P2pQu3jTOxQBAEkqNj86LTY/qkt6RGmca81MtAAAAAA4LPn1j9SkinkggiTAIuxK+iv59Y+uSWOHOLQV3n1OA6oVZ44dOFEC4E3v/PpHQ2XuXiYUZ3v/P5sfjSgGAAAAwLm5TE3cQwJUYV9S/h9OmIT+PB0prLWhiaTaf0i7hbPaPEUA4E3/2fxoIKku6ZjSOFOXIgAAAADc8c6vf6y+U57+/ksESYAq7Er6651f/8jfKdMzITwdhbeBdkCQBOeOJSgCAGcxu0JSlbtE8Lr1d379o00xAAAAAPaZE/EjlWm2AFTrgaQxAZMgn6tbAf400m7hXKTeAnCVF2SmMHcS3MREUp1jxgAAAIC1eUpNpNkCXJsndyR12LXv9bN1VdJY4a0BTf6z+RHBPJzf9ikCAJf5z+ZHXZWnS0jF9cqKSMEFAAAAVI40W4DT8+TpCROyMPirqzA3ynKaBBePLygCAFdhLi9PRSquWRsM/gAAAIDqkGYL8MKKpO/e+fWPsclQAX+esW2FmXJLYrMrLkHqLQDX9i6puGZNJNX+5lgxAAAAsMw5SE2k2QJ8dSIp/7vMVgF3n7N1SX+G2gb/3vyoRi3jIpwoAXBtf5OKaxYpuAAAAIAlerdMszUSQRLAV2uSHr/76x/jdzlh4upzdlVhp6bqUsu4DCdKANz0ZdqRdI+S0Pbfmx+R7xIAAABY3FwjVXmSfZ3SCMqxpFOVwa+LTuankmoqF9kRliOVJ0yGFIUzz9uhwg5Gv/f35kdjahoXIVACYBEv1IbCvezrqkjBBQAAACxmfrEqKRcbskJwJGmoMigy/ru8+3Ke9pBKqpv/5GRRWO2DgIn9Z25X0m7AP/Hw782PGtQ0LkOgBMCiXqw1lcc0Y97t9ejvzY+43B0AAACYf16RqtyExSkC/0xUBkWGkobzBEWu0U4aKoMmDdpKEAiY2HvmtiV9F/jPJAMIroRACYBFv2RzSQ8iLoIPGNwBAAAA155HrKoMkGxRGl45VhkYGdiaB5kLqFNJmUjT5rsjSRkpkirrO5mkx4H/TC5xx5URKAGwjJdtqvJ0SYypuE4k1UnBBQAAAFx5/kAqX78cmfnewLUFbZPpoCGCJr7bV3nCZExRLK2vZAo/SCJJ9//e/KhDjeMqCJQAWIr/84//jXlH2MN/3/owpxUAAAAAl84bMsWxWOe7Q5ngyL9vfXjqSduqSWqL9Fw+25eU//vWh2OKgufuHCaSar48s2AfgRIAy34Bt1VexBjb7rD3/33rwxEtAAAAADh3rpCJIInLjlVufhv4vlD9f/7xv6nKUyYNcXLJRwRMeO7O49G/b33IPbK4MgIlAKp4EdfNADumo8/H/771YZ3aBwAAAM6cI2QiSOKiE5UnRzohLkqbzAcNlSdNSM3lHwImN2v/XUm7Ef3k92gruA4CJQCqfCl3JN2L6CeTggsAAAB4e16QiSCJa/ZVnhwZRNQO63qVmotTJv61VwImV2/rq5I6iitIsv/vWx9m1D6ug0AJgKpf0Kniueh9IqnO4A0AAAB4OR/IRJDEFScqF0+7Mefw55SJ1wiYXN6+ayrXYGJr25wmwbURKAFgayDaVRwXvR/9+9aHKbUOAAAA5gEESRyxrzI4MqQo3mqjqcq7THYpDe/aNAGTt9tzQ+XaS2wnpjhNgrkQKAFg86UdSyqu+/++9WGHGgcAAEDEY/9MBElsOlG5YNplMflK7bWmMmDSFmm5fELARC83p+aKK/X5LE6TYC4ESgBY9V//+N+Rwj8COpFU+1fEx9kBAAAQ9Zg/E0ESW44kdf9168MuRXGj9ptLWqM0vLEvKf9XhIvl/1WeiupG3F73/8VpEsyJQAkA2y/xuqQ/I/iph/+69WGDGgcAAEBk4/1MBEls2FcZIBlSFAtry6nKgMkGpeFVP4giYPJfnCKRzD2x/+I0CeZEoASACy/0WFJwbf/r1ocDahwAAACRjPMzESSp0kTlTvIOC4VLbdc1lQvS3GPij33TL0YBP2s7Ik3cw3/d+jCnuWNeBEoAuPBSX5U0UvhHQ0nBBQAAgFjG+KmkF5REJab3j3SYa1TaxmviHhPfHKk8YTIMpA1mIi3cFOstuDECJQCYSFXr0b9ufdimxgEAwP9n725f7Lruu+F/Ffr2QnMHCoULbp1QKNxQ4iM7iW1Z0pyRZFuW7wuPuSiE0qKjlia0NHj0F/joL/CIhJQ0pD5DQgiU4BGhrhPH1hlbVuLEsWZCIGAImTEEAoFcGgL3W90v9h5rLOthHs7MnL3X5wPCjvPQ7rX22Xut/V1r/aDFY/tuklF8PN5ra6k++g41xYHe71OpwpJ+fLBuipVUweKwofdcPwKSO13wLGS3BCXAJL3sSzmCa8ZZwQAAtHRMLyTZe0upPvI61nfy7v9+fMBukvVUR1YNJ/24ujqQ66cK5dxfdzwT/7//98meZmC3BCXApL34VwuYVK2lKjBmSygAAG0azwtJ9larjg1q+W+hn+qD9kNaozGupApMFifsXppNMhs1ce7naFvrz7C/BCXApA0oZ5O8UsClKjIGAECbxvFCkr0jIGnu76KXaofJtNZojPUki/Wf0X4vcKwXkPZShSOznqkP5HhzxkZQAkziYHIxyXMFXKpVDwAAtGH83kmyHB/0xk1A0p7fSC8Ckyb/Dkf1M2553Ed0bQpGuvVf3SNbp4A7YyUoASbO//ivH5dyBNfKn54909XjAAA0fOw+iiOGxmkpyeBPz54ZaYrW/V56qY7kek5rNNZ66tAkyc1U3y5W63/v5p+ePbN8R593k0zV/3IqVSCy8dduBMy78fyfnj2jVhNjIygBJnUAOZfkpQIu9eINWpjVAAAgAElEQVSfnj0zr8cBAGjgmF1IMl4CknJ+O51UO0zUnYCdufKnZ8/MagbGSVACTPLgcZT2bztdT9L907NnVvU4AAANGqsLScZHQFLu76gTgQls13qSzp+ePePILcbqU5oAmGD9+gXYZoeTDHU1AABNISQZm6UkM3969kxPSFKmPz17ZvVPz57pJ/lMkgUtAlvSF5KwFwQlwEQPGpOUcCzV9P/4rx/39TgAAA0xjJBkN1YiIOGOua/ABLbksrok7BVHbwET73/814+XC5iI2ToKAEATxubDOCZop9ZSHbE11BQ84HfWiSO54E4rSXq+m7BX7CgBmqBfwDU6ggsAgIkmJNmx9SQX/vTsmY6QhK2wwwTu+hx15BZ7yo4SoBGm/uvHgyQvFnCpz9+0jRQAgMkbjw8jJNmu9VRHCc/f9HGP3f3+OrHDhLJduCloZo8JSoCmDAynkiwnOdLyS11L0jWRAgBggsbi/SQva4ltuZxkYFzPmH+LnQhMKM/CzWqHFewpQQnQpEFhL8nVEiZVN589M6fHAQCYgDF4P0KS7biSZO7ms2dWNQV7+LvsRGBCGVZuPnumqxnYD4ISoGkDwvkkLxRwqTM3nz0z0uMAABzg2LsfIclWraQKSIzh2c/faCdVrctprUELrSfp2JnHfhGUAE0bCE4lWU1V/LzVEy2rJgAAOMBxdy9l7OberbVUR2wNNQUH/HsdRGBCe6wn6d189syypmC/CEqAJg4CZ5O8UsClXrr57JmBHgcAYJ/H290ko7R/cdJuKNTOJP52exGY0A6Kt7PvBCVAUweAi0meK+BSj1pBAQDAPo6zhSQPpg4Jk/477kVgQnNdvPnsmXnNwH4TlACN9OlXizmCa+mP58709DgAAPswxu4kWY6Q5F5Wksz98Zw6JDTmN92LwIRmWfjjuTN9zcBBEJQATR70zSV5qYBLvfjHc1ZTAACwp2PrqVQ7SR7SGp+wnmRgTE6Df9/9VIHJEa3BBBOScKAEJUDTB3yjtH91zHqS7h/P2doPAMCejKmFJPe2kGoXiToktOG33o/AhMl05Y/nzsxqBg7SpzQB0HD9VEFCmx1OVSgSAADGSkhyTytJZv547kxfSEJb/PHcmeEfz53pJLmQZE2LMEHP275m4KAJSoCmD/RWU0aI8NynX/2x1RUAAIzbfIQkm62nOvq2qxYJLZ5HbwQmF9P+hYdMtpUkPYE0k0BQArRhkDeoX65tN6xX/LVKXTQUAID9H4cNk5zXEh+5kqSjFgkFzaXnk3SSXIrAhP0nJGGiCEqAtugXcI1tPYKr/+lXfzz69Ks/7rmNAYCD9OlXfzz16Vd/PNfGxSl3udb5CEk2rKU6ZmvWBztK88dzZ27Wiw87EZiwf5YiJGHCCEqAtgzulutBXdudb2GgsLGK6arABAA4KJ9+9cdzSVbrseXNll9rP8kLej1JcjmJY7Ywp/5kYAJ7ZeGP584ISZg4h27duqUVgLZM+KaSLCc50vJLXasnczdb1HezSV7Z9I9Wksz/8dyZoTsbANjjcUg/yaAeQ17547kzswVc78t6PklywXgT7vms6NTPRjvPGKeFP54709cMTCJBCdC2wVwvydUCLvVSvdqnTX03SjJ9xz9eSzIwgQUA9mjcONg0/mjdYpSCx8pbISSBrT03OhGYMB4X1YBikglKgNb581ffmE8ZRwkc/cO508st6rdukhv3+LfXUx3RNf+Hc6dtzwUAdjvmmM8nF2i0amx1j+sepap7V7oLfzh3eqgZYFvPkE4EJnju0mKCEqCNA7ipVOdLt30SuPKHc6e7Leu74QMG3huByfAP506vutsBgG2MMzq590e+i384d3q+xdcuJLnNxzrY/fPkbmEz3GsO32vzQgTaQ1ACtHXwdmfNi7Zq1aR+myHXQpKBwAQAeMD4opP7r4Je+sO5070WX38pdfy24vIfzp2e0wwwlmdLLx8/vhDutJJk1pydphCUAG0euC0mea7ll7mepNumgcefv/rGIMmL2/ivLKUKTEbuegBg05hiKslc/efwfcZSnbYe7Vm3wSjJQ+6ILPzh3Om+ZoCxP2d6EZhwl2dukjlHZ9MkghKgzQO2TqrVc20/YqB1qyD//NU3VrP9VY8rqWqYDN39AFD0GHArAcmGmTYvtvjzV99YjpAkEZLAfjxvehGYUC1AmDMvp4kEJUDbB2tzSV4q4FKf/8O504stG2Rf3eF/fS3JMAq/A0Bp477tBCRJcukP504PWtwewyi6nAhJ4CDmcoMITEq0kqSvHglNJSgBWu8vXn1jVMAgbT1J5/ctCgbG0G/rSRaTDH7vTFQAaPNYb7sBSZKs/P7c6W6L22QYIUmSLPxeSAIH9RyaTVX0XX2kMlyu594WK9JYghKghAFaJ8lvC7jUK78/d3pWv929bZLM/14dEwBo0xhvJwFJUtd4a+tCir8oZ0d1UWNjaPAzqZ9qh4nApJ3WkvTNtWkDQQlQyuBskO0VCG+qmTYNUP7i1Tfmk7wwxv/JlVSBydCvAgAaOz7YaUCy4fnft+jI0jvapp/kZXdJVpL0rGyGiXs+DSIwaRO7SGgVQQlQ0sCshGKWa6lWSN5sSZ9NJVnNzj6C3M96qm3gQ8dyAUCjxgW7CUiS5PLvz52ea2n7zCZ5xZ0iJIEJf1b1IzBpOrtIaCVBCVDSgKyXnRcIb5JWfQDYh5WRC6kCE4M8AJjMscA4ApKkxXVJ/uLVN7pJRhn/4pKmEZJAs+Z5/Sj63jSXUp3S4DlL6whKgNIGY+M+ymlSHf39udPLLeq3/dgN5FguAJis9/+4ApKk2k3aa9P4aFM7CUluj+WEJNC8Z1gv1Q4TgclkW0q1i2RVU9BWghKgxAn3ctq/zbdVKyb3eTfQepJhqtDEIBAA9v+930kVjvQzvo//F9q4GKIe247S/uNltzJ+6xq7QePnfIMITCbNSpI5JzBQAkEJUJz/+d9v9lLGEVyXfvfMqUGL+m0xyXP7/H/2SpLh7545teiXAwB7/q7vpPpIdn7M/9MLv3vmVL+F7SUkqawn6f3umVPLfkXQmvl6fw/eBWzPWpLB7545NdQUlEJQApQ6+DqIj+4HMWns/u6ZU6st6bNOkt8e4CBxPlVo4jgHABjvO76bagfJXnwUW6vHQzdb2G4ljGe3Mt4VkkA73w2d7E14zoPfmwISiiQoAUoddE0lWU37z3Je+t0zp3ot6rdBkhcP+P+NhVSBycgvCQB29V7vZe+PWTnaxo/o//O/3xzGx0MhCZQzdx9XvSruTUBC8QQlQMkDrn6Slwu41AttGezUg+RJqTGzlurjzqJdJgCw7THYXPb+yKiLv3vm1HwL22+Qg184YowLHNT7Y5D21xzdT0upFgJ6nlI8QQlQ+kBrlPYXi1tP0mnLx/wJDLjWkywmmbeiEQDu+f6eSnXm/Fz25wPXld89c2q2he04aeOggyIkgbLfKb2oY7JbTkqAOwhKgNIHWJ1UOxTavoW3VR8LJjjgWklVy8QuEwC4PdaaS/VBa7/GW62sS/I///vN2SSvuKuEJMDH3jH9+o9dJlt7P6q9CfcgKAEMrv77zbkkLxVwqTNtWS1SryC6OsH/L27sMrFCB4BSx1d7WaC9mDHPHe05ivP5W3mcGjC2OWI/yaxn5V3npk5AgAcQlAAk+b//+83l7P052QdtLUn3w5asHPm/m1PE9KNVOx9atQNA+8dU/VQfqg5q5+elD585NWhZm3ZSxg7oB1n48JlTfb8yYAvPzdlUgUmpoclGOLL44TOnFt0RsDWCEoBqINVNcqOAS7384TOn5lrSZ1NJVhs28L2SKjAxWAWgTeOo/a4/ci9LHz5zqtfCth2l/Qt6HkRIAuz0OdpLFZj0Wv4sXanfF8MP7RyBHRGUANweQA2SvFjApR5ty8CpwX22lnr784fPnFr16wOgoe/hTpJBJmPF7nqSTtt2bxay6/lBhCTAuJ6pU/U7q5vmBycrqXYbjlLtHHF6AeySoATg44Om5bS/CNzKh8+c6rao31Yb3mdLSYYGtwA06N3bz8Eer3U3z7dtx2aDjhnd03Frkp4xErCH3wA2QpNu/WcS55ZrqU5TGKUORzwXYfwEJQAfHyj1MtlFwselNed31+fPvtKCS/moAPyHCsADMHnv26lUR2v1M3kfkVpztOim9h5GSCIkAQ7yu0Cn/tNNshGo7PXuyaX6r6MkN1OFIsueg7A/BCUAZU5M11MVdl9tSZ+NMlmrWnfL0VwATMo7tpcqHJnUsVGrdsrWbd5P8nLht56QBJjUZ3QnVYCS3A5TtmsjBEmSm2qKwGQQlAB8YuBztYlFwndi6cNnZnot6bNukhst/lAwn2Txw2dmfCwAYL/GQrOp6o9M8vGW9cKPmdUWtX0/QpL1JL0Pn5nx4RAA2DeCEoC7T1LbcpzTg1z48JmZYUv6bD7JCy3vrytJhh8+M7PoVwrAHrxLu6mO15qE4uxb8Xyb3ol1+4/S/sU69yMkAQAOhKAE4N6T1cUkzxUwGe20YadCQTuBNvqtrmcyM/JrBWCX78/ZVAHJQw36f33hw2dm+i3qh06qY1iEJEISAOAACEoA7qHzWjET1iurZ2dmW9Jnc0leKuxW3ahnMlw968MCAFt+Z/ZS1R5pyu6RzVaS9FbPtuNIys5rV6dS7SR5qPDb8sLq2XbsdAYAmkdQAnD/iWspH95nVs+2Y2dC57Wrq5ns89T30lrqeiarZ9tzXjsAY3tHTqUKR+Ya/K5cTxWSLLeoX5YjJBGSAAAHSlAC8ODJ6yjJdMsvcy1Jtw0rM+sVslfduVlJMozQBMBY5rWrs6kCkjYcKXpx9ezMfIv6ZpjkfOG3aKv6FABoJkEJwIMnsN0kNwq41MurZ2fmWtJnJdSX2Y6N0GTYlmNKANjS+KVf/2nLMaKtOS607qP5JC8UfqsurJ5tT60ZAKC5BCUAW5vIDpK8WMClHm3DURZ1fZnfunPv6kqqmiaLQhOA1o1XNo7W6qd9Rzm1Zvdr3Vf9JC8XfssKSQCAiSEoAdj6hHY17a99sbJ6dqbbkv4apIxwazeEJgDteOf1UxVlb/NuyqNtqUvimNAkydLq2ZmeXy8AMCkEJQAmtXdqxTnR9ara1bTnuJG9diXJKGqaADRpXNJPFZC0/V3XmhoW9ZFoo8LHJytJehZpAACTRFACsA1/WcZZ0utJur9pwcfyv3SsxU59VAj+N0ITgEl6r23UHZlN+3e5blj6TUt2HvylRRwbY4zeb4QkAMCEEZQAmODeTZs+Siynfee076eN0GT0m5YceQLQsPdYJ1UwMpdywpEN60k6bfioXo8hR4WPSdZThSTGEwDAxBGUAGx/ojub5JUCLvX535ydWWxBf/XiHPBxWUtV02ToIwfAnr67OqnCkX7K/rA+85uzM6OW9Oli2l1D5kGEJADARBOUAOxosjsqYbJbr+LstWAV52iY5Lw7d+z3x2KSxd+c7S1qDoBdv6s6EY5sduk3Z3uDlvStcUgy85uzvZHbGgCYVIISgJ1NeDtJltP+I7gWfnO219dfbMGV3A5OnDsOsPX3k3Dkk1Z+c7bXbUkf96Ne2oXfnO0N3dYAwCQTlADsfOI7l+SlAi61FSsA//K10SDJi+7cfbGS26GJIzYAPv4+6kQ4cj/rSbq/OdtbbUFfl3Jc6/0ISQCARhCUAOxuAjxKMt3yy1xL9cHiZsP7airVrpIj7tx9v39GqYKTkd0mQKHjhW6qcGQ2wpEHeb4NRzrWfT5K2btZW7EzGQAog6AEYBf+qpoE3yjgUi990IJzwv/Kys5JcCV1cPJBC1YLA9znndPL7XBESL81lz8425trQd9PJVlN4SHJB0ISAKBBBCUAu58MD1LGkU5HP2jBMUp/VcYuoKZYS73TJMnoA7tNgGa/X6aS9HI7HFEXa3tWPmhBXZL6Phil7J1DrehLAKAsf6YJAHbng7O9Qb1Toe0T4vlUH4Cabi5l7AJqgiNJXqj/5K9eGy2lDk4+UNsEaIC/ul1vpJfkOS2yY+upara0wTCFhyQtGS8CAIWxowRgDOrjNa4WcKkXPzjbm29Bfw2TnHfnTrT1fHy3yaomASbonb8Rjqg3Mh4XPmhBwW/ji6wn6dghCgA0kaAEYHyT4/nUK+NbPgHuNv2jtbPDG2kldWgSx3QB+/vO6OT2kVo9746xa0Uti796bdRP8nLB/biepGdHKADQVIISgPFNkEv5+H7lg7O92Rb01yBl1JZpq5XcPqZrpDmAMb8jerFrZD+spVqAcbMF98vVwvvyqJAEAGgyQQnAeCfKs0leKeBSn//gbG+xBf21mqpOBs23lNu7TUaaA9jm+6CbKhTpRa2R/dT4j+v1vTNK2TuNWnF0GgBQNkEJwPgnzItp/0eWVpxBbQVoqwlOgPs9/zu5HYz0IjQ/CI2ve1bvJl4u/P4RkgAArSAoARj/pLlTT5rbvrLw8gdne3Mt6K9Rkml3but9FJwkWVbjBIp7N0/l43VGBCMHq/HHeNb31ChlH83WivoyAACJoARgrybPc0leKuBSZ5q+Wr8Otn7rri3O5uLwyx+c7a1qEmjVe7iTZPNxWuqMTI621CUZJjlfcD8KSQCAVhGUAOyR/+eHS6O0f6fCyq+fnu62oK/mk7zgri3aWurQJMno109PK0gLzXqOd+IoraaY+fXT06OG32+DJC8W3IcrSXq/fnra7kwAoDUEJQB7N4nuJrlRwKVe+vXT04OG99VUktWUXYiVT9o4rmsjPPFBCCbrHdur/3QjGDFm2L97r5/k5YL7UEgCALSSoARgbyfTg5Sx4vAzv356erXhfdVP2R8+eLC11KFJkuWmr4iGBj2fN+qLbIQj6ko109Kvn57uNfxeLGURzL2spwpJ7LoEAFpnIoOSejK0cZRLN8nUpn9787+32Wr9517/bLXpH/GAxk6qV9P+la6N//hR99VynGPP9qykCk+WIzyBcT2Le/V4fyMYsVuk+daTdJq8C6E+3m055e4+FZIAAK12oEFJPdjcPAmayv58oFqq/zra9NebBn3AHj3rekmuFnCpF3799PRQX4HwBLbx3O1umg90Y7dIWz3/66enFxt8n07Vc8aH9CEAQDvta1Byx1nCvUzmapyVVLtQNn/gWHWrALt8/pVQLLzxq0XrvlpM8py7lj0cX4zq8YXz3SntXdhL0olQpDSXf/309JyxQaM1fjEMAMCD7HlQ8tdVONJPMptmb5tfyu3wZPQr4QmwvWdhKcXCr/zq6enZhvdVJ8lv3bXsg/VNY4vlJKu/svuE9rzzNhZIdeq/d6xhmVZ+9fR0t+H3cwmLXe7n8q8aHnQBAGzFngQl9eRoLlVA0tYzhTc+boxSBScjtxPwgGfjbJJXCrjUmaY/E//6h0uDJC+6azkga6mC1VH9VwEKk/y87KUKQzq5XXD9sJahni91m7zA7K9/uNRP8nLBfbjwq6en+25lAKAEYw1K6lW4gyTnC23PldTBSarwxJEawJ3PyRKOblhL9WHkZoP7aSpVGK6AMJP221rNpgAlybLxBvv0XOzl44FIxzOSB3j+Vw2uafHX6patJOl5xwAApRhLUCIgue/gcpRk0UpQYNPzcjntX2176VdPTw8a3lf9lL2KlGZZyqbwJMlNYw928NzrJplKFYRsHJ9lhwg70eidCPVvYVTwvS8kAQCKs6ugpF5xOx8ByVZdye3dJsuaA8r01z9cmkvyUgGXerTpz7q//uHSKIoN03xLSW6mDlByux7KqqYp8h3Uy+0QZOOvndgdwvg0+iN7Pccdpdy6Out1/5mvAgBF2XFQUn/oG8QKs51aqwfgi3FMFxSnkA/wS796errX8H7qpexjNyhjPLKaTwYpsSOlkc+sOwOQpNodkgh92R+N/8he+CIJIQkAUKxtByX1BGzRZGvsNnabLFrhCe1XH+lwo4BLvfirp6fnG95Xw9g5SdlWUgUoH4UouR2q3PRBbd+eRb36bzv1n+R2CNKJHSF473vn796FXz09PXQbAwAl2lZQ8tkfvdVLFZLYRbK3Vup2XvzlUyd9fICW+uyP3hokebHll7mepPvLp06uNrifLBCArf/eN8YtN+/x90my/MunTha9k/azP3qrk9thR3I78Ehu7wjZ+Hvjbpriyi+fOjnb4N9lP2XXJrv4y6dOzruNAYBSbTkoMXA8MGupj+f65VMnFzUHtEf9AX457V8F3OgPJ5v6q5NkLslsrNyGcdrYsbLhzmBlw/Id/7lP/PvjDmDuEmjc6V7/fu+Ofz2VcusdUM6cpdvUELReEFjyUZsLv3zqZN9tDACUbEtByWd/9NZ8khc014Fbz+2dJkITaIGCJubPt+m59dkfvTWbpJ/kOXcxAORoU3fCf/ZHb3VTHYFc6u6tVixoAQDYrQcGJZ/90VvDOJt9Yge1uR2cKAYPDVXIc7bRK03v03dTqQKTfqwWB6BMjT2yqX6Pjwp+h68k6ZlLAgA8ICgp5Pz8thCaQEPVk/TVtH8l4+VfPnVyrsX92M3t0ERNAQBKsPTLp072GvzuHqXcGmTrSTrmjgAAlXsGJWqSNJrQBJo3UZ9N8koBl9rYozl20J/9OJoLgPZq9If2wo+XXk+1k2TZbQwAULlrUHLUOa1t8lFockNoAhPtaBmrGlduPHWyW1CfTqUq/j4XR3MB0C4zN546OWro+7mfshcFPn9DzUsAgI/5RFBy1DmtbSY0gcmetHeSLKf9IfWlG0+dHBTav/36zxF3PADe5QfyPu4muVFw31248dTJoVsYAODj7haUDKIuSQmuJBlaSQQTN3kv4Rm8nqR746mTqwX3s3omADRVY3eHFrQo5V4Wbjx1su8WBgD4pI8FJfXA8beapSjrub3LRGgCkzGJX077d/Ut3Whw8dcx9/dsquO5ZiM0AWDy5w6NXOzg5IRcufHUyVm3MADA3d0ZlIzS/vPxuf/EZ5hqp4nCfnBwE/lSjoRwPvYn+76fKjBRBB4A7+7xvmMXC36/riTpOX4ZAODePgpKjv7orV6Sq5qE2lpuhyarmgP2fTI/n+SFll/mepKOSftd+3+jCLzQBIBJsJJkvqm1LQo/Xtp4CwBgCzYHJcMk5zUJ95gYDVOFJgbYsD8T+qlUZ2i3vej35RtPnZzT4w+8F2aTzKXc40IA2H+t2G1e79Z8ueA+7DktAADgwQ7dunVr4yPM/9EcbMGVVPVMhpoC9nxiP5vklQIudebGUydHenxL90QnVWjSj9AEgL0b7w/bcDxmfZzpKOXWAHPMKQDAFm0EJXNJXtIcbMNGEfh5K5RgTyf4JZynvXLjqZNdvb3te6MToQkAY3oXJ5lPtSCqFTvIC9qdey8XLG4DANi6jaBkOT6ysHPqmcDeTvJX0/6VkJduPHVyoMd3fJ90IjQBwBh+87ux5Dnuwo2nTvbd4gAAW3fokR8uOXaLcVqqJ1yL76lnAmPxuTJ2/a0n6b4nbB3H/aIQPAD3spZqV/jwvRbvCv9c2fU3l9576mTPrQ4AsD2HHvnhUiln4LO/1jdNwkaaA3Y94R8lmTaxZ5v3jdAEgI1x+eJ7BdSr+FzZxdtXkvQsWAMA2L5Dj/xwaZDkRU3BHvpoW7/V4rDjSX83yY0CLvX59xQd3at7aCpJL7eDk8NaBaC1igpHNr3rekmuFtznducCAOzQoUd+uFRCoWAmh6O5YOeT/0HaH2yvJ+l4PuzL/TSb28HJES0C0Ip3aHHhyKb3WidV8fZSFwIcbfNxagAAe+3QIz9cGqX9x7kwuRM5R3PB9j4CrKb9H7Uvv/fUyTm9va/3VTe3d5ooBg/QvDH1Ysk7Mutdk6OC32EX3nvq5NDPAQBg5w498sOlm3H8BgdrLcl8PcFb1Rxw3w8BvZRxpMSMEPXA7rFObu80seMUYPIIRz757hqm3OLtl9576uTAXQAAsDuHHvnh0i3NwAS5Uk/6hpoCiv4YsPbeUyc7ensi7reNnSa9OKIL4KAIR+79nhqk3JqbC+89dbLvLgAA2L1DX/iRoISJnQwOkwzffdJZu7DZo6+/NZVkNe3fDXjp3SetkJywe6+bKjDpxxFdAHttLfVRtcbD93wvzSZ5pdDLX0nSe/dJdd0AAMZBUEJTJgHDepJoIgBlfRj4zLtPOpJvQu/BqdzeaTIbx3gCjHPcOxKOPPA91E1Vl6TE9896ko65EQDA+AhKaJqFJIvvPunIAXj09bdGSaZbfplL7z55sqe3G3E/bhSE7xVwXwKM05VUO0dGFgds+Z1TcvH29VQ7SQRpAABjdOgLP3pLUEITbRxFMP/ukydMKCn0I8HbnSTLaf9KygvvPnliqMcbdW9O5fZOk17UNgG4cxw7SrL47pMnLP7Z2XtmlHJD+efdNwAA43foCz8qYkUy7baU6oiCxXefPGH7OUV59PW3B2l/AdP6eAm/7wbfp53cDk16cUwXUOZ4td41csJOgN29U+aTvFDo5V9898kT8+4CAIDxE5TQJuv5qODliZHmoBSPvv72ctp/9MTCu0+e6Ovt1tyzjukC2u6jXSOpwhFh/3jeH/0kLxd6+cZCAAB76NAXfvTWIO1fjUyZk9NhqtBkVXPQZo++/nYvydUCLnVGCNrqe3gjOHlIiwANdSVVOGLXyN68K0ou3r7y7pMnuu4CAIC9c+jxH701m+QVTUGLfXQ013Wr+WipY2UcQ7Fy3UeCEu7ljfomG38EJ8DEvpdSByPX1YzYj3fDcsqsebWWpGseAwCwtw49/qO3ppL8H01BAT46muu6Vem0TEEfEC5df/LEQI8Xd2/3IjgBDt7GcVqjWICz3++CUco8qnE9Se+6HUoAAHvu0K1bt3KsjPPt4c6J7jBVaLKqOWiDY6+/XcIOwfVUqyr9bsu9zzeCk27UOAH2frw4yu1dI949B/PcL7l4+/N2KwEA7I+NoGQuyUuag0KtJJmPlYG0wLHX315M8lzLLxiNXo8AACAASURBVHPp+pMnenqbTfd9L7d3nHRT5vn1wO4JRibv+d5PucXbL15/8sS8uwAAYH9sBCWO34LKlVS7TKzcopGOvf52J9URXG3/UGyFJff7HWzsNtn46xGtAtyFYGTyn+WjlBl+L1x/8kTfXQAAsH8O3bp1a2MgOkxyXpNAEvVMaLBCdgmuJ+nYBcYWfxOO6wKSTcXXkywLRib+uV1q8faV60+e6LoLAAD21+agpJvkhiaBT1jL7dBEIUUaoZDaU5evP3liTm+zw9/I5l0n3ajVBm2znupD+yjVbpGRJmnUM3qUMkPttVS12CwEAQDYZx8FJYUPSGE7k5eNeiarmoNJVVD4PePjF2P6zUzl9o6TjfDEkV3QHCu5HYwsW9zS6OdxqcXb15P03LsAAAfjzqCkk+S3mgW2PCEfRmjChCrkQ4PjKdjL35DwBCbTWj4eiow0SWueu/2UW7z9wvUnTwzdBQAAB+NjQUk9OC11BQ/shtCEiVPQ+d6Xrj95YqDH2cff1ebwpBPHdsFe2ghFNgcjjiVq5/O15OLtxjIAAAfsE0HJ8R9fK7lwHozDR6HJtTPHVzUHB+n4j6/NJnml5Ze5nqTr98YB/9Z6uR2cdOMoU9jpGGo1m0KRa2eOC0XKeIaWPAdduHbmeN9dAABwsD4RlGya7F/VPDCWCf9iqtDEecMciOM/vraY5LmWX+aVa2eOz+ptJuy318ntI7vsPoHbNgqtb/xZvXbm+EizFP28HKXMgHklSU8gCABw8O4alNSD1UGSFzURjM1aqtBkdO3M8UXNwX6pV2mupv1HWTzvt0VDfpObd54IUGi7pfodtJpql8iqHYDc8UwsuXi7HbEAABPinkFJPWgdxdERsFcTo8VUHwwWrSJjrx3/8bW5JC+1/DLXUn1w8Huiqb/TzQFKp/5jHEZTCETYyXOvn3KLtx+14xwAYHI8KChRrwT2hyO62HOFhN+Xr505Pqe3adlvd6OAfCe3g5SpCFE4mPHKzdRBSP1HHRF2+mwruXj7hWtnjg/dBQAAk+O+QYkBLByI9fo3t3FM16omYRzq5/mNAi7VCk1K+l3fGaJs/mOhCzuxlCoMWd70V7tD2Itn1yhlHjtoUQcAwAR6YFCSJNOKu8NBWqsnkqMkoyUfKtiF6TLqT60snTne1duQTFcB6VQ+GaJMRV2UUi3Vfx1t/uuSYurs77NpMclzJf7+ls4c77kDAAAmz5aCknow20+558fCJBGcsGPT5RypeHHpzPF5PQ5beiZsBIt3hiqJ472aNj7YGBOM6r+u1n9uLtlpx+Q8dwZp/6KNu1lJ0ltyVB0AwETaclBSD2r7EZbApNk4qms5VXAy0iQ84FneS/t3Ca4n6fgYAWN7bmwOVDq5HaRshCsb/9xxX+O1OfxY3fT3G8di2QlC054ls0leKXS83hNYAgBMrm0FJfXgth9hCUy6lVQfUZaTLPuIwl2e5SUceXFl6czxWb0NB/KM2RysJB8PVO72r9t8FNjSHf96NbcDj0/8a+9sWvxc6NRj0xJrXz6/dOb4orsAAGBybTsoqQe5/QhLxm3jw/ZsoZMH9t5aNoUnqY7hGGmWMtUfMVcLeN7MuM+h0c+qOwOVze4MY/bD/Z4nq47DhPuOO0YpszaS40ABABpgR0FJPdjtR1gybiupgpJu/VehCfth41iPjWM8RvU/X3ZsUbvc5YNjP8n5Au7vrnsZAA50DDIsYMxxNwtLZ4733QEAAJNvx0FJPeDtR1gybutJ5pbOHB/WbbwRmAhNOCgrqc9Bz8dX0o7u+M+1Llh5wErmrejt4L+z3f+bXc+GB7q0dOb4QDMAwIGMp+aSvFToGFrxdgCAhthVUJIkp954px9hyV64kqT/5uknbm5qa6EJbbO0y/9+JwoHszWfefP0E6uaAQD2z6k33ukmuVHgpa8n6Rp7AAA0x66DknoAPJtkGB/vx20tVVgyukebC00AtmbpzdNP9DQDAOyPU2+8U0o9tLs5+ubpJ5bdBQAAzTGWoKQeCHdTHcXjo/34XX7z9BNz95mAbAQmz2kqgHu68ObpJ4aaAQD23qk33llOmcXbjTcAABpobEFJPRjuJlmMo3D2wkqq3SXL92n/jdCkn2RakwF8zHqSzuYjDQGA8Tv1xjvzSV4o8NIX3jz9RN8dAADQPGMNSupB8VSqnSUPad6xW08yePP0E/Nb6IdObocm+gKgcs8degDAWOaD/ZRZw3LlzdNPdN0BAADNNPagpB4cT6XaWWJXw974RKH3B/RHN1VgMhu7fQBm7lb7CQDY9Tyw1OOY7VoFAGi4PQlKNjz5xjvDJOc1854Nxmdf3+bHvicVgQdYed2KTwAY99yv5JMFjr6ueDsAQKN9ai//x1+vzme9pJn3xOEkV5+szv/dTp8s1v3SSXIh1e4UgJI89OQb7zh+CwDGa5hCi7cLSQAAmm9Pd5RseLLcc2r3y0qS/k4H6E+qZwKUZz1J9/XTT6xqCgDY9XxvLslLBV765dfVPgMAaIV9CUrqwXOp59Xul/Ukg9e3UOh9C/3Ur//oK6DNrrx++olZzQAAu5o/9JJcLfDSl14//UTPHQAA0A77FpTUg+huyt2SvV+upNpdcnMM/bWxy+Q5zQq01MzrCrsDwE7nC1NJVlPeAqu1VDtTFW8HAGiJfQ1KNg2mRxGW7KX1VGHJ4hj7rB9HcwHt40MHAOx8nrBc4PxgPUlPXRIAgHbZ96CkHlBPJZlPcl4X7KnLqY7jujnGvnM0F9A2l14//cRAMwDAtuYF80leKPDSL7x++omhOwAAoF0OJCi5Pbi+Xurgej/Vhd6PLe9B/zmaC2iLz7x++tiqZgCALc0D+kleLvDSL79++pji7QAALXSgQUnhg+z9dvH108fm96gPO0lmk8wlOaKpgQZaev30sZ5mAIAHjv27qY5SLm13ubECAECLHXhQUg+2Z1MVeXeU0x4P7pPMvn762M097MtuqsBkVn8CDfP866ePLWoGALjnWL/UepN1TbNjapoBALTURAQlSXK23JVJ+209Sf+1Pf4YeLaaRG0czTWt2YGGPB87r/kIAgD3GuMvprxjd9eT9F7bg6OMAQCYHBMTlNQD71JXKB2Ey0kG+/FB8Gx1NFe//uNoLmCin42vOXscAO42pp9L8lKBl37htdPHhu4AAIB2m6igpB6AT6U6hkuB8L23kmp3yfI+9u9sqp0m5zU/MKGOWjUKAB8bw3eT3Cjw0i2gAAAoxMQFJZsG48P4mL5fLr12+thgn/t342iuudhBBEyWpdcUawWAzeP21ZR3RPLKa6ePdd0BAABlmNigpB6Ul7q9+yAspdpdsnoA/dzN7aO51KgBJsHF104fm9cMAJTu7BvXRymv5qC6ZQAAhZnooKQemPeTvKyr9m1CsOeF3h/Q3xsF4B29Bhz089AHEgCKdvaN64MkLxZ46Y7hBAAozMQHJfUAvZdkMXYb7JeFJHMH+YGw3uLfr/84mgs4kGfha6eP9TUDACWqFzC9UuClK94OAFCgRgQlSXLuzevdJKMIS/bLWpLZV08d/Eqquu/7cTQXsP9mXj11bKQZACjJuTevd5IsFzj2Xnj1lEUSAAAlakxQUg/Yu0mGscNgP1169dT+Fnp/wD3gaC5gP628ekohVwDKcu7N68sFzrm88wEACtaooKQetE+l2lkiLNnHSUOq3SWrE3YfzCaZcy8Ae+ziq6cUdgegDOfevD5Mcr6wy15P0p2k+Q4AAPurcUFJNXj/ibDkYCYPc6+eenw4gfdDJ1VgMpvkiK4C9uD513n11OMKuwPQaufe/Ek/ycsFXvrMq6ceH7kDAADK1cigZNNAfpjyVjsdtCtJ+pP6wfDcmz/ppTqaazbqmQBjfPa9eurxWc0AQFude/MnpdaEvPjqqcftHAUAKFyjg5J6QD+MsGS/raUKS0YTfm+oZwKMk9WmALRSwTv2LYQAACBJ8qmmX8Crpx7vJ1nQlfvqSJKr5978yWDC743FeuLzfyW5kGo3DMBODTUBAC01nwKLt6daVAUAAM3fUbLhf735k7kkL+nSg5lg/ODU48sNuU+m6glRP2rcANt36QenHh9oBgDa4n+VWZdkPUmvKXMYAAD2XmuCkoIH+ZMy0Rj8oGFn+/6vqgj8xvFcQhNgq8+77g9OPb6qKQBowfypm+RGgZf+/A9OPb7oDgAAYEOrgpJ6sN+PsOSgXEm1u+RmA++bToQmwBafdT9wnjkAzZ83TSVZTnWsbkku/+DU43PuAAAANmtdUFIP+vupztk9rIv33XqS2R80uOCx0ATYgpkfKOwOQLPnTItJnivsspd+cOrxnt4HAOBOrQxK6oF/N8kowpKDcjnVcVw3G34fdVKFJr0CJ5LAva394NTjHc0AQEPHuCXWd1xLdXzmTXcAAAB3am1QUk8AhCUHq1GF3rdwP02lCk02ghP3FZRNYXcAmjpHKrEuyVHF2wEAuJdWByWbJgKj+Kh9kC42rdD7Fu+tzaHJEd0MxVHYHYCmjV9LrUty4QenHh+6AwAAuJfWByX1hEBYcvCWUtUuudnie6wXdU2gNAq7A9CkMWuJdUkWfnDq8b7eBwDgfooISupJgbDk4K2nOoprseX32sYRXb3YbQIlUNgdgCaMUUusS7KSpKcuCQAAD1JMUFJPDqZShSVW/B+shSRzpUxYNu026UVBeGgjhd0BaMJ4tLS6JI7IBABgy4oKSpJk9qqwZEKsJZldnCmvoOLs1Z/0cjs4mXYrQCtcWpxR2B2AiZ3/lFiX5PnFmXbvZAcAYHyKC0o2TRZGEZZMguI/LgpOoBXWk3QXZ6xaBWDixpol1iWxgAEAgG0pMiipJwzCksmxlKTvA+NH9+bmo7q6UeMEmuLK4ozC7gBM1LiyxLokS4szj/f0PgAA21FsUFJPHIQlk2M9ydzizONDTfGJ+7STKjDZCFC6SQ5rGZhIM4szCrsDMBFjyFLrknQWZxRvBwBge4oOSuoJhLBkslxJtbvE5Ob+920nHw9POrHzBCbB2uKMwu4ATMQcp8S6JEdLrIEIAMDuFR+UbJpIjCIsmRRrqcKSkabY9n28EZ50Nv293Sewvy4uzjw+rxkAOMBxYYl1Sbx/AQDYMUFJ7X9f/amwZPJc+v7MYwPNMJb7u5dkI0jpbPpjFwrjtLSF/8xqfR+2+Vm7nqTz/ZnH7IwD4CDGfSXWJVn4/sxjfb0PAMBOCUo+PqkQlkyelST97888Zgv93t33nVShyUaQklTHeaX+Z34PB/8b2M4H99EW/3M3Ux3JsRXL4/zoX99zv215v/lgA8BBjOu69VigpB3FK0l6FigAALAbgpJPTi6EJZNnPcng+zOP2Up/8L+P3l3+cW+L//XNQcx+GU3Y/+aySfxH99IgyYstv8yZ7888NtLbAJjH7Ok8oWdRFQAAuyUoMclokiupdpf40AzteM62vcjsyvdnHuvqbQD26d06THK+sMu+8P2Zx4Z6HwCA3fqUJvik+kN8L9U2bibHc0lW//fVn85qCmjFc3au5Zf50P+++tO+3gZgr9Xvm9JCkgUhCQAA42JHyf0nHHaWTK7LqY7jsrsEmv2cHSWZbvElKuwOwF6/SzupdmkWVZfErk0AAMbJjpL7sLNkor2QZFQXrASaq58qTGirw0kGuhmAPbSYskKS9SR2mAMAMFZ2lGzB39hZMuku/efMYwPNAI19xg7S/sLun/nPmcdW9TYAY36HzqdaQFSS5/9z5rFFvQ8AwDgJSrY+CRGWTLalJH0fIqGxz9jVtLuw+9J/zjzW09MAjPHd2UtytbDLvvyfM4/N6X0AAMbN0Vtb9J+O4Zp000mW/0ahd2iqftufUZ5PAIxLvYirtF0VS0ISAAD2iqBkG4QlE+9wklf+5upPF+vJI9Cc5+soyZWWX+a8ngZgTNQlAQCAMRKUbJOwpBGeS7W7pKcpoFHm0u7C7kfqeiwAsGN/c/Wnc6l2U5dktp6HAQDAnhCU7ICwpBGOJLnqoyQ06tm6mvbvupiz4w2Anfqbqz/tJnmpsMu+VO88BQCAPaOY+y58caTAe0OsJOl/r/fYsqaARjxbV9Puwu4L3+s91tfTAOxg7rHc8nfknZa+13usp/cBANhrdpTswvd6dpY0xENJRl8c/VTxR2iGfsuv7/wXRz/t6mYAtmk+ZYUk6pIAALBvBCW7JCxpjMNJXvri6KeL9Wo8YHKfq6Mo7A4AH/ni6KezSc4Xdtm9eq4FAAB7TlAyBsKSRnkuyWo92QQmV9sLu097DgGwFV8c/bSTZFjYZV90bC4AAPtJUDImwpJGOZzklS+OfjpvdwlM7DN1Ne3fdWFXCQBbMazHr6W48r3eY96RAADsK0HJGG0KS9a1RiO8kKp2iVoBMJnP1EGStRZf4pEvjn460NMA3Ev9npgu6JLX0v5aZQAATCBByZgJSxrnoSQ3fKyEidVv+fXN2dkGwN3Ui3leLOyyZ9UlAQDgIBy6deuWVtiTic273SSjlLVNvumWkvS/13t0VVPARD1PF1PVF2qrhe/1Hu3raQA2vfum6rnEQwVd9sXv9R515BYAAAfCjpI98r3eo8uxs6RpppMsf3H0rgLLMFnaXtj9/BdH73Z0MwCbDFJWSHJFSAIAwEESlOwhYUkj1YXe312sV/IBB/8sXU37C58P9TQASfLF0bu9VLX0SqEuCQAAB87RW/vgbx3D1ehJ23d7j440BUzEs3Q1yZEWX+KM5w1A8e+6qSSrhc0bjn63WmAGAAAHxo6SfVAP/B3n1DxHklz929G7jgGAydBv+fV51gAwTFkhySUhCQAAk8COkn30t6N3+0le1hKNtJJqd4mJHBzsc3SUqp5QW134bu/RoZ4GMFcowNJ3e4/29DwAAJNAUGICxNatpyqsKSyBg9Np+TN0LUn3u71Hb+pqgKLmCJ16jFnKbpL1JB3vOwAAJsWfaYL99d3eo8O/Hb2bCEua6HCSlzQDsIeOJJlLFcoCUI5hyjpya1ZIAgDAJFGj5ADUx6pc0BIA3MVcXcwXgAL87ejdubT7WMk7Xfpu79GRngcAYJIISg5IHZZc1hIA3OFwFHYHKMLfjt7tpqwdy0vf7T060PMAAEwaNUoO2N8tvTtMcl5LAHCHz3xn+tFVzQDQ6rnAcpKHCrnc9SRd7zYAACaRHSUH7DvTj/aTLGgJAO5gVwlAi/3d0ruDlBOSJElfSAIAwKSyo2RyJkrD2FkCwMfNfGfaOe4ALRz7d5PcKOiSL39n+tE5PQ8AwKQSlEzUhOlnJW29B+DBlr4z/YWeZgAw7m+wle9Mf6Gr1wEAmGSO3posvSQrmgGA2vTfLf2srxkA2uPvln42SFl1SbzHAACYeIKSCfKd6S/cjLAEgI8baAKAdvi7pZ91k7xY0CXPfWf6C8t6HgCASScomTCbwpI1rQFAkiN/t/Qz57oDtMOwoGtd+M70F4a6HACAJlCjZEL9fbXabJTksNYAKN56ks63qzAdgGaO7wcpZzfJWpKu9xYAAE1hR8mE+na1Rb2X6uMYAGU7nMSuEoCG+vvyjtyaFZIAANAkgpIJJiwBYJO5v1/6WUczADTSsKBrvfRtdUkAAGgYQcmEqycZVhEDcDgKuwM0Tn3k1kOFXO7St6e/4F0FAEDjCEoa4NtVEcQLWgKgeOftKgFojsKO3FpPMqvXAQBoIkFJQwhLAKgNNQFAY8wXdK19dUkAAGgqQUmD1GHJgpYAKNr03y/9rKcZACbb3y/9bC7JdCGXe/nb019Y1OsAADSVoKRhvj39hX6EJQClG2gCgMlVH5NYyrN6xXsJAICmE5Q0UB2WXNESAMWa/vuln/U1A8DEmk9yuJBrdeQWAACN92eaoJk+dehQP8koyUNaA6BIg6hXAjBxzr/189lPHTr0XCGXe3Hh5OeX9ToAAE136NatW1qhuZOwqQhLAEp2YeHk54eaAWCixuerKWM3ydLCyc/39DoAAG3g6K0GWzj5+ZtJeknWtQZAkebrj3IATIZByghJ1pP0dTcAAG0hKGk4YQlA0Q4nmdMMAAfv/Fs/7yV5oZDL7S+c/PyqXgcAoC0EJS1Qnwvci7AEoERzdpUATIT5Qq7zysLJzy/qbgAA2kRQ0hJ1WGJVMUB5Dqc66gWAA3L+rZ/PpYy6gWtx5BYAAC2kmHv7Jmn9JC9rCYDifMYxKAAHMv4uqYD7zMLJz4/0OgAAbfNnmqBdFk5+fth/6+fdlHM+MgCVQazyBdh3h6ojt0oISS4PhSQAALR1XG9HSTv13/r5MMl5LQFQlKPD6ihGAPZnzN1LcrWAS10Znvx8V48DANBWapS01PDk5/tJrmgJgKLMawIAz9090NfVAAC0maCk/ROaFc0AUIzpenUzAHs90C6ngPsluxUBAGg7QUmLDU9+/maSXoQlACUZaAKAvdWvCriX8LxdGp78vPcKAACtJyhpuTos6SdZ1xoARZjuv/XzvmYA2FODtL+A+3ocuQUAQCEEJQWot8r3IiwBKMVAEwDsjf5bP+8meaGEd8nw5OdX9TgAACU4dOvWLa1QiH94671+kpe1BEARLvzHyc8NNQPA2MfUoyTTLb/Mpf84+bme3gYAoBR2lBSk/mB2QUsAFGHwD2+9N6UZAMbnH956r5f2hySO3AIAoDiCksLUYcmClgBovSNJ5jQDwFgNC7jGwX+c/NyqrgYAoCSO3irUP7z13jDJeS0B0GrrSTr/cfJzNzUFwK7Hz/20/xhbR24BAFAkO0oK9R8nP9dPsqIlAFrtcOwqAdi1+ijD+ZZfpiO3AAAolqCkbL0ISwDabu4f3nqvoxkAdvcsTRU+t5kjtwAAKJajtwr3j2+/100yKmDiB1CyhW+d+FxfMwDsaLw8lWS15ePlpW+dcOQWAADlsqOkcN868bnlVDtL1rUGQGud/8e37SoB2KG27yZx5BYAAMUTlLARljjDHqDdBpoAYHvqkPnFtr8fvnXCkVsAAJRNUEKS5FsnPjdMclFLALTW+fq4RQC2btDy61v61onPzetmAABKJyjhI/UkaUFLALSWj2EAW1TvJjnf4kt05BYAANQEJXxMXez3ipYAaKXpf3z7vZ5mANiSQcuvb96RWwAAUBGUcDf9JCuaAaCVBpoA4P4K2E2y8q0Tn/M+AACAmqCET/jWic/dTA71kkPryaH4448//vjTqj/T//j2L3redgD3c2jQ8ndBXx8DAMBtghLu6lsnHrmZpJfq7GIA2kWtEoB7+Me3fzGVZLbFl3j5WyceWdbTAABw26Fbt25pBe43UZxN8oqW4AGuxIdX2mmQZLql13bhWyceGepigE+MfwdJXmzp5a0l6daLogAAgJqghAf6p7d/0U/yspbgAZaS9L954pFVTUGLnn/dJDdaenlr3zzxSEcvA3zsuT+VZDXJ4ZZe4vPfPPHIop4GAICPc/QWD/TNasXxgpbgAaaTLP9TtQsJ2vL8W27x8+9IHYQDcNts2huSXBGSAADA3QlK2JJvnnikn2rHANzP4SSv/NPbv1isV2RCGwxcG4BnfsOtJ5nTvQAAcHeCErZjNsmKZmALnku1u6SnKWi6+ji5yy29vCP/9PYvfDgDSFLvij3S0subdzwqAADcm6CELftmVfRxNtWKNHiQI0mu/tPbv5i3u4QWGLT42TfwGwVI0t4dFyvfPPHIQPcCAMC9CUrYlnolWk9LsA0vJBnVRbGhqc++m0nmW3p5h+M4FqBw//T2Lzqp6q21kWc8AAA8gKCEbauLG1/QEmzDQ0lu/NPbvxhoChpsPu3dVTJnVwlQuLaGCVe+eeKRke4FAID7E5SwI9888cjw0KFcOnQo8cefbfx58UvXfrH8pWu/6PgV0cDn3s1DhzJo6W/z8KFDVhwD5Tp0KP0WPtvXPdsBAGBrBCXs2L8ff2SQZEFLsE0PJVn+0jUFpGnkc28+yVpLL2/uS9fsKgHK86Vrv5hNdQxh28z/+3EF3AEAYCsEJezWXJIVzcA2HU7y0peu/WLkwywNNGjx73Kge4EC9Vt4TWv1oiYAAGALBCXsyr8ff+RmquLu61qDHZhOslqv5ISmPPeGae+ukhccjQeUpF6w8VwLL83OXQAA2AZBCbsmLGGXDid55UvXfrFodwkN0m/xtQ10L1CQNi7WWPr3448s6loAANg6QQlj8e/HH1mOlWvsznOpapf0NAUNeOaNkiy19PLO21UCFKSN49eBbgUAgO0RlDA29XE0l7QEu3AkydUvXfvFvN0lNMDAtQE0Vz3WeKhll7VQh/kAAMA2HLp165ZWYKy+fO39YZLzWoJdWknS/8bxh5c1BRP8vBulqrXTRp/5xvGHV/Uy0OJneD/Jy57dAACAHSXshblUH7lhNx5KcuPL194faAom/HnXVn57QNu1rT7JgpAEAAB2RlDC2H3j+MOlF3dficL24/Til6+9v/zla+93NAUT+LxbTrLQ0ss7/+Vr73f1MtBivZZdz0CXAgDAzghK2BOFhyUPpVplvuROGGubLn/52vtzmoIJNGjxtc3rXqCNvnzt/V6Swy26JLtJAABgFwQl7Jl6pXWpH7bnUx3noLj9+BxO8tKXr70/+vK19xV6Z5Kedatp766S6fpjIkDbtO3ZNtClAACwc4q5s+e+fO39+SQvFHjpK984/nC3PrpmmGpXBOOxnkSRdybJVIt/40vfOP5wTxcDLRufjpJMt+RyFr5x/OG+XgUAgJ0TlLBfk9HFJM8VeOmXv3H84bl6B8QgZQZGQPPNfOP4wyPNALRobNqmSdBnHLsFAAC74+gt9ks/VZHz0rzw5Wvvz37j+MM3v3H84bkkM0nW3A5Awww0AdAW9W7ftlCbBAAAxkBQwr6oi7v3U2Zx9+HGhLxekd1NcsVdATSIWiVAm7TpeTavOwEAYPccvcW++ud33u8luVrgpa8k6f3bEw/f3NQWs6lqlxx2ZwANsPRvT6hVArRiFUHqvwAAIABJREFUPNqW+nkr//bEw109CgAAu2dHCfvq3554eJTkYoGX/lDuWPH3b088vJhqd8mSOwNogOk67AZouraEC3aTAADAmAhK2Hf/9sTD80kWCrz08//8zvv9O9pitV6hfdGdATTAQBMALdBpwTWsJ1nUlQAAMB6CEg7KXMos7v7yP7/zyQKidXh0tNA2AZrDrhKgDY604BoWNx/pCgAA7I6ghANRT+x6KbO4++I/v/P+1F3aZLk+Z/qyOwSYYANNADTVP7/zfqct40m9CQAA4yMo4cBsCktKcyRVEfd7tctckpkka+4SYAJN33mMIECDdFoyjhaUAADAGAlKOOhJ3nKSCwVe+nP//M77c/dpl1GqQqNX3CXABBpoAoADs6QJAABgvA7dunVLK3Dg/uWd94dJzhd46Ue/XoVF92ub2VQ7UA67U4AJcuHrTzw81AxAw8acvSRXG34Za0m6X1ejBAAAxsaOEibC1594uJ8yC5kv/std6pXc0TaLqY6JsHoQmCQDTQBwIO57jCsAALB9ghImSS/lFXff0kT36088fPPrTzzcS3KxwDYCJvT59S9qlQAclOfqHdkAAMAYCEqYGF8vt7j7c/9yn3old7TRfN1GK+4YYAIMNAHAgTkvLAEAgPEQlDBRvl5ucfeX/uWd97tbbaOvP/FwN8kldwxwwOwqAThY5z2HAQBg9wQlTJy6OPBCgZf+wHold7TTIMlMqoKeAAdloAkADtTLwhIAANgdQQkTqdDi7tsuzPn1Jx4eJekmueyuAQ7q2eUDHcCBE5YAAMAuHLp165ZWYCL96/UbU0lWkxwu7NIvfu3Y0fkdtNdsqqDlsLsH2GdrXzt2tKMZgIaMMds8AbrwtWNHh3oZAAC2x44SJtbXjh0ttbj7S/96/UZ3B+21mKST5Iq7B9hnR/71+o2+ZgA4cC//6/UbA80AAADbIyhhon3t2NHlJBcLvPTFekfNdtvr5teOHZ1NciHJujsI2EcDTQA0xFLLr+/Ff71+Y6ibAQBg6wQlTLz6GKrSirtvu17JHW02TFW7ZMkdBOzXc8uuEqAhlgu4xvPCEgAA2DpBCU0xl/KKuz/3r9dvzO30v/y1Y0dXv3bsaC/JJbcPsE8GmgBogOVCrlNYAgAAW6SYO43xr9dvdOqJbWnFyo/WR5Dtpu26qXaoPOROAvaYQsJAE8aUvy3okpeSzNb1/wAAgLsQlNAoX7l+YzbJK4Vd9lqS7lfHMLn9yvUb80lecCcBe/nM+uqxox3NAEz4mHI11VGnpVhJ0vuqsAQAAO7K0Vs0ylePHV1MeUdJHUkyP6b2m0sykyp8AdiTZ9ZX1CoBJt9iYdf7UJLRV6rdNAAAwB0EJTTOV48dHSS5Uthlnx/Xh8evHjs6SlXo/Yq7CdgjA00ATLhhgdf8UJLlr1RHsgIAAJsISmiqfsrbFTE/rontV48dvfnVY0dnkzyfZN3tBIyZXSXARPtqVf+txB22h1PtLOm5CwAA4DZBCU2d3N5MMpuyPvIfTjL8yvUbU2Nsx8UknVRFPgHGaaAJgAk3X+h1H05yVaANAAC3CUporHol4Fxhl/1Qxvzxsd5d0ktyMXaXAONjVwkw6YaFj31e/sr1GwO3AQAACEpouK8eOzpMslDYZb/wles3ZvegLedT1S5ZcWcBY9LXBMAEjyNvpryi7nd68SvXbwzdDQAAlO7QrVu3tAKN95Xry8updluUYj1J96vHuqt71J6DJC+6s4AxmPnqse5IMwATOobs/P/s3emWXdV5L/x/Md7vKl8Ari03gDpqS4Ax/qKtK1BxBdrCidthq4RtGGCDtkxiD0xsSicjyXvek5itK6B0Bez6EmLApsp0ts85oSq+gFRdAe+HtYQkUFPNblbz+42xB2mc2OtZc6165nrmfGaSj0Uia0mW/vEb3W2hAACgjewooSlaeV7JpP6f/+M3uoMkJ2N3CXBwAyEAqqpcdHJFJHI6yagsHAEAQOsolNCkSW6/bRPacufHpGK6nqQXHw+Ag7+resIAVNggzmlLit3Z6z/49/WuUAAA0DZab9EoF9rZMurMlQm3tblQfOQcJlkwyoB9WLvyjW5PGIAK55DLSV4ViSRF0Wj5yje6Q6EAAKAtFEpo4kR3lKJ9QFtsJelemXBP6Qv/vj6folhy1igD9mHiRV0AOeRYXbzyje6KMAAA0AZab9FEbTuvZCETPK/kuivf6G5f+UZ3KcmT0Z4C2LuBEAAV15fj3OLVC/++PhQGAADawI4SGqlsFfVGyy77/LRaJJS7S1Zj1SWwN3aVAFXPIftJXhOJW6wlWZr07mUAAJglO0popPJD3MWWXfbKhX9f70wpvtvleQMXY+UlsHsDIQAqnkMOk1wViVucTjK64JB3AAAaTKGEJk90V5Jca9ElH0qxy2PaMe6mWGkIcC+nyx1/AFXOIftJNkTiFospiiXe4QAANJJCCU3XT3HYeWsmsRf+fX0wzX/DK9/obpa7Sy4bbsAu38sAVddrWQ65G4eSvFG2JwMAgEZxRgmNt/zmejfJuy277DMrT0z/HIAy1sMUqw4B7uTwyhPdTWEAapBDjlIUCLjV1ZUnun1hAACgKRRKaMtEdznJqy265K0k3ZUnZnPo5vKb6ytJLhh5wB34wAbUJYfsJXlDJG5rLcnSrPJNAAAYJ623aIWVJ1p3XslCip0ds4r3cpIz0bICuL1zy2+ud4QBqEEOOUpyXiRu63SSUbnzBgAAak2hhBaZ6ydzW8lcWvI7u/zmRn+2HxbmusnclRbF3M/Pb/e/gb9LQB2sPNEdJnPnvbdv+1tM5kbLb24sGSkAANSZ1lu0yvKbG207r2QnSXflicXNGcd9KcUOFz2+gZsdnvX7CWAP+YzWond3ceWJxRVhAACgjuwooVVWnlhcT3KxRZd8KMlqBeK+mqSTdrU/A+5tWQiAGuWRy0muisQdvbr85sZQGAAAqCM7Smilp9/cWE1ytkWXfPk3TywOKhL7fpKV2F0CFLveOr95YtFBwECd8shhknMicUcbSXre7QAA1IlCCW2d4M4nWU9x6HlbnPxNsaOmCvHvpGjFddponIiNJD5ONE+noe+syhRyAfaQywyjWHI3OymKJetCAQBAHSiU0OYJbtvOK9lK0q3S6r6n39xYTjKI3SXjtpOk/5ui5RnNeWd1knzc0PFqVwlQx/fyMIol93L+N08sDoUBAICqc0YJrfWb9p1XspCiKFGle7CSpJdiBwTjcyjJ60+/ubFS7p6iGe+szTSzN/6hOKsEqOd7uR9nltzLa0+/ueGAdwAAKs+OElqvheeVPFnFnQZPv7kxSHLJiBy7rRS7S0ZC0Yj3VSfN3FWy9ZsnFjvuMFDTd/Mwdpbcy1qSJbsHAQCoKjtKIOmn+JjcFsMq7jIozyg4GbtLxm0hyRt2lzRDg3eVLDz95kbfHQZq+m7ux86SezmdZL1sfQsAAJWjUILJbbGybalFl3woxUHqVbwX6ylacV0xMsfuQooPFD2hqL2B6wKoXA7Tj2LJvSwkGSmMAwBQRVpvQamFrZ8ulmeEVPV+9FIUdBaMzrG7mmRZ+4tav6+GaWabF4f+At7P7XC53E0MAACVYEcJlMrJ2lqLLnlQnndQ1fsxStKN3SWTcC7J5tNvbiwJRX2f34Zel0Pdgbrnk/0kl0Xini49/ebGqragAABUhUIJ3GopyU5LrrWyLbiu+80Ti9u/eWJxOcmTLbov07z/r/tIUU8NPqtkUXs4oAHv6EGS8yJxT2dTtOJybgkAADOn9RZ8xo/+44+9JG+06JIv//rrDw9qcF/mUxR2zhqlY7eTpP/rrz+8KhS1eld1knzcwEtb+/XXH+65w0AD3tP9JK+JhDwEAIDqUyiB209sV1Icft0WJ3/99YfXa3JvllIUTA4ZqWN3LcWHCmeX1OddNUwze+Gf+fXXHx65w0AD3tP9KJbsVi0W7wAA0Exab8Ft/PrrDy8n2WjRJQ9rdG9Wk3TSrvNkpuVsks2yGIVnd5b6bi3QkJxymORktBDdjUs/+o8/rpa7iAEAYKrsKIE7KNvarKc9Oxdqt4rvR//xx+UUh1rbXTJ+dpfU5zkYJTndwEs7/OuvP7zpDgMNeVd3k4zkLLuyUeYg60IBAMC02FECd1B+oOu36JIvleez1OkerSTpxu6SSbC7pD4Grgug8jnLepJeki3RuKfFJKOybRkAAEyFHSVwDw0+A+B2tpJ067iLoNxd8qoROxF2l1R//I/SzF0lXzDugIa9r+dT7CxZFI1duVK2xAUAgImyowTubTntWf23kJqu4i53l5xMu86WmZbru0v6QlFZg4Zel49jQKOUxd+efGXXLvzoP/44cm4JAACTZkcJ7MJPir7S77boks+88vWHRzW+X4Mkl4zciVhL0n/F2RFVHPejNG9XyU6Szit2lQDNfG8P055dywe1lWTpFeeWAAAwIQolsPvJbJtaO20l6db542RZ3BpGa4tJ2EkyeKXYxUN1xvxSktcbeGnnX/n6w0N3GGjou3sYxZK95B/L/iYAe3jHdpJ0yv92PsX5ltdtlr8kSZ0XCgIwHgolsLdEa5RmngNwO1deaUBP6J/8xx9XklwweqG2tl75+sMdYQAanF/2k7wmErt29ZWvP9wXBuCm92gnRRGkm6K9YSdFW+m92kmyfvPPTjaA9lAogb0lYPMpVp0casklP/nK1x9ebcB966XYXbJgFEMt2VUCND3H7EexZC82kvS0ZoRWvzeXUhRFeplsF4GdJKtJRklWvXcAmkuhBPaXkL3eksttzPkAZZFrELtLoI7WXvn6wz1hABqeY3ZTfIg7JBq7zlOXtMuB1r0nl5MszfBdeS3JsAkLCgG4lUIJ7C9Ba1M7p2uvfP3hpQbdu17sLoE6OuNjGNCCHLObYuWyPGX3Ljo3DRr/buynKJBU6fzJnSQrSVbsMgFoBoUS2F+iNp9ixV9bDgp/skkrZsr7txKHp0KdNKpoCyDPHKurKQ5697ESmvU+7KfoClDl4vH11lzeQQA1p1AC+/TM797rJnm3JZe7k6Tzq8dPbDfsHi6l2F2ixQXUw+FfPX5iUxiAFuSZFnXs3UaS/q8eP+HgZaj/O7Cf6hdIbjdnXkmy0rR5M0Bb3CcEsD/lJOxiSy73UIqCQtPu4WqSToo+s0D1DYQAaEmeuf2rx0/0U+yUYHcWk4zKhTBADT3zu/c6z/zuvVGS11K/FoSHklxKsu49BFBPdpTAwZO5UZLTLbncJ8viQhPvo90lUH2N3N0GcI8cpZ/ioyG7d+VXj59YFgao1btukKLQ0BTXUuxyk7cC1IRCCRw8oZtPspl2fGBv9EfK8l4Ok5w1sqGyLv/q8RMDYQBalm9a0LF3a0mWfKSEyr/fOinO+GjiuUw7KYolq+40QPVpvQUHVE6++i253Ea24Lr5Xv7q8RNLSc6XSS1QPX0hAFqYb64m6SXZEo1dO52iBU5XKKCayiLweppZJLk+f379md+9t+JuA1SfHSUwviRvmPYcuPlk01fFlCubhmlPWzWok/O/evzEUBiAFuab80lGae5HRX83oD3vs+Ukr7boku1yA6g4hRIYk2eLiet66nfo3H7sJOm83IIk79kigR9Eqwuoko2XHz9hhTDQ5pxzJe1ZoDMuV5Msv+wjJVThPTZs6TtsI0nPewigmrTegjEpk52lllxuo1twfea+riTpplgBBFTD4rO/e68nDEBbc86XHz/RT3JZNPbkXJLRs1pxwUy1uEiSFLsB172HAKpJoQTGO3Fdb9Gk9eyzRU/ZNtzXzZcfP9FLcjHOLoGq6AsB0PK8c5DiXDV2bzFFsWRJKGD6Wl4kuW4hirYAlaT1FkwmAWzygXQ3a00LrpvubSfOLoGqOPzy4yc2hQFoed7ZTXFuiTahe3Pl5cdPLAsDTO1dNYwiyc22knS14QKoDjtKYDKW0o6dB4dS9Mhujc/sLgFmqy8EQNuVO5q7KXrfs3sXnv3de6PyzBdgghRJbuv6zhLvIICKUCiByUxYN1McAN4G59p4VkB5dsnJ+CgBs2QlMMCN3LOX5Jpo7MnpJJta4MDkPPu79/pRJLmTxSSrwgBQDVpvwWSTwlHa0aKp1duGn/3de4Mkl4x4mInzLz9+YigMAJ/mJStJLojEnl0sF8IA43sf9ZK8IRL3pBUgQAXYUQKT1ZYWXAtpzw6azykPU7W7BGbDpBLg1rxkOQ55349Xn/3de6va4MB4lM+S3RK7c+HZ3723JAwAs6VQApOdqG6nPT30L7SxBddN93r95cdPdJNcNvJhqhbb/O4BuENeMkyxiGNHNPbkbIozA7TigoNbTXGmJbszfPZ373WEAWB2FEpg8hPV1bSnX/Sw7avw7C6BmegLAcDnchKHvO/PYopiib8tsE/P/u695bSjBfU4HUoyFAaA2XFGCUzBc2+9N59kPUWLqqa7/MuvnRi468lzbzm7BKbo8C+/dmJTGABum4euxGHK+3H1l1870RcG2NM7p1POfe0m2Z/zv/ya8/cAZsGOEpiCX36tVS24Lj33lnYF5X0fxO4SmJa+EADcPg8tP/ZrD7p3555767318sMvsDsrUSQ5UPzKAjcAU6ZQAtObpI6SXGnJ5Q7d8U/v+/ovv+bsEpgCh7oD3D0nGaQ45N25JXuzmGT9ubcctAz38txb7/VSnPXD/h2S1wLMhkIJTNcgyVYbJpRl2ylKdpfA5CeVz72lnzzAPfKRYZJeS/LRsf6NSfK6/BZ2Nd/l4C7ZyQYwfc4ogSkrV9m80ZLLdWbA7cfAIM4ugUlY++XXTvSEAeCeuch8klGK3RLs8W9NkqWytS7QznnuNDgjCWDK7CiBKdOCC7tLYGJOW30HsKtcZLtsDXpVNPb+tybJZvlRGLhhIARjdU5eCzBdCiUwm8npctrxkfz0c2+9p7/q7ceAs0vAJB1g1vlIP8W5JezNoSRvyHOhUBYOT4vE2HnHAEyR1lswI8+/9X43ybstuNSdJJ1ffO249gR3HwvDaH8B3jkAs8tFRikKAOzNtSR9f3do+TtkmOScSMhrAerMjhKYkV987fh62rGb4FC04LrnWPjF147bXQLje+csCQPAnvPSbrQF3Y+zSdbLYhO0zvNvvT8fRRJ5LUADKJTAbCelg5ZMSM8+/9b7ErzdjQdnl8DBaVMAsPc8ZDNJL84t2Y+FJO8+/9b7faGghYx78QVoBK23YMZa1IJrK0nXtuFdj4tBkksiAft2slwhDcDe85DlJK+KxL5cTbIs56VF74v1aCE8aYfLYjYAE2RHCcxYi1pwLcQhy3sZF4PYXQIHYVcJwP7zkJUkZ1L0x2dvziUZacVFGzz/1vudKJJMg+4MAFOgUALVmIwO0o4P4heef+v9nju+63Hh7BI4wISy7JkNwP7ykFGcW7JfiymKJX2hoOHM7cQZoDEUSqA6D2P/vvKhbPhvxd3e84eKwX3JyfuSjZaMET+/cfwO3Wf1HcBBc5DN+5LefclVf1f29XfotZ+99f7QSKLBc9glz/pUfmeNNoCp/F0DquDv2tOCa/Fnxfkb7HF8/N2N3SXaYMDu9IUA4MA5yPbffe14P8lF0diXcz976/31nxUtiqBpekIwHT/TmQFg4hRKoFoT0UHa0d5g2WTxQGOkm2RNNOCeTnvXAIwtB3Fuyf4tJln/2Vvv2+lIY5Q51iGRmBrnHgFMmEIJVE+/Bdd4KMnQrd6fv/va8c2/+9rxXoqVnT5WwN051B1gfDnIKM4tOUj++/rP3npfG1qawof76eoJAcBkKZRA9SagbWnBddqqugOPlZXYXQL30hcCgLHmH5spPthdFY19uaAVFw2hUDJd3hkAE6ZQAtWcgA7SjpV6w5+99f68O36gsWJ3CdzdIUVZgLHnH84tORituGiCnhBM/b0BwAQplEB19VtwjYeSDNzqg7tpd8k10YBWvk8BZpV/OLdk/3nw6z976325MLArdqIBTNbcJ598IgpQ3URokORSCy71TNnzmvGMm6UUZ8A4XBFu+MLffe34tjAATCT36CRZjRXP+7WWZMnfKWr23PuYZN4M0Ch2lECFtagFl0MtxztuVlP0sLW7BG7oCwHAxHKPzTi35CBOJ9n82Vvv94QCAGA2FEqg+votuMZFbQfGq+wdvpTkySRbIgIKJQBTyD36Sc6Lxr4cSvKGnBi4i54QAEyO1ltQAy+8/f5KkgsNv8ydJN2XHju+6Y6PffzMpzgL5oJo0HKHvWMAppJ7dJOMog3ofq0lWXrpMa24qPQz/q5ITN3llx47PhAGgMmwowTqYZDm7wo4FC24JuKlx45vv/TY8eUUh63aXUKbLQsBwFRyj/UUbUA3RGNfTifZfOFtrbiorHkhAKBpFEqgHpPN7bSjbczZF95+f8kdn9g4GiXpJrksGrSU9wvAFPPXlx473k1yRTT25VCSN154WysuAIBpUCiB+kw2Ry2ZaK6UraKYzDjaLrdrn4xVnrTPQtkqAoDp5R7LKc4t2RGNfbn0wtvvj+THAACT9f8IAdTJ3CDFiuiFBl/kQor2OAP3e3LKlhjdF97+YFDGWw/xariaZLNi/5k6Sc41KMb9aMEFMO28Y/jC2x+sJ1lteB47KWUrrg+WXnrs2Eg4qMC81Pk5ADTvr5vD3KFeXnj7g6Ukr7fgUg+/9NixTXd8KmOqk2RYTsKZvatJBlUa/y+8/cFmmvNha+ulx451DDOAmfw9mS9zjrOisW+XX3rs2EAYqMDz7GPS9F186bFjzvUEmBCtt6BmXnrs2GqSay241KG7PbUxtfnSY8d60RajKs4l+fiFtz8YlkUsz+N4Lbzw9gc9wwxgJjnH9kuPHVuK89IO4tILb38wKotOQLusCwHA5CiUQD0f3P59yc595UPc0N/pS8XuGab38WJ4X9K5L7nW8LFVl9+5+5KPL739weqlGX/Yvy8ZNiy2fU88wExzjsF9yZkW5LMTy5PvSzYvKfwz2/zQ8zuDHwAT/dsG1M3lx45tpx0f+oaXrJab+ti6XKz0PJNkS0Qq4WySNy69/cFoVh9ELhdtwJq0k00RFmD2OccoSTfJhmjsy6EyPxgIBTNid8P0bQoBwOQolEB9J5erSdZaMAE0+ZvN+Bql+HihNUZ1nE7xQWTz0tsf9Gfw7z9s0rvl0tsfdA0pgJnnG5tJeinO52J/LpWLKSwuYto2hWAm70wAJkShBOqtn+afKXHBB82ZJeLbl4vDQk/Gas8qWUjyWlkwGUzrw0hZnG3SLqO+oQRQmXyjn+KsNPbndLTiYvo2hWCq1oQAYLIUSqDeE8vNtGPHxYq7PdNxtn75sWPdJBfjsPcqWUhyKcWHkZVL0zn4fdig+Gm/BVCtfGOYYnGG1p/7oxUX0zYSgqnaFAKAyVIogfpPKlfS/NX+p2fUaojPj7VumnVWRRMcSnIhxcHvwwmvJh02KG4LdqsBVC7XWC9zDSun908rLqbFGSXiDdAoCiXQDP0WXOPAhG/2Lj92bNNh75V2LsVq0vVJFBcd6g7AFHKN7cuPHevFOWkHoRUXU3lWoz3vNI2EAGCyFEqgGUnq+txcLs/NJQ3+LczNZdndrsyYG83NpduCcVfX3+LcXF4bvPPB9uCdDwaDd8bXlmtuLqsNipNCCUB1c43B3FyenJvLjr/r+/odmpvLG4N3tOJicubmMvKsTeW3U+64A2CSf9c++eQTUYAGGLzzwXyK7bgLDb/Uw4NHj22645Uae50ULZlOi0alXUsyHDx6bHUM93w7Rcsv7xQAppFnrCZZFI19W0uyNHj02LZQMObncynJ6yIx+Tx+8OgxC3wAJsyOEmhKklpMfPotuNShu125sbc5ePRYL8n5OOy9ys4meX3wzgebg3c+WD7gLpPVBsWlZ2gAVD7P6Ca5Khr7djrJ5uAdrbgY+/O5KgpTIc4AU6BQAs1KVEfJ3LVkLg3+nR6886HVNNUcf8NkrpPMXWn4GKz7byGZezWZ+3jwzoer+3ue5lYaFA8fjQDqkWf0k7nzydyOv+X7+h1K5t4YvPPhwGhivBo//6zCT6EEYBp/0bTegoZNIt/5cD7JZprTFud2tgaPHu2425Ueh90kK9GOqzbPVIqVaiuDR49u7vIeb6YZrf52Bo8enTcEAGqVY6ym+e1mJ6lsxXVUKy7G8UyO5PwTdW3w6FELBQGmwI4SaFqiWkx4Bg2/zAWr4So/DtcHjx7tpWjHtSUi1X+mklxI8vHgnQ/XB+98uFwWXe9m2JBrP1R+dAOgJjlGkm6Ks7fYn7IV14c9oeBAz2MxJ1MkmayhEABMhx0l0FA/b/7Knp0k3Rd3ufqdmY7F+STLSS6JRu1cS7Fqd/XFz6w6/fk7H3aSfNyQ67z44qNHV9xugNrlGMtJXhWJA7n84qNHB8LAPp6/bpJ3RWKitl7USQFgauwogeZabvj1HUrzd840wouPHt0uJ+CHY/Vn3ZxN8lqS//75Ox+u/vydD/tl4StlkXKjIdfZc6sBapljrCQ5k2IBDftz6efvfDj6+b13ksKnyvEyFImJE2OAKbKjBJqdwA7S/FX8Z1589OjI3a7VuOylOL9kUTRqa6OcuHWTnGvA9ey86JwSgDrnFvMpdkBqAXSAv4VJluTV7PKZW0nRtpXJPpOdF50lBDA1CiXQ/Enjepp92OXGi48edb5APcdnP0XB5JBoUAEnXyz63gNQ39zCx9uD04qLez1nvSRviIRnEaBptN6CBitXn/QbfpmL5Qd36jc+h0k6SS6LBhWg4ApQ/9xiOcmT0YrrIK634uoIBZ910+4tJmsnxYIyAKZIoQSaP2EcpfnnQqzoq1zb8Xnz+SVXRYQZ6gkBQCNyi9UUxe8N0di300nWf/7Oh0tCwWcMYzf4VOa3Wm4BTJ9CCbTDcpq9su5Qmn94faO9+OjRzRcfPdpPcSDrmogwA3aUADQrr+jGIoyD5tevl+3M4HqLR0brAAAgAElEQVTb3LMiMXFbWm4BzIYzSqA9ie1yklcbfpmHX3z06Ka73YjxupRiu/mCaDAtLz56dE4UABqXU/TjTLSD2khx0Ls8u73PUSfF2Zeeo8k7U3aFAGDK7CiBlnjx0aMraX4LAivemjNeV1989Ggnxfkl+owzrY8AdpUANC+nGKZor6gV1/4tRiuuthtGkWQariiSAMyOQgm0S9PbU539+Tsf9tzm5ii3nXfiwHemoyMEAI3MJ9ZTFEu04to/rbhaquxMcFokJm4ryUAYAGZH6y1omZd+/9EwybkGX+LGC48csSq8mWO3U04ezokGE3L5hUeOmKACNDufaEM72onn20n6LzxyZF0oGv+8dJO8KxJTcdIzBTBbdpRA+zT9YPfFl37/Ud9tbp4XHjmy+cIjR/px4DuTMy8EAI3PJ1aSnEyxept95ttJRnLuVhgKwVRcVCQBmD07SqCFyknNaw2+xJ0knRceObLtbjd6HPfKyZsD3xmXtRceOdITBoBW5BHzZR5xVjQO5GqSZXl3I5+RlSQXRGLyz1C5GAyAGbOjBFrohUeODNPsFfmH0vzzWIzjR46MXnjkSCfJ+VgVCgDsLY/YfuGRI0tJLorGgZxLsbtE69sGKRckKZJM3poiCUB1KJRAezW9kLBcnmlBw5WFv26KA993RAQA2EMesZKiraccYv+04mqQm3ZbMVkbSZaEAaA6FEqgvZPC9SRXGnyJh1Ic/E07xvN2eQh3Jwom7F9HCABamUeMyr8BzkA7WO792ku//2i1/NBOfQ2jte2kbSTpaVkHUC3OKIEWKycxm+XEpqlOOhivlWO7k6JQdk402IsXHjkyJwoArc4hBkkuicSBbCVZkoPXcvwvJXldJCZKkQSgohRKoOX+vvkHu6/91OHMbR7fnSiYsAc/VSgBkD8U5zOsptmLiabh4k+L1mbUJ29eN+4n6lqS/k8VSQAqSaEEyN///qNRktMNvsQzPy1aKtDeMd5LUTA5LRrcxcZPHzniMFoA8vfFzutVucOB+TBsTkjh6k8d3A5Qac4oAZLmH+w+dIvb7aePHBmVO4vORP9x7sxHHACu5w7bZe5wWTQO5GyS9XLRChX197//aDmKJJOyk+S8IglA9SmUAPlp0T/4aoMvcaFsMYaxrmACAOwldxgkeTLFx072mYsneePvi/NfqJi///1H3SSvisREbCTp/fSRI0OhAKg+rbeA6wly0w9230rSte2fz4z7foqWXAuiQZJrP33kyJIwAHCbnKGTohXXomgcyFqSJTl5pcb2unE9EZfLQisANWFHCZCkaC+Q4oNxUy2k+S3G2Pu4H/70kSOdJOdTFNNot3UhAOAOOcNmeY7VFdE4kNNJNrXiqoa///1HK1EkGbe1JCcVSQDqx44S4Ba/+MOfmryiaCdJ5/lTD1nBxp3Gfz92mLTZxedPPbQiDADcI19YSnEG3iHROJArz596yEKm2Y3jXpI3RGJstpIMnj/10FAoAOrJjhLgs5o8WTmUZu+a4YCeP/XQ8PlTD3Vih0lb2VECwG7yhdUk3RTnD7B/F37xhz+t/+IPf+oIxXT94g9/mk9R7OPgtpKcf/7UQx1FEoB6s6MEuF3ivJrkbIMv8fDzpx7adKfZxbPQjx0mrfH8qYfmRAGAPeYKK0kuiMSB7CTplwUozPfqYi3JUHEEoDkUSoDbJc6dFCurm9pO4Orzpx7qu9Ps4ZnoR8Gk6TaeP/VQVxgA2EeeoBXXeFxJ0bpIm9zJj9fXRWJftpKsJlmx8K4Vz0o3xe7BTpJe+T/u7uJdv5VkM8l2iu8q60nWjRmoPoUS4E5JwSDJpQZf4snnTz2kzQ57fS76UTBpKn3SAThIjtBJ8QHVwdgHs5Fid4k8fTLjdD7FB1xFvd1bSzJKsmpcNv756KYoiCwlOT2Bf4ud62MpyUjhBKpHoQS4WxK9nuZ+EF57/tRDPXeafT4f/SiYNM2TWn4AMIYcQSuug9tJsqyl0UTG5yiT+QBcRRvZW+Fyp5z/bubGDoCRUdP4Z6KbpJ+iOLIwgzE6TFGE23Q3YPYUSoC7JQ39JK81+BLPSH4ZwzOyHKtH627n+VMPzQsDAGPKD7TiGo9rKXaXaMU1nnG5nOTVllzuVpLu9bFT7vjq3OFfu26MmcdV5H234vsEzJZCCXCvBGKU5q46squEcT0nvRQ7TE6LRi05twiAcecGnWjFNQ5bSZa0PDrweOymaPnTluKdBXHc7jmYT1EcWa7ws7CV4qymoTsG03efEAD3MGjwtZ0uP3DDgTx/6qFRWXQ7k6KPMfWyIgQAjDk32Hz+1EPdFAeUs38LSd4td0Owf8O0p0hyWZGEzyrPYN1McQ5rlZ+FhSSv/eIPf9osdycCU2RHCbCbpGKY5FxDL2/r+VMPddxlxvzMdFIUGc+JRuVtlB+yAGBSeYFWXOOhFdf+xt8gxcdheR1tHP+98v1b17Ml11Kc2WRXHUyBQglwT78sPvquN3hyd/45W1uZ3LMzSHE4oI8jnn8A2p0TaMV1cDtJlp6zY2C3466X5I0WjY3ecz4oU4z9+RQFkrMNuaTLz516aODOwmQplAC7TTQGae5KpK3n7Cph8ol61fvhtpFnH4Bp5wQrSS6IxIH5aLi7/HM99V1Jv1cXnzv1kHaq5JfN3cW3kaSvGAiT44wSYLdWUhws1kQLv/zDn/puMZPy3KmHtp879dDguVMPzSc53+BnqW70Owdg2jnBcpInU6x+Z/8u/fIPf1ovd+pw5/lbW4oka4okJJ8Wo19PMxenLSYZ+XYBk2NHCbCXpKOf5LWGXp6V5Uz7eeqlaMt1WjRmNqHuCQMAM8oDOtGKaxx2UqywXhWKW8bXUoqPxW0ZA53nnF3T9jE/X75T2zK3uvrcqYf67jyMl0IJsMcE5M/rDZ7QnX/u1INDd5kpP1OdOMdkFhPq7nOnHtwUCgBmnAdoxTUeV5IMnjv14LYx9ef5JJstyiuffO7Ugwpl7R7z3RStttpWeF5LsuS9B+Oj9RawV01uVTMoJxYwNc+denDzuVMP9pN0klyMtlxTedYVSQCoSB6gFdd4XEgyKj+Ytt1q2lMkuapI0m7lMz9KO3fnnS7fe75hwJgolAB7ncyNklxr6OUtxJkFzO7Z2n7u1IMrz516sJPig8k1UZmIa8+delAPawCqlAOsJummOKiX/Sv79/+539YA/PIPf15Oe1oPbZm7tdtNRZI278q//t5TLIEx0HoL2LOXi1ZBHzf08naSdJ61fZXqPGvLSfrRlmscNpL0PN8AVPhvv1Zc43EtSb9Nf/Nfbt9H4zPPFov4aOe7UpHEPAfGzo4SYM+eLVrWXGno5R2KlUlU6Fl79tSDy8+eenA+yfkUfWjZn5207IMJALX8268V13icTbL+crtacQ3Tno/GlxVJ2qtcTDaKIsnNFpOMXrazBA5EoQTYr0GDJ3DLEgyq5tlTDw6fPfVgL8nhFIVKH1B2byfFCqt1oQCgBn/zr7fiskDiYBaSvPvyH/48aPqFltfYljMaNp499eDA8G6ncp7epnN49mIxiRbDcABabwEHTcgvNfTyLkvAqcEzuJSiLddZ0bgjRRIA5NusJVlq4s7Sl//w516SN1p0L0/K61r9ThylPefw7JdvGbBPCiXAQZKU+STrKVZrNY2zSqjbs9gvf4si8qmNFO22TKYBqPPf+V6soB5Xfr/UpJZNDZ+P3c7FZ089aMV8e9+Fgygc79aT5e5EYA+03gL2rSwiDBp6ec4qoVbP4rOnHlx59tSD3dxozbXV8rCsxU4SAJrxd36UpBOtuMaR37/x8h/+3KQP7YO0p0iypkjSXmXBWJFk94baicPe2VECjCNp2YxdJVDFZ7ObYpfJUosm0Ynt5gA092/7ID4WjsNGit0lmzUeC0tJXm/J/dpJ0q3z/eJAY71tO6fGZa084xLYJYUS4MB+9W6j++JefuakD6404jltQ9FkI0n/mZN2kQDQ+NxbK66D20my/MzJB4c1HAPzSTZbNAaefOakNkItfuetJLkgEvtyvo7vOJgVhRJgXMnLKM08VG3nmZMP2rJK057XboqCyVKacabJTpLBMye1YwCgNX/L51MUSxxqfHDXUqxWr5Nei+79ThI5XnvNR5HkoM9P55mTumTAbiiUAOOarPXS3F0lVmHQ5Gd3PkXBpFf+s04rE69PnFck/wC09O/4cpJXRQKAO7jyzMkHnb8Ku6BQAoxzoraa5GwDL23rmZMPdtxhWvIcd1MUTa7/qlg42UoyjAIJAFz/270a/fsBuL3Dz5x8cFMY4O4USoBxTtI6ST5u6OXZVUJbn+ubCyfdzO4jzE6Kj0CrelQDwOf+Xs+nWERwVjQA+Iyrz5x8sC8McHcKJcC4J2nDJOcaeGl2lUA+/RBzvXjSKX+T6pG9lmSUZPTMyQdHog8A9/w7rRUXALdjVwncg0IJMFavvPuXThq8q+QnJx8Yustw22f/egHl+j9z039/L9u5cYjqKMnmT04+IIkHgP39TdaKC4DPuvqTkw/0hQHuTKEEmMTkbCXJhQZe2tZPTj7QcYcBAKh4Pj6fZCXN3OkNwP584ScnH3DGI9zBfUIATMAgxXkCTbPwyrt/WXJ7AQCosp+cfGC7XDl8vqF5OQB71xcCuDOFEmAiE7MUK9iaaNkdBgCgJnn5MMW5YhuiAdB6vmfAXSiUAJOykmauXjv9yrt/6bm9AADUwU9OPrCeolhyRTQAWm2hPMcKuA2FEmBSE7Im7yoZuMMAANQpN//JyQeWkzwZrbgA2qwvBHB7CiXAJDV5V0nH7QUAoE5+cvKB1STdaMUF0FY9IYDbUygBJjkRs6sEAACqlaNv/uTkA91oxQXQRosWfsLtKZQAk9bUXSXnJBcAANRV2YrrTLTiAmibnhDA5ymUAJOegG0nWW7o5S27wwAA1DhXHyXpJFkTDYDWcKA73MbcJ598IgrAxP3D+l82kyw07LJ2knR+3H1g2x0GAKDm+fogySWRAGi8tR93H+gJA9zKjhJgWgYNvKZDSfpuLQAAdffj7gODFK24tkQDoNFOCwF8nkIJMK2J17Chky7ttwAAaErOPkrRkuWaaAA01z+s/0X7LfgMhRJgmgYNvKaFf1j/S9+tBQCgCX7cfWD7x90HlpJcFA2AxpoXAriVQgkwzUnXMM3cVdJ3dwEAaFjuvpLkZJIN0QBoHDtK4DMUSoBpGzTwmk7/w/pfem4tAABN8uPuA+tJekmuigZAo9hRAp+hUAJMe7I1TLLTwEvru7sAADQwf9/+cfeBfpLzDc3jAQAUSoDpm0tW5op/Nul37tfrf+m4uwAANNGPuw8M55LuXLLRwFzez8/Pr20/rbfgMxRKgFlYiV0lAABQKz/qPrD5o+4D3SRXRAOg1rTegs9QKAFmMcHaTlEsaZpldxcAgBbk88tJnoxWXABAQyiUALPSxF0lh369/pfRr9f/svzr9b/YxgoAQGP9qPvAapJOkjXRAADqbu6TTz4RBWAmfr3+l0GSSw2+xK0ko+u/H3Uf2HTXAQCQ1wMwY2s/6j7QEwa4QaEEmOWEaj7JZpJDLbnkmwsnq2ULMgAAaEJu30syTLIgGgCVd6VsowiUFEqAmfrN+v8eJjnX0svfyE07Tp7uflXhBACAOuf28ymKJWdFA6DSLj/d/epAGOAGhRJg1pOpTpKPRSLJjcLJ6tPdr46EAwCAmub4y0kGac/OcYC6USiBz1AoAaowkRqmvbtK7mYtN3abjIQDAIAa5fjdFLtLFkUDoHKefLr71VVhgBsUSoAqTKI6satkN67lRuFkXTgAAKh4nj+fYmfJBdEAqJQzFmTCrRRKgKpMolajl/Fe7OTW800UTgAAqGquv5Rid4lWXAAV8HT3q3OiALdSKAGqMnnqJXlDJPZtK7cWTjaFBACACuX7nSSr0YoLYNa2nu5+tSMMcCuFEqBKk6dRktMiMZ7EJwonAABUL+cfJLkkEgAzc+3p7leXhAFupVACVGnS1E/ymkhMxEZuLZxsCwkAADPK+3spdpdoxQUwfZef7n51IAxwK4USoGqTps0kCyIxcZ8WTp7ufnVVOAAAmHLeP5/i3BLnFAJMl4Pc4TYUSoCqTZiWk7wqElO3lhuFEwkTAADyf4Dm2Xm6+9V5YYDPUygBKuXVjf89n2QztuHP2lqKdgiji4tfXRcOAAAmOAfopthd4qB3gMm6enHxq31hgM9TKAGqOFFaSXJBJCpjJzedb6JwAgDABOYA80lWkpwTDYCJOX9x8atDYYDPUygBqjhJ6iT5WCQqayflbpMUhZNNIQEAYExzgaUUu0vsMAcY/1y+c3Hxq9tCAZ+nUAJUdYI0jNVkdbGVW3ecbAoJAAAHmAt0UizM0YoLYHy03YK7UCgBKjo5+j+9JG+IRC1t5JbCyVesVgEAYD9zgkGSSyIBMBZnLi5+ZSQMcHsKJUCVJ0brsYqsCT4tnFxc/MqqcAAAsIc5QS/F7hKtuAAOMC+/uPiVrjDAnSmUAFWeFPWTvCYSjbOWG4WTkXAAAHCPecF8inNLzooGwL6cv7j4laEwwJ0plACVtrLxf7Zj9VjTraU8HH558SvrwgEAwB3mBstJBuYHAHuytbz4lY4wwN0plABVnwytJLkgEq2xk5vON1E4AQDgM/ODbordJVr0AuzO+WW7SeCeFEqAqk+EOkk+FonWul44ub7jZFNIAABaP0eYT7GzxIIqgLuzmwR2SaEEqMNEaDX6EVMmebl1x8mmkNz12emV/2Wn/N3JqPznppgCADXKdZZS7C7Rigvg9s4sOxsUdkWhBKjLBOh1keA2tlLuNklRONlu6TMyn6SbpFf+OkkWDvD/ciPJevnTAg0AqHIe1ElRLDktGmNxZXnxK8vCQIWe8c0Dzm3a7Nry4leWhAF2R6EEkBzRJBu5dcfJdoOfiU6SpfI36Q8DO7lRkFpta0EKAKh0bjRIckkkxpZT9y2WoSLPdi/JGyKxrzlcx9wNdk+hBDDxocnWcqNoMmrAczCfpF/+ZnmA6dUUBZNVQwwAqFCu1Euxu8QCq4PbSTJYXvzKilBQgWd7Jc4k2qsnzddgbxRKgFq48keHujMW1wsnqxcers8KuXL8D5Kcq9h/tK0kK0mGFx62UgkAqETeNJ+iWOKMw/G4lqQv16MCz/Z6ZrtYrE6uXnj4K31hgL1RKAHqlBg51J1x2slNbbqqWDipcIHkdrFcSbJiEg0AVCSP6pf5iYPex5PrLV142IHQzPSZ7pZzN8/03W0k6ZmXwd4plAB1Sowc6s6kJ4CjlGdxXHj4K5szHOvz5cT+XA1jOLjwsBYNAEAl5g/dFLtLrEIfU0gvPOygd3wTqPh8rFen7glQJQolQM0So/+7HStImI6t3LLj5MubUxrjyyl2kdR5nG8kWb7w8JdHhhEAUIE5hPMNxpvn9S88/GUfYpnV89xP8ppI3NZJzybsn0IJYJIDu7OVcrdJisLJ9pjHdifFisfTTXpkLzz8ZasOAYAqzCN6ZS5n0dXBlbuIv2wXMbN6noep3+77STt/4eEvD4UB9k+hBKhbQtRN8q5IUAEbuXXHyfYBxnU/ze2hbdUhAFCVucR8imLJadEYi/Kg9y87C4FZPM/DKJZcp0gCY6BQAtTO//jj/12PPsNUz1rKoskPd9ly6n8Uk/U6nkWyVztJln8oeQcAqjGfWE7yqkiMLc9b+qGWq8zmWR5GseS8eRaMh0IJYGIDk3HXwklZJBmlXUW/Kz/UigsAqMacwkHvY87zkgx+aHcJ03+W29yeW5EExkihBKhjIjSf5L9FghrZyU1tusr/2WqShRbG4uoPH/5y35AAACoyr2jD7t5p2UjS/6GWq0z/We6nXQe87yTpedZgvBRKgLomQqtJzooE1NK1chJtxSEAUIW5xVKK3SUOeh+Piz900DvTf457KRajNf053kjR7m7TXYfxuk8IgJpaFQKorbNJRuUqTgCAmfrhw19eTdJN0TqVg3v1f/zx/8r1mPZzPErSafhzfCXFTpJNdxzGz44SoJa034JG0IYLAKjaPGOQ5JJIjMVOil3EFrnhOfYsQeUplAB1Tn6034L6UywBAKo2z+imvefJTYKD3pnFc9xJ0VLvdN3nS0mWPT8weQolQJ0Tn37adWAbNJU+1gBA1eYa8yk+slqYNR4OemdWz3I/ySD1K3yupSgwjtxFmA6FEqDuSc92HLoITXDGJAAAqOB8o59kxZxjbCyQYVbP8iDJcg2e5a0UO0i02YIpUygB6p7saL8FzbCTpGNLOQBQwTlHJ0UrrkXRGIu1FLtLNoWCGTzP/VRzh4kdJDBjCiVArf3je//Zj/Zb0JhJ8w9OfKknDABARecegzjofVx2kvR/cOJLVs0zq+e5l6Sf5NyMn4NhkpUfnPjSprsCs6VQAtQ9uZlP8t8iAY1x8QcnvqQdAwBQ1flHL8WHTQe9j8fVJMs/OPElu4qZ1TM9n2QpSa/856Rbc22l2KE2UiiEalEoAZqQ2Gi/Bc2xk6RrRRUAUOH5h4Pex2srydIPTnzJQe9U4fnupiiadMvfQVvurSVZL38j8xyoLoUSoAmJzHKSV0UCGuPaD058aUkYAIAazEMGcdD7uFz+wYkvDYSBCj7r3STzSTrl727Wk2wn2VQUgXpRKAGakLR0knwsEtAoZ35w4ksjYQAAKj4X6abYXeKg9/FYS3F2yaZQADBN9wkBUHdlEr0hEtAoAyEAAGowF1n/wYkvdZNcEY2xOJ1k/R/f+8++UAAwTQolQFOMhACaNUkuD0sFAKi8H5z40nKSMynOW+NgDiV57R/f+8/V8jwYAJg4rbeARvin4oPqGyIBjbL2/RNf6gkDAFCjeYmD3sdrK0k/yeb3teMCYIIUSoAmTUq80KB5znzfWSUAQP3mJg56Hy8LaACYKK23gEYlz0IAjdMXAgCgbr5/4ksrSXpxluK4nP6n9/5z/Z/e+8+uUAAwCQolQJOMhAAa59w/6U0NANTQ9098af37Dnofp8Uko3K3DgCMlUIJ0CQjIYBGWhICAKCuvu+g93E6lOTVf3rvP1ctpgFgnBRKgCZNQEaiAI3UFwIAoAFzlU6Sa6IxFmeTbP7Te/9pQQ0AY+Ewd6BR/vm9j0dJTosENM4Xvnfi8LYwAAANmLMsJ3lVJMbmSpKBXBGAg7CjBGiadSGARrJaEABohO+dOLyS5GQc9D4uF5KM/vm9jx30DsC+KZQATbPZwmveSnI+xUoqky2aqicEAEBTfO/E4fUyv3HQ+3gsJnn3n9/7eCAUAOyH1ltAo/zzex/3krzRwku/+r0Th/tlDOZTrL7vlb8FI4MG2PreicMdYQAAGjiHWUoyTHFQOQe3lqT/vROHN4UCgN1SKAGaNsnopZ2FkuSmYslnYtLJjaJJLwon1NdhE14AoKHzmPkkq3He4rjspCiWrAoFALuhUAI0bYLRS3sLJckdiiWfiVEnt+44sXKNujjzvROHR8IAADR4PuOg9/G6lqJg4qB3AO5KoQRo2sSil3YXSpLkYnlA5G5j1s2tO04UTqiqy987cXggDABAw+c03RStuBZFYyy2UhRLRkIBwJ0olABNm1T0olCSJOe/d+Lw8AAxvP6z9Z8queeOKQCAhsxr5pMMklwQjbGx6AaAO1IoAZo2oRgkuSQSSQ5QLPlMTHspiiZLsaqN2Vr73onDPWEAAFo0v3HQ+3htpNhdsi4UANzsPiEAaKzXym37B/K9E4dH3ztxePC9E4e7Sb6Q5MkkV8pJBkxTRwgAgDYpDyPvpDhrg4NbTDIqz4IBgE/ZUQI0yr+8b0fJZ+wk6X33+GRWTP3L+x/P58Zuk16SBSFnkr57/PCcKAAALZ3rLKdox2V3yXhcS9L/7nEHvQOgUAI0b/IwiELJZ020WPKZ+Hdy68HwCieMlUIJANDy+Y6D3sc/V+p/9/jhVaEAaDeFEqBpE4dBFEpuZytJd9qrpcrCyfXdJr1Y/cYBKZQAACT/8v7HK3HQ+zhdSTKwuwSgvRRKgKZNGAZRKLmTjRQ7S7ZneH+6uXXHicIJe6JQAgDwaW7dS7Iqpx6brSRL09iJD0D1KJQATZssDKJQcjczL5bcZnJ3/Xfa7eFeFEoAAG7Jp+dTtOI6Kxpjc/m7xw8PhAGgXRRKgKZNFAZRKLmXa989fnipovevlxuHw+u7zOcolAAA3DaPdtD7eK2lOLtkUygA2uE+IQBonbP/8v7Hwyr+B/vu8cOj7x4/PPju8cPdJF9I8mSKfsEbbhsAANwxj15JseBI3jwep5Os/8v7H/eFAqAd7CgBGuX/fX/ToYa7d/U7xzv9Gt3b+dzYbdJLsuAWts93jnfsKAEAMCeapmtJ+t853nHQO0CDKZQATZsUjOKsi724/J3jnUFN73Untx4Mr3DSAgolAAC7ypV7cdD7OO2kKJasCgVAMymUAE2bEIyiULJX579zvDNswL3v5MZuk55JYSNtfOd4pysMAAC7yo8d9D4Za0lGSVa/c7yzLhwAzaBQAjRtMjCKQsl+NKJY8pmx0M2tO04UThowKf3O8U5PGAAA9pQX95OsyIcnYidl0STJ6DvHO5tCAlBPCiVA0yYBoyiU7NeZ7xzvjBo8Nrq5sePEGKmnK9853lkWBgCAPefCnRQf8xdFY6K2yjiPUhROnGsCUBMKJUDTJgCj+Ai+XztJem3ZPl72bb7+M2bq4eJ3jndWhAEAYN858CDJJZGYGm26AGpCoQRolP/5gULJAe0k6X37WLuS+P/5weZ8bm3TZaVdNZ359rHm7noCAJhS7ttLcXbJgmhMfa41Kn+r3z6mTRdAlSiUAE1L+kdRKBlHAt/59rH2bhP/TOFkySSyGr59rDMnCgAAY8t3h3HQ+yxt5abzTdo8/wKoAoUSoGkJ/ygKJeOwkWJniWS9GFed3LrjROFkBmPy28c6XWEAABhrntuPg96rNL4OvRgAACAASURBVAe7XjQZCQfAdCmUAE1L9EdRKBlnoq5Ycvtx1smN3SY9E8upuPLtYw5yBwCYUG47NI+qlJvbdI3a1hoZYBYUSoCmJfnb8dF6nNa+fazTE4a7jrlhknMiMXHOJwEAmGxeO4iD3qvqepuuUYrzTSxmAxgzhRKgacm9l9r4Xf32sU5fGO445vpJXhOJidr59rHOvDAAAEw8t+0meVckKm8jN4omI+EAODiFEqBpib2X2mQoltx5zM0n+W+RMP4AABqS3w5jx3TdXIs2XQAHolACNMr/p1AySVe+5YyIO407k8nJevJbxzqrwgAAMJXctpPkY5GorZ2Uh8InGX3rWGdTSADuTaEEaFpS76U2Wee/dawzFIbPjbulJK+LxERsfetYpyMMAABTzW+HsRCoKa636RpZfARwZwolQNMSei+1yVMsuf3Y20yyIBJjd/lbxzoDYQAAmGpu24ldJU21lnLHybe06QL4lEIJ0LSE3kttOrRC+vzYW07yqkiM3Re+dayzLQwAAFPPb4exq6TpdlIeCh9tuoCWUygBmpbMe6lNL6HuWYF0y9ibT7KZ5JBojM3VbznEHQBgVvltN8m7ItEqW7n1fBMLloDWUCgBmpbMe6lNj2LJ58ffIMklkRibw1a1AQDMNL8dJTktEq21lnLHiXkf0HQKJUDTEnkvtenaSdL1MfvT8WdXyfjYTQIAMPv8tpfkDZEg2nQBDadQAkjiOaiNFDtLbMsuxmE/yWsiceBJWMeYAgCoRH47il0lfN5Wbi2cyN2BWlMoAZqUwPeiUDIriiW3jsX1JIsisW8Xv3WssyIMAADmWdRqTni9aDISDqBuFEoACTxjS4y/dazTFQZj0TgCAGhcfjuKXSXs3vU2XaMU55tsCglQdQolQGP8rw+2evFxetau/u2xhb4wJP/rg62VJBdEYs9O/u2xBQdFAgCYa9Ec19t0jZKs/u2xBZ0IgMpRKAEk74ybYsmNMakF195c/ttjCwNhAACoZG47il0ljMdGbhRNRsIBVIFCCdCkxL0XhZKqUCwpxmS3nAAcMiTuae1vjy30hAEAwHyL1rlWzptGdpcDs6JQAkjcmZTzf3tsYWhcbvWTvGY43NVWkq4t+AAAlc9tR7GrhMnPDUa5UTjZFBJgGhRKgCYl7b0olFSNYkmcV3IPO0l6Vo4BAJhzwW1cb9M1+ttjC6vCAUyKQgkgaWfSFEuK8TlMcs5w+JwnTXgAAGqV145iVwmzs5ZkNdp0AWOmUAI0KWFfSvK6SFSOHQMmlXeiiAYAUL+cthcL1KjOXHM12nRdfzbnk3TL33ySXvm/mk+yeIf/s7Xyn5vlbz3Jpvk7baRQAjTGv364NUhySSQqm8D2/uZou5Otf/1wa75M4hcNiZz/m6OKJAAANc1rR7EAiOr5tE1XktHfHG32GYjl/HIpRUGkl2RhzP8WazfFcmR40XQKJUCTkoRBFEqqTLHkRjI7THK2xWFQJAEAqHdO24tdJVTf9Q/9q02Zh5bzyX75m+YCvOu7d1b/5qjWyTSTQgnQpGR9EIWSqttIUSzZNl5beWbJTpK+xBoAoBH57Ch2lVCvucgoZauuvzlarzZdZXFyOdVYcLeTYvHfSt3iCHejUAI0KVEfRKGkDhRL2jlmt5IstX1HEQBAg3LZXuwqod7zk0/PN6nq/PRfP9zqJxlk/G21xuVqkqHWXDSBQgnQpER9EIWSulAsuTFul1KsxjnU4MtcS1Ek2Tb0AQAalcuOYlcJzZmjXt9tMqrAs9VPtQskn3UtybIdJtSZQgnQpCR9EIWSOrn2N0cXloQh+dcPtzopiiVNnGRe/pujCwN3GQCgkXlsL3aV0DzX23SNUpzJsTnFZ6qbZKXGc8MrSQYWyVFHCiVAY/zbh/81iEJJ3Vz95tEv9oXh0zG8nGLVUBN2l2wk6X/z6Be12gIAaHYOO4pdJTTbVm463+SbR7+4PYHnaL6cC15oQLx2yrmgsympFYUSoEkJ+iAKJXWkWHLrOO6kWEF0tqaXsJNk5ZtHvzhwNwEAWpG/9mJXCe2ykbJw8s2jXxyN4RnqpijCLDQsTtdSFEzsLqEWFEqAJiXogyiU1NXFbx794oowfG7CuZJksUb/sa8mWZYIAwC0Lncdxa4S2utaylZde91RX3YVeLXBsdlKsqTTAHWgUAI0KTlfTX1X4ZOc/+bRLw6F4XPjup+kX/GJ59Ukg28e/eKmOwYA0MqcdSnJ6yIBn7bpGqXYcbJ9h2dmPsU5lW35hmG+T+UplABNSs5HsYpJ8tTc8d1LUTA5V6EJwDDJUIEEAIB/+/C/NtO81kFwUNfbdI2un9lRFklGqVf3gHG48s2jX1w2JKgqhRKgSYn5KAolTXDStty7jvP5FAWT/gwS650UvXNXHcwHAMBn8tR+ktdEAu5qLUkn7S0qOqOUylIoAZqUmI9S70LJTpLNtG9Vye3i0FMs2dWY7yTpJVkq/3loAv82n1sBBQAAd8hPN2NXCXB3iiVUkkIJ0KSkfJR6F0rWUnzw3sxkPnjXiWLJ/p6BTpLuTb/58p+7GU9b5dhbv+mf6w5mBwBgD/loP3aVAPemWELlKJQATUrKR6l5oeSbR7/Y+7cP/6ubYgV/24slW0m6PtSP/Tnplf/lprNFAACYQL65GbtKgHtTLKFS7hMCgGopd1H0UuyqaLOFJKPyTA7GN75G5W9TNAAAmICBEAC7cO7fPvwv7wsqw44SoDF++1H9d5Q8deSLvZuup5fkDXc2G0l6Tx2xswQAAGoyN9uMXSXA7px/6sgXh8LArNlRAlBRTx354ijJeZHIYhKHiAMAQH0MhADYpZXffvRfXWFg1hRKACqsXFWhWJKc/u1H/zUUBgAAqM08ZkskgF04lMR8n5lTKAEaZO50Mpd6/+40yZi7XP9rO/Dv3G8/+qvkCQAA6jE/G5jD+Pn57fK3+NuP/rrivcksKZQA1MBTR+4fJLkqEjn324/+OhAGAACo/BxmGLtKgN278NuP/toTBmZFoQSgPhONfhRLkuTSbz/6a18YAACg8gZCAOyBXSXMjEIJQHWs3+tfUBZLrglVXlMsAQCAarOrBNijxd9+9NdlYWAWFEoAqmN7l/+6fpIN4cprtuUCAEDlDRp6XTtJLsZCNhj7O+O3H/11XhiYNoUSgJp56sj920l6USxJktXffvTXrjAAAEBl5y/DNHNXyaEk208duX/pqSP3zyU5k+SyeRqM5dmyq4SpUygBqOdk43qxpO3b2A8lGSmWAABApQ2afl1PHbl/9NSR+wdPHbm/m+QLSZ5Mccak1mOwd8t2lTBtCiUANVUWS5ZSbPlus+vFEkkUAABUc+4yTDMLBgu3OzvxqSP3bz915P7Vp47c33/qyP2dJIdzo03XjhEBu5rn21XCVCmUANR7wrGeYmeJYoliCQAAVNmgrdf11JH7N586cv9K2aZrPjfadK0ZFnBHfSFgmuY++eQTUQBqr/xA/t81v4zLTx25f7DP6+8meddIyEaSXrnbBgAAqNa8bTPJQgMv7Xy5a2a/c9le+VtqaHxgv5586sj9q8LANNhRAjRFq8+oKHeWnDcMsphkJAwAAFBJA9f1ubnc9TZdyze16TofbbogsauEKbKjBGiE3370116SN2p+GfveUXJTHPpJXjMicvWpI/dLqAAAoHpzt83YVbKXeHVT7DTpJTltBNFCX9A1gmmwowSgQcrE/KJI5NxvP/rrUBgAAKByBq5rT3O89aeO3D946sj9vaeO3D+X5MkkV1K0HYY2WBICpkGhBKA6RmNKpFeSXBXOnPvtR39dEQYAAKiOcnFXE1tKLZQ7/Ccdv+tturq50abrarTporkUSpgKhRKAZk4++lEsSZIL05isAAAA/397d3fcxpVuDXh5au7JE0CX6Mu+Eh2B4AhERyCoE/joCARFcOgEICgCUxEYimDAK1wOWQjgkBHou+imJf/IEkV0o3+ep8o1c+pUjY3VrZm9sfDu/SBj/UHTecf7vuuqLFZVWcyrsjhO8kPqEwbee8UYkecioAuKEoCRUpb87o2yBAAAeuUi45yAeNrcn3moPeCmKosLx3QxNof8c8V0KEoAxu3cojhJXZYY1wUAgB5oLmYe61TJokc5f3pM1//k4zFdN95CBmYmAtqmKAEY/wZkFmVJkqyW292pGAAAoBfGOlXyrI+/fq/K4vaTY7pO8vGYrndeRQbAXp7WKUoARk5Z8rujJGtlCQAA9GafYqrkcPnfH9N11hzT9WMc00V/2cfTOkUJ4H80p7MJmWecv9h6iPuy5MRbAQAAB2eqpD97xvWfjun6KY7poj+eiIC2KUqAsTgWwRcXvpvUkyXKkuRyud15ZwAA4LB7FFMlPX0uzf0m98d0fZ+Px3TdeXM5BBe60zZFCcC0NiLKktrT1JMlyhIAADgsUyX930def3JM13HqY7pexzFdwIgoSgD647ajRe4mybm4lSUAAHBopkoG+czWVVks/nRM1y9xTBftmomANilKAPqz2Nx0+PdaJXkp9Twd8aYMAACGwlTJcPex98d0nX9yTNfLOKYLGBhFCcBEKUt+92K53a3EAAAAB9ubmCoZz7O8rspi9ckxXT+kPqbrvTcd6DNFCcC0NySr1CPSU6csAQCAwzJVMs4956Y5pmsWx3QBPaYoAZi4qizOk7yVRF4st7u5GAAA4CD7ElMlE3jGnzmm620c0wUcmKIEgFRlMY+yJEneKEsAAOBgTJVMax96f0zX/JNjun6OY7qAA1CUAHC/SJ0nuZKEsgQAAA60JzFVMu3nv6nK4qIqi1lVFt/l4zFd9qlA6xQlwFjMRLC3HC1Ck4vldncqBgAA6H4tHlMlJPnkmK7T/PGYLvebAHunKAHg04XobZQlSXKUZK0sAQCAg+xJTJXw5/fi02O6TvLxmK530gH2QVECwN9tTM7iMj1lCQAAHIapEr60b70/puusOabrxzima+xuRUCbFCUA/dCrxVxVFtepJ0uUJclqud0de0UBAKCz/YipEh76zqw/Oabrf+KYrjHaiIA2KUoA+qF3v4yoymITZUmSPE09WaIsAQCA7pgq4Vv3srd/Oqbr+3w8putOQoNlooRWKUoA+KcF5ibJXBLKEgAA6HgvYqqEfb1L158c03Wc+piu13FM19Ceo4kSWqUoAeBLi5HL1GPLU/c0yUoMAADQmbEWJaZKDrvHXVdlsfjkmK6f4piuvlNq0TpFCQBfs5BcRVmSJM+X291KDAAA0Mk+5Db1F9hjtPCE+/GOVWVx+adjul7GMV19Y5qE1ilKAPjaBeQq9Xjy1L1QlgAAQGcWI/1cz5bb3YnH27t973Vzv8n9MV0/NPvg99I5KEUJrVOUAGPh7ohuFo2LjPcXXQ/xYrndnYsBAABa34Ncx1QJh3v/Ns0xXbN8PKbrlzimq2trEdC27z58+CAFYPCW293Q/8vsfbPwGkreqyQvvHl52UzaAAAA7e0/TpL8d6Qf7/umDGJ47+VZkl8l0bq7ZroHWmWiBIAHq8piHqPHSfJmud3NxQAAAK3uP65jqoT+vZeXUuiEnOmEogSAb3WW5EoMebPc7k7FAAAArVqM9HO9cFfJoL0TQesUJXRCUQLQD+uh/QNXZXGbZBZlSZKslSUAANDq/uM6pkroH1/it+vO5A5dUZQA8JjNyn1ZcjfxKI6iLAEAgLYtRvq5TJUMd0+8sh9ulZKEzihKAHjswlBZUrsvS1wyBwAA7ew9rmOqhP7xZX57LkRAVxQlAOxjw7KJsiRRlgAAQNsWI/1cpkq8k/zRVfNdA3RCUQLAXjQLmDNJ5GmUJQAA0Na+4zqmSujfO/leEntnmoROKUoA2OcCcZ3kpSTyNMavAQCgLYuRfi5TJd5JajfN/S/QGUUJMHgu0O6XZjGjLEmeLbc7CzsAANj/nuM6pkro1zu5jqkSfw4YNEUJMAaOOOrfInGV5GdJ5IWyBAAAWrEY8R7ixOP1Tk7YlWkSDkFRAkArqrK4yHh/5fXQjY4FMwAA7He/cR1TJfTrnVzbA+/FuQg4BEUJQD/cjnShOLdQTJK8Wm53czEAAMBeLUb6uUyVDNd5kjsxfLN3TeEEnVOUAPTDZqwfrClL3nnEeaMsAQCAve41rmOqhH69k7ee3Te7S2LPzMEoSgDowjzJlRjyZrndzcQAAAB7sxjp5zJVMlDNMdQudn+4eVM0wUEoSgDoYqF4m2QWZUmSXC63u1MxAADAXvYa1zFVQv+cxRFcD/G2KotLMXBIihIAutrA3JclNxOP4ijJWlkCAAB7sxjp5zJVMuz971wSX+UqLnCnBxQlAHS9WPTLmo9liU0PAAA8fp9xHVMl9O+9vEzyWhL/6C6O3KInFCUAdL1Y3KSeLFGW1MdwHXsrAADg0RYj/VymSoa9/11kvCXePpw13xHAwSlKgDGYiWBwi8WN55YkeZp6skRZAgAAj9tjXGe8F2gvPOFBv5vzuK/z77ysymItBvri3yIA4ECLxc1yu3uZ5M3Eo7gvS+7PZD1O8uf7S66bv5LkutkEAgAAf7RI8tsIP9eL5XZ37niiQZslWTf7P+qSZCUG+uS7Dx8+SAEYtOV2t0jyauAf48ep/pJiud3Noyz5Fjepy5N189fGxgkAAPvD3TrJsxF+tNfNMU4M9908jrIkUZLQU47eAuiHyZ7J2SyQXnoFHuxJswF8lfpXc/+33O42y+1usdzuTsUDAMBELUb6uc4d2Tv4ve9t6smS9xOOQUlCbylKAPqzYJry51/FBXf78DR1cfKf5XZ33ZQmJ2IBAGBCe4t1xvlF9FGSc094+Hv/qixmE9z/3iX5SUlCnylKAOjLgnEeZck+PUldmvx3ud1dLre7mUgAAJiIxUg/l6mSce1/f57Ix71KMqvK4tKTp88UJQD0bbGoLNm/50l+W253a4UJAAAT2FesY6qE/r+nF0l+SH3/5Fi9S12SbDxx+k5RAkDfnKf+xQn79ywKEwAApmEx1v2SqZLxaAqE09SFwpjcpb6P5GzqR40zHIoSAPq2ULy/4E5Z0p77wmRlkwUAwEj3FeuYKmEge+CqLM6S/JRxTJe8S3LqPhKGRlECjIEveke4UIyypAsvklwvt7szUQAAMEKLkX4uUyXj3Adfpp4ueT3Qj3CT5MdmiuTaE2VoFCXAGJyKYJSLxNsk89Qju7TnKMmvpksAABjhnmIdUyUMbB9clcUiyfcZzv2dN6mP2Tpp/szBIClKAOjzInGTerJEWdK+F0nWy+1O8QgAwJgsRvq5TJWMey98XZXFPB8Lkz7uiT8tSFaeGkP33YcPH6QADNpyu1unvnNhyIug7zzJf3zGp0nWqX85Rbvukpz5JRAAAPaMvXeV5DLJJsnapdmjfoePU5+4ME/y9MD/OG+TrOwZGRtFCWDRe3jvq7KYeZJffM5nSX6VRGde+lUQAAAj2UvMkvw2gY96lfoHZqtmOp9xvs8nqQuTs3RTmtw179VlkkuFHGOlKAHGsEhYR1EylWc9T/JGEp1RlgAAYN84TDdJVqlLk2tvwGjf6+PUx1XPUt/f+mxP784mHyeV1pJmChQlgAXv4SlKHva851GWdElZAgDAGPYRs0xjquTvOCppWu/6SZKT1MXJ/T02n/77e5skt3/69xsTI0yVogQYwyJgHUXJ1J75RZL/J4nOKEsAALB3HL73SRYKE4C/+pcIABiaqizOU/8qim68aSZ5AABgyBYT//zPkvy23O7WzdQBAA1FCQCDVJXFPMqSLl0st7tTMQAAMOA9xDr1VMXUPUvy3+V2t2juuACYPEUJMAa+vJ3uRmee5EoSnThKcmkjBQDAwC1E8LtXSTZ+EAWgKAHG4UgEkzaLsqQrT5JcigEAgKEyVfK3a/z/LLe7hSiAKVOUADD0jc5tlCVderbc7s7FAADAgC1E8BevmrtLTJADk6QoATi8WxE8TlOWnCW5k0Yn/td4PgAAA94/rJPcSOIvnsVRXMBEKUoADm8jgr1sdq5TT5YoS7pxIQIAAAZsIYK/9STJWlkCTI2iBIDRqMpiE2VJV54tt7u5GAAAGOjeYRVTJZ9zlLosmYkCmApFCQBj2/BsUh/DRfsunGEMAMCALUTwWUdJflOWAFOhKAFgdJozh19KopPNk4vdAQAY6r5hFVMlX3LpGC5gChQlAIx506Msad+5qRIAAAZsIYJ/dH8Ml7IEGDVFCQCj1ZQlryXR+sbJVAkAAEPeM5gq+fKa/9IPpIAxU5QAg+a8VL5i47NI8lYSrVKUAAAwZBci+KInSS7FAIyVogSA0avKYh5lSZuOltvdXAwAAAxNMyWxkMRXebbc7mQFjJKiBIBJaMqSK0m0xlQJAABDdJn6aCm+zisnOwBjpCgBOLyNCNrX/FLsRBKtebrc7uQLAMCQ9gjnSZ5J4sFW7isBxkZRAnB4tyLoxFn8UqyLjAEAoPccufUoT2KiHBgZRQkAU+FL/PbNRQAAwEBcxA+pHuOViXJgTBQlAEzFTAStc/wWAAC919yx8UISj7YSATAWihIAprIR8muxbsxEAABAzy1EsBfPXOwOjIWiBIApsHiXNQAA3P+IygXu+7MQATAGihJg6I5FwFeYiUDWAAAQX+zvm6kSYBQUJcDQnYoA70mvPFludwpMAAB6Z7ndncY0SRvORQAMnaIEgLFvhk7ifpKuKaYAAOgjX+i343mz7wIYLEUJAGNnwd49RQkAAL3STD2/kERr5iIAhkxRAnBgVVmspdAqX9p3z9FbAAD0zZkIWjUXATBkihIAxs6X9t1TTgEA0DeKknY9ae6AARgkRQkAY3cigs4ppwAA6I3m2K3nkmjdXATAUClKABi7ExEAAMCkmSbpxkwEwFApSgAAAAAYs5kIOvF0ud2diAEYIkUJALBvNkcAAPTJTASdcU8JMEiKEsAiDNi3JyIAAKAPmgkH69PuzEQADJGiBBg6l0ZD/1yJAACAnjgRQaf8mBEYJEUJALBvtyIAAKAnZiLolKIEGCRFCcBh3YkAAACgNSci6NTRcrtz8gMwOIoSgMPaiEDGAABAa05E0DlTJcDgKEoAGDvHQHXvWgQAAPTEiQgA+BJFCQBjpyjp3rUIAADoiSci6NxMBMDQKEoAGDtHb3XvWgQAAADAUChKABg7RUn3rkUAAAAADIWiBIBRq8riNsmdJDrNfC0FAAAAYCj+LQJgiJbb3XGSiyTPpMFXWCd5LoZOXIkAAAAAGBITJcDgLLe7s9RH+7wYwcc5WW53J55q6xy/1Z21CAAAAIAhUZQAg7Hc7o6X291lkl+THI3kYz1Jsllud+eecKsuRdCZtQgAAACAIVGUAIOw3O5OU0+RjPH4pKMk/7vc7i6bI8XYs6osNnFPSVfWIgAAAACGRFEC9N5yu5sn+U/GM0XyOc+TrJtSiP0zVdK+91VZ3IoBAAAm7VoEwNAoSoBeW253qyRvJvSRn0ZZ0hZFiYwBAJie9yLo3LUIgKFRlAC91ZQkLyb40Y9SlyVzb8H+VGVxGcdvtW0lAgAAmDxT5sDgKEqAXppwSXLvKMkbZcnemXhozzvHbgEA0ENrEXSruSMSYFAUJUDvKEn+QFmyXxciaM1KBAAA9NC1CDp1JQJgiBQlQK8oSf7WhTtL9qP5ZZMzivfvpjnaDAAA+uZaBPIG+BJFCdAby+1uESXJ37m/s0RZsh8LEcgUAIBpqMpiLYVOyRsYJEUJ0AvL7e4syStJfNZRktVyuzsWxV42SqZK9uemKouVGAAA6DHr/+64nwQYJEUJcHDNpMRKEl/0VE57sxCBLAEAmIy1CDpxZ4IHGCpFCdAHq9QTE3zZ8+V2dy6GxzFVsjemSQAAGAL36XVjLQJgqBQlwEE195I8lcSDLJbb3YkYHk3h9HhzEQAA0HdVWWyS3EmidQopYLAUJcDBNEduuZfk4Y7iCK59bZZeS+KbvTNWDwDAgPgSX8YAn6UoAQ5pJYJv9swRXHtxkeRGDA92F9MkAADYf/LRu6osbsUADJWiBDiI5XY3jyO3Hmux3O6OxfDtmoX8mSQebG4TBADAwNb+6/iRVJtWIgCGTFECdK75cv9CEo92FPds7GPDtEnysyS+2i9VWRipBwBgiOxD23FjjwAMnaIEOITz1F/y83ivXOz+eFVZXCR5J4kvuqrKQjkHAMBQreJS97ZyBRg0RQnQqWaaxBet+7UQwV7Mk1yJ4bPukszEAADAUDXHx5oq2f8+QabA4ClKgK7NY5pk387cVbK3TdNZ/MLsc5ufmXtJAAAYgQtr/v3maZ8AjIGiBOiaaZL9O0pdQPFIVVlcp56asHH66L4k2YgCAIARrPlNlex3ryBLYBQUJUBnltvdWZInkmiFAmp/G6dNlCWfbnyUJAAAjI2pkv1YmCYBxkJRAnRpLoLWPFludzMx7IeyJImSBACA8a73b+PHZo91VZWFaRJgNBQlQCeaOzSeS6JVcxHsdfN0X5ZM8YJ3JQkAAGNf76+SvJfEN1M0AaOiKAG6ciYCGQ9w8zTFsuQqyamSBACACZjHEVzf4peqLNZiAMZEUQJ0xZf47Tty/Nb+VWVxW5XFaZJfJvBx36aeJLn25AEAmMBa/zrJQhIPciUzYIwUJUBXZiLohEKqvU3UeZKfMs5fnN0leVmVxdxljAAATGydf5HknSS+et9gzwCMkqIEaN1yuztNciSJTsxE0Oom6jLJycg2Uu9TH7W18oQBAJioeaZ5N+FDnTuiFxgrRQnQhZkIOvNUBO1qjuI6Sz1dcjPgj3I/ReKoLQAAJr/Gj/tKvuQXP64CxkxRAnThVATdcU9JZ5upy+bdfj3ADdXrJCc2OgAA8Pv6fpP6R37Kkr962xxFDDBaihKgC4oSeY91M3VblcUi9XFcfS9M7lJf1v59VRYL5woDAMBf1vebJAqBP3pflcVcDMDYKUqALjgOqlsnIuh8Q/VpYfJz+nUkmgE2AwAABcpJREFU100+TpDMHbMFAAD/uLZfJXkpiST1vS1nYgCm4LsPHz5IAWjNcrs7SfJfSXTqfVUWMzEc/N2fpT7n+CzJUcd/+7skl0kumyPCAACAh63n50kuDrCW74u3qS9vN4kOTIKiBGh7cTlL8pskOnVVlYXjt/r35+As9ZnHbU1YXSVZJ1krRwAAYC/r+NNmjT21suSt47aAqVGUAG0vLM+S/CqJblVl8Z0Uevtn4jj1PTKz1Ed1nTT/99duvu6SbJLcNv+6TrLxSy8AAGhl/X6aZJXpHCn9c1UWF548MDWKEqDtReUiyStJdEtRMug/M7PP/L+UIQAAcJg1+nHqsuT5iD/mXZKzqizWnjgwRf8WAQD0h40JAAD0bo1+m+Rsud2dJ1lkfEdxvU9dkvhhFjBZ/xIBAAAAAPyz5kiq09TFwhjcpT5qa6YkAaZOUQIAAAAAX6Eqi+uqLGZJXqYuGobqbZIT95EA1BQlAAAAAPAAVVmskpwkeZ1hFSbvk/xYlcXcFAnAR4oSAAAAAHigqixuq7JYZBiFyX1BMnMvIsBfucwdAAAAAL5RM5mxWG53F0nmSc6TPOnBP9pdksskF1VZbDwpgM9TlABtM8oLAADA6DWFyUWSi+V2d5q6NDlL96XJu9QFyaXjtQC+zncfPnyQAtCa5XY3S/KbJDp1V5XFsRgAAAB6sS8+TV2YzJI8a+FvcZNknbocWStHAB7ORAnA+BipBgAA6Inm2Kvf92lNcXKa+m6T0yTHzb8efeE/6ir1qQ2b5l/XSTaKEYDHM1ECtG653fkvmm69q8riTAwAAAAA8GX/EgHQgTsRdMpECQAAAAB8JUUJ0AVf3MsbAAAAAHpJUQJ0YS2CTilKAAAAAOArKUqALvjivjs3VVlciwEAAAAAvo6iBOjCWgSdUUoBAAAAwAMoSoDWVWVxm+RKEp24FAEAAAAAfD1FCdAVX+B3Yy0CAAAAAPh6ihKgK4qS9l25nwQAAAAAHkZRAnSiKotNkhtJtGolAgAAAAB4GEUJ0KULEbRqJQIAAAAAeBhFCdAlx2+1521VFrdiAAAAAICHUZQAnWnuz3griVasRAAAAAAAD6coAbq2EsHeXVVlsRYDAAAAADycogToVPOF/ntJ7JW7XwAAAADgGylKgENYiGBvrqqyWIkBAAAAAL6NogToXDNV8k4Se3EuAgAAAAD4dooS4FB8wf94791NAgAAAACPoygBDqIqi+skryXxze6SzMUAAAAAAI+jKAEOpiqLRZIrSXyTi6ZsAgAAAAAeQVECHNpcBA/2vimZAAAAAIBHUpQAB1WVxSaO4HoIR24BAAAAwB599+HDBykAB7fc7tZJnknii36qyuJSDAAAAACwHyZKgL44i/tKvuS1kgQAAAAA9stECdAby+3uNMk6yZE0/uJtVRZzMQAAAADAfilKgF5Rlvytq6osTsUAAAAAAPvn6C2gV5rL3WepLy2nPo5sJgYAAAAAaIeiBOgdZcnvrpLMqrK49VYAAAAAQDsUJUAvKUvyLkoSAAAAAGidO0qAXmvuLFkleTqhj+3idgAAAADoiKIE6L3ldnec5DLJswl83JdVWaw8dQAAAADohqIEGIzldrdI8mqkH+8myVlz5BgAAAAA0BF3lACDUZXFIskPqUuFMfklyamSBAAAAAC6Z6IEGJzmKK7zDH+65CbJvCqLtacKAAAAAIehKAEGa7ndnaS+6H1od5fcJbloJmQAAAAAgANSlACDt9zuZkkW6X9hcpfkInVJcuvJAQAAAMDhKUqA0WgKk/Mkz3v2j6YgAQAAAICeUpQAo9McyTVv/npywH+Ud0kuq7JYeSoAAAAA0E+KEmDUltvdaerCZJbkaQd/y3dJLlMXJKZHAAAAAKDnFCXAZDSTJqepS5PT5q+jR/xH3iTZNH+tq7JYSxkAAAAAhkVRAkzacrs7Tl2YJHWB8k9uU5cit1VZbKQHAAAAAMP3/wGam2J0EY3spQAAAABJRU5ErkJggg=="

const logoBase64 = "iVBORw0KGgoAAAANSUhEUgAABkoAAAhPCAYAAACXR9fmAAAACXBIWXMAAC4jAAAuIwF4pT92AAAgAElEQVR42uzdbXMc53kn+j9Ufk/sJ+DsJ+D4LUQKLaaQnLObDSEnJ44rm3AY2IkdO0XIZbtkR4lGipS44tQKKjvrnGPBHCR22Y6TCPQ6zgNqxYEp462BT2DgEyzxBYLzohsCKfEBIOahu+f3q0LJlq2HubqbvK/593Xfc0dHRwGYVes7S0X1H4v7/nTxgf/bfvWTJPeS7CbZX1nY2ldBAAAAAGi2OUEJMCvWd5a6KUOQIkk3ycUR/G23UwYnu0k2Vxa27qk0AAAAADSHoARotfWdpeUkxz8XJvCP3EsyTDJYWdjadQUAAAAAoN4EJUDrVJMjq5lcOPIoe0kGKUMTkyYAAAAAUEOCEqA11neWekl6SRZr+K+3kaTvXBMAAAAAqBdBCdB4VUDSz2jOHBk3gQkAAAAA1IigBGis9Z2lIslakksN/Nd/K2VgYksuAAAAAJgiQQnQOOs7S/MpA5LrDf8oh0lWVxa2Bq4qAAAAAEyHoARolPWdpeWUB6RfaNHH2k6ybLoEAAAAACZPUAI0QjVF0k9ys6Uf8TBJb2Vha9PVBgAAAIDJEZQAtbe+s9RJsplmnkVyVq+uLGz1XXUAAAAAmAxBCVBr6ztL3STDtGurrSfZSHl2ia24AAAAAGDMnlECoK7Wd5Z6mb2QJCkPqR9W240BAAAAAGNkogSopSokuTXjZdhLUpgsAQAAAIDxMVEC1I6Q5H2XYrIEAAAAAMbKRAlQK+s7S8tJ3lGJB5gsAQAAAIAxMVEC1EZ1cPtAJT7kUpJNZQAAAACA0ROUALVQbS81zOwd3H5ai+s7SwNlAAAAAIDREpQAdTGMkORJrlfntwAAAAAAIyIoAaZufWdpLeX2UjzZWrVFGQAAAAAwAoISYKrWd5aKJDdV4tQuxDkuAAAAADAyghJgaqpzSQYqcWaX1neW+soAAAAAAOcnKAGmqZ/kojI8lVdswQUAAAAA5ycoAaai+pLfllvns6YEAAAAAHA+ghJgWnzJf36L6ztLy8oAAAAAAE9PUAJMXHWA+6JKjITACQAAAADOQVACTENfCUbm4vrOUk8ZAAAAAODpCEqAiTJNMhZ9JQAAAACApyMoASZtVQlG7qKzSgAAAADg6QhKgIlZ31nqJLmmEmPRUwIAAAAAODtBCTBJpknG51oVRAEAAAAAZyAoASbJ9lDqCwAAAAC1IigBJmJ9Z6mb5KJKjFVPCQAAAADgbAQlwKT0lGDsLtl+CwAAAADORlACTEqhBBNh+y0AAAAAOANBCTB21ZTDJZWYiEIJAAAAAOD0BCXAJHSVYGIKJQAAAACA0xOUAJNQKMHEXHBOCQAAAACcnqAEmAQTJeoNAAAAALX0ESUAJsAX95Ov96YyAAAANM/6zlJx33/dXVnYuqcqAOMlKAHGvcCbT3JBJSZKMAUAAFDfHrmbcovqzn0/Fx/z19z/X7eT3EuyW/3sryxs7aoswPkISoBx86X95M0rAQAAQD2s7ywtpwxGiiSXzvm3W6z+eO2+v/9hkmH1s7mysLWv6gBnIygBaB/hFAAAwBRV4cjxz7h3WbiQMji5luTN9Z2lvSSDCE0ATk1QAoybL+0nz1ZnAAAAE7a+s9RJ0qt+Lk7xX+VSkjdThia3k6ytLGwNXSGARxOUAONmGygAAABaqwpI+kmu1/Bf71qSa+s7SwdJ+isLWwNXDODDBCUAAAAAcEbVwexrqWdA8kEXk9xa31nqJ+mZMAF40DNKAAAAAACnVwUO+2lGSHK/i0nurO8sDatJGAAiKAEAAACAU1nfWequ7yztJnklzT4fcjHJL6rAB2DmCUoAAAAA4AmqUOHnKQ9Lb4tX1neWdk2XALNOUAIAAAAAj7C+szS/vrM0TDlF0kaXkuyu7ywtu9rArHKYOwDUo/nqJOk84f+2v7Kwta9aAAAwsXV6N8kwzd5m6zQuJHlnfWfprZWFrVVXHpg1ghJg3HaVAD7UaN3/00l5oOJp//okOayerfd/Vha2PGsAADDatftykkHaH5Lc7+b6ztJ8ktWVha177gJgVswdHR2pAjDOhWWR5I5KTNT2ysJWoQy1eQbmkywnKao/jqvJOkz5pttmkqHJEwAAONc6vpfk1gyXYC9JISwBZoWgBBj34rKT5BcqMVGCkvo0VstJrk3rPkj59tum5gYAAM68lr+lEsISYHYISoBJLDL9QjNZr64sbPWVYSr3eifJapJe6jOef5hyyqRvygQAAJ64pu9FSHI/YQkwE55RAmBCCysmZ18JJt5MddZ3lgYpp6dupl57GF9Icj3JL9Z3lgbVGSkAAMCH1/XLEZJ80KWUk+oArSYoASbBIdOTta8EE2uk5u8LSK434F/5epKfV4FJxxUEAID31/bdCAQe5VrV9wC0lqAEmARByQStLGwNVWEijdRqylDqegP/9Y8nTPquJAAA1vZL8ym3q72gGo/uIaptyQBaSVACTMJQCSZmWwnG3kR113eWdpO82YJG6pX1naV923EBADDjNpNcVIYnuqV3ANpKUAKM3crC1m7KA6UZv6ESjE81RTJMuU9vW1xMuR1X3xUGAGAG1/j9JIsqcWqb1QQOQKsISoCJLaaUQJ0b3DzNr+8sbaYdUySP8sr6ztJQ0wMAwAyt87tJXlGJM7mYpK8MQNsISoBJ8QX++B1U0zuMtnnqpJwiuTYDH3cxya5xegAAZsRACZ7KzfWdpUIZgDYRlAATsbKwtRnbb42bMGrEqsBgN+3aautJLiYZru8sLbsDAABo8Vp/dcbW+aM2UAKgTQQlwCT5It9CtUmNUzflJMmFGfz4F5K8s76z1HMnAADQwrX+fGwfdV4XnXMItImgBJikgRKMjW23Rts4zXJIcr9bwhIAAFqob60/EqvOOATaQlACTMzKwtYwyYFKjG2hzwgIST5EWAIAQJvW+50kN1ViJC4kWVUGoA0EJcCk9ZVg5A5jW7NRNU1Ckoe75YB3AAD0pDyEqRKgFQQlwEStLGwNYqpk1NZWFrbuKcP5VIv7zQhJHmUoLAEAoAVr/usqMVKmSoBWEJQA09BXgpE5TLKmDCMxTHJRGR7bAA28LQYAQIP5Ql9dAR5KUAJMnKmSkTJNMgLrO0trSS6pxBNdimAOAIDm6inBWFxwriHQdIISYFr6SnBuB/Gl9bmt7ywVcZjjWVzXBAEA0MB1/3JMkI/TshIATSYoAaaimirZVolzWTVNcu5maT7JQCXObG19Z6mjDAAANIgv8sfrmm16gSYTlADT1FOCp7a9srC1qQzn1o+3yp7GhQiYAABoFkGJGgM8kqAEmJqVha39JK+qxJkdRsh0brbcOrfFavsCAABowtr/gkqMnf4AaCxBCTBVKwtb/diC66x6VcjE+fSV4NyckQMAQBP4An8yrikB0FSCEqAui9ZDZTiVDVtunV91GPmiSpzbxfWdpb4yAABQc4USTKzXUmugkQQlwNRVB5J7w+fJ9lYWtnrKMBJ9JRiZVYc2AgBQc5eUYGIKJQCaSFAC1MLKwtYwyQ2VeKRDC87RqKZJHOA+OheSrCoDAAA1Xf/royarqwRAEwlKgNpYWdgaJHlLJT7kMElRTd5wfr7UH72eEgAAUFO+uFdvgCcSlAC1srKwtZpkQyXedxyS7CrF+VVvkxm7H72L1aQOAADUTUcJJtsbKAHQRIISoHaqcziEJUKScegpgdoCADBTTDhM2PrOkpoDjSMoAWpJWCIkGcNifT7JskqMzeL6zlJHGQAAYObNKwHQNIISoLaqsOTFGfzoBxGSjMNyyoPHGW+NAQCgThaVYOI6SgA0jaAEqLWVha21JC+knLCYBXtJukKSsfAl/vj1lAAAAGZeRwmAphGUALW3srC1maRIGSK02VsrC1vdlYWte676WBRKMHaXqi3OAAAAABpDUAI0QjVhUSR5q4Uf7zDJCysLW6uu9His7ywVse3WpJjcAQAAABpFUAI0xsrC1r0qTHg+5TkebXCQpFNNzTA+hRKoNQAAAMDDCEqAxllZ2Bom6SZ5Nc0/u2TfVlsTUSjBxHSVAAAAAGgSQQnQSNV0ST+JQ885DV/eT84lJQAAAACaRFACQKut7yx14nySSde8UAUAAACgKQQlALRdRwnUHAAAAOBRBCUAtJ1ttyavowQAANTEgRJM3FAJgKYRlADQdvNKMHEdJQAAoCb2lQCAJxGUANB2HSVQcwAAZta+EkzcrhIATSMoAZgu20KNX0cJAABgZu0rwUQdrixs3VMGoGkEJQDTdUEJAAAAxmaoBBNlmgRoJEEJADBqzoUBAKAufHE/WUMlAJpIUAI03b4SQO1cUgIAAOqg2gbqQCUmRjAFNJKgBGi6fSWA2tlTAgAAamSoBGoN8DiCEgBg1BzeCABAnWwqwUTsOcgdaCpBCQAAAABtNlQCdQZ4HEEJAG1nj1wAAJhh1ZTDbZUYu4ESAE0lKAGg7Yx+T96+EgAAUDO23xqvg5WFLS+pAY0lKAGg7QQlk7evBAAA1MxmkkNlGJs1JQCaTFACMGXrO0uFKoyVt5omb18JAACok2r7LVMl46O2QKMJSgBoO0HJ5O0rAQAANdRXgrHYWFnY0gMAjSYoAaDVqjfHjNhPtuZDVQAAoIbr1P0k2yoxcgMlAJpOUAI0nWkBTmOoBBOzpwQAANRYXwlGatuLUkAbCEqApnNQN6chUFNrAAA4nn42VTI6fSUA2kBQAsAscLDg5AyVAACAmltVgpG4bZoEaAtBCQCtt7KwtRvnlEyKUAoAgCb0BxsqcS6HETgBLSIoAWBW+AJ//PZWFrZshwcAQBOsxstU57G2srC1rwxAWwhKAJgVgpLxGygBAABNUL3g01OJp7K3srDVVwagTQQlANPXUYKJNEKb8cbYuAmjAABoWo9wWyXOrKcEQNsISgCmr6ME47e+szSfxLZQ47Nt9B4AgAbqJTlQhlN7sTrjBaBVBCUAzIphkovKMDYDJQAAoGmqLbjWVOJUbq8sbKkV0EqCEgBab31naZDkkkqMzcHKwtZAGQAAaKhVJXiivdhyC2gxQQnQaCsLW0NV4HGqkOS6SozVQAkAAGhov9CLyfMnOUyyXE3fALSSoASANjc9axGSTKJpMn4PAEBT9ZXgiev9wnmEQNsJSgBoperNsJsqMXZr3iwDAKDBPYNpkkc7Dkkc3g60nqAEgLY2PLdUYuwOVha2+soAAEBDWcs+mpAEmCmCEgBaZX1naTlCkklx6CUAAE3tG3oxTfIoQhJg5ghKAGhTs9ONg8UnZXtlYWtTGQAAaKi+EjzUXpKOkASYNYISgOnrKsH5VSHJMMkF1Ri7wyQ9ZQAAoKG9Qy+mSR5mI+UkiTMIgZnzESUAmLp5JTh3o9OJkGSSVlcWtvaVAQCAhuorwQMOk/RXFrbWlAKYVYISABptfWdpPslmhCSTsrGysDVQBgAAGto/9GKa5H57SXq22gJmnaAEaIMDC92ZbXLmU06SXFKNiTVRDnAHAKDJ+kqQxBQJwAOcUQK0wb4SzB4hyVQaqZ79igEAaHAP0YuX7JLyLJKOkATghIkSAJpqLUKSSSqM4wMA0HD9Gf/8GymnSPbdCgAPEpQA0DjrO0uDJNdVYmJuCEkAAGh4D9HLbE6THKY801FAMjv3epGkU/0kSfGY//t+TnbpGCa5p/djVglKAGjaom8QIckk3XB4OwAALdCbsc+7l3IKf9P2ua3uj7spg5AiSTdnDwMX7/vPr1R/zyTZTrKbMjwZuoeYBYISAJq0COxFSDJJQhIAANrQRxR58AvhttpOOT2yaXqk1fdzN2Xwt5zxTUktVj83q3+me4vWE5QA0JTFYC/JLZWYiOOD2zeVAgCAFui39HNt5+SN/6HL3Op+uJMyHOllOlvIHQcnb67vLN1OGZgMXBnaZO7o6EgVgKYvGIZp+NtBKwtbc67kY69xL0KSSTmMg9sBAGhPL1EkudPSdXvHlkitv3+7SVZTz50VDpIMkqy5D2kDEyUANGFhuKYSE7GdZNkiFwCAFum39HP5crrdfXAnZQhR55dCL6Y812R1fWdpzT1J0z2jBADUeHHYTTlKfkE1xu7VlYWtwsIWAIAW9RNF2nk2yWG8TNbWe3Z+fWdpkOQXDbp3L6QMTPar3SCgkQQlQBvYIqidC0QhyWQcJPnoysJWXykAAGiZtq5xvbnfzh54Ncl+6rnN1mlcSHJrfWdpWPXz0Ci23gLawAKxfQvE+SSbEZKM26sCEgAAWtpTFDFNQjPu1U7qv83WWSwm+fn6ztKLKwtb7lUaw0QJAHVbJM6nnCS5qBpjs5HkPwtJAABosbaudU2TtKv/XU65S0YbQ703q+mSeVeaJhCUAFCnReJxSHJJNcbidspttnorC1v7ygEAQEv7iiKmSaj/fdpP8k7avZPCYsqzS2zFRe3ZeguAOhlESDKOZmozSV84AgDAjOi39HOZJmmB6gXBtTT3LJKzupByK64bKwtbA3cAdSUoAaAui8VBkmsqMTJ71eJ7UzMFAMAM9RVFTJNQ3/tzlndRuLW+sxRhCXUlKAGox2KpM8tv+1chyXV3wrkbp2HK6ZGh6REAAGZUv6WfyzRJ8/teW02XYUl3ZWFr1R1B3QhKAOqhk2R/RheLqxGSnNVhygP/3v9ZWdjaVRYAAGaZaRJqfG8KSU7crCZLhCXUiqAEgGkuFntJ3lSJbCRZTfKkA+72TYoAAMAj9Vv6uUyTNLvvFZJ82M31naVd23BRJ4ISAKa1WOwluaUS2V5Z2OpV/3moHAAA8FT9RRHTJNTTIEKSh3FmCbXyjBIALTBUgsY1Md0ISZLywPVlZQAAgHPrt/RzmSZpdu+7luSaSjz6/q6+H4CpE5QAMOmFYjfCraQMSQpNDwAAnLvHKGKahPrdl8tJbqrEY11IslltTwZTJSgBYJILxeOQ5MKMl+IwQhIAABiVfks/l2mS5va+nZRbbvFkF9WKOhCUADCpheLxAXZCEiEJAACMqs8oYpqE+tnU+57JtfWdpVVlYJoEJQBMonkRkpw0O8XKwtauuwIAAEai39LPtenlqsb2v/04vP2pnuVqEgemQlACwLgXicchiYWikAQAAEbZaxRp5zRJ0t4AqO33ZCeJyYincyG24GKKBCUA9dBt8WfbjJAkSW4ISQAAYKTa+oX0xsrC1r7L20hrsZPCeSyu7ywtKwPT8BElAJpvrg0fYr6NV2Z955cHydyiezQ3Vhb+faAMAAAwsl6jk8xda+nH67vCjbwnixbfk5O0lvKFS5goEyUAjGuROEhyXSXyopAEAABGrt/Sz7WxsvDv+y6ve3KGXVzf+eWeMjBpghKgDSwia2Z955f7EZIcNzlrygAAACPtNzot7jf6rnAj78ki7T0vx3PATBCUAI23svDv+0dJmv7TFm/v/HLvKHmlDdfknD8bKwv/3vOEAgDAaB0l/Rb3EPuusHvSTy6+baqECROUADAy1ULmlkrk9ieFJAAAMI6eoxPTJNTrnuzGNInngcYTlAAwqsVhESFJkuwl6SkDAACMRb+ln2vjk6ZJmmpVCcbiYvU9A0zER5QAaIc5JZiit3d+pZvMbapE9pIUn1z4t3tKAQAAI+87OsmcaRLqdE/OJ3PLKjE2vSRDZWASTJQAcN6FYbdauFyY8VIcREgCAADj1G/p59r45MK/7bu8jbSsFx5vfcswCsZPUALAUyvf6BKSJDlMsiwkAQCAsfYepkmoG9Mk43UhSaEMTIKgBKAeGvcbf/VWx2aEJIcpJ0l23cYAADA2/ZZ+LtMkDVX1xNdUYuyEUUyEM0qAVjg6UoNJ+tbPfmU+5STJpRkvxWGS4lPPCkkAAGCM/UcnpkmomaMjkw4TIihhIgQlADyNYYQkSbIqJAEAgLHrt/RzbXzqWdMkTfKtn/1KkXJHiGU98cRc+NbPfqWr92bcBCVAW+xZpExsYThQ6yTJjU89+28DZQAAgLH2H52YJmF69183ZTBSxDZb01QkEZQwVoISoC0coj2ZReKgxU3KWQhJAABgMvot/VymSerZ886nnBYpqp+LqlILRZI1ZWCcBCUAnHbBuBYhyXFDM1AGAAAYew/SiWkSxn+fFTkJR+yeUE8dJWDcBCUAnGbh2EtyUyWy8aln/62nDAAAMBH9FvcV+y7v1Prb4+20lpMsqkgjCLAYO0EJ0BJzSjC2ReT/1UvmbqlENj717L/2lAEAACbSh3SSOdMkjOheen8rreVk7oKqNPI6dj/17L86p4SxEZQA8LiFSC+JkCTZS7KqDAAAMDH9ln6ujU89+6/7Lu/Ye9n7zxkxjdAO80rAOAlKAOqhU8OFZTcOS0vKkKT41LP/ek8pAABgIr1IJ84m4ez963E4YjutduomGSoD4yIoAaiHizVcZA6TzPpIspAEAAAmr9/Sz3XbNMnIetZOTs4ZKfSuM8FECWMlKAFa4cgZJSPz//3s/+4mc0MLzRwm6f3+s/8iJAEAgMn1I50Wn01iYv/p74v5PHjOyEVVAUZJUALABxefgwhJDpMUv//svzgoDgAAJqvf0s+1/fvP/svQ5T1Tf1rkJByxnRYwVoISoC2GFk7nXoTOV3Wc9YPuhCQAADC9nmS5pR+v7wo/8fp3crKVVhEv8AETJCgBWsHWW+fz//7sv8xX221dUo30/uDZnwhJAABg8n3datr55fj2Hzz7k6Er/LA+9P5zRmynBUyPoASApNwrV0iS3PiDZ3+yqQwAADBZ1Zfmqy39eH1X+P3rXOQkHNGDArUhKAGwUB0kua4SufEHz/5koAwAADAVpkna2W92c7KVVhHbaQE1JSgBWuFICZ7K3whJjr31aSEJAABMqy8xTdKua3n/OSO20wIaQVACMLvNSC9CkiTZ+PSzP1lVBgAAmJrWTpN8egamSf6m3E7rOByxnRbQSIISgPosLrufntAh4lVIckvVs/HpZ3/SUwYAAJhaH2SapIG9a04mRq65i5mQoRIwToISgPqYn9CithchSZLsCUkAAGDqTJPU3N/87L90chKMLMc5I0ALCUqAlphTglMtcP9rN5kTkiR71SIfAACYXn8yn8yZJqnntbnvnJE522kxdZ9+9p+HqsA4CUqAtthXgicudLsxqppUIcmnn/3ne0oBAABT1eJpkmZ9qVv1i0XKiZFFtyY1c6AEjJugBGiLfSV44qJ3GCPSh0mWhSQAADD1HsXZJNOtfycnwUihV6TmdpWAcROUAK1wdKQGj/LN9/7rfJJNC98cJik+c/mf990VAAAw9R6utdMkn7lcv2mSqi8schKOXHQX0iCCEsZOUALQYtVieGgR/H5IYnEFAAD16FNMk4y/zt2cTIzYTosmGyoB4yYoAWh38zFM4uC9ZFlIAgAAtWGaZDw9YCe206J9Dus4pUX7CEqAlphTgg/XZBAhSZLc+MzlH1tUAQBADXzzvV+dT+ZMk4yslvcHI3O206KN9PNMhKAEoJ3NxyDJNZXIjc9c/vFAGQAAoDZaPE0y/he0vvnerxY5CUe8GMcs2FQCJkFQAlAfRUbwpkQVklxXzrwqJAEAgPqoJiBMk5ytZp2cbKVVxHZazB5BCRMhKAFoV+OxGiFJkmx85vKP+8oAAAC1YprkyT3dfB4MRmynxSy7/ZnLP76nDEyCoASgJb753q/2krypEtn4zOUf95QBAABq1a+YJnl0bYqchCO204ITAyVgUgQlQFvsznjT0Utyy22QbSEJAADUUlunSfbOOk3yzfd+tZuTiRFnS8LDHXzm8o9tu8XECEqAVvjM5R/f++Z7vzqTn716+0hIkuylfAsLAACoV8/S5mmStVN8/k5OgpEittOCkTxbMEqCEqA1jjI3c5/5f77337rJnDcsypCk+MPL/8vepQAAUL9era3TJAd/ePl/DR7Rq913zsic7bTgbA5j2y0mTFAC0FBlSJJhSxuOMzUnEZIAAECdtf5skqo/K1JOuS+65HAua3p8Jk1QAtBA//O9/zYfIUlSvmWybAEFAAC17V16Le1bDqvPN0gZjlxwtWFkz5Ztt5g4QQlA8xoNIcnJ4qn4w8v/a9ddAQAAtdVv6ee6EGdFwjisehmSaXhGCQBqo/Ok/8N9IYk9boUkAABQa9U0iYPLgdPaftS5PzBughKA+uic4v+zGSFJktwQkgAAQO31lQA4g1UlYFpsvQW0xlHmWv35/vq9Xxskcw4FTG589vKPBsoAAAC17l96yZxpEuC0Xv3s5R95IZKpMVEC0IwmY5DkukrkRSEJAAA0Ql8JgFPa++zlH/k1g6kSlABtst3GD/XX7/1aP0KSJNn47OUfrSkDAADUvofpxdkkwOkcJllWBqZNUAJQ/wbjFZXIxmcv/6inDAAA0Ah9JQBOafmzl3+0rwxMm6AEoKaqkOSWSuS2kAQAABrVx5gmAU7jxmcv/2ioDNSBoASgns3FcoQkSbKXpKcMAADQGH0lAE5hwxmk1MlHlACgXv76vV/rJrFYKEOS4rOXf3RPKc59T80n6T7if7732cs/2lUlAABGsO7sxTQJ8GS216Z2BCVAaxwdzTX+M3zj7rVuMjdMcmHGL+dekuJzV24LSc52/xQpA5Fukk71xwvJ3JP+uvvrfi/JMMl+kuHnrtzeV1kAAE7Zk/VVAXiCjc9dud1TBupm7ujoSBWAVvjG3WvDJIsN/giH1R9nPSQ5TBmSmHJ48j3fTbKcpBjjvX+YMjjZTLIpvAIA4BFr015sHwxPslf98dKMfn4hCbVlogSgPi4ogZDkFA1oN+W5LcuZzLYGF5Jcq35ufePute2UW8MJTQAAuF9fCeBDDnLy4tnwc1du3/vG3Wvz1Z+btbDkxc9dub3mlqCuTJQArdGCiZJZJyR5/P3dS7Jao8X0YbXY79ueCwDAWjWmSeC4TxpWP5uP65W+cffaIMn1GalJ73NXbm+6PagzQQnQpsX5rCwy2urG567cHijDQ5vOfup9KOZ2ysBk6IoBAMzkmn7KFHQAACAASURBVHU/DnFndm3nJBjZPeOz00uylvbuMLGXMiTxQiS1JygB2rQ47yd5RSUaSUjy8AVzv2EN53a1CN53BQEAZmrdapqEWXKQaiutVNtpnfMZ6qbc3rhtW3G9lfKFOls20wjOKAFg2oQkH14kr6WZ28gtJvnFN+5esyAGAJgdfSWg5Y630zo+Z2R/lH/zatqi26KXPw9SvkA3dOvQJCZKgNb4xnvLbVlUzJKNz13e7ClD8o33luerJvNmSz5SuTi+vGlxDADQ3jVsL6ZJaKftHAcjlzd3J/hMdVJOlzTxxbnDlC/9rX3u8qaX5mgcEyUATIuQ5GQx3MZR64tJ7nzjveVyusRCGQCgjfpKQEvs5XgrrcubUzt0/HOXN/eTFN94b7monq+mBCYbVd+371aiqUyUAK1hoqRRhCQn920v7T6877jpWLZoBgBo3TrWNAlNdZj7zxmpaa/SgMBEQEJrmCgBWkPu2xh7SVaVIfn63eVBkusz8FEvJdn9+t3l5T+6YisuAICW9F99VaBhbqcKRv7oyuS20zqPaivj4ut3l7tVH72c6b9kd5DyZb/BH12xcwDtYaIEaI2v3zVR0gB7SYpZX0x9/e7yfMq3lxZn8OPf+KMrmwOPAgBAo9ezRZI7KkED+s9hks22vLBV9ZLL1c+1Cf6jD6oedtCUkAnOykQJAJNcpApJyoXtMO06j+Qsbn397nKEJQAAjdZXAmrooOq1hinDkdb1ntVnGlQ/+frd5eUkRZJuRvsi3uF9tRwKR5gFJkqA1jBRUmuHSbp/dGW29y0VkjzAZAkAQDPXtEVMk1CfPnMYX+bf/3x2k3RSBifz1R+PdZJcrP7z9gf+0mGSe0l2k+zaUotZJCgB2rQgWE7yjkrUcvFazPqiVUjyUMISAIDmrWuHmc0tZKmHvVSHsDv/EBglW28BbeKNh/oRkpzYjJDkg2zDBQDQINU0iZCESTreTus4HNH3A2MhKAFgnHpCkuTrd5cHGspHuvX1u8v73gYDAGiEvhIwZvdvp7U569s3A5MjKAFa4z8ypwj1cuPmlXc2Z70Ib919YTWZu+52eKzNt+6+0L155R1NEABAfde1RTLn5R/GYTtVOHLzyjtD5QCmQVACwDjcuHnlnYFm8oVukjfdDk90IeUofVcpAABqq68EjMhBtf4fpgxHbKcFTJ2gBIBRe0tIkrx194X5avHP6Vx66+4LazevvLOqFAAAtVvbFrGVLE/veDutzZTByL6SAHUjKAFglDZ80f2+fpKLynAmN9+6+8KmcXsAgFqubeEsjrfT2rx55Z1d5QDqTlACwKhs3LzyTk8Z3n/j7qZKPJVBko4yAADUam1rmoQn2cvJVlom64HGEZQAMJJFsZDkAQMleGoX37r7Qv/mlXf6SgEAUAvWZTzMYR48Z2RfSYAmE5QArXGUOUWYjr0khTKU1u5+rJ/M2XLrfFbX7n5ssHrlnzRbAADTXdsWyZxpEo5tpwpHVq/8k+20gFYRlACtsXrln4Zrdz+mEJO1l6RYvfJP95QiWbv7sfkkzmg5vwsp31zsKQUAwFT1lWDm+71hks3VK/80VA6gzQQlADytwwhJPmg15Zf8nN/1tbsf65sqAQCYjnKaxNkkM+Yg1VZaKcMRvR4wMwQlADwNIcmHG0nTJKPXj6kSAIBprsVov9upwhHbaQGzTFACwFkdhyQW0Q8yTTJ6pkoAAKbANEmr7eXknJGhcgCUBCUAnNWykOShekowtrr2lQEAYKKsv9rjeDut43DErgAADyEoAeAsbnjr6MPW7n5sOclFlRiLVY06AMBE17ZFTJM02WEePGdkX0kAnkxQArTMnBKMz43VK/84UIaH3nc9NRibC2t3f3159co/bioFAMBE1rZ9NWic+7bT+sehcgCcnaAEgNN4VUjycGt3f30+yTWVGKvlqvEDAGC8a9sipkma4KBaHw9ThiO20wI4J0EJAE+ysXrlH/vK8EjLSqDGAABNt3b311eTvKkStXS8ndbx1Mi+kgCMlqAEaJWjoxzEWRGjtPHic//YU4bH3nO+xB+/C2/+9NeXX3zO9lsAAKP25k9/fT7lF/AmSeplO1U48uJz/7irHADjJSgB2mY/gpJRuS0keWQzWSQ5/tFQTkYR228BAIx6XbucZJDkgmpM3V5ODmEfvvic7bQAJklQAsCjFuk9ZXi/geym3P6piGBkWgolAAAY2fp2Pkk/yU3VmJrD3HfOyIvP2U4LYJoEJUDLzCnB+e0lKV587h9m9g2mN3/6G92cTIwUyZw37KbvkhIAAIxqrTu3GZP407CdKhx58bl/sJ0WQI0ISgC430FmMCR586e/0UkZihxPjQhG6nmdihef+4ehSgAAPPV6qp/kFZWYmPe303rxuX+wjSxAjQlKADh2mGR5FkKS+4KR4x9v0zVDt2o0AQA4+/p3ENvIjttBTs4Z2ZzlKX2AphGUAJCUIUnR1vHvN3/6G/N5cGJEMNJMHSUAADjzWtiB7eN1OydTI7bTAmgoQQnQKkdK8LSKz7doUf8/ToKR4x/nW7RDVwkAAM60Jl5Lcl01Rup4O63Nz9sWFqA1BCUA3GhDSPI/fvobRU6mRgQj7TSvBAAAp1obd1MeGm6SejQOk6ymDEdspwXQQoISgNl24/PP/cOgoc1fkZOJEXstzwYBGADAk9fJ/TiwfZS2kywLSADaTVACtMzcbnxpflovfv65Hw6a0/D9P908sJ3WnD2WAQDgZL3cSbKZzHm5ZDQOk/Q//9wP15QCoP0EJUDbeMvndDbqvuCvGr3jw9eLOHwSAAAetXbupTyPxJp5NPaS9D7/3A8dzg4wIwQlALNn4/PP/bBXw+aukwcPYLefMgAAPH4NPZ9kkOSaaozMq59/7od9ZQCYLYISoFX+QwmeZOMLNQlJ/qps6oqcTI0IRgAA4PTr6SJlSGIdPRoHSXpfeO6HQ6UAmD2CEoDZsZdkdYqN3HEwcvxj72QAAHi6tXU/DmwfpdspQxJbOQPMKEEJwGzYS1JMeuFfveVWpJwaEYwAAMD51tedJJvW1iNzmDIg2VQKgNkmKAFov4mFJPcFI0WSRaUHAICRrbV7cWD7KG2nDEn2lQIAQQnQMnNK8KDqDam/H0tI8lc//c1uHthOa07TBgAAo11zVwe2zzmwfXRe/MJzf7+mDAAcE5QAtNdhkuILz/397gibtE5ODl8v4m02JutACQCAWfJXP/3NIg5sH6W9lC+S7SoFAPcTlAC000hCkioYKe770aAxTftKAADMir/66W/248D2UXorSX9c0/YANJugBGiboWYiSbL6NCFJNdZ//8SIYIQ62VcCAKDtqpeVHNg+OodJlr/w3N8PlQKARxGUALTPjS889/eDUzZh83lwYkQzRp3tKwEA0GZ/9dPf7MWB7aN0O2M8sxGA9hCUALTLE0OSap/j46kRwQhNMlQCAKCNTg5sjwPbR+Mw5TZbDmwH4FQEJUCrHB3NzfLH3/ji4g8GH/yTX9v+eJGTiZHFZM6NQlM5dBMAaJ1yvT43iG1vR2UvyfIXF3+wrxQAnJagBKAdNr64+INe1Wh1cxKMeCONtjj44uIPbJkAALTK17Y/3o8zFkfp1S8u/qCvDACclaAEaJtiBj/zXpLdr21/fLP6/PYzpo2GSgAAtMXXtj/eiQPbR+kgSe+Liz+wZgTgqQhKgLbpzuBnvpTkTZeelttUAgCgDb62/fFeHNg+ShtJVk0fA3AeghKgbbpKAK00VAIAoMm+tv1xB7aP1mHKKRIv1ABwbs8oAdCyxsMBiNA+t70hCAA0vFcpkuxGSDIq20m6QhIARsVECdAmhRJAK2mAAYDGcmD7yL34xcUfrCkDAKMkKAFa4yhzhSpA6xxGUAIANNBfbv9Wp1zHzDmwfTT2kvS+tPj9XaUAYNRsvQW0SaEE0DqbX1r8vm23AIBG+cvt3+ql3GpLSDIa20kKIQkA42KiBGhLIzKvCYFW6isBANCwvmQQZ5GMymGSXpJdL88AME6CEqAtlpUAWmf7S4vf31cGAKAJ/nL7t4qUIclF1RiJ2ym32hKQADB2ghKgLQolgNbpKwEA0AR/uf1b/TiwfVQOk/S/tPh9B7YDMDGCEqAtCiWAVtn+0uL3h8oAANRZdWD7IMmiaoyEA9sBmApBCdCG5qQb4+3QNqtKAADUvA9ZThmSXFCNkXjrS4vftwakbs/5fJJukuM/HutUP0ky/MBfNkwSL35BswhKgMb7D+eTQNtsvOQtQgCgpr5afnG6luS6aozEQZLeS75Uph7Pd5Fyx4oiZTBymiD0gxNlr1R/r+P7ezdleDLU50B9CUqANhCUQHscxjQJAFBTXy2n2Tdjon1UbqcMSRzYzrSe6U7K7xSKJNfG8I+4WP1cq/55h9WvIcMkm+59qI+5o6MjVQCavqj5hUpAa7zw0uL3N5UBAKhh79GPA9tH5TDJ6kuL3x8oBVN6nnspA5JrU34ONpMMTFTB9AlKgIYvbj6xmuRNlYBWuP3S4vdMiAEAdes55lN+menA9tHYS7L80uL39pWCKTzLq9VP3c4WOkjSf2nxewNXCqbD1ltA0/lSFdrhIElPGQCAOvnq9icc2D5ar760+L2+MjDh57jOAcmxi0lufXX7E/0ITGAqTJQATV/s/B+VgFb46EuL33OwIQBQp16jn+SmaoxEdWD794ZKwYSf5dXqWb7gmQEex0QJ0GSmSaAdbghJAIC6+Or2J7opp0guqcZIbCRZfWnxew6tZpLPcZFkrcHP8cUkd766/Ynb1fOz76rCeD2jBECD9ZQAGu8tY+UAQF1Ub5//PEKSUThM8sJLi9/rCUmY8HO8luROS57ja0l2v7r9iZ4rC+Nl6y2gqQufTpJfqAQ02sZLi9+z4AcA6tBfOLB9tLZTbhu0rxRM8Dlu+zTY7eq5EjzCGNh6C2iko6NnbLsFzbbx5eK7PWUAAKbtL4a/XSTPbMaB7aPy6peL7/aVgQk/x8vJM4OWP8fXkuz+xfC3l79cfNfWxTBitt4CmqqnBDTY4Yx/fiEJAFALfzH87eMteoQk53eQ5KNCEqbwHK8meWdGnuOLSYZlMASMkq23gCYugjqx7RbNaxqHKbdzGFZ/bpjZ3PtaSAIA1KGncGD7iNd4SVa/XHzXlkBM+lkeJLk+ox//xpeL7w7cBTAatt4CmmhVCai542BkmGT45eK7+w9Z0BdVc37NQh4AYHL+YvjbvSRrMUUyCodJel8uvrupFEzhWR5kdkOSJLn1F8Pfjh4LRsNECdDExdB+ynFTqFODOKx+Nh8WjDzmfl5LcnMG6rP85eK7Q7cKADDFPmI+s/eiyjhtpwxJ9pWCKTzPg8x2SHI/L6TBCAhKgKYthoqUewjDNN0fjAzPe5Betb/sIO18q3E7ZUhiGwYAYNp9xCBeuBoVB7Yzzed5ECHJBwlL4JwEJYAFEZzOdk6CkeEY7u22veF4mKT/5eK7a24dAGDKPUQ/ySsqMRIHKV+C2VUKPM+184Jt8ODpCUqAxvjz4X+fT7IfewkzGXupDl//SvGd4QTv8+WUe2Y3+W3H7SS9rxTf2XcbAQBT7B86KV9EWVSNkdhIsvqV4jsmhZnWM91LckslHukwSfGV4juCTHgKghLAoghKe7lvO61pNoBVKLha/TQpGDyommdvMQEA0+4d2ry16aQdpnwJxhqPaT7T3apX80w/uSfrCjTh7AQlQJMWRrtJLqkEI1xADnMyNXKvhvf8fMrpkusNqGX/K8V3Bm4rAMD6qVVMClOX53o3zhg6rdtfKb6zrAxwNoISoCkLo26Sn6sE53AcjAxTBiP7Dbr/6zphsp1kICABAGrUMwzi5apRefUrxXf6ykANnu1BhJ9n9eJXiu84LxLOQFACWBjRVod5cGJkvyXPQi/JcqZ36Pthyi8gBva+BQBqtEZaTfKmSozEQZJlaz1q8mwvJ3lHJZ6qb+uaBoPTE5QATVgYOcSd0y4EhzmZGNmdgediufopxvx8HJ/fsjnJg+0BAE65JtqMA9tHue7rJ3G+AXUxiC23ntb2V4rvFMoApyMoAZrQ/PTiEHcesfDLyRf4uzP+nHRTBibdJJ1zfFlwkDKYHKbcB3joIEAAoKbrnyJlSOKFKoCHe+ErxXc2lQGe7CNKANTdf5TnMkByEowMXzbZ8IAqKPpQWPR6+QXCsW6S+fv++25O3hbcf9lYNgDQEK8P//takpsqAfBYaykDZeAJTJQAdW+AHOI+2463fBqmDEdMNgAAzHZ/0En5pZ8D2wFO58bLxXcGygCPZ6IEqDvTJLPloGp8hxGMAABwn9fLLXnXYqstgLPopzzrBXgMEyVAnRuh+ST/RyVa7SAPTozsKwkAAA/pC9aSXFcNgKdiqgSewEQJUGc9JWidw1SHr0cwAgDAE1Rb8W4muagaAE+tH1Ml8FgmSoA6N0X7GqLGOw5GhimDkV0lAQDglP1AP8krKgEwEs+/XHxnqAzwcCZKgJo2Rb+znMwJSZppO9XUyMvF3wlGAAA4ay8wn2QzmVtUDYCR6VW9OvAQJkqAujZHwyQao2Y4DkaGLxd/Z9EFAMB5+oDllNvDOLAdYPT+08vF391TBvgwEyVAHZujToQkdbaXB7bTssgCAGAkfcBakpsqATA2x2E08AGCEqCO+kpQK4IRAADG5vXh73RTfnF3STUAxkpQAo8gKAFq5c/u/M58kusqMVUHuS8Y+ZPn/25fSQAAGNP6v5dkLbbaApiEQgng4QQlQN2sKsHEHSbZjGAEAIAJqV6QGiS5phoAE3Phz+78TvEnzztfFD5IUALUjaBk/A7z4MTIrpIAADApf3bnd7opX9S5qBoAE1dU3wcA9xGUADVqmH63l8wZuR+P7aoZHf7J838rGAEAYFpr/n4y94pKAExNoQTwYYISoE76SjAy23l/YuRvh8oBAMA0/dmd351P+eLOomoATFVXCeDD5o6OjlQBqEPjtJzkHZV4ans5CUY2lQMAgBqt9YuUIYnpcYB6+E9/8vzf3lMGOGGiBKiFI2eTnNX7wUiS4Z9a4AAAUEOv3fndtSQ3VQKgVrpxTgk8QFAC1KF5KmIE/0kO8mAwsq8kAADUeI3fSTlFckk1AGpnXgngQYISoA5Mk3zYYdVYDiMYAQCgQV6787u9JGux1RZAXXVTfucAVAQlwLSbqE6SayqRwzw4MbKrJAAANGxtP58yILmuGgBAkwhKgCmb68/wh99ONTXyp89vCEYAAGis1+5c7yZzm0kuqgZA7dl6Cz5AUAJMs5nqZLbeNtvO+xMjG0N3AAAALVnXryZ5UyUAGqOrBPAgQQkwTf2Wf769lMHIpmAEAIC2ee3O9fkkg9hKFwBoOEEJMBX9sqlq4zTJRqrttPrPb9xzpQEAaOl6vqjWvQ5sBwAaT1ACTMtqCz/TQf/5jZ5LCwBAm/XvXO8neUUlAIC2EJQA02is5tPOoGTg6gIA0OJ1fKda8y6qBkCj2QEDPkBQAkzB3GraOaK/5toCANBG/Tu95WRuEFttAbTBrhLAg55RAmDCDVZbp0k2+s8PvJEBAEAb1/BrSd6JkAQAaCkTJcCktXWapO/SAgDQqgXunV435VZbl1QDoFW86AkfYKIEmGSj1dZpku3+84N9VxgAgBat3XtJhhGSALSRrbfgA0yUAJPkbBIAAKix6uWmtSTXVQOgtfaVAB40d3R0pArApBqu/bQvKDnoPz/ouMIAALRgzd5NspnkomoAtPjX++cHc6oAD7L1FjApziYBAIC6Lmrv9FaT/DxCEoC221YC+DBbbwFj98q7rT2b5PDVq4OBKwwAQMPX6oMk11QDYCY4nwQewkQJMAnOJgEAgJp55d1ekfILMyEJwOwYKgF8mKAEGHfz1dppkghKAABo7jq9n+RObLUFMGuGSgAfZustYLzm5to6TbL56vO37rnAAAA0ySt3bswn2czc3KJqAMycPd9lwMOZKAHG3YSttvTj9V1hAAAatj4vkuwnEZIAzKaBEsDDCUqAcWrrNMnGq8/f2nd5AQBoilfu3FhLudXWBdUAmFmbSgAPZ+stYCz+9N1WT5M4mwQAgKasyzspvxi7pBoAM23vtate+oRHMVECjMta2vm22vZrV2/turwAANTdn757YznJboQkAHjpEx7LRAkwjoask+R6Sz9e3xUGAKDm6/H5at16UzUASHIY227BYwlKgHHot/Rzbb929dbQ5QUAoK7+9N0b3ZSH9ZoiAeDY5mtXb91TBng0QQkw4sbs9zrJXFunSYypwqOf/SLJfJJu9aeK+/7nTpKLj/hLt+/7z8Mk91JuEbL72tVvW8gDwNl+P+4lc23dAheAp9dXAni8uaOjI1UARtmcbSa51sKPdvDa1W93XGE847/XTRmG3P8zri9jDlKGJ8Mkm4ITAHjk78/zKV/qua4aAHzAxmtXv91TBng8QQkwygatSHKnpR/vxmtXvz1wlZmxZ3o+5WRIkTIQWZzyv9LtlPvqCk0A4OT3a1ttAfA4//m1q9/eVwZ4PEEJMDIvv/t7w0z/i9RxOHjdNAmz8QzfH4wUqe8XLscHEfZft+AHYLZ/715NuZ2KrbYAeJhXX7/67b4ywJM5owQYVZNWpJ0hSWIvT9r97HaTLKcMRpryDF9IubXI9Zff/b2NCEwAmL3fv+dTTpFcU41zu53yfLQmaXPv9UGHcVbkrHtFCZ7agecHTs9ECTCqZm037Rz3N01CG5/X5ZyEIxdb8rFeTbL2ui25AGj/7+PdlJOVF1XjXA5Tvmyx1sB7YD5luDMr98CLTbxOjOx+70dY8rReeP3qtzeVAU5HUAKMYOGy0ktyq6Uf78brV9cHrjINf0aPt9Q6Dkjauj3HQZLe61fXh646AC39PX01yZsqcW571Zpht8H3QpH2ng/5QYdJuq9fXd93685sLzOMc5jO6vbrV9eXlQFOT1ACjGLhsp92vs108PrV9Y4rTIOfzeNg5PqMffS3kvRfv7puugSAtvyebqst64SH3RdrSW7OyHXbe/3qetftO7O/BnaT/FwlTu0gZbioH4IzEJQA512w9NPeMVjTJDTxmTwOR9o8OXKqZjrJsjcPAWjB7+222hqNw5RTJJstuz/augXyw7z6+tX1vlt5Zn8tNFF3es+bsoezE5QA51mozCfZTzu/jDVNQpOexW6SXspwxJcoJw6TFE3eVgOAmf89vh97849Ca1+gmME37T9qbTfTvyYOMnvT8mf14utX153pA09BUAJo3B7ONAl1f/7mUwYjq7Ff7+MISwBo6u/zm0kWVePcWj+FMGNv2ttSyK+NQ/3PI228fnW9pwzwdAQlwNMuUDpJftHWxbdpEmr87BUpp0e8SXV6whIAmvZ7/WZmewvNUf3+vzwr28+8/O7KMLMTrL31+tX1Vbf4zP4aOZ9kNybpP2j79avrhTLA03tGCYCn1PfZYHLNwMvvrqy+/O7KfpI7EZKc1YUkw2prCgCo8+/5/er3eiHJ+dxO0pmxPfp7KcOhWXCzChSZQdU00fIM3e+nsVfVBDgHEyXAmf3xu58sqgaujQ7euPp2x1WmRs9aL4KRUTlM0nnj6tu2agCgbr/n22prdF584+rbazN6H/WS3LKuY0bu927KbbhmPVjeS1J4FuD8TJQAT6Pvs8HYFvzzf/zuJ3t//O4n92N6ZNQuVM0UANTp9/4iyX6EJOd1kOSjsxqSJMkbV98epJymmZV13cBtP7veuPr2bpKievZnlZAERshECXDWRm45yTttba5MkzDFZ6uT8mD2XrwVNW6vvnH17b4yAFCD3//7SV5RiXPbSLLqy8L3p5P2Z2g9eaMKiJjte36Y2TvgfeONq2/33AEwOoIS4KyLkP2099A0i2ym8UwVKQOSa6oxUR+t3kIDgGn8/m+rrdE4TBmQWMN/eH15Z4buge4bV9/ed+Vn/tfUwQz1VF78gjGw9RZwlsXHatobkhxosJjw83T/9lpCksnzvAMwrTVAEVttjcLxljN+T/+AN66+PUzy1ox8XFtwkTeuvn3vjatvLyd5teUf9TDJC0ISGA8TJcBpG7q2j3CbJmFSz9Fq9WN7Lc89ALO3FujHVluj8NYbV99eVYYnrjuHmZ3tiLxhz/G9X6QMz9r2kud2kp7pKRgfQQlw2sXGWpKbLf14e29cfbvrKjPG56eTpB8Hs9eNc4kAmNRawFZbo3GY8ovCTaU41X3XTfLzGfrItlbl/l9z+2nHdxiHSfpvXH17zZWF8RKUAE/0lf/9qU6SX7T4Iz7/57/0raErzRienSLl4ewCkvq68ee/9K2BMgAw5vXAZkyTntd2kt6f/9K39pXiTPdfP7MzxbSXpPjzX/rWPVee/5+9u32x6zrvxv+dkPea+y/Q9EUgEIjGEELh5oeO0YMly8qclEIJpeiYcjcPTavRndSW4wcd5cGWHbuasV07jgk6QwghEJKZOH6IY6MzhEAJAc8YAoG8yMx/oPkD7uj3Yh9VsiNZ83DOmX32+nxgcJumbfa11uxZa19rXdct79+FTO7NqpUk8957MB4SJcB2FhfLaW4PhdUnj7zaMsqMYEHejVOjk2DzySOvzggDACNaE3Sj1NYwXHzyyKtdYdj1POwXtC5dfPLIq8qy8eHfgc5gfzYp5bhWk3Qd6ITxkigB7ragaKVqNt1UbpNQ8gIc7wEARrMmUGprOLaStP2d3vN8nEmylnJuNVnbMan7NQkS2EcSJcDdFhJraW4DQLdJKGXBzUdbevLIqx1hAGBI64JWlNoahpVUpbaUURreevVKIY+7lWTmySOvXhskiWbu8u9fM8+K+31opyqRPFeT+bqcZOHJI6/qsQP7SKIE+KjFw3ySyw1+RCeN2Mvvx3SSdiRIGrGZfvLIq9PCAMAQ1gfdKLU1DOeePPKqxsXDn59NLqk8DOtJriXpp7qB05dAafzvxMxgT9fJ+A+IrqRK/2J7IwAAIABJREFUkCybZ1APEiXAnRYM00k20tyTcE6Qs5ffjfnBj5OizfH5J4+8uiwMAOxhfaDU1t5tpiq15VS1PV6d5uRyqqSJtWKzfz9mkrRu+Rn2Ybj1VEm4fiThoJYkSoDbOv/uvywkOdvgR/ybS0e+v2Gk2cHvhARJsy1eOvJ9jT8B2M0aoRWltoZhKcn8pSPf9/Fw9PP1qkjsyo0SSb1LR77fF47G/67MpCrb1koynWR28D86fJc5ciPR2091Q2nNfIHJIFEC3GlB8Ocmb8IuHfl+x0izzd8HCZIyrF868v1ZYQBgh+uEbpTa2qutVAmSnlCMbd42/VDcOGymKsG7LLkH0AwSJcDtFs79NLdswFaSGYtZtvF7IEFSnv/l3QDADtYJSm3t3XqSzqUj31dqa/zzt5/x92Ro6v5yIcmCdSTAZPuYEAAfWjS3G77hs4DlrhvHwenQjVQnRCVJyuFGCQDbWSu0BusESZK9WUzSkiQZv8F+qCMSQ3FgsGfYOP/uvyjjCjDBJEqAD1to8LNtNfz52AMJEiJRAsDd1wvdVP0drBP2tib//KUj39ePZB8NElQXRWJoDiS5fP7df9kYJFMBmDBKbwEf3vg1ucbyuUtHvi9RwofnvRJb3HDx0pHvd4UBgDusF5Ta2rv1JO1LR76/IRS1mdtrUYJrFBaTdCUDASaHGyXAjQXyTKoPxU21KUnCbeZ9J26QcFNLCAC4zXqhFaW2hmHx0pHvz0qS1E471S0fhutskrXz7/6LG8sAE0KiBBiYWkimDiRTaehP1xhzw/l3v9g5/+4XN5KpKw2f9352/AMAH1gzdJOpq9YLe/rZSqbuvXTk+/o31FCVuJrqmqcj+TmYTL13/t0vmvsAE0DpLSDn3/1iK1Wt5aZavXTklZaR5vy7X+wk6SY5KBp4VwDwEWsGpbaG9Lc1SfvSkVeUH6r/nF9OMicSI7OUZN7vAkB9fVwIgCS9hj9f1xAXv/FrDea5BAkfZVoIADj/7hdnUyVJrBv25uKlI69Yh0+OTqoSc8rRjsaZJLPn3/1iS7IEoJ7cKIHCPfzuF7tpdgP3laePvNI20sXO71aqRJnToGzL00deUX8LoOy1w3ySyyKxJ1tJ2k8feaUvFBM3/9tJfi4SI7WepPW0ZAlA7UiUQNkL4ek0/9TQ3zx95JUNo13c3J5NshAJEnZIogSg6HVxL0oP7dVKko6PwBP9u7CQqhE5oyNZAlBDSm9B2RbS7CTJoiRJcRu7mVQ3SM6IBrvctAJQ3vpBqa3hOPf0kVcWhGHidZO0/T6M1KEk/Yff/aJkCUCNfEwIoNgNYSvN/pi8Fb1JSprP04PTb3+OJAm7Z6MKUN4aopPkvfgovBebSe6RJGmGwYd7pYtH70ayRI88gJpwowTK1Wv48y04ndN8g43F/OBH40kAYCdriIU4YLFXSm010NNHXll7+N0vXkyze1nWwaHBe6gjFAD7z40SKHNj2E2zT81tPn3kla6Rbvw87iRZG2zgJEkAgO2uIWaT9CNJslfnnj7ySluSpJkG+yllSUfvzGB/DsA+kyiB8jaGM6lO3zfZvJFu9BxuPfzuFzeSXIkyGQxXXwgAGr+O6Aze94dEY9fWo9RWKdqpShozWhcGpbEB2EdKb0Fhrl+fanoD99Vnjn5v2Ug3z0PvfKmVpJtMHRYNAGAXa4leMuUWyd4sJZl/5uj33CIpwNNHXtl46J0vdZNcFo2RW37onS/N+N0C2D8SJVDW5rCVZK7hj9k10o2btzODcfVhg1HrCwFAY9cSy3GLZC+2UiVIekJRlmeOfm+hkH3kfjuQqo9oWygA9ofSW1CWpm9slp45+r2+YW6Gh9750vTgBNufI0nCeDjBB9C89UQ7VU8zSZLdW0/SkiQpWidKcI3D3OCdBcA+kCiBcjaJ3TS7n8NW3CZp0nydT7KRqlE7jMUzR7+3JgoAjVpPLCT5eZpddnbUllIlSfyNLHuNdC1VsoTRW3jonS9NCwPA+Cm9BWVsEmfS/A/OC88c/d6G0Z74udpOshBN2hm/VSEAaMx6Yjoatu+VUlt8wDNHv7f80DtfWkxyVjRG6mCS+TgECDB2bpRAGZq+wdl85uj3LCQn2EPvfGn2oXe+1E916lOShP3gpCxAM9YUrVS3UiVJdm89yawkCbfRTbIpDCM371YJwPi5UQIN9/V3vtxOpg43fSFppCd2fs5UG64pPUjYbxIlAJO/rugmU8p27s3is0dftrbmtp45+r1rX3/ny50kV0VjpA6kumXfEQqA8Zm6fv26KEBzN4vTqU7UNbku8+qzR19uGe2JnJvzgx91w6mDe549+rJkCcDkrit6SeZEY9e2knSePfryslCwjd+5bvQSHIf/9ezRl68JA8B4KL0FzdZN8z9CO/E2eRurTqrT+xciSTKJtpKsJHkwyWJTnkmSBGBi1xWzg3WFJMnurSeZlSRhu549+nJ3MG+w1wVoDKW3oLmbxlaa32hvycfNiZuT3SSHRWPibCVZTrJ860eUr7/z5ab8/vUNMcBEri06Sa6IxJ4otcVudQZrKAefRkdTd4AxkiiB5lpo+PNtxQmbiTAoh7GQRB+Syfsd+6vkyC3jOpvmNMrtG24Aa4sC/84rtcWuPXv05bVBCa7LojEyB77+zpc7zx59uScUAKMnUQLN3Dx205wPmHfSVa91YuaiPiSTZSVVcuRuG7JOg565b9gBJmZtMZuqH8kh0di19STtZ4++vCEU7MWzR19e+Po7X27HjfFRag/eeQCMmEQJNG/zOJPm37RYf/boywtGu9bzsDVY0B8Ujcn4nRqMV28HCch2Q559Uwk/gIlZX9z4YOgAxu4ptcWwObw2WnNff+fL0w4JAoyeRAk0zlQJm0ebu5r6+jtfmUmykExpqFp/N0prLTx79KW1HY5zK5lqShKsbyoATMQaYyGZOisSe/q733n26EtKbTHM38tp6/6xcKsEYAwkSqBZC9USrj2vPHv0pb7RruX860aZrUmwmqT37NGX9rLZ6jQoHt4nAPVeX0ynSuwr7bN7g1JbL20IBUPWEoKxkCgBGAOJEmjWJrLpiycN3Os591qpGqqqFV7v351d3R65w7um3aDYOFkLUO81xnIcwtiLxWePvmT9zKi0hWAsWkIAMHoSJdAQ15NuAZvIheechKuNr1UfzBeSnBGN2tpM9W5Yfu7oS0Opa3y92hA35V2zPqy4ADD0dcZ8kssisWtbSdrPuYnNaPegLVEYiwNfe+crs8/t8cATAB9NogSasZFsJWl6zebN546+1DXatZlznVRJEic862klVWKxP4L/250GxalnqgDUbo1x45a0vge7t5oqSeIwAKP+XT0oEmPTSiJRAjBCEiXQDL0CnrFjmGuxIZpNlSBRJ7x+bpTX6o7q5tXX3vnKTMPGXtktgPqtM3pRznMvLjpcxJjMCoF4AzSJRAlM/oaym+af5FlRNmDf59l0qv4wF0SjdjZTJa96Yzg52qQa55tK+QHUaq3Riduqe6HUFuPWEoKxkigBGDGJEpjoDeW/ziZTTf9wrYH7/s+zVjLVi6v1dbOeZOG5o//VG9//y6lOg+LnNglAfdYaC8nUWZHYtUGprf9SaosxmvLhfrzctAMYMYkSmGwLJTzjc0f/a8NQj9/X3vlXNcLraTVJ97mj/9Uf83xoUhP3RH8SgLqsNfrxAXAvLj539L+6wsA+mBaCsb8zZ+yNAUZHogQmd5E0n+b3idi08du3+dWJ8hd1s5QqQbJfm6NOw94tmmEC7O9ao5Xqdp+1xu4MSm2N9+AE3MKNkvGbSbIhDACjIVECE+jcr/91Jkm3gEftGO19mVu9aNZeJ0tJupeP7d/pscG8aNLNImW3APZ3vTGf5LJI7Np6ktblY0ptsX/+cl2SE4BmkSiBydRL80/frVw+5oTcOJ379b92o1l7XWylutGzUJOPIJ0GvkMBGP9aY3rw9+2MaOza4uVj/6V/H5RpNlW5QgBGQKIEJm+D2U7zT/tr4D7eOdVK9dFCffB6zP06JUhu6DQoxpuXjym7BbAP643ZVIlq643drxE6l4/9l1uR1OX3mfHTFwZghCRKYKIWpF+dTqZ6BTzqwuVjL24Y8XHMp3STqbOiUQtbuXnTYf7cr79al/9cM8nUwQbF2QcmgPGvOdqDNaxSPbuznqRtfUx9TPlgD0DjSJTAZClhg7l++diLXUM9Wud+/dXWYD4dFI3aOJBE0mo871EAxrfm6EZpz71YvHzsRTetAQBGTKIEJmeT2U6zminfiY3gaOfRdKoPxXOiQYE2Lx97UdktgPGtOZbT/JKxozIotfWim5AAAGMgUQKTs9HsFfCoS5ePvdg34iObR+2UcSsJ7mRBCADGsuaYTZUkcXN1d5Taou6uCQEATSNRAhPgetJN8z9ua+A+IvO//upMqg/EbpFQOqdyAUa/7ugM1h0OZuzO4oJSW9Tc5WMvrs3Xp59eSSSoAEZIogTqv9lspYy+Bd2FYy9a+A1//synjEQb3M3qgpO5AKNedyxEv63d2krSWVBqC7gzJWQBRkiiBOq92Syl5NbqwrEXlcQZ7tyZGcwddcGh0hMCgJGuWftJDonGrqwnaUvoAwDsH4kSqLWpbsqo7ay8wDCD+et/6yZT83GLBG7lhC7AaNYds8lU37pj1xYXjr1gLcwk7lVX41DWuG0IAcDoSJRAfTedrZRRuuDiwrEXXCEezpyZTXVq3mlO+KClhWMvKO0HMPy1RyfJFZHYla0k8wvHXugJBRPK2mrMFo69sCEKAKPzMSGAWm46Sym5tZmq2Sd7nzPdJO9FkgRupycEAENfe/QiSbJb60lakiRMOIfdxv/eAGCE3CiBGrpeNd8uoeRWZ9Ep7z056xYJ3M3m4rEX+sIAMLS1h34ke7OUZN4amAbsWSVKxku8AUZMogTqt/lspYySWys+Xu55rnSTXBAJ+Eg9IQAY2tpjNlWSRD+SndtKlSDxd4mm8OFevAEaRektqNfms5SSW1tJOkZ81/OkdfbX/7YRSRLYjp4QAAxl/dFJVeZTkmTn1pO0JEloksWqX8amSIxNXwgARsuNEqiVqW7KKLnVXTz2vHIDO3T21/8+naSbTJ0VDdiW1cVjz28IA8Ce1yC9ZOqMSOzKoNSWtS+N3L/2k3g3jN7W4rHn3SgBGDGJEqjPBrSVMkpurS4ee14D993Nj17KSKTBsPSEAGBP6w/9SPbmnHUvDdePRMm44gzAiEmUQH02ob1CHnfeiO94bnRTRhINhmlr8djzPWEA2PUaRD+S3dtM0nYCnAIsJ7kiDGOJMwAjpkcJ1EM3ZdwUuGjDuH2DWyRrkSSB3egJAcCu1yCd6EeyWytJZq15KcGgpNy6SIycRAnAGLhRAvu/EW2ljA/hm4vHnu8a8W3NCbdIYO+UOgHY3TqkF6V0dkupLUpdc7lVMjorehwBjIdECezvRrSkklsdI76tOdGKXiSwV5q4A+xuXdqPfiS7sZWq1FZfKCiQ8lujjy8AY6D0Fuyvbsr4IL5o4/jRzv7636fP/vrfF5JcjSQJ7FVPCAB2tA6ZTVXuU5Jk51aTzFjrUqrBbYclkRgJPfcAxsiNEtgn/1ZOya2tVAkhPnou9CJBAkN557xgQwmwk3VIJ1XpHP1Idu7iC0rLQv5SvUOU7Bs+pfwAxsiNEtifDWlRJbdeUFP1jvPg39wigWHrCQHAttciN3oLSJLszFaSz0uSQOWFY8+vpbpdxXBJlACMkRslsD+6KePD+MoLx55XU/U23CIBG0qAfVyH3Di0MycaO7aepP2CXlhwuz3uVWEYmiUHDgHGS6IExr8xbaecklvzRvyvxn96sIk4KxowdCs+XAHcdS0ymypJoh/Jzi2+cOx561u4jReOPd//t1//+2qSw6JhLw0wiZTegvFuTEsqudX1wfKvxr+VqlGqJAmMRk8IAO66FulHkmSntpI8KEkCd98DCsFQLLhNAjB+EiUwXr2UUQN69YVjzyt/M6AXCYzFplJ/AB+5HpkfrEX0I9mZ9SStF4493xMK+GgvHHu+n2RJJPa2po1SsgD7QqIExrc5baecOtAdI/4/496KWyQwDjaUAHdej/SSXBaJHVtKlSRZEwrYtvlUt7DYZfzcJgHYH1PXr18XBRixr77979NJNlLGCb6LLx5/vmvM9SKBMftfLx63qQS4zXqkH6W2duPci8fdkIZdvnvaSX4uEju28uLx59vCALA/3CiB8VhOGUmSdUmS5Ktvu0UCY7YkSQLwV+uR2cF6RJJkZzaT3CNJArv34vHnl5OsiMSObEVlBoB99XEhgJFvUueTHC7kcTuFj7VbJLA/fMwC+OCapDN4N+pHsjOrSdqS7zC0veFa9GjcLu8egH2m9BaMdJN6dmawOCyk5NZit+CxbiXp2QjA2K2+eHyxJQwA/7Mm6Sa5IBLWslCD99FskvdEwvsHYBK4UQKjVVDJrTIXdl99+6xbJLC/ekIA8D9rkoUkZ0RjR7aStF88vtgXChiuF48vrn317bMPJrkiGne0JEkCUA96lMDoNqvdlFMTer7QMW5FLxLYT5svHl/sCQNg3Xn2RtN2SZKdWU8yK0kCozNYq10UiTu+g+aFAaAe3CiBEfhKdcW4lJIHiy8Vtrn8ilskUBc9IQCsO8/OpkqS6EeyM0svHV/sCAOM3ovHF7tfqcpSS+betJ6k9dLxRX1JAGrCjRIY/mZ1OuV8vNtMlTAoaXxbcYsE6kITd6D0dWc7kiQ7tZXkQUkSGK/B79ySSCSRJAGoJYkSGL5uyim51SlpcfeVqpza1WjYDnWwZHMJlOwrb5+dT/LzSJLsxGaqj5M9oYDxkyxJIkkCUFtT169fFwUY3oa1lepDegkWXzq+OF/IuM6muiV0yCyH2rjnpeOLa8IAFLrm7EUJm51aSWGHfKDG77CFlHlDX5IEoMYkSmBoi7356SQbKeNU32aS2ZeOL1wrYFy7KaffDEyK1ZeOL7SEASh0vdmPwxs7dfGl4wtdYYBavc86Sa4U9MhLSeZL2EMDTCrN3GF4eimn9EGn6Qu8r7w97xYJ1JfeJEBxrE12ZStJ+6XjC32hgHp56fhC7ytvz6+ljD5L5146vmD9ClBzepTAcDau80nmCnncxaZvNge3SN6LDxFQR5svHV9YFgagsLXmbNwk2an1VDeg+0IB9fTS8YW1JDNJVpu6bk1yjyQJwGRwowT2vnGdSdXAvQSbTX5WJzVhInSFAChsrdlJWeVphmHppeMLHWGA+htUKmgNDh9205zbJYtJukptAUwON0pg75aj5NbEGyzM+5EkgTrbGrxzAYowuOUqSbKzvxMPSpLA5BncuphNsjLhj7KZ5N6Xji/oRwIwYTRzh71vXktp9L340vGF+QaO4UyqWySHzWioPc14gZLWmb0kZ0Ri2zZT9SNZEwqY+PdfK1VPukk6xLaV6gaJMlsAE0rpLdilL799rpVMlZIkaWTJrS+/fW4+meqmnBtBMOl6QgAUsMacTtJPptxy3b6VJJ2Xj192ehsaYNBbaPbLb5/rDPahB2v8H3crVVJnwTsIYLK5UQK738Cu1XzBNkz3vnz8cr9B4zcTt0hg0iy9fPxyRxiAhq8xZ1KVGJQk2b6LLx+/3BUGaPS7sZVkPslcjf5j3ThMuCxBAtAMbpTA7vRSTpJksWFJkk6qEz9ukcBkUcYAaLQvv31uNlW/NGuU7dlKdYtE7ypouMF+tD9IJncGP/uxH7/RL6/XpD0yABU3SmDnm9hOymmquZlktgknZAa3gHqp1ykkYHtWXz5+uSUMQIPXl+3BOkWSZHvWk7RfPn55Qyig2PfmbJJWknZGWylgM1VypC8xC9BsEiWws8XYTKqSW6VsYhtRcsvHB/AuAqjxOqWTcg7hDMNSknmlboAPvUtbqRInM4Of3SRP1pNcS3W7by1VcsS7BqAQEiWws8XXWsqpGb348vHL8xM+Xm6RwOTbfPn45RlhABq6tuwmuSAS23bu5eOXlWIEdvKenU0yfZd/25qECAB6lMDONrKlJEnWUzWmm+TxaqW6Iu0WyfCpCV7POd9JM08kd40u0ND3di/JGZHY9tqj7XYhsFMvH7+8JgoAbIdECWzDF3/1f1vJVEmn/Tqv3Pef1yZ0rKaTdJOps2buSCwm6U7q/Giyv1yf6jbwsTZfue8/e0YXaNi6cnDjdcqN1+1ZT9Ky9gAAYJQkSmB7m9mSTs5ffOW+/1yb0LFqpSq1ddDMHbrNVAm0vlDUcu63Gzrve0YXaOC6sp9ybinv1dIr9/1nRxgAABg1iRK4u17KKd+0/sp9/9mdtP/QN2+RxC2S0XCLpP7mG/hMW0nUoQca44u/+r8zqQ7fSJJsz4NuFQIAMC4SJfDRG9r5lNUIvDOBYzSbKpnlo8PwuUUyGb8DrSSHG/hoC5JzQIPe1bOpbpLonXZ3W6lKbekrAADA2HxMCOAjN7SXC3rkc5O2If3ir/5vN8l7kSQZhcUks5IkE6Hb0OfqGVqgQWvKfiRJtmM9yYwkCQAA4+ZGCdx+QztoslmM1Vfu+8+FCRoft0hGxy2SyXpXtdLM2yRLr9z3nxtGGGjIe3o5kiTbffd3hAEAgP3gRgnc3kLK+Qi/lQkquTUoh+YWyWhcjFskk6bruQBqu2bpJLkaSZLteFCSBACA/eRGCXzI//nV19rJ1JmCHrn76n3PbUzAuMwk6SVTh83SoVtP0nn1vueUuZisd1Wrob8PK5PwTgK4yzu6k0xdEYm72krSsgYBAGC/SZTABze1Mymr5NbKq/c9tzAB4zKf6oS5E5nDd/HV+57rCsNEauq4LRhaYMLXk50kkiR3t54qSXJNKAAA2G8SJfBBJdWQrn3Jrf/zq69ND8bELZLhc4tkgv2fX31ttqG/F6uv3vdc3wgDE/x+nk9yWSTuaunV+57rCAMAAHUhUQI3N7Yl9SVJqo/k12o8Hu1Ut3vcIhk+t0gm33xDn8u8BCZ5LdlLckYk7urBV+97ricMAADUydT169dFARvb6qP8zwt65Nqe4hvcIuklmTMzh84tkma8r2aS/LmBj7b56n3PzRhhYELfzb1IktyNfiQAANSWGyXY2N78MF+KzdT0NHrVnLqo8mfj5BZJc3Q9F0Ct1i+9SJLcjX4kAADUmkQJlPdhvnYltwbJqm6Ss6bj0LlF0iCD2yRN/Bi3qQwLMKHv5V4kSe5GPxIAAGpPooTSN7fdlNUo/GLdGiUPbpH0khw0I0cy3l1haJSu5wKozRqmF0mSuzn36n3PLQgDAAB1p0cJJW9uW0muFvTI66/e99xszcZgIW6RjGSs4xZJE99ZM2lmb5KtV+97btoIAxP2Tu5FkuQj3+1J2nU7oAMAAHfiRglF+ueq1NNyYZvVTo3iP5vqFskhs3EkriVZ+OdffU0kmmWmoc/lpDEwaevIXiRJPsp6kvYP7ntuQygAAJgUEiWUqrS+JN0f1OR2wT9X5c4umIIjdVgImBBbkSgBJogkyV2tJOn8QNN2AAAmjEQJJW5wuynrQ/LqD2pQG/qfq7JBvfiID9y04GMaMEFryE4kST7KxR/ojQYAwIT6mBBQ2Aa3lbJuM2wladcg7vNJ1iJJAnzw/eQ2CTApa8hOkisiccf3+YOSJAAATDI3Sihog/v16WRqubDH7vzgvmev7W/Ms5xMSZAAH7awn+8ngB2sZzrJlCTJ7W0laf3gvmfXhAIAgEnmRgklKa0vyeIP7nt23xJD//yrr7eTbMQtEuD2ekIA1N0//+rrs3H77U7Wk8xIkgAA0ARulFDKJrebsj7Yryfp7lOsp1N9AJ0z84A7WPrBfc9uCANQ8/XjbJJ+yjpos+33eJJ5NwMBAGgKiRIa78G3vt5KWX1JkqRz5cT4N66DWJd2cwfYua4QADVfP944+GFN89cuXjnxrPc4AACNIlFCCZvc0vqSnLtyYrwlEAZx7iY5a9YBd7F05YTbJEDtLSc5JAwfsJVk/sqJZ3tCAQBA00iU0HT9lHUScPXKiWfHWkf7wbe+PpvqY8JB0w3Yhq4QAHX24FtfX4geax+2laQ17sM4AAAwLhIlNHiT+x8LyVRJJwG3krTHHONuMnXBbAO2aenKie9uCANQ4/VjO5lyQ/aD1pO0rpz4rn4kAAA0lkQJDd7kFlcGqjOuDeyDb/3HbKq63UpSADvRFQKgxuvHmcH6hpuWksxLkgAA0HQSJdjkNsPilRPfXR5TfOdTfezU3BTYiRW3SYCa61nf/NX6cl4YAAAogUQJjfLgW/9xo3l7SZvc9YzhlPYtCSg1u4HdWBACoMZryI41zgdDcuXEd3vCAABAKSRKaJS/VB/iSutL0lkacTmEM1Ups16csgR2Z3XpxHf7wgDU0ZnqoI1k7s21ZWvpxHc1bQcAoCgSJTRpk9tJcqawx+6OciM7+HDQSzJnhgF7eVcJAVBj83EYJEk2k7QlSQAAKNHU9evXRYGJd6ZqLt4vbJO7snTiu+0RxrSV8sqYAcO3unTiuy1hAGq6hpxOsmG9k/VUN0k0bQcAoEhulNCUDW5pH/Q3k3RGGM9ukrNmFzAEXSEAasxtkmQpybwkCQAAJZMooQl6SQ4W9swj6UsyuJmzXGA8gdHQmwSorcHhkPnCw7C0dOK7HbMBAIDSfUwImPAN7nzK659xcRQfHs+89R/dJO9FkgQYnq4QADXWSdm3SR6UJAEAgIobJUysM2891EqmLhf22KtLJ57pDjmOs0l6ydQhswoY8vuqLwxAfU2VeptkK8n80olneuYAAABUJEqYSGfeeuhGX5LSNrWdIcdxPtWJbw3bgWHrCgFQ47XkbMq8RbuVpLV04pk1swAAAG6SKGFS9VPex/3O0olnNob0cWAmVW+Xw6YSMAJukwC1X1cV+MySJAAAcAd6lDBxzrz1UC9JaWWiFpdOPLM8pPi1k6xFkgQYna4QADXXLuwICrboAAAgAElEQVR515PMSJIAAMDtTV2/fl0UmBj/9NZDnSRXStvY/vDEM7NDiN10qlskc2YSMEKrPzzxTEsYgBqvJ2eS/LmktWSS1g9PPHPN6AMAwO25UcIkbWpnkywU9thD6UvyT2891EqyEUkSYPS6QgDUXKugZ12NJAkAANyVHiVMhH+62by9tL4k8z/cQ4mEQdy6Sc6aRcAYrP5QbxKg/mYLec6lH554pmO4AQDg7iRKmBBTy0kOFvbQSz888XRvt//L//TWw7PJVC/l9XMB9k9XCIAJWFeWkChZ+uGJpzvGGgAAtkfpLWrvn956uJvyGo+vJ5nfY8zeiyQJMD6rPzzxdF8YgAnQ9ESJJAkAAOyQGyXU2j+99XA7yYXCHnsrSeeHJ56+tot4zaQqUSZBAoxbVwiACdHkUq6SJAAAsAsSJdTWP7758GySXoGPPv+jk0+v7SJe86k+VB4we4AxW/3RSbdJgIlYX7Ya/HhLPzopSQIAALshUUJdN7HTqZIkpX30X/rRyZ31JRnEajnllScD6qMrBAD7vobsCAMAAOyOHiXUVS/llY/acV+Sf3zz4XaSjUiSAPvHbRKA/SVJAgAAe+RGCbXzj28+3E0yV9hjbyXp/Ojk9vqSDG6RLCQ5Y8YA+6wrBAD7RpIEAACGQKKEWvnHN8+3k6kLBT76/I9OXlrbZoxayVQvyUEzBthnqz86eakvDMDkmGrSwyz96OSljjEFAIC9U3qL2vjHN8+X2rx96UcnL/W2GaNukquRJAHqoSsEAPtiXZIEAACGx40SauEf3zxfavP2bfUluSWJdMhsAWrCbRKA/Vs/toQBAACGR6KEWvhLmUmArSSdH5+89JF9Sb7w5vn5JJfNEqBmukIATOCaswmu3W39CAAA7IxECfvuC1U5qbkCH33+xx/Rl+QLb56fSZVAOmyWADWz+mO3SQD2i7UhAAAMmR4l7KsvvHm+naTE5u1LP/6IviSDuKzZCAM11RUCYEJtNGgNDQAADIlECfu5wSu1efsd+5J84c3z01948/xykp+nvH4twGRwmwSYWD8+eWmjIY8iUQIAAEMkUcK++EK5zdu3krRvV1f6C2+eb6W6RTJnhgA11hUCoAHrsUknUQIAAEMkUcJ+WU55zduTqnn7xof/xS+8eX4hydUkB00NoMbcJgGaYK0Bz3DgC2+e7xhKAAAYDs3cGbtBUqDE3huLPz55aflDsbhRfuyQmQFMgK4QAA3QlD5wnZRZxhYAAIbOjRLGanDy7WyBj77+45OX5j8Ui26S9yJJAkwGt0mApthoyHMcHhy6AQAA9siNEsZmsJFbKPDRt5K0bonDTKrTf4fNCmCCdIUAaIi1Bj3LfKqbJQAAwB5MXb9+XRQYuUHz9o2U17w9Se69cQp7cKNmodA4AJNr9ccnL7WEAWjQ2rRJm6C/uV0PPAAAYPvcKGEs/pKpfspMDlz8ycmn+v/w5iPTSXrJ1JzZAEygeSEAGrY2XU1zbvfOe08DAMDeSJQwcv/w5iO9lNmHY+UnJ5/q/sObj7SSLMctkmHaTHPqi9MM0w1+zy395ORTa4YYaJh+mpMo6fzDm490f3LyqWuGFQAAdkeihJH6hzcfmU9ypsBH30wy/w9vPrKQMpvXj9JiEh8DqNu7rpfmJkq6RhhooH6SCw15lgOpbpR4XwMAwC7pUcLI/MObj7ST/LzAR9/KzRIIh8yEoca185OTTy0LBTV7180k+XNDH2/pJyef6hhloKHv7yZthLaSzDhIAgAAu/MxIWBEG8/ZJL1CH/9akiuRJBmmlcHmX5KEOmryu65reIGGry+a4oB3NgAA7J5ECUN3s3F5sT05DpoFQ7OV5MGfnHyq7YQkNX3ftdKcGvcftvSTk09tGGWgwZp2AOPs4JYjAACwQ3qUMHT/L1PLcZuCvVtN0vnpySc3hIIav++6DX68rhEGGv4O7zf03d0xugAAsDN6lDBUf//mN3ops3k7w3XupyefXBAGav6+ayW52tDHW/rpySc7Rhko4F2+luYd8LnnpyefXDO6AACwfUpvMcyNZieSJOzN+mBzL0nCJGjqPN2K2yRAOXr+PgEAABIlDMXgZPUVkWAPLv705JOzTkAyIe+8TppbYnBByTugIMsNfKbDg7U5AACwTRIl7Nnfv/mN2YZuMhmPzST3/vTkk12hYII0db5uxUlkoCCDxPBKAx+tZ3QBAGD7JErYk79/8xvTg43YAdFgFxaTzP705JN9oWCC3nudJAcb+ngLPz355DWjDBSmiQd+Dv79m9+YN7QAALA9mrmzJ3//5jf6SQ6LBDu0laTz05NPuonEpL3zppNspJnJ4a0kMxIlQKHv92sNfLd7rwMAwDZ9XAjYrb9749FeMiVJwk6tJOn87P7v2LQzcf5yfWo+zb1Bt+D3Eij4/d5LcrZhj3UgVTnFjhEGAICPpvQWu/J3bzw6n+SMSLADW0ke/Nn932n7GMuEvvemk8w3+PdTbxKgZE19B575uzcebRleAAD4aBIl7NjfvfFoO8llkWAHVpPM/uz+7/SEggnW5Nsk8xKYQMl+dv93NgbrlSaSCAcAgLuQKGFH/u6NR2dTNW+H7br4s/u/0xp8gIBJfffNJLnQ0MfblMQESBq8xj00uA0OAADcgUQJ2zYoO9NPc09UM1zrSe752f3f6QoFDdD1bADNNkgabzb1XT9YywMAALehmTvbIknCDi3+7P7vOLlIU95/M2luTya3SQA+aCHNLDF7INWNmbYhBgCAv+ZGCTvZNB4SBu5iM8m9kiQ0TK/Bz9Y1vAB/9c7fauizzWnsDgAAtydRwl393RuPLqS5p6kZnqVUDdv7QkGD3n+tJIcb+njrbpMAfNDP7v/OtTS7+bn3PgAA3MbU9evXRYE7+rs3Hu0kuSIS3MVikmVhoIG6aW6i5F6JTYDbrn9nkvy5wY94UQ85AAD4IIkSPmqT2EpyVSQAGmf1Z/d/pyUMAHdcB/fS7BvV9/zs/u+sGWkAAKho5s5ttd94bDaZckMAoJm6QgBwZ3/JVDfNTpQsJGkZaQAAqOhRwl9pv/HYdKoySgdEA6BxVpfv/3ZfGADubPn+b2+k6r/WVIfbbzw2b6QBAKAiUcIHDJIk/SQHRQOgkXwYA9iebtOfr/3GYzOGGQAAJEr4awtJDgkDQCMtLd//bTXpAbahgFslB5L0jDQAAEiUcIv2G48tpNm1mAFK1xUCAO/NWxxuv/FYxzADAFA6iRKSJIMN0lmRAGispcHpaAC2qYBbJUmyMCi/CwAAxZIoIe03HmsnuSISAI21FbdJAHZrfvAebSoluAAAKN7U9evXRaFgp994bDZV8/YDogHQWBdfu//bXWEA2PWauZvkQsMf8/Ov3f/tZaMNAECJ3Cgpe8M3E0kSgKbbSrIgDAB7spBm3ypJkt5pJbgAACiUREmhBpug5UiSADTdwmv3f/uaMADs3uA92m34YyrBBQBAsSRKytVPckgYABrNbRKAIXnt/m8vJNls+GPOna76FwIAQFEkSgp0+o3HepEkASjBvNskAMN9rxbwjEpwAQBQHImSwpx+47GFJGdEAqDxNl+7/9s9YQAYnkGz89WGP6YSXAAAFOfjQlCOU68/3kmmzooEQBG6QgAwfH+5PtVNcrXhjzl36vXHO6+f+lbPiAMAUIKp69evi0IBTr3+eDvJz0UCoAjrr5/61qwwAIxsbd1L829pbyWZff3UtzaMOAAATaf0Vhkbudm4Pg9QknkhABj5e3ar4c+oBBcAAMWQKGm4QZKkP9joANB8q6+f+lZfGABG5/VT37qWZKGARz186vXHJd8BAGg8iZIGO/X649OpToFJkgCUoysEAKP3+qlvdZNslvB3ZXD4CgAAGkuipKEGSZJ+kkOiAVCMJbdJAMaqU8AzKsEFAEDjSZQ0Vy+SJACl6QoBwPgMktMrBTzqoVOvP+5vDAAAjTV1/fp1UWiYU68/0UtyRiQAirL0+qlvdoQBYOxr75kkaymj3O09r5/65ppRBwCgadwoad5GrRtJEoDSbCXRbBdgH7x+6psbKaOxe5Isn3r9iWmjDgBA00iUNMip15/oJLkgEgDFWXj91DevCQPA/nj91De7KaOx+8Eo8wgAQAN9XAia4USVJLkiEgDF2Uo5J5kBauv/VY3drxbwqGdPvP5E/61T31w26gAANIUbJQ1w4vUnZuMjGUCpum+5TQKw79469c1+kqVCHrd3QgkuAAAaRKJkwg2SJP2U0TwSgA/afOvUNyXKAepjPtVNv6Y7kKRnuAEAaIqp69evi8KEOvH6hekkG5EkASjVg2+dutgTBoBardE7Kack7rm3Tl2UsAcAYOJJlEzuBmw61U2SQ6IBUKT1t05dnBUGgFqu1ftJDhfwqFtJWm+durhm1AEAmGRKb03mxkuSBIB5IQCorU6U4AIAgIkhUTKZepEkASjZ6lunLvaFAaCe3jp1cSNJKSWpDp14/YLyWwAATDSltybM8dcv9JKcEQmAot3ztjInAJOwdl9LOQec7n1bEh8AgAnlRslkbbR6kSQBKN2SJAnAxOgU9KzLx6sSwQAAMHEkSibE8dcvzEeSBICkKwQAk2GQ2L5YyOPqVwIAwMRSemsCHH+920lyRSQAirf49qmuJu4Ak7eeL6kE17m3T3X1LAEAYKK4UVL/TVUnkiQAJFtxmwRgUpWU5L58/PXurCEHAGCSSJTU2GCDIUkCQJIsvH2qe00YACbP26e6/SSLBT1y7/jrXf1KAACYGB8Xgno6+svubJK+SACQZDOJMiYAE+wv19NN0k5ysIDHPZTqFqRykQAATAQ3SmroliTJAdEAIEn3nQfcJgGYZIP3eKegRz579JfdtpEHAGASaOZeM0d/2Z1OshFJEgAqm+880J0RBoDGrPcXkpwt5HG3ksy+80B3w8gDAFBnbpTUa9M0HTdJAPigjhAANEo3VUnFEhxIsmzIAQCoOzdKauLIzSTJIdEAYGD13Qe6LWEAaNzav5XkakGPfPHdB7pdIw8AQF25UVKPjZIkCQC3owkuQAO9+0C3n+RiQY98YZAcAgCAWpIoqYdeJEkA+KCldx/orgkDQDMNblisF/TIy4MDYgAAUDsSJfvsyC+7vSRzIgHAh3SFAKDxOgU9q34lAADUlkTJPhokSc6IBAAfcvHdB7obwgDQbIObgyWV4Dp85JddZSUBAKgdiZJ9IkkCwB1sJVkQBoAyFFiC6/KRX3ZnjTwAAHXycSEYv3t/ebGbTEmSAHA73asPXLgmDADl+Eum2knWUpWnKsHyvb+8OOvvHQAAdTF1/fp1URije395sZPkikhMpK0k80k2hAL2zWySyw1+vs2rD1yYMcwARe4T5hv+N+7DVq4+cKFt5AEAqAOJkvFufjqRJJlUq0naTr3Bvr9H+0kON/gRP3/1gQsa3QL4O1eKc1cfuKDcJAAA+06iZHybnk4kSSbRVqoyODZw4D06aqtXH7jQMtIARf+tm051e/lAQY99z9UHLqwZfQAA9pNm7uPZ8HQiSTKJ1pO0JEmgFu/R6TS/wXnXSAOUbXB7uVPYYy8P/s4DAMC+kSgZsXt/ebEdSZJJtHj1gQuzTrdBbcyn2adrl64+cKFvmAEYlGBcKuiRDybpGXkAAPaTRMkI3fvLi7MW/RNnM8m9Vx+4MC8UUJt36UySCw1/zK6RBuAW84N1aSnmBs3sAQBgX+hRMiKHqyRJP2XVF550K0k6qxq2Q93ep/00u7HtxdUHLnSNNAC32U+8V9hj37PqRjcAAPvAjZLRbWr6kSSZFFtJHlx94EJbkgRq9z5tp9lJkq00v/cKALswSBhcLOyxlw/rVwIAwD6QKBkySZLJ24MmmV194EJPKKB279MiGrhL0AJwx4VqdeNwvaBH1q8EAIB98XEhGJ7Dv/zmbDLVjyTJpLi4+sATXWGAupqaT/XBpKk2Vx94wm0SAO7297CdZK2gPcbc4V9+c97fSAAAxsmNkiGpkiRukkyI9ST3SJJArd+pM2l+A/eOkQbgblYfeGIjVXP3klwe7K8AAGAsJEqGQJJkoiwmaa0+8IQmkVBvvYY/3+rqA0/0DTMA2/qj8cATvSQrhT328uFfflO/EgAAxkLprT0aLN57kSSpu60kndUHnlgWCqj9e7XpDdwTt0kA2N3fjrU0uyzlrW70K2kbegAARm3q+vXrorBL/99r35xOdZPkkGjU2kqSzm9OP6FhMkzGe7XpH4EWf3P6iXmjDcAu/k7OJnmvsMc+95vT+pUAADBaSm/tfpMiSVJ/W4ONVVuSBCZG0xu4byXpGmYAduM3p59YS3KxsMe+PEgQAQDAyLhRsguSJBNhPdUtEr1IYHLerTNJ/tzwx3QqFoBh/M3sp/llKm+1mWTW4ScAAEZFj5Idb0q+NZ1M9SNJUmcXf3P68a4wwKSZ6jX8Add/c/pxSRIAhvE3s5OqVGUpfRIPJllO0jL2AACMgtJbO1AlSdwkqbHNJPdKksBEvl9LaOCuLwkAQ/Gb049vpGruXpLD/99r37LOBwBgJJTe2iZJktobNGx/3HV8mMz3a9MbuK/85vTjbaMNwJD/hi4kOVvYY9/7m9OP940+AADD5EbJ9jYgkiT1tZXk8785/XhbkgQmVjfNb+DuNgkAo/obul7YMy8P9mcAADA0EiV3IUlSa6tJZn9z+vFloYCJfcfOpvknYRcGJVIAYKgGB4U6qZLypTiQql8JAAAMjUTJR5AkqbWLvzn9eMvHR5h4TW9uvlnAMwKwj35z+vG1lHdz8fCg7BgAAAyFHiV38L9f+7YkST2tJ+n89vRja0IBE/+e7SS50vDH/PxvTz/m1CsA4/i7upxkrrDH9ncWAIChcKPk9psMSZJ6WkzSkiSBxrxnm34SdNXHGwDGqJPqJmNJev/7tW/PGHoAAPbKjZIPkSSppa1Ut0h8cNy/34uZJLduQj/832eb/7O62hj87FV/F/8710pM/v3v1769kOb3JrlHYheAMf99nU3yXmGPvZ7qMNU1MwAAgN2SKPngxkKSpH5Wk7RtfEY252dSJTWmk8wO/uXW4J8zSQ6KUm0/CGz3d2Ij208CrW3z/+7aXn4nC/mIs/jb04/Nm6oA7MP6bj7J5cIee+m3px/rGH0AAHZLouTmhkKSpF62knR/e/oxTRr3PrdnUyVCWrmZEJmJJAijt3qHf73p828ryYwELwD7uP4rsV/Jg789/VjP6AMAsBsSJZEkqSEN23c3j2dzMwnSSpUUMadh/HyoAaAO+5u1lHUwZiv6GQIAsEvFJ0okSWpHuZrtzdtWqqTIjR/zF+ph9benH2sJAwA1WS9eLeyxN5PMutUJAMBOfbzkh/9bSZK6bWo6/336sb5Q/NU8bUVSBCaFRC8AtfDb04/1//a1b19McqGgxz6YpJekbQYAALATxd4o+duqifVyfHSug5VUSZLiT34Nknetwc9sksOmB0yMpf/WSBaA+q0v+wWuKS/+9+nHukYfAIDtKvJGyd9WvRz6SQ6YAvtqK8n8fxdcy3+QsGvd8qPBOkzw+0wYAKihdpKNwvY+F/72tW/33VYHAGC7irtRIklSG+tJ2v99+rGNwubf9GCz2orECDTJuf8+/diCMABQ0zVoK+X1K9lKMlvafgMAgN0pKlEiSVIbRV2F/9vXvn1rYkSpN2ie9f8+/disMABQ8zVpN2X1K/E3GgCAbSsmUSJJUgubqW6RrBUw11qpbo7oMQLNd6/SHgBMyDq1X+D6VA8xAADuqohEiSRJPTYoqfqRXGvoHGvnZkkt5bSgoHebjy8ATNCadTrl9StJkgdL7osIAMDdNT5R8tnXviNJsr+2knR+d/rR5YbNq5ncvDUyZ5ih2PfbzO9OP3pNKACYoHVsK2X2K2n97vSja2YAAAC30+hEyWdf+04nyRXDvG9WUyVJNhoyn26U1OpErxEgOfe7049q4A7AJK5ruymvX8lmklkHHAAAuJ3GJkokSfZdIz4gDpIjnVQ3R5TUAm5Y/93pRzWHBWCS17nLKe9m9MrvTj/aNvoAAHzYxxu66O9EkmS/rKe6RbI2wfNHcgS4m3khAGDCdZKsFbbenfvsa9/p/u70o13DDwDArRp3o0SSZF8tJulO4nV2yRFgB5Z+d/rRjjAA0IC902yS9wp89Ht/d/rRvhkAAMANjUqUfPa17ywkOWtYx24iG7ZLjgC7fN9p4A5Ak/ZQ80kuF/j3fLYpvRQBANi7xiRKPvvak70kZwzp2K0k6fzu9DeuTcg8kRwB9uLc705/QwN3ABrls689WWK/kvUkrUnZxwAAMFqN6FEiSbIvtpJ0J+GD4Wdfe3ImVWJkPpIjwO6tSpIA0FCdlNev5FCShcGzAwBQuIm+UfLZ156cTtJLeaef9tugYfs31mo+NzqDn0OGDBiCe+r83gOAPa6fZ5P0kxwo7NEf/N3pb/TMAACAsk1somTwIbwfH8HHbfF3p78xX+N50Ul1e0TyDCjm3QcAQ1xLXynw0R2GAAAo3EQmSj7zC0mSfbCVpP37z32jX8P50MrNviMHDBUwgvffzO8/p4Y5AM33mV8UWdbY33oAgMJNXI+Sz/ziydkky9FrYpxWknTqtHH4zC+enEnVc0RTdmDU5n04AaCkv3tJZlPWobQDqQ7izRp+AIAyTdSNkkGSpB+3BsZlK9UHwl5Nxn86N5uyu00EjMPq7z/3jZYwAFCSgvddi7//nFKbAAAlmphEyWd+8VQr1U0SSZLxWE/S/v3nHtmowdi3UyVIzhgWYMzu+f3nHlGzHIDiDNbgPy/w0R/8/ece6ZkBAABlmYhEyWd+8VQnZTYV3C8Xf/+5R7r7POazqfqOdCI5BuyPxd9/7hGnSgEo1md+8dRCkrOFPfZWkpaDEgAAZal9ouQzv3hqPsllQzUWm0k6v//cI/19GmultYA6vQ9nf/+5R/QmAaBon/nFU2sFrs2tAwAAClPrZu73/OKpXpRbGpeVJJ339mEzcI/SWkD9zL/n4wgA5P8lrSQbKeuW98FUZZ9bZgAAQBlqeaPknupmQS/JnCEaua1UCZLlMY/xTKqbI+3BRgSgLlbf+9wjLWEAgP9Zu7eSXC3w0RffU4YTAKAItUuUDJIk/Si9NA6rqZIkG2Mc23aqviOHhR+oqb8Z13sRACbFPb94qpvkQoGP/vlxHyoDAGD8apUouadq4L0cNwzG4eJ7Y2rYPjiB1kmVJNGYHfBuBIAJdM8vnlpOebf+t5K03tPcHQCg0WrTo2TwMX05PqSP2maS9qgX+oPSWjcas0t8AZPyflwQBgC4o06StcLW9weS9O75xVMt/csAAJqrFjdK7vnFU50kVwzHyC1lxA2KB2PZjv4ywOS5973PPdIXBgD4yPX+bJL3Cnz0lfc+90jbDAAAaKZ9T5QUXOt2nEbasH2wWeoMftwIAiaRjx8AsP31fydlHnRTohMAoKH2NVHy6ZWneknOGIaRWk3SeX9uuI2JP73y1HRuJkcOCTMwwbaSzA77PQkATVbwXu7z789p7g4A0DT7kigZfGTvxwf2Ubv4/txwTzx9euWpdqrkiNJaQFOce3/uEb1JAMCebju2krTen9PcHQCgScaeKPn0ylMzqZq2S5KMznqqWyRrQxyz+SitBTTwffn+3COzwgAAu94nrBW4R1hPlSzR3B0AoCE+PuaF9GyqU0c+to/OYpLuXhftSmsBhZgXAgDYnffnHtn49MpTnSQ/L+zRDyXpJdHfDACgIcZ2o2SwgF6IJMmobKW6RbK8x3FSWgsoxdL7c490hAEA9rzX6ya5UOCjL74/94hDFwAADTCWRMmnV56aT3JZuEdmNUl7t7dIBjd9OlFaCyjHVpIZJTMAYGh7vn6SwwU++oPvzz3SMwMAACbbyBMln1651EtyRqhH5tz7c+cXdjEuM6muis8nOSiMQGEefH/ufE8YAGBo+77pVP1KSttbDJq7n9fcHQBggo0sUTJYKPeihNOoDBq2b39BPhiT9uDHuAClWn1/7nxLGABg6HvAUntSbiaZfX/uvJuqAAAT6mMjWiBPDxbIPsaPxmJ2cGrp0yuX2oObPRtJrhgXoHBqiQPACAz2JyX+nT2YZNkMAACYXEO/UTI4RbQc5ZxGYdCw/fzyNsehE31HAG518f25811hAIDRKbj88uL7c+cdyAAAmEBDTZR8qtyr1uOwmqT9h4+4zv2pqu9IZ/AjUQXwQZtJZv+gLAYAjNynVi6tJTlU4KM/+Ad90AAAJs7QEiWfWrnUTtWTRJJkuLaSdP9wh4btn7rZlL1T6EYEYLs+/4dt3MgDAIayP5xJ1dy9tP3hVpLWHzR3BwCYKENJlHxq5VInVe8Lhms9SefDi+xP3WzKPh/JEYDtWPnD3Pm2MADA+Hxq5VIrydUCH30ryYxbrAAAk+Pje1/8Pt1JpiRJhm/xD3MPz98S5xvJkXYypRk7k2I9SZ02iNORXCzRVjRwB4Cx+8Pc+f6nVp4+l+RyYY9+IFVJ6lmzAABgMuzpRsmnVp6eL3DRO2pbSdp/mHu4/8HkSCRH2A83Eh3XUpVOSJKNwc9gA/xwv8TAfGrl6dlUiZedmhn87MRO/n9JBv21c3+Ye3hBGGCi3rHTufMHxt28R2/VGvxzL3+/1nKHgwCl/l2Eu/xOLxe6n1n6w9zDHTMAAKD+dp0o+dTK070kZ4RwqFZSnXpuRXKE8dhK9bFnY/Bz48PP2h/mHlYqoOE+tfJ0N8mFhj/m+h/mHnaaE8b7bvlwkuPDyd4P//czSQ42/V2UDyZWbj2AkDiEQBnvhX6Kbe7+cM8sAACot10lSj4pSTKqDfRGJEcYjRsJkRtJkbUka3+UDCnWJ1eenkkZDVbv/aMPjjCMd0Zr8F/emgSZyc2bHTNpfrJjP9eIN/5e33qT5ca77dof5x7WNJpJeI/MDubtgQIf33oEAKDmdpwokSSB2ruRFI1EMOUAACAASURBVOnnZkJkQ1j40Lu8n+Rwwx9z8Y+39HoCbvsuuHG7YyY3kx6twT9nIvkxaW5XMrM/+KcDEtThndNO8vNC1+ez1uQAAPW1o0TJJ1eeXkhyVtigVtZzMynStwFjG+/yEj5SbCWZ8VGQwn/Xb9z+uPUWSGvwz8MiVKzN3Cz19YEfawjG9G4qdU+5nqRlbQIAUE/bTpR8cuXpTpIrQgb7bjVVYqTvCj87NfhwupHml7148I/qgVPG7/SNREhr8C/d+KdECLt1I5HyP33LUpX3suZgmO+ufqHvqZU/zj3cNgMAAOpnW4mST64804kkCeyXWxIjD/WFg7345MozJZziXP3j3EMto02Dfm9vTYbcuB0yE2WxGL8b5T03Bj/9JNf+OPeQHins9L02PZhLJb7HLv5x7qGuWQAAUC93TZQMNufvCRWMzY1SWv0/zj20LBwMyydXnmkluVrAo/7NH+ce2jDiTNjv560JkJncTIocEh0maP1ybbCG2Uiy4YAH29hn9lNmc/cH/zj3UM8sAACoj49MlHxy5ZmZVCd9DggVjMzWYJO4nCo5siEkjMInV55ZS/M/ujqlSd1/D28kRG4kRW7819ZaNNWNUl79wb5iww0UbnkndlJm5YKtJC2/CwAA9XHHRMknlp+eHmxonGSE4dtMlRhZ/lNbzW9G7xPLT3eTXGj679Wf2g/PGG1q9HvXygdviEiIwE3ruVnGq59k7U9tTa4LfVf2kpwp8NG3ksyY9wAA9fBRiZIS6tjDuD8I9FIlRzaEg3H5xPLTM0n+XMCj3ivxyD7+js3kZjJkJg6awG7c6IHSH/xzzZqpmPdoCbdeb7s/+FP74VkzAABg/902UfKJ5afbSX4uPLBnK7l5c8RpMfbFJ5af7ic53PDHXPpT++GO0WYMv08zuVkuqxW3RGDUJE/KeLdOp7pdVOL71BoGAKAG/ipR8onlZ0pepMIw3JIceUhyhH31ieUian8PSlf4fWPovz83EiI3fg6LCtTmvX9r8qTvb0Bj3rnvFfr45/7UfmjBLAAA2D+3S5T0UmaNWNgLyRFqp6DEt48LDOP3ZSZuisAk28wtyZM/tR/qC8lEvos7KbO5e5J8/k/th5bNAgCA/fGBRMknlp9pJbkqLLAtkiPUWiGJ79U/tR9qGW12+LsxnQ8mRFqRFIFG/o3IB5MnG0Ji/VJjW0laf2o/tGYWAACM34cTJf0oKwEfRXKEiVBQ4vseHxTYxu/Dh2+KaLQOZdpMlTTpp0qc+PtR3/d2sc3dUyVL7DMAAMbs47csRluRJIE7bVh6SXo2LUyQXgHPeNFHLm5nsKZpxW0R4IMOprqpcGbwrtjKzcRJ39+UWmmlzL6Zh1IdymqZAgAA4/X/s3dvTXIch53o/63Vhs9Zr4mR1147bGvZVMQ+o/kJ0PgEHNwJgVo0RFGURFEYUNS+svFqysLg6Mj28a6NHokgJJEiBp+APZ+AM88bIc6EQgqJ1mWGulAMXfo8VA0wBHGZS/dMV9XvF9EBkgqHUZmVVZn5r8y8vaLkvy/+/WKSJxQJJCm+OBykCEdWFQdV8t8X/76f5KUGtNGO8JJyG61u7gQjPvoAdktwMl3P9yYf7r7wf2b/Z89dAACwf1qj0WjzANO3FQcGx7fDEQNjKqlBz/OjDupt9D3ejW20gP3pGw4jODnIZ34vzT3c/cL/mf2fA3cBAMD+aI1Go3xi8eW5JFcUBw11K8ng+7NfWVQUVN0nFl8epv5f1N/6/uxXZtV2Y+7pdu4EI90UW+cAHIStwcni92e/sqpI9uU9MEgzD3dPkqPfn/3K0F0AADB5m0FJUw/Lo7lWksyXg1xb91ALn1h8uZf6f3W5kaSt3db6Pm5HMAJUw+bh8ItJht5NE303NHW8upGk+/3Zr1jNBAAwYa3Hbv79TJJfKAoaMphdTDLvC0Dq5hOLL8+kGYeeXvr+7Ffm1Xjt7t1uktkIRoBqW8md0GSoOPRzxnhfdQVxAACT9dEUkxJQZwspVo7YWos6G6T+kwdLQpJ6+MTiy5uhSDdWtAL1cbj8vfSJxZc3t+naDE5WFc/ufX/2K+ufWHy5m2Ye7n64vI+M2wEAJqj12M2/7yd5SVFQM7bWojHKiYM3G3Cpj9t6orL3aCd3VowcUSJAQ/umw7JvOlQcu36f9NLcw90Xvj/7lZ67AABgMlqP3fz7YUxaUA+21qJxyq0ollP/7Youf3/2K301Xpn7sp0Pbqd1SKkA3LZR9lmH8VHPbt4xgzT3cPcL35/9ysBdAAAwfoIS6sDWWjTWJxZf7qf+qwLXknRMJE39vdjNnWDEdloA27eSYgvNRR/7bPud0+Qx7FGrkgAAxq/1326+PFIMVHhAOVibfdHkKY306OJXO2nGXt1H12ZfNCEwffdfO3eCkSeUCMBYbK6QXvTue+A7qCkrau9lI0l3bfZF25ECAIyRoISqDQoGKcIRAwNMEix+dZj6f015a232xVm1PTX3XDdWjQDsZ993MzSxcvrD76ROiu3Lmri941qSjg/GAADGR1BCFdwqB4gDRQG3Jwfmklyp+WVuJGmbBDjQ+2wmRTDirBGAg38nDnMnOPFuLN5TvTT3cPeVtdkXO+4CAIDxEJQwrdaSzJcDwVXFAR+YFGin2G6i7pPWl9ZmX5xX4/t+f3VShCK9WDUCMK1uRWiy+d6aT3KxoZe/sDb7Yk9zAADYO0EJ02Rze4GBPZnhgRMCi6n/mRBLa7MvdtX2vt1TmytGZtPM/d4BqqzxoUlD+kb348MSAIAxaP23my+vx1YaHKylFGeP2EYAHj4RMJvkZgMu9XFnEU30PprJnWBkVj8AoDYaGZqU77VhmrsS8oJtigEA9qb1d2+8PEz9DwNm+qyVg7j5HxyztRZsx8dvfnUmxZZbdf/i//IPjr3YV+MTuX82g5EnlAhA7d0OTX5wrP6hycdvNvpw940k3R8c85EJAMButf7ujZebvEyZ/bdQDtYWFQXseAKgCXtwryXpNGFCZ5/umXaKYKQX540ANNmtJIO698E/frMxK2/vZSNJWx8KAGB3Wn/3xsv9JC8pCiZoJeXB7DrusOuBfzfJmw241KM/OOaMoj3eK+0IRwC4t80zAWv74dLHb351LsmVBo+7usZcAAA71/q7N17uphmTb+wvW2vBeAf9y6n/pPetHxx7cVZt7+r+6KQ4c6QX4QgAO+uvD+q2ZdPHb351kOR8Q+tVfwoAYBdao9EoH7/51ZGiYExsrQXjH+z3U/+Vf7aL2Pl90UkRjMym/ufWADBZa7mzAny1Bu/Iph/ufvUHx16cc1sDAGzfZlDinBL2wtZaMLmBfjvFAe51P5j00g+OvTivxrd1P8xFOALA5CwlGVS9b1+GJatp5uHuSXLhB8deHLidAQC2ZzMo6SW5pjjYgbVyADWwtRZMdJA/THKk5pe59INjL3bV9n3vgXacOQLA/ts8z2RQ1fPDytWXbzW4Dp39BgCwTZtByUySXygOtjlYmq/bPsYwpYP7XpoRYj/umfKhum9HOALA9FhLEZj09acqN37r6mcBADxcazQabXYgB2nugXc82K1yYOTcEdi/QX1Ttou4XMVJlwnW+WyKrbWEIwBMo0pu5/Txm1+dT3KxoXW2lqRji2QAgAfbGpS0k7ytSCjVYm9iqKqGhNeNH7hvCUdm46wwAKbfRvnuXq3gO7fJ53KupFhZYlwHAHAfH938hx8ce3H1b2/+w0KsKmmylZThyA+PfXlVccDB+Nub/9BNWk14Fvd+eOzL6w2t4zIcac2muYfMAlA9h1Jsxdup2l/8j2n1kgzTzFWbh5PMp9jSEwCAe7i9oiRJ/vbmP7STLMekTZOslYOdwQ+PfdnetXDA/vbmP8yUz+FHa36pt3547MuzDavbTooJip73LAAVd/WHx748V9F38bDB7+FK1hsAwH74QFBSdh77SV5SNLUmHIHpHcA34Rm8kaTdhNUk5QcIm+eOPOoOB6BGjv3w2Jcrd4ZhsXI3bza43i788NiXB25fAIAP+lBQUnYel+Mg2brZSBGOLFZxQANNUH7l+FYDLvXSD499eb7G9bh57kgvyRF3NgA1Hl90qrhl79/e/IdekmsNrrujPzz25aFbGADgjvsFJe3YgqsugxfhCFRn0D5M/SfWl3547MvdmtZfN0U44twRAJqisu/1v735D4M093zOjSRduwsAANxxz6Ck7Dh20+wlyVXu9ApHoHqD9bkkVxpwqY9V8cvTB9RbO3fOHbG1FgBNdPmHx77cr+h7vMk7KaylWBG07hYGAHhAUFJ2HHtp9pLkqhCOQIU1aBVfZSdS7qovW2sBwAdVciun8p2+nOZ+7LCSYmWJsAQAaLwHBiVJ8jc3v9aLsGQabR7IPvzRsReEI1Bhf3Pza4tJnqj7M+tHx15oV7yeOikOZbe1FozPSpKtE3Sr5W+r9RQTmfey/qNjLyzv0zOg+4D/+V7/WyfJzJZ/b8fKM+prI0n7R8deqNyEe/l+Hzb43b7wo2Mv9NzCAEDTPTQoKTuPvQhLpsFmODLYr0kBYOKD89kkNxtwqUd/dOyFYUXrqJ1iAsUEJzzYUvnn3cHG1ra/+qNjL6wqqtuTs5tBykyKYGVTd8t/P6y0qIhbPzr2wqz+WCVd/dGxF+bcwgBAk20rKNnSeRzEV7T7baUs90UTC1Avf3PzazMpvpyu+3O10l8qNmTFD9zPRu6EHsPyz9XcWfWxXMUvyCv6LGqnWJWS3AlSNv+bQIVpcelHx16Yr2gba8p5cfdz4UfHXhi4hQGAptp2UFJ2HjspJu0NxCbrVu5sq7WqOKCe/ubm1+aTXKz5ZVZ2K46yjrpJ3nS3UmObq0CG5Z/LKVaEWPlR3XdLt/zHzRUrW//0wRP74fGqrn7/m5tfGyQ53+C6O2ZbZwCgqXYUlJSdx5kk/dR/cm8/raWYoFjUMYVmaNAEfKUH3H9z82vL8XEA1e9jrOZOALKc4lyPoaJp7PtnMzjplv+pGytSGP9zp1PhjySa/O7fSNK1zTMA0EQ7Dkq2dCC7KVaX2LN9d1ZSrBpZ1BGF5mnIIHzpR8de6Fa4jnpxPhfVsDUMuf2nFSHs4rnXTrGVV+euP/X32akqn1cyUz5Hm3rfV3o1MADAbu06KEmSv37jazNJ5sqfpfwPtrlqZJhk8cfHdTyhqf76ja/1k7zUgEF258fHqzlRW77fVr3bmDJLuXM+yHKS1R8f97EF+/Zc7ObOFl6bAYpVKDzIhR8fr+aZF3/9xtc65bitqf2AlSRdY1YAoEn2FJRs6UjOJJlPs/dzvdtG7gQjQxMZQPm8bCd5uwGXevnHx1/oV7iemnB+DNNrayAyTBGIrCoWpvR5uTU46cYKFD44HupWdRz01298bTbJzSa/i358vLorgwEAdmosQcmWzmSTV5gIRoDtPCeHSY7U/DJXfnz8hU6F66idZoRZTEFbyZ3VIctJlgUi1ORdt3XlyWaIckTJNPY5V9mVCX/9xtfmklxpcP0t/Pj4Cz23MQDQBGMNSu7qVPaS9Go8KFpJMakxTDGxIRgBDLYLR398vLoHRTckzGL/LWXLGSJVbiOwh+fr1vCk41nbGFd/fPyFuQrft4M0e+eESq8SBgDYrokFJVs6lu0ks+WvqoOhrV98Dk1uALt4FjblzIuqT4Z0k7zpjmUPNnLnQ4rV+JgCHvbcFZ40w7EfH39hscL36bDh92Zlz5sBANiuiQcld3UwZ1LsXbz5m7YDINfywS0wVoUiwJief4tJnqj5Za6lOMB9vcL1tBp767MzS1v6DUNbZ8FYnsXd3AlOup7LtbBR9hFWK3pPzqQIwA83uA6PGhsDAHW2r0HJQwZC7S1/TnIwtFT+uZxkffNPnT5ggs+5phwGWvWvRZu+DzkPZ9tNOJjn8+bHVpvBiVUnFX2GVvwMs075/D/U0PrbSHHejHcfAFBLBx6U3M9fvXFl8xDIJNn6z9s13PLPqz85fmlVdQMH9CxbTv2/hr31k+OXZiteT6tp7uQHH7ZR9iWWkwx/cvzSUJHAVD23N0OTbjlOsOqkGq7+5PiluQrfd900e4vOjSTtnxy/tO5WBgDqZmqDEoA6+Ks3rswnudiAQXOnyoH0X71xZZBmH9RKsVpkmDvByKoigUo9x9v54Ba/gpPpdbTK4fNfvXGll+Raw9+XXWEJAFA3ghKAyQ2ku2nGV4eXfnL80nyF66mT5C13bOMspQhGhkmWTfhA7d7B7QhOplXlVyU05EOYB75Df3L8UtetDADUiaAEYEL+6xtXllP/Qz+X3qn4QPm/vnFlGPvd193mNlrDJMN3jl+yvzo0753cjuBE/2G899RikicaXIcL7xy/1HMrAwB1ISgBmMzguZ/kpQZc6uNVnnT+r29cmU1y0x1bO4IR4GHP/3buhCazcUbVQbj8zvFL/QrfQzPle+Zwg+vw6jsVPnMGAGArQQnA+AfO7SRvN+BS6zDBsRxfFdeBYATY6zth83D42VhluJ+q/sHFTJLVNDtou/DO8UsDtzIAUHWCEoDxD5qHqf8ky1qSzjsV3l+8Qat+6upWBCPA5N4Rs7mz4uSwEtGfeMC90infR00OS469c/zSotsZAKgyQQnAWAfL870k1xpwqUffOT43rHA9tVOsJrHVSnXcPny9yvceUNl3RjfFapOud8fY3Xrn+Nys/l+lbSTpvnN8zocLAEBlCUoAxjdIbsr2CwvvHJ/rVbyuBknOu2un2lqSxdwJR9YVCTAl75BuitBkNrZvHJdL7xyfm6/4fTGX5EqD61BYAgBUmqAEYHwD5MUkTzRgENyu8qR1OcH1pjt2Ku+tYcpw5J3jc6uKBKjAO6WdO6GJs0325vGqT7L7ECMrKcISHzcAAJUjKAEYg79szuT7sX8/PrdY8boaxmTWtFhJGYz8u+20gOr3BWZyZ3uu2diiazfvhO6/V3ySXT+jHvUIADTPRxUBwJ4HxDNJBg241KUahCS9CEkO0tZVI4smUYA6KZ9pg80+wV++Mb81NLFF18MdTjKfpFfx65gt33WHG1yPg7IcAAAqw4oSgD36yzfm55NcrPllbiTp/HuFt0P6y+acITNtVlKGI1aNAA3uK3RSBABCk4e78O/H5wYVr+92kuWG9zkW/r3iZ9oBAM0iKAHYg79442onyVsNuNTLPz1+sV/xuuoneclduy9upQxHfnr84qriAPhQ36GbIjg5rEQ+ZCNJp+rvj7Keh2l2WHL1p8cvzrmlAYAqEJQA7G0QvJz6T3Ks/PT4xU7F66md5G137MRspNxOK8nwp8cv2lILYPvvp9kITWrX9yjrt5fkWsPr8sJPj18cuKUBgGknKAHY/eC3n2asUHj8p8cvLle8rhaTPOGuHau1FMHIoOr3B8CUvKvaEZpsVYvVCH/xxtW5JFcaXpfCEgBg6glKAHY36G2nGSsUKj9J8RdvXO0medNdOxYrKQ5otaUWwOT7GUKT5NhPj19crEF9DpKcb3A9biTp+rACAJhmghKAXfgv37s6THKk5pe5lqTzsxPV3kbpv3zv6mocnLsXt88b+dkJ4QjAAbzHmnwQ/EbZF1mtQT02oe/4sLrs/uyEsAQAmE6CEoCdD3SbsoXC0Z+duDhUV410K+WZI1UPygBq1gfZDE16ac4h4Us/O3GxW4O6m0nx4UGTVwhtJGnrWwAA00hQArDzQe5q6j85cetnJy7OqqtGEY4AVOs9N5tilclsA951l3924mK/BnXWTrLc8L7JSoqVJfoaAMBUEZQA7MCff68Rh4JvJGn/vOID2D//3tX5JBfdtQ90Oxz5uQkLgKq+72ZyJzCpcx/l6M8rvtK1rK9OipUljQ9L9D0AgGkiKAHY/sB2NsnNBlzqpZ+fuDhf8bpqJ3nbXXtPwhGA+vZV2ikCk7nU7zyTWnzIUdZTL8m1ht+uCz8/cbGn1QIA00JQArC9Ae1Miq0S6n6I6tLPa7AP+J87MPVuwhGA5vVdOikCkzptzXXr5xXfGnRL/fQiLBGWAABTQ1ACsL3BbFO2cXrs5ycurla8rpqy8udhhCMAbL4be6nP1lyVX/m6pV4GSc43/Pa8+vMTF+e0UgDgoAlKAB4+iO0mebMBl3r55zU4KPXPv3d1NfVf+XM/K0kGSQbCEQDu8Y5sJ+mVvyq/Kx//+YmLyzWpkyacf/cwF35+4uJACwUADpKgBODhA9jlJIdrfpkrPz9xsVODuuonealht+hmOLJY9dVAAOzrO3PzAPgqrmhYS9KpyXklMykOdz/c8FtSWAIAHChBCcADfOx7/08/zZh4P/qLE18aVryuZpKspj77sD/IWopttQa/OPGlZS0VgD2+P3up3gHwt35x4kuzNaqDJpyFV/v+KABQXYISgPsPWttJ3m7ApV79xYkvzdWgvgap9z7fG7kTjgy1UAAm8C7tpghNqvI+vfCLE18a1KTsOylWlhxq8C24kaTrIxAA4CAISgDuP2AdJjlS88tcS9L5xYkvrVe8rrqp7zkyt5Is1mUiCIBKvFerssqkVhPrZVjyVsNvP2EJAHAgBCUA9x6oziW50oBLPfaLE19arEF9DVOvUOv2uSO/OPGlVS0SgAN8x86mCE2m9cDxlRQT6+s1Ke9ekmsNv+1q8SEPAFAtghKADw9Qm3LWRS329q7RhMJGinDEuSMATOP7tp07q0ymrY9Ui21Et5R1Uz7YeZBaBWBA7d6JnSQz5b+2y992rac4lypJYltlmB6CEoAPd3oWM71fTY7LRpJ2DbbcqsPhp7dShCOLWh8AFXn/9lIEJoen6K91rE7v0gacvbYdwhLgoJ7Bm0FIt/xz898n+d5bS/HB5uZvOcmqj+hg/whKAD7YIZpNcrMBl3rpFye+NF+D+uoneamCf/W1JPMpAhKDfwCq+h7upAhMpmFCfyPFdk2rNSrfJny88zBLvzjxpa7WBkzwWdtNEYRs/g5P4V9zJUVwspxk2SoUmAxBCUBppjlbbi2t12DAOVNsAbJcofraSLKYZH7dV0EA1K8PNZeD35ZrZf3Elzo1K9dhpnPSbj8trJ/4Uk9LA8b0XO2mCES6qfY5l0vleHi4bncCGAtBCcCdTtN8kosNuNTH1mvwteVMdb6yXEmxemRx3eoRAOrfn+rlYLflurpeo/NKZuqxzeg4CEuA3T5HO0lmU/1g5GGWUnyYN/RhHuyOoASg6Dx1k7zZgEu9vH7iS331NXGbB7PPr9doCxAA2OG7ei4H81HD0fUabUtSTvINU/9Vzw9TqxAMmOhzczZ3wpEmBs1rKUKTgdAEtk9QApBk5ntfX21AB2pl/cTznZrU13KmcxuKpaIz+vxAqwKAZOZ7X28n6aeYsNqvif6NJO31E8+v16gchSWFC/pZwAOek73yffOoErltMzSZXz/x/KrigPsTlAA6VN/7ej/VPBB8p46un3h+WIP66iW5NkV/pS2rR3Q8AeA+7+/9Psdkaf3E892aleG09YEOirAE2Ppumc3BbvlYJVu2hX7ettBwF0EJ0PSOVSfJWw241KvrJ56fq0F9zSRZzXR8TWn1CADs7n3eS7HKZNJf/F5eP/F8v4ZlJywRloBxfBGO7OdqxTrZSLHKpO9jP7hDUAI0vYM1TL0PdEuKpbadOnwxMvO9r88nuXjAHcpBrB4BgHG81ze/Ap5kX+zx9RPPL9es3AZJzjf89tlI0q1b3QIPff71UmyvdURpjM1SisBkqChoOkEJ0NxO1utfn0typQGXemz95POLNaivdpK3D+j//Z0lyictUQaAMb/juylWmExi4qv4YKRm7++Z14Ul2QxLTgpLoObviJkU4chcnD0y8THv+kmr9WguQQnQ1M5WO8ly6r9M99b6yedna1Jnw+z/l0MLSQbrJ31dAwD71D/rZ/wBQG36Q3eV13LsyS8sgXq/E3rZv7OtKKwl6QtMaCJBCdDUTtcw9V+uu5GkXYcvKMsvTd/cx47hIMXXNFaPAMD+v/fbGX9gcmn95PPzNSunmSTDCEs2UqwaWtV6wDuAsY6Lez4apEkEJUATO16zSW424FJrMyEw8/rXVzP5ZdZLKcKRRa0EAKbi/d/OeL8mfrxuKw/KsGQ1vrZeSbGyxEcuUN3nWbd85gtIpktxhonAhAYQlABN63w1ZTC5tH7y+W5N6mySZ8lsJFksO36rWggATG3/bS57D0xqOZk+8/rXOylWlghLhCVQxWdYN5M7p4rxWTBupu4EJUDTOmGDNOMLlcfq0IGZYLC1luJw9oHBNABUql+w18BkYf3k870alk0nyVvuEmEJVOi51Y2ApGo2UuzC0FcU1JGgBGhaR+zNBlzq5bp0XCYQbNleCwCq3z/Ya2ByoY6H1M68/vVekmvuEGEJVGBc3o+ApOrP2TnbcVE3ghKgSQPq5Uz+nIsD77Csn3y+U5M6G+eXkQspApJlrQEAatW/201gUtvDv4Ult91aP/n8rGKAqXo+dSMgqZurKbbjEkxTCx9RBEBD9FP/kCTlREFd7PUg+o0kl5N8bP3k8z0hCQDUy/rJ59fLVbTt8p2/sc3/00MpziirY5kMUkxcNd0T5cpk4IDNvP717szrXx+m2N1BSFIvF5MslyEYVJ4VJUATOmZN2bP56vrJ5+dqUmezSW7u8v98LcVXLQbHANCsPt9OV5jUpu90j7IYpBnn8j1MLc+kgYo8h7qxgqRJLju7hKoTlAC1d+j1/3c5yeGaX+Zaks7GyS+u16C+drtN2lKS/sbJLw7d9QDQ6L7fTgKTYxsnv7hY03JYTPKEOyILGye/2FMMsG/Pnm4EJE21kmR24+QXVxUFVSQoAereSesneakBl1qbQf4u6mwhyfzGyS/aWgsA2Nqn2AxMHtSv2EjxsclqTa9/mPp/MLSt/qKwBCb+zOlGQELxXu3V9SME6k1QAtS5o9ZO8nYDLvXWxskvztaozpbz8K8/N5IMUgQkq+52nB71+gAAIABJREFUAOAh/Yt+7r8V1dLGyS92a3rtwpI7Lm+c/GJfMcDYnzPdCEj4sKsbJ784pxioEkEJUOcO27ABnbWNJO06bLlV1tkgD95PeyPFIe/zdblmAGDf+hnt3D8wqe0k+g4+RGmCCxsnvzhQDDDxZyokxfbYs8buVIWgBKhrp20uyRWDvUrVWTfJm/f5n9dSnD9iYAsA7LXP0Unx4cXdH9QcretZZ+U1DyMsqVX/GQ7oedKOgITtW0sRltgqm6knKAHq2HGbSbLagIFgrbaJuM8KoJUUq0cMZgGAcfc9uvngdjG1Wql7j+sVltwhLIGdP0PaEZCwO84toRIEJUDtPPL6NxaTPNGAjkbn3ZPPrdakznpJrm35T0tJ+u+efG7ojgYA9qEf0k/yaJJb7558brbm13pNrSdJLrx78rmBYoCHPjdmUqzCE5DguUutCUqAunXiZpPcbMClXn735HP9GnW8V1N83XgrybyABAA4gD7JXIrApP/uyefma3ydvQhLNpm0gweP0+bKn5VojMvVd08+55B3ppKgBKhbR261AZ24lXdPPtepUb31k7RTTEqsupMBgAPuT86l+HBjvcbX2U/ykhpPUqMPkGDMz0EBCZOy8O7J53qKgWkjKAHq1KGbT3KxAZf6+Lsnn1uuUb3N1HkiAgBgSvtgg9hKZ9Nakp5VzTT8mSAgYT8JS5g6ghKgLp26bpI3G3CplqkCADCuPvQgwpKtFpLM+YiHBj4LerlzVhPs2zNXWMI0EZQAdejUzSRZbkCnbi3FAe4GbgAAjKsvPUxyREnctpEiLBkoChrQ/nsRkHCwhCVMjY8oAqAG5hrSsesJSQAAGLPZJCuK4bZDSa498vo3ho+8/o2O4qCOHnn9G71HXv/GapJrEZJwsM6XqxvhwFlRAlS7g/faNzpJ3mrApS68e8pXFgAATKRPPZNkmOSw0viQq0n6757ywRK1aOvdJPPaOlPInAcHzooSoOoGDbjGjRSrZgAAYOzKEKBb9jv5oItJVh957Rs9RUFVPfLaN7qPvPaNYYpzPYUkTKPzj7xmZQkHy4oSoMqdvX6SlxpwqcfePfXcohoHAGDC/etOipUlh5TGPS0lmXv31HPLioKKtOluijNInENEVVx999RzPhTlQAhKgKp2+NopDnCv+yBu6d1Tz3XVOAAA+9TPFpY83EKKwMR2XExrO+5GQEJ1XXj31HMDxcB+s/UWUFWDBgzeNpL0VDUAAPulXC3RVRIPdD7Fdlx9RcE0eeS1b7Qfee0biym22BKSUFXXHnntG7OKgf1mRQlQxc7fXJIrDbjUS++eem5ejQMAcAB97l6Sa0riodZSrC6xVS4H2V7bKVaQnFca1MRGkq6tDtlPghKgWh3A1/9xJslqmrDl1skvdNU4AAAH2PfuRViy7f57kv67J78wVBTsYxttR0BCfa0l6bx78gu2OWRf2HoLqJpBmrFfssPLAAA4UO+e/MIgyQUlsS1Hkrz5yOv/OCgnr2FiHnn9H9uPvP6PgyRvR0hCfT2a4sws2BdWlABV6gzOJrnZgEu9/O7JL/TVOAAAU9IPn09yUUnsrE+fZN6X0Iy5LbZjBQnNc/Xdk1/wMSkTJygBqtIhbMqWW2vvnvxCW40DADBl/fFBTM7u1EaK7bicO8he2187AhKa7UK5yhEmRlACVMKfvdaYr9iO/vKUfY0BAJjKPvkgJmp3Yy1J/5enTPKx4zbXjoAEkiJ47vzy1BdWFQWTIigBqtA57CZ5swGXevWXpywnBQBgqvvmg5i03a2VJHM+jGIb7awdAQl86Bn6y1Nf6CgGJkVQAkx7B3EmyXKKQ7zqbC3F1xH2MAYAYNr758Mkh5XGri2lWGEyVBTc1b7aEZDAg/jAlIkRlABT3lH8p36Slxpwqcd+eerzi2ocAIAK9NGFJeNRBiafHyqKxrepdgQksF1HPTeZBEEJMM2dxU6Stxpwqbd+eerzs2ocAIAK9dWFJeOzkCIwWVUUjWtH7QhIYKfKHTk+b0cOxuojigCYYoMGXONGkp6qBgCgSsoJqm6KczfYm/NJ3v6z1/5pUE6cU3N/9to/tf/stX8aJHk7QhLYqUdTBIwwVlaUAFPpPzdny61Lvzr1+Xk1DgBARfvt7RRnCh5SGmOzkKT/KytM6tpe+hGOVN1SkvXy2ZcUq+u2o5NkZsufRxTlnhz9lS24GCNBCWCwdYCdq1+d+nxXjQMAUPH+eyfFRKGwZLwEJvUa4/YjIKmilfL5tpxk+VenPr88gefn5q8b2xnuxFqSzq9swcWYCEqAaexEDlP/Lys2yhe6QQ8AAHXowwtLJkdgUt120U0RkFg5UK2x+jDJYpLF/Z6E/8/F+U+z5e8J1fFQl3916vN9xcA4CEqAaetIziW54mUOAACV68sLSyZrIcnAVjOVaAvdCEiqZinFOamL07JCQWiybY+Pe6UPzSQoAaapMzmTZLUBA6uVX536fEeNAwBQwz69sGTyllKsMBkqiqm7/3tJ5mL7pKrYSBGOzE/7iq1y+7bN+8vz9a5nom3NGQdBCTBNL/7FNOMrCV87AABQ5379bJKbSmLillKsMBkoigO/53spVpA8qjQqYa2sr8Uqnm/hfrunC56F7JWgBDCY2l+23AIAoAn9+16Sa0piX6ylWGEyUBT7eo/PpPi63xf+1VGrcFFg8qHnoIPd2RNBCXDg/rQ5W26tJen82osbAIBm9PN7EZbsp40k80nmjTkmel+3U0xOz0ZAUhVLSfq/rul2dX/62j/1I7BLksu/9mEqeyAoAabhpT6f5GIDLvXor+0jDABAs/r6vQhL9ttGksUUE8OrimNs93I3xRkR55VGZSwkGTRhHF5+gDpIsw9930jSFhSzW4ISYBo6m2824FKv/vrU5+fUOAAADezz9yIsOShLKVaYLCqKPd2/vSRHlEZlLKShQWE5xzJIc7fjMvfCrglKgIN8gc8kWW7AC9xXDQAANL3v34uw5CCtpdiWa2Bcsu2x6lyKgMT5D9XR2IDkHvfvIM1dXfKY1XTshqAEOMiX9yDNWLZ8zBdcAADo/wtLpsDmtlzzvz71+WXF8aF7tJMiILG9VrUISO7/zJ1P884uWfj1qc/33AHslKAEOIiXdbvsnB9uwOXe+vWpz8+qdQAASP70tX+aS3JFSUyFlRSTqItNX2Vie63KEpA8/N7upFhdcrhhl25VCTsmKAEOogPalC8abLkFAAAfHhMM4ov9aRu3NG6VSfkB3+b2WofcBpUiINnZvT5TtvEmBYFWlbBjghJgn17M/9zEPTIv/frU5+bVPgAAfGh8MIiwZBptnmWy+OtTn1ut6b3Xi9UjVVUGJPW8Nz13x+5jvz71OR+usm2CEmA/XsbdFCFJkw7BW/r1qc911T4AANx3nDCIsGSa3UrxFfpi1Scb//S1f+6kCEd6sXqkigQk42sL/SQvNeRyL//61Of6ap3tEpQAXsLjt5GkoxMHAAAPHS8MIiypgsqFJn/62j+3k8ym2F7rUVVY2ftuzth67G2jl+RaAy613A7dqhK2R1ACTMR/+u4/t9OcA9vvdvk3p321AAAA2xw7zCXpx5f+VXE7NPnN6emagPxP3/3nmdwJRw6rqspaStL/zenPDRXFxNpKL80ISy785vTnBmqc7RCUAJN44c6m2GqriQOdld+c/lzHXQAAADsaQ7RTnI3xhNKolKUUocnwN6c/t3yA985s+XPuSPXvJwHJ/rWdXuoflqz95vTn2mqb7RCUAON8yc6Ug5smL51//KAGCAAAUIMxRZM/uqq6tSTDzd9vTk9uu6T/9N1/7qYIRrqxcqQOBCQH98wdpP5zOEfdW2yHoAQYi//7u/9fpxzQNLmTevm908/23Q0AALCnsYUPsOphI0Voslz+ufre6WdXd3lPdFOEIp3yT0FaPawl6b13+tmhojjQZ+6g5s/bW++dfnZWTfMwghJgHC9VewoXHbzOe6efdUgYAACMZ5zRTfExloO462UpyXqKACV3/XNSBCFJEYq0Y8VIXcfP/fdOPztQFFPzvF2ueVt7bLdBLc0hKAH28iKdKQcu9hFOjvoKBgAAJjLu6Cd5SUlA5QlIpvc5O5NkNfX9APbSe6efnVfTPIigBNjtS7ST4tA+X3clV987/eycYgAAgImNP9opPtJyWDdUj4CkGs/ZTpK36noPvnf62bZa5kE+ogiAXbw858qXp5Ck2He3rxgAAGBy3jv97Op7p5/tJrlQ9sGBaoyXL6fYpnqgOKb+Obuc5FJNL+/RMgiC+7KiBNg2W23d07H3Tj+7qBgAAGBfxyX9JBeVBkyljSTzSead41nJZ+ww9Vy9t/De6Wd7apj7EZQA231R2mrrw269d/rZWcUAAAAHNkaZj+24YFoISOrxbG0nWU79zivZeO/0szNqmPsRlAAP9X8VW21dURIf6gC2f6vzBwAABz1e6aWYnD2kNODALCSZM0auzXO1rvNAx35rVxDuQ1ACPOjFaKut+7v029PPzisGAACYmrFLP7bjgv22kKT/29PPriqK2j1Xh6nfir2F39p+i/sQlAD3eyF2UoQkh5XGhyz9tjhIEgAAmL5xjO24YPIEJPV/nraTvF2zy9r4re23uA9BCfAhf2Lp+gNfqkk67+sMAgDANI9pZssxjTMWYbwWkvSNiRvzLO0nealml3XsfdtvcQ8fUQTAXS/BQZJrEZLcjw4hAABMufdPP7v4/uln20kup/jYCdibpSRH3z/9bM+YuFHma/gM7alW7sWKEiBJ8ifFksrF2GrrQVbeP/1sRzEAAEDlxjr9JOeVBuzYUooPBoeKorHP0F6KD2rr5GPvn352Xe2ylRUlwOay9OUISR6mpwgAAKBa3j/97Or7xeG9j6eY9AUebnMFSVdI0vhn6CDJWs0ua1bNcrePKgJotj/57r/0k9ZLSuKhLr9/+rPLigEAAKrp/dPPLifp/sl3/8X5JXB/5QqSzw4VBXe0+qnXqpJekoF65QN3ua23oJn+5Lv/MlO+FJ5QGg+19v7pz7YVAwAA1GpMNJdiSy7nM4KAhIc/M1dTr4D5sfdPf3ZVzbLJ1lvQzJdbJ8VWW0KS7ekpAgAAqJf3T392Pkk7Dnyn2daSHH3/9Ge7QhIeYr5m12P7LT7AihJomD/57r/0ypebr6a25+r7pz87pxgAAKDW46R2HPhOs6ylWEEyUBRs8zk5k2Q19ZlPsnsIHyAogWa91OaTXFQSO+o4dt4//dl1RQEAAI0YM7VTfFhm9T11HucKSNjtM7Ju80qPO4+WTYISaMaLbCbJYpIjSmNHjlp6DAAAjRxDdVOsMDGGoi4EJIzj2dhO8naNLmnh/dOf7alZEkEJ1N5//O7/6qQISR5VGjty63enn7FfJQAANHs81Y3AhGpbS9L/3elnBg1tv4zfIPWZY9r43elnZlQpiaAE6t4p6MV5JLt6USZp/+70M7bcAgAANsdW/fgAjepoVEDyH7/7v2ZSHM49m6SjrbIDF5oYJPJhghKobyfBeSS7d+x3p59ZVAwAAMBd46xeBCZMt6UkgwYFJN0kvSTnVT27ZEcRkghKoI6dBOeReEECAACTHXf1IjBhuiylWEEybEgbbKfYAsrcB+Pw2O9OP7OqGJrtI4oAatVR6CRZ1lHYtY0kc4oBAAB4kN+dfmbwu9PPtJNcSLHFERyUpSRHf3f6mW6DQpK5FAeKm/tgXHqKACtKoD4dhdkUX1M4j2T3Lv3u9DPzigEAANjheKwXK0zYX41aQVK2s5kU8x5PqH7GbK0Mv2kwQQnUo7PQT/KSkti1jbKDKSQBAAD2MjbrRWDCZC2kOINk2LC2NZNkmOSwW4AJcV5twwlKoMI++p3/NZNkPg4t24ulJL3fn7EXJQAAMLaxWi/Ftr4mdRmXhST9Jo5dy7mPofbEpNvY788801MMzSUoAR2FJrv8+zPP9BUDAAAwoXFbN8UKE2cpsBsbSRbT0IBkSzsaakPsk4/9/swz64qhmQQlUM1OQidFSOI8kt1ZSbGKZFlRAAAA+zCG66ZYYeJsBbZjI8XuEfNNn7T96HdsNc6+uvT7M7ZlbypBCVSvk9ArO0xCkt25muJrHF8IAAAA+z2ea6dYYWL7ZO5lrbw/Fo1Zb38k+pbbgv1sg78/41D3phKUQLU6Cf34kmK3NlKsInEwFwAAcNBju5kUK0zm4iM4irMzB78/88xAUXygnQxjyy323zFzR80kKIHqdBAG8dXRbt1KEZJYRQIAAEzbWK+XYhXBo0qjkWPV+d+feWaoKD7ULrpJ3lQSHES7/P2ZZ2YVQ/MISmDK/Yfv/G+Htu/eRpL+H858xv6SAADAtI/9unGOSVPGqYvlWHVVcdy3PQxjNQkH5zHts3kEJTDdHYNO2YHyZdHOrSTp/eHMZxzYDgAAVGkc2E4RmPRiW646WUtx3ujgD2c+Y7eDh7eBt5UEB+jyH858pq8YmkVQAtPbMeimCEl0jHfu6h/OfGZOMQAAABUeE84kmU0RmthhoLqWksz/4cxnnHmw/Xt/LskVJcEB2vjDmc/MKIZmEZTAdHYKekmuKYmdv8hSrCLRAQUAAOo0RuykCExm42O6qoxNba+1+/t9GNtucfAu/OHMZwaKoTkEJTB9HYL5JBeVxI4tJZm1hBkAAKjxeNEqk+m2lqSfZNHYdE/3uclKpsHSH858pqsYmkNQAtPVGRgkOa8kdszekQAAQNPGj50U55j0YpXJQVtIcfbIUFGM5b5+S0kwJR539m1zfFQRwFR0BGaSDOOLoJ1aS7GKxEsLAABolHIcNJdk7j9853/PpghMnlAy+2YlySAOZx8350IwTebKZysNYEUJHLCPfOdf2yn2LhWS7MytJL0/nnlahxQAAKAYX9qaa7I2zx6Z/+OZp32wN5l72EHuTJvH/njm6VXFUH9WlMDBdgA6KVaSWCa9s45p/49nnp5XFAAAAHeUH5INkgzKj/I2V5oITfbmVpLFP555eqAoJs6KEqZNL8XZQ9ScFSVwQD7ynX+dLTuwQpLtW0mxisSXOwAAANsff7YjNNnN+HOQZGAng329V/tJXlISTJGNP555WoDXAIISOIiG951/7SW5piSYUmtJVlOsdlocCaYAAKBO49F2itCkG2ea3G0zHFkc2WrnoO7PXsyXMH0ujKwoq//zR1AC+/7S78fXEVTLRjlYmDdYAACAWo1PZ1IEJrPlr4k7HghHpuue7CZ5U0kwZdZGZ55uK4aaP38EJbCvL/xBkvNKggpbSNI3gAAAgFqOWTu5E5wcqfGl3sqdFfTGNtN1D7aTvK0kmEJHR2eeHiqGGj9/BCWwLy/6mRRfqFjWTB1spAhL5hUFAADUeizbTRGcdFPt4GQtyWKS4ejM04tqdurvu/U4z5XpszQ683RXMdT42SMogYm/4GdSfKniwDzq5laS3sjBhgAA0JTx7eaKk075m9Zx7lo5Dh+mCEdW1V6l7rPF+NCU6WRVSZ2fPYISmOjLXUhC3a0k6QpLAACgsePeborQpJ07Acp+rgbYSLJcjr2XUwQjxifVvqd6caA702lhdObpnmKo6bNHUAITe7F3yo6a5aLUnbAEAAC4e0zcTTKTIjhJipUoKf/bTj8m3AxDUo6z18t/X7VapJb3zkySXygJptRjnjs1ffYISmACDevbQhIapwhLnhSWAAAAOx5Dbw1UMnrS1jbuiX8dJDmvJJhCC6Mnn+4phho+dwQlMPaX+WyKg9uFJOgsAAAAwA61vv2v7SRvKwmm1Md8KFo/H1EEMNYXeS/JzQhJaKbzZVAIAAAAuzZ68unVJAtKgik1pwjqR1ACY1KGJA4bo+nmy2XzAAAAsBdzKc6ngam7N8191I+gBMag9e1/nYuQBJLk0fiyAgAAgD0qtzayawHT6FDMfdSOoAT2qDxg7IqSgNt6igAAAIC9Gj359DDJZSXBFLKqpGYEJbAHZUhyXknABzxabkUHAAAAezJ68ul+nFfC9LGqpGZao9FIKcBuGs+3/20QIQncz63Rk5+2RBoAAICxMA/DFNpI0h49+el1RVF9VpTAzl/MM61v/9uilzM80BOKAAAAgHEZPfnpXpILSoIpYlVJjVhRAjtpMN/+t5kkwySHlQY81NHRk58eKgYAAADGpfXtf+skGcTcDNPBqpKasKIEtv8iFpLAznQUAQAAAOM0evLTy6MnP91JsbpkTYlwwKwqqQlBCWyDkAR2ZUYRAAAAMAmjJz89GD356XaKwGRJiXCA5sq5QypMUAIPISSBXbOiBAAAgIkqA5Nuko+lCE2upghOrDZhv1hVUgPOKIEHNZBvXxOSwO4tjZ680FUMAAAAwKbWt6+tJnm0ZpdVnlVywVklFWVFCdz/od2JkAQAAAAAxmm+htdkVUnFCUrgHoQkAAAAADARgxQrMOpmrtydhgoSlMBdtoQkh5QG7MlQEQAAAABbldtT1XVVybwariZBCWwhJAEAAACAiRvU9LrOt759ra16q0dQAiUhCYzdUBEAAAAAdxs9eWE1yUJNL6+vhqtHUAIRksCEOj1DpQAAAADcR7+m13W+9e1rXdVbLYISGk9IAhNxSxEAAAAA92NVCdNEUEKjCUlgYhYVAQAAAPAQg5pe1xGrSqpFUEJjCUlgYjYiKAEAAAAeoty2e6mmlzdQw9UhKKGRWjeudTLKMKMcyijx8/Mb629+9OSFdU8aAAAA4KFG6dd0fuTR1o1rPRVcDYISGqd1w0oSmKCNJPOKAQAAANiO0dlaryqZb924NqOWp5+ghEYRksDE9UdnrSYBAAAAdqRf0+s6lGRO9U6/1mg0Ugo042a/MRCSwGQtjc72uooBAAAA2KnWjcFqkkdrenmPjc72VtXy9LKihKY8aGdSHKAkJIHJWEsyqxgAAACAXerX+NoGqne6WVFC/W/yIiQZJjmsNGAiNpJ0R2d7y4oCAAAA2K2aryo5OjrbG6rl6WRFCXV/uApJYLKEJAAAAMC49Gt8bQPVO70EJdSWkAQmbiVJR0gCAAAAjMPobG+QYnvvOnq0dWPQV8vTSVBCLQlJYOKuplhJsqooAAAAgDHq1/ja5lo3Bm1VPH2cUUL9bmohCUzSUpK+PTUBAACASan5WSW3Rmd7s2p5ulhRQh3NR0gCY3+Jpzh0rCskAQAAACasX+Nre6J1Y9BVxdPFihLqdUPfGAySnFcSsGdrSZaTLCYZ2mILAAAA2E+tG4Pl1Pdj6LUU576uq+np8FFFQI0enoMISe62kmROMbADq0IRAAAAYArMJXmzptf2aHl9fdU8HawooR43spDkXhaSzEmmAQAAAKii1o3BMMmRGl/i46OzvWU1ffCsKKEOD8xehCR3Wxid7fUUAwAAAAAV1k99V5UkySBJRzUfPIe5U2llSHJNSXyAkAQAAACAyhud7Q2TLNX4Eg+3bgxsmz8FBCVUlpDkni4ISQAAAACokX7dr691Y9BWzQdLUEIltW4sdJLWtaQVv9u/C6OzvYG7AwAAAIC6KFaVtBZqPKd3KGkN1PTBEpRQOUVIkqGS+IALo7PnPVABAAAAqKN+za/vSOvGgi24DpCghErZEpIcUhpJko0kx4QkAAAAANTV6Oz51SQLNb/MfuvGQlttHwxBCZXRurEwk2QQIcmmjSTd0dnzi4oCAAAAgJqbSzEfVleHUsx9cgAEJVRCGZIMkxxWGknuhCTLigIAAACAuhudPb+eZL7ml2kLrgMiKKEqFiMk2SQkAQAAAKCJ5pOs1fwabcF1AAQlTL3WqwuDjHIko8QvGxkJSQAAAABontHZ8+sZpV/z+b9DGcVW+/usNRqNlALTe4O+ujCf5KKSSJKsJOmNPikkAQAAAGiS1qsL7SRtJXHbYup/jvHl0SfP91X1PrUxQQlT/ALoJbmmJJIUIUl39Mnz64oCAAAAoL5ary7MJukm6SQ5okQa7XEfTe9TuxOUMMUvhJtKIomQBAAAAKDWyhUj/SSzqf9KCbZvLUnHvODkfVQRMH0vhm92ktZASSS5HZL8Dw9DAAAAgJppvfrNdpJ+0jqvNLiHR1McYN9TFBNui1aUMIUvh+VIzhMhCQAAAEBttV795lyKVSTmwXiYC6NP/o+BYphgexSUMEUvh5kkwySHlYaQBAAAAKCOyjmwQZInlAbbtJFirtB5JZNql4ISpuclsTCMA6oSZ5IAAAAA1FLr1QUfCrNb5gwn6COKgCl5SQwiJPHAAwAAAKgpIQl7dDjFeSVMgKCEaXhJzCVxYJWQBAAAAKDOhhGSsDfnW68u9BTD+Nl6i4O9AV/9Zi/JNSXhTBIAAACAumq9+s35JBeVBGPgvJJJtFFBCQf4guikSNIPNbwohCQAAAAANdV69ZvdJG8qCcZoLUnHfOL42HqLg3pBbO7JKCQRkgAAAADU2UARMGaPJllUDOMjKGHfCUluE5IAAAAA1Fi57fyjSoIJOFJu6cYYCEo4CPNxcJWQBAAAAKD++oqACbpYhnHskaCEfdV69Zv9JOcbXgxCEgAAAICaa736zdlYTcLkzZdnQbMHghL28+XQS/JSw4thI0ISAAAAgCaYVQTsg0NJhuVxB+xSazQaKQUmf6O9+q1OnEtShiSfWnZHAAAAANRb69VvrccZveyfchebT/lAexesKGE/XgoObxeSAAAAADRG69VvtSMkYX8dTnE2NLsgKGE/DCMkEZIAAAAANIczIzgI51uvfktYsguCEiaq9eq3BinSzKYSkgAAAAA0j6CEg3Kx9eq3eophZwQlTEzZIM83vBiEJAAAAADAfromLNkZQQkTUR7efq3hxXBBSAIAAAAAHID5co6WbRCUMHat69+aySjDjJIG/y6MPvmpgbsBAAAAoIFGfn4H/juUUYat68KS7RCUMAnDNPvw9gujc0ISAAAAAOBAHUqEJdshKGGsWtcbf3j7VSEJAAAAADAlDiUZtK5/a0ZR3J+ghLHyWfOIAAAgAElEQVRpXf9WL80+vH1hdO5Tc+4EAAAAgMZzbi3T5HCKlSXCkvsQlDAW5fKtJh/evjA696meOwEAAACACEqYPsKSB2iNRiOlwN5uoqJxLSd5tKFFsDI69yn7/AEAAABwW+v6t1bT3PkyptdKku7o3KfWFcUdVpQwDosNfuivJOm6BQAAAAC4y1ARMIWsLLkHQQl70rr+Sj9pHUlaaeBvLWlJXwEAAAC4h9agoXNmftP/O5y0hq3rrwhLNlurrbfY9c1z/ZVukjcbXARrSVbdCZW0nmK7uNUkw9G5p9QjAAAAMHat66+sxvZbTK9yG66nGv8huKCE3T7k2ykmmg8pDWpgLcUWcvNCEwAAAGBcWtdf6SW5piSYYsKSCErY/UN+OcV+dlA3C0n6AhMAAABgHKwqoQLWksyOzj213NQCcEYJu3m4z0dIQn2dT/J26/or8/ZpBAAAAMagpwiYco8mGbauv9JpagFYUcLObpjrr8wmuakkaIjGp+kAAADA3pUfHl9UEky5jRTbcDVuLkxQwk4e6O04l4RmviDmRueeGlS6/b5yo52krTqpgPXRU2eXJ9weuop5ai2Pnjq7rhhoRN/6lRudJNtavTp66uxQicHB9gm0Q/brmV9n2pGt7KmUC1WfC9tx+xSUsP2H+XUPcxr+gjhX2RdE65Ub/SQvqUYqYGn01NnuhNuDzk9F7oXyz2GS9RQfawhSqMI7d3MybPNZtvlnO+PZm3wtyeqW9pGyfaybgILb7bBbtsPOPrbDYfbhgw+m/vnfKe+zzXvQHMqD29Dy5p9NeYe1rl+fKZ8X7g2q4NLo3Ln5xjzHBSVs80FueSAkR0fnzlWy8yYooUIEJWxnYL1cDjCHJqQ4wHfr5iRsN3cmxg5PSRtZLdvIZsC4qsaoaTtsl+1vsy22Mx2HJW++q5a1w1rff93yvusmOaJExmJlSx9vsbb3jrCEalkYnTvXa8RzXVDCNh7gziWBwkaSzujcucoNcgQlVIighN08m4dJFstB9aoiYULPjq2hSDfTMRm703YyjICRerTDzbZYpXYo6K/HPTibZPNnW/LJu1X28Rbrtqq4DEsGSZ5QzVRhnJ5kdnTuXK1X9wtKeNiDux3nksAHXg6jc+e6FezQ9yMooSptTFDC3qyUg85FoQl7fFbMpJgI66Z6wcjDCBipSjtsl+1vsy0eqlk7XNxsi7aWnOr7sJNkLsKRg3YryaBuK01a16/PJem7t6jIOKs3OneutkG/oISHPbCHsYQU7la5PRoFJVSIoISx3k+5E5qYgGI7z4d27nwp3KQ+8GbA6Ct3pqkd9tKsbWkE/dN3L/ZSBCS2R5oua2Vbma9L/678SLmf5LzqZcptpFhZMqzlc19QwgMe1P2YWIX7vRjaVVpyKCihQgQlTOq5vZikb/KJezwTZlJMyPZiMiwxWcvBtMN2mhmOPKwdDgT9B3I/9lJMWj+qNKa+fzefegYmVi8x7S6Mzp0b1O75LyjhPg/nbpI3lQTc1+XRuXP9CnX2+xGUUA2CEibtVjmgHiqKhvd3i33me7E3+AOfySkmageKggm1w16KCUHt8MHvrUGdD7aesvuxHwFJ1dQuMElunxfcTXEeUyeCE6ZP7Q55F5Rwr4fxTIpzSXQO4P7WRufOtSvU6e9HUEI1CErYt3stxQqToaJoUD+3WD0ylyIg0dfdvo3c2eZkVXGwx3bYLtvgXEz87Wj8kZptNzRF92S3LFvvheq/q+aE+0zsWVHMlw5j5eNWt1KcW1KPVV2CEu7R8Bfjix7YjmOjc+cq8WWXoIQKEZSw7/dcOah2LkOd+7fFxGw/9v4e14DYqix20w67KQIS7XDvFmI7yXHckzMpAhLzH/p2sL3nxvXrnRRhiaD/jpUk3TqEJR9Rl9zV4Hs6CbBtXUUAUHlHkrzVeuXGoJwwoU5921dudFuv3BgmeTsmZ8fliSRvtl65MSwnvmG77fBN7XBszid5Wzvc0305m2Q15j/q3LfrKwrGbXTu3HKKLSO543CS5TJEqva7wYoS7nQUrrdTbLklFYXtWRk9da5TjfZtRQmVYUUJB2kjxRe684qi6v3aG90UK0iOKI3JP7djGzu0Q+2wOvelVSTNaxs9q68Y/7Pk+lySK0riQ2Op7uipc5VdzWVFCVstRkgCO2FfSoB6OZTkSvmFbkdxVHHQeqO95ct1k7P740isMOGD7bCrHR5oO/T+uv+92UnxcaiQpFltY7lcQQRjM3rq3HyKbRD54Fhq2HrlemXbm6CEssNwvR+TvrCbtmNCAKCeg+q3Wq/cmFMUVXkf35hpvXJjkGKLLROzB9duNidq24qjke2w3XrlxmIEJNPw/hpohx+6P3spzhVwYHvzHEpy01ZcjNvoqXO9FKuW+FB7u96r4l9eUEJa11/tpNV6Ka1W/Pz8dvEDoK42V5c4u2S6J7/6KfaZd/bBdDiS4uyEeW2nMW1wpmyHb8eX+tPifIqv6Pva4e33xLXYQaPpXio/qoAxPmBas2m1VsyNfeh3rXX91V7VqlNQ0vT2fP3VmRRbbgG7YwIAoN6OJFm1pdAU9mOL7X1WU5zBZfJr+lws247tTurdDmdTbGXkLLzpc6isl+Umv8PKiXH3J5vOt165sSxAZFxG5z65nuJw9w2l8SHXWtdfHVTpLywooR9LT2Ev7AEMUH+HUmwp1FcUB2/LNltv6sdWou3ctB1XLdvh5nlAN7XDqfdo+Q5bbNrkcPmusNqQux1OYsUwYzM698nVJN0IS+7lfJXCEkFJozu3r3YzysWMEj8/v13/hp4mAI3xUrnvu4H1gfVfb8zGNltVtHmYrnN/6tEO51KsInEOSbU8kQat8iqDPO8K7kdYwliNzn1yOaPMmSO75+9865VqhCWCksZ2bl+dSTJQEgAAO3LewPog+q43ZspDom/GNltVdSh3zv1pK47KtsNhkivaYaXb4c26ry4pV5II8ngYYQljNXrqk4MkF5TEvcdQVQhLBCXN1Y8l0jAO64oAoJED6+XWKzdsv7gPyr31l+OQ6LrYXF3i7JJqtcPN1Vwmn+thc3VJt4b36iBWkrCzPp2whLEpw5LLSuKepj4sEZQ0spP7ajfF4YrA3l+Cy0oBoJEeLQfWwpKJ9ltv9OMskjra/KrdVnbVaIfzsZqrru3wzbJ+63SvCknYqcOx4wpjNHrqk/0kC0rinqY6LBGUNK6Ta8stGKMlRQDQaIciLJlQn/X2Fj8vKY16D5a1oaluh+3WKzeW4yO7urtYbok3U/H7tedeZQ+eqFNoyMEbPfXJXoQl9+3/TWtYIihpnn58kQfjMlQEAI0nLBmzsiwdFN0cm9ue2Iprutpht2yHh5VGIxxJsRVXp6L3ayfJNdXIHl0sAzcYizIs8YHtvU1lWCIoaVRn15ZbMGaLigCACEvG2F+90UvxIYIPe5rXhm6WW61x8O1wLsWWd7baal47fKtqE8XlSpih6mNM5vXnGLPZJCuK4Z6mLiwRlDSnszuTtAZJK35+fmP5rTifBIC7JpiEJXvrr86n+CLY5GxzvVQexMzBtcNBkitKotGuVawdLnpvMOb+nPOzGJvRU59cT1rdpLViHu2ev/PT9M4RlDTHXHyZB+Nk/1IA7jW4Hhpc71w5QLLymSQ533rlxrJ2tO9tcKY8j8RB2Gy2w8Vpb4fl6ifbNDJuh1NsWw9jMXrq7HqSbqwsedA7ZzANfxFBSTM6vZ04CBPGaW301NmBYgDgHoQlO+unmpzlXjbPLWkriv1phym2LnIeCVs9Mc3vs/L50FdNTMjF8qwmGAthyUOdL8PvAyUoaYaBIoCx6ikCAB7gsP7Xw5mcZRvtaNl2dhNvh504tJ0Ht8NpDUsGseUWE77HfPjCOAlLHurKQZ+TJSipf8d3TqcXxurq6KmzQ8UAwEM84WDqB/ZRhSRsh7N/JtsOO2U7tEUzDzJ1oWU5kWbLLSbt0RTb2MPYCEse6lrrlRuzB/Z+GY1GqqC+Hd92iq+DfGUB47GSpFu+2Kr2POhnn7fgGz11tuWWYUrbw353fi6PnjrbV/IPrJNOkpny1yl/7dRjEv3Y6Kmzi2r5Q/W9mOZMzq4kWU8xIZ0tf2Y7H19saR8p28bMlj+bMlG4UfbBlrWgsbbDYYPGine3w+Xy35NkdfTU2dVttsGZu9phu0HPsqloh2XQvlqRe3ejvNeGW+655SqOJ8dQb93yH7tl2+lW6Pnz2IOeEbCHZ9kwPhqaqveNoKTejW4xxb6iwHge1J2qdpAEJfCB9iAoqdYAopNkthxQV3EgUen3xwTqtO6Tsyu5MyG2vB8DvPLjqM2AsZv6hifCEu1wmtthN0Vo0qnw+6oS77SDGNfsoowGSRbtRLCtZ1Gv7OdNc+B4a/TU2Vk1xoTGOsMIS6bmfSMoqW9jm01yU0mAgflBDSgEJUxxexCUVLfu2uVgulexAcXS6KmzXfVXy8Hg5oTsMMlwWr4SLidtu2V7qVN5C0v2fm/UMSTZbIdTMzFdPu+6W361eu6NnjrbOcByXZ3S+3cpyWD01NmBJ82u6nY2xTZX0xr2HxV8/f/s3X12G8ed7/9PJ87x5GZiMnfunX8Jr4DwCthegWA9w4KHzciO43gcQitQcwUGb8bxz3EcgmNIsCQnBlcgcAUBVxDwXyexATtOxsfx6d8fXbAgiZRIEOh66PfrnD6WlQcAVV3dVfWt+hboH1t5vxea1YVASbiNbCByzQLzejDXfF8JTKAEeKg9ECgJox6rZkC97slXLvV9ENgg8EAPVgsPPSn7mrlC2G1OsORsz82+wgiS7OlBcMSHdliRn4H+42xnjXrTQjm2HXzvH0pKmESfWx3HklK5FzBh0QvoJ5eg7REoCbOBpXJ7Kyrg0wAsCSGHLIES4KH2QKAkvIFF01yuT/69UMbJ3UAGf4fKgyNtnxdPmLpI5P9kLSntZqt73xfTeRWkfEJdVJQHTZqe10eh7zQHd5OMJaVZo97iCbOQ+k4ktRzr27GrBIu+79vyZxFYkXazRj0ppA4IlATXqCqS/kRJAGdyKKkZ0uG7BEqAh9oDgZIw63VZ+QrETYe/prV0JZbrZiB/J+X3JLVCnBjxcFfWY+1JBadj8Pz52Pe4He6adjgIsG5i5YFL39ph4Wc2OLYgNIisA548u3pyZ3dJYZO1KPV93xbBkqNsFJHa8HuUc3DaFAEws0Pz8K2EFCQBgDLIGvWRSQPyvPI84S5ajTrdZpnqxQz2fJucHUvalvR81qjXQl09mjXqAzPh8xNJW+Z3+2RV+eQ/nq7naTvckvSTrFFPQt2NlzXqfdMOn/eoHR4qD+4UzZX3527WqLOjrbi+XWzahgvWzeJkYJH3fWL6oXjYjlnks1AESsIaiMZy9+ArwOWO/q7ybbQVDt8DAO8HF0MzqH5Jbk44pWaFZBn6pqn8WhE3mZitZI16syyTYGYiKpVUkX8Bk1UTjMPx7bDt2Rhxuh2mZdkxZN5dvrTDwlMTmzRMLqRg2mBHgZX2kUracOX+p0ZQwD3fdOied0lv0eOoZyjjoJRlkPCC+eeypJhqxwxGynM0D0jXAADBDjB6ZtWfSykbpHyipxX6QNtMavl0Zt6W8tQ+oxK3mZHyQF5L/pz7I+UrfIekODyyHfqUWm1sno20Q7fb4YalXXaJI7+9zZPFWttoR52uJO1Y/iqJ8lSvQFH3vGtn9di0YsZ28cL6TpxRElQn+O0S/NQbHJYGzPSMSMUZJcCkPXBGCc9AFwR7IKjZFt/3ZFC3p/xcsiEt5bF69OHcn2kvkTr1ofqLJd335OtuKz8UmwVMR7fDltwIeFkJFDhyDitBEnfaRCL7wRLeN6BfbdfCxtek3gprEBO6fYIkAADgtExH2rVUXEH23aYOXnV9MHeoPFjFYbzHt5vJuT8vyN1zf6a1yR3/XTusmHbo/PhO0gsm1R1BkuPbYWLa4YHFr2IzUFCzXA3bBEmcahNtSTcsf40aNYEC7/mBpKrld4BrbpoFIXNHoCQMqcKPLI5FLkgAADD7IGOyTduVYMnaojr4lrWVb4t32ZY5l6xPyzjZAN2c+3NDbp+bsKQCcld7wvVg5Vh5poA41EPaF9QOq5baoe3dFDbnAfZNwBhutYeW8nNGbSFQgqLv+aEZx+xTGg/6Oovo8xEo8ZxZLbRZgp+asNoPAACccZAxkFvBkjSwfmlT0jmHv+KB8tXrKa1hpvbTUr6i0eVB+qryNEVlHh+2TDm4al9SlUwB3rRDq0ESM99h634eiwlxlzWV7w61YSnqdLk3UPTzf2QWruxSGnk71ALO6iZQ4r8ydDD3yP8IAADmNMgYSKpYHFxPC2ZXicmf7PJ5edtZo15l9fqZ289waneJq9bLOoFlfrfLi+gmu0iGtKa5tMOtBX+UC+dy2GzLCSnhnG4HI9ndbRRTC7B07yeO98OKdM4s1JqbZyhTrzvCsdxetTcPhyLlFgAAmPPg2kwo9mU/PU3q+2B76lwSF40l1UizNfc21Io63b7ylXwu7l5oR51utUwT8qYdth0e09UIVM69HaZRp9szz995pzx05fByW+/HfRZretEG+lGnuytpvUT3pivvnKryQGZV+QKkVe5I2BpLRZ1ub159PnaU+P1aSKVMgV+s4gAAAIsYXLuShmvNDDa9HqDIzXNJDpSn+Olzxy+0De05+PUWko7Bca6eS7Jn2iFBksW1w3mn4tpw6PDy2NLnci6JX30QG1bLdiZW1LldiTq3W1Hn9kjK/ihlN6XsnJStlmBuksvda0nK5vbOIlDi7wOqJmkt8J+5nTVeZmALAAAWwkwwJQ58FW8nZMwOZxdT/exKIsXP4tvQKGvUa1p8CqBZrM07HYPD7bDp6NhwK2vUayx8K6QdxpK25/B/50yQxCwisBH82yWw59X9P5S9Mxvicrxjbleizu22pD+ZPt8Sdx7c6/Pdnkufj0CJv0I/m+RQgR1wCgAAnBxg92R/knfdx1WJDqf6uZE16uxKLrYdpZI2ZH+H1qNScxh0sMzvc3HctGHuCxTXDpumHZ6lzlx6ptvabdnibvJOWrJ7tMB3zO1UeYBkndsMrj8Hos7tM/f5CJT4+aBK5GZ6g3lKssbLDG4BAMDCmcm8fctfI/FxQOJgn3Qja9SZ5LLTjtpyI53dtDKk4GrJrdW9Y0kvODbhXrZ2+NIM7XDDwTqzMQl9wG4SL+/7oeykgYxDLdOoc3s56tzuS7rJHQZPzKXPR6DET2ngv4+UWwAAoGg12Z3gTfwaQHercivl1ljSS0zO2uXQ2T/T1qJOtxZieZvfdc6xdhgz0Wy9HfZO2Q43HH122giUEGj3l417uBLmu+V2VdJA4af7R3jWzFEVMyNQ4t8DK1HYu0lIuQUAAApn0jQlFr/CqmeHurcd+i6Tydked7ITbcnFYEkrtEN3ze9pOdgOCZL41Q43HA4w23gn8h7x957vWXjvBDc3Z4IkfYWfxQbhaked2zP3+QiUePfUUqpICvgi5RYAALA5yN6z+BUSPwbR3UTSqiNfh8lZN9uSa8GSFUmhHezelDsTWbRDt9vhwTH/lQ3Hd+EVnVLugLOtvNe30CeKQym86NbtZUVqK9JS4POOXGFfS4pm7/MRKPHroZUo7KjubnaNlFsAAMAqm5OpzqcHcmwVO5OzDnMwWHIzlIPdze+4STvEKdrh7iP/kdNBEkuTz+wm8V+fIjhzG1ilGBCAm9Gt2Q52J1DilzTg3zZWeKu8AACAZ8yBoFuWPn7Fg4ncptw5OLrJ5Kzz7cm1YEko5w+4Mi4kSOJHOxxljXoi6Yb5qw3OczoS9zF1OIs4hIKLbt1uijNJEJaZ+nwESvx5aCUKezdJkl0j5RYAAHCmY21rYtfZXSWOrWJnos8TU8ESF5zzPU2K+f7rjnwdgiR+tcWWpJ948uysWPhM7mX/7/E+pTDDe+XW7WVxVjDCcy66dfvUfT4CJd488bNUWaZAr/3s2stscwUAAK4MtEeyt/Lc5fRbrgyitwiSeNemBpI2uI+D+v4bBEm8fb/5oGKhbIbcIUE4pAhOe/NnLWXZUsBzjlzlvU7dZyJQ4oGocytRuLtJxvLk4FIAAFAqtnaVOJn2wOwmcWEV+27WqKfcnh7Ow+TBrS0Hvsqar7tKzPd24RlBsBKhYXI9HMOCP6/ic2FFnVvLcmeXIrCAPt+tU/X5CJT4IeTBYCtrXBtSxQAAwCVm1W3bzqDVyUlcF/qjB+JMO9/bVSppj/vZ6++9R7ASARpSBJhRxfPvn1CFCNyp+iwEShwX3boVK9KKIinA6zBrXKOTDQAAXGUr/VbsVH/Ujd0kY0k1j9LG4HiJ7K/e9m5XiSO7SQ7FpBoAhCNSEuh8IxfX5FqLbp18VwmBEvelgQ+SAAAAnGTylR9Y+OjYsaJwoT+akD8+mHY1khtn8fg2znLh+xKsBIBARLduVSStUhIogRP3oQiUuP3QiuVonuo52MuuXetTywAAwHE2dpVUnemPurGbZDdr1HvciuEwh4DfsPw1vNlVYtqh7XHhDQ5vB4CgxBQBSuLEu0oIlLgtCfR3jUV+aQAA4AcbE/RLZmKU/mie6od+Y4CyRr0laZ/x1omklj9/39QXEKpligAlVKEIUCIn6ksRKHGU2QK3HujPa2XXOMAdAAC4z6SZsZF+y5XBq+0gRUKqn6AlyhdR2bLuUFDy6HFhp7tseVw4FimTET7SD6GMYooAJbJm5tqfiECJu0JdOXcoewejAgAAzMLGrhLrg9eo000kLVn8CttZo97n9guXOXcmtfw1EsaFT5RyPhAsKDxAboKSAIBwPbXP+Qxl5J7o1q1lhbtqJ82uXWNVIAAA8Elf0s2CP7PiwO+2OUF7KP8O28YMska9FXW6Ndk7g6Pp+L1mc1xIyi3YYuM8nKp538Pvd0pMKQA4Ri26dWv5SfPS7ChxtOJkd/Xe4jra1661qV4AAODZoLtv4WMrNn9z1OlWZTcVSZOUW6ViMyi3ZHZPOccEkFZKWi9A0WKKAACCtqR8zv1YBEoYKBQppWoBAICnij50umL59yY2yzpr1HvccuWRNeoDSdsWv0LN0aKx2Q53Tb0ANtjaUQIACNsT59wJlDgmunXL9uq9RdnLrl3rU8MAAMBTRU/arFj+vYnFz0653Uoplb2D3c+5dqi7OS/hnKWPH4vdJLDI0o7Cc5Q8AARv1cy9H4lAiXtdgqaUKcCLjjYAAPBZadJAmXQ/ttLA7nKAe0lHQfnEqM3zMFzbVWLz+7RIfQcHHFh6/wFlefMOAp1/5OJ62pUc1yoIlLgnxBfzbnatMaRqAQCAx/oWJmziEvZHU261UmvJ3q6SxLGysLXQbCy7AStgYsBzAFioIUWAkjr2WU+gxCHRrU6iMA9xZ8ALAADgQ380T/ezbunjd7NGnUF7iVneVbLqSvot8z1spWNmNwlcYeN94FwaPmCB+hQBSmoputU5cmEYgRK3hLibZIvdJAAAwHclSgcVW/zslDsNsrurxJXxmK3vwW4SuMTWezeh6FGKvu21xkDSISWBkiJQ4rLoVsfmYX10tAEAAHDsoKEA7CaBJOu7SpKSt0N2k8ClZ0Hf0kc3ze5KoAx6FAEY8zxAoIRB6WI72tcadLQBAADokz5Nm6LH9DjC0udaT79lJmjXaIeAJGnfwmcuiR2O4H0LhO7I9FsEStwRB/Z72E0CAADgEXN4vI3z8g5KlNoMJ2B2NeyWdFzGri7gAVvvhs2o061S/Aj+fZunyt+nJFBSj/X5CJS4I7QdJewmAQAA8HywUFS/kaKHQ/dFraTtsM0tBwfZTAtEm0BZNCkClBQ7SlwU3erEsrN6b1HYTQIAABDAYKGgfiP5sfGYrFEfSDqw8NGx5Z9u4/MP2dUFh58DY0sfvxp1usxrIPx2lh/qvk1JoIRWoludyvRfEChxQxzY7+mxmwQAAMAf5lyEVSv9Rg6PxvHaFj5zyVbKHXM+yoqFj2YyGC6zGUzfjDrdhCpACaSSDikGlFA8/S8ESpyQxVKmgK6UOgUAAPB3kFAgdpPAxfsjph0Czmhb/vwW55UgdPli56wmZePA5ie5uJ52PbSj/hkeB05YC+i3HEpKolsfUqt+G0kaSBpl114ZUBwAgLIzK71DZmMS6DBr1JmgxfETN436MOp09ySdK/ijY9nZZRFb+MwDDnGH48+BftTpHsrObispT5Pejzrd2KQCA8Jsa9deGUS3PkwkfUJpoEQe6nsRKLE96L71YRzYT1qRdJOaDeoelaR95SvNetm1VxhIAQDKqFKmQUJB+txWOIGe7ARKytIO29xi8EBbducZCJagFLJrr/SiWx9uSNqhNFASS9GtDyuTuU5Sb5VzUAqc1pqktyX9Kbr1YTvAAB8AAE9TsfCZw4Lf9UVjNwlOom9l0FzwLjJzTtAK7RA4UtuB7zAJliRUB0KWXXulLekFSWNKAyURT/5AoMShygA8sS7pfnTrw15068MKxQEAKInC33lFpcOxlHt9TNotnKIdHFj46Grgnyfl6e+G3GXw5Dmw68BXWZK0E3W6LWoFQbe5PAV7RXl2ESB03/XBCJQ4VBmAZ85JmuSwBAAgdDH90bnqc0vB8ful6HZh4xlDsBI+aTv0XTajTnfAIe8IWXbtlVF27ZVY0oby84iB4MdCBEosim5/uKxIS4okLi5PryVF2oluf9imRQMAytKBLkiRK/gqFsqzzy2FU7AxoR8H/oyhHcIrWaPel1ur21cl/THqdFsmdR4QZtu79ko7u/ZKRZE2FOmAeTCuAK/vUhATKCnXgBtYlHWCJQCAUJmzCpYK/thRgZ8VWyjWPncWTjxJk0+Qhj5Wq9AOgadKHfxOm5KGUaebFn22EVDou/jlV9rZy69UlZ9fsqU8cMk5JghjvHf7w6okPUNRWBVTBAjIenT7Q2Uvv5JQFAAA+mxnNijwsyoF/7Zx1qgPuK1wSg1HSncAACAASURBVPvSgxV/BSg6OLpa8OcdZo36iNsKPska9X7U6e4pTwPtkiVJNyXdjDrdXUk9zuFCsO3w5VcG0/3U6PaHy2IheJmlBffPFjkeGhAosYvtmQjNenT7w2H28ispRQEACEjNwmcOC/yslYJ/G0ESzHrfFDoQjzrduIjdLJbOOehzS8FTTbkXKHloTCxpPep0x6ad9c3za0BwEiHKXn5lxDulvEx2mRACJVVJPQIl9isBCM3N6PaH/ezlV3hRlv2F2elyDzg2qGQFNzCz2MJnDgt6Vtv4bbwfMAsb77DlwD7HdnliMc/xqqRWkZ+ZNeqxrd+bNerDqNPdVp7yymVLygM656bqSnLrnBWb7/++pBHjE8B7PUk7AfyOikTqLScqAQhQO7r9YdWsLEB5rVEETmEXIzCDqNOtqfgUPLbOZCgKkyLw5b6pqpiD5GPaIc7YxytbvztVvttzxcPvXuYx0vRvv2n6WZJ0aJ5JA0n9wPtAQFCyl18ZRbc/PFDxKUTnrSJxmLttKxQBAr63mxQDACAANtJuHRT4WbGF3zfktsKpB+J2Vh2HvMiAQAl8fh6MGG8GZUX5zpubku5HnW4Wdbr9qNNtRp1uheIBnBfCmUwViUCJNdHt/16WMnFxBXw18/scAABP+2ud7rLyXONF64dcrqTZwBkcFPx51cA+Z2LMWQkI4F3Sk7RHSQRrTdLbkv4UdbpDgiaA00/kfgBzmCsSgRKbOJ8EoVuSlFAMAACP2XqPFRlIKLpPeshthTMIdXK/6MVFBCsR0nua90r4VvQgaNKPOt2EIgHckb38H/0Qfkd0+7+XCZQAWCS2QwMAeI+dXpGDjaInaIfcVvCkbUjFnSVAOwRmYHZG1SiJUlmTtDO1y4QsFoAbDgL4DVUCJfbwMEcZrES3/5vdUwAA75jVijbOkzvMGvVhwEXLSnbgcUUfgDqkyBEKk87xBiVROpNdJsOo000JmAD08eeBQIk9TB6jLGKKAADgodTS5xZ9GGLRfVLORcBZ9CkCAI/KGvWWpF1KopSWlB8CPyQlF2DVMIDfQOotAAsXUwQAAJ9Y3E0iFT8RvESNA098HlQC/Fl9ahahyRr1RGGkfsHs/ZmdqNMdRJ1uTHEAhQthRwmptwAsXIUiAAB4JrX0ueOsUe8FXrZ9bi/Ql30g0EAMYEssgiVltyrpftTptkjHBRQqiF3jBEoAFNFRAQDAC1Gnm8rebpIeNQA8UYhn3FSoVmA+zOHusaQxpVF6m5LYXQIUh0AJAAAAEAqzsvumxa9AoAR4AjMJCgBPe07EIliCfOHLfbMIBsAin70v/weHuQMAAAABaVv87DKk3QLghgFFgJBljfpABEvwwM2o0+2TigvA0xAoAQAAQOmZ1YZrFr9Cm1oAUAR25qAk9/lAeWo7ziyBTB+vH3W6VYoCwHEIlAAAAKDUzKD5puWv0aYmAACYn6k0XARLIOXnpxIsAXAsAiUAFu2QIgAAuMqkYehb/hr7ZuUrAACYo6xRH2WNelXSLqUBSUuS/hh1uglFAeBRBEoALNqQIgAAuGgqSLJk+au0qQ0ABT77KpQCyiZr1BNJNygJGDsES4A59i1u/3cQZwARKAGwaH2KAADgqJbyNAw2HWaNepuqAFCgCkWAMsoa9ZakF0TWA+QIlgDzE0RKOwIl9pBeAdzrAABYEnW6bUnrDnyVFrUBnLjdLlMKAM7CpLokFRcmCJYA+A6BEntGFAFKYJy9/B89igEA4BKHgiRjlS/tFhPdOIsQD+BlURFQMHNuSSLpJbG7BHmwhAPegbOJQ+iTESix92rm4irDRZAEAOAUh4IkktTKGvWyLZ5hIgLeDZoXOiq08wwgYAnk7a9n3ktblEbp9QmWAGd6oi4HMIc5IlBiz5AiQAmkFAEAwAVRp7scdbp9uRMkGcuNtFuspIVPCp/gDzSYyWQgMNXGs0Y9lfS8pD1KpLSWJLVJ8QiUu29BoMTWy/jl9SGlgMDtc58DAFxgVgj2Ja059LWajkzAFv2urnBHouyDcADuyRr1Ydao1yS9KGmfEimlVZUvJSowL2sB/IYhgRKro3aNFUlcXIFeCY0cAGC9u9Xp1pQHSVYd+lqHWaNe1oF4hbsSZ1D0St9xQZ9T9KQsASfgGFmj3s8a9VjSC+LA9zI6F3W6KcUAnGK81d2NQ5jHzF5eJ1BiGQf3IVRbWZ3dJAAAix32PNVWS9InytMpuCRx6LsU/b6ucHfiDIqe4A91vEZqGeApskZ9YA58f175GSakqiyPm5xXApxKHMBvGEuk3irbwBQowkFWX08pBgCALVGnGyuf4Nx08OvtZY16v8T90RXuUJxBJdDfVXQavjVuJeBkTEquNGvUK8rTcu2quN1msKfHeSXAidUC+A0DiUCJ7VfuUMrExRXQdShlMW0bAGBD1OlWok63J+m+3JyQH0tqOvadRhbqib4CZlV0ux4E9jkPPS+5nYBTzuDkabmSrFFfVp6aa0ucZxLy+yalGICn9Ce67YqUrQYwnzmUpGeoUqtIvYWQjCXVsnoyoigAAIV20PMJv1TSuuNfNc0a9SH9UdJvYaZ2Hlv42FFgn/NoOxxyZwGzyRr1wfQ71DyjYtO2KmLnVgg2o063beoawNFqgfyOoUSgxIlKAAJwICnJ6gkdCEzbogh45wCL5FGARJL2s0a95eD3sjFBS95vzKJi4TOD3VGifEK3z20FzIdJq9l/pJ+yPPXOq6q85wNVpi7fUnC2FMb5C8CiJIH8joFEoMTui7SeDKJum4KA7/bFThIcPVhIKQUA82YmHWqmU+7Las2xq4OIrFEfRJ1u0R9LoASziC18ZlH926GF30Y7BBb/jh3pQfCkT4l815eLzTM99qAvtxZ1uknWqLepOeCRttxtx5JWA/k5Q4lAiQv2xZZM+GksKc3qSYuiAAAseEBdMYPpmqRzHv6ExMGUW9MOVewKT/q+mEXhE/tmhXgRnzMkYAmgLKZ335gFMInyM9xc3W2SSmpTc8DjY5xgnksmQw6BEvuGDBbhmbGknqQmu0gAAPM2laZicsXyL03DtN2sUe950B9dKbie46ImoRHMc6HoFYuHBX9e0QvoVqJOt+J4EBdA4Myum5akltlpksq9ObKVqNNNyZgATPXNuu2K/Eh/fNI+mCQCJS7oB3RjIWwHyldRtAmQAMCpxFGny8DqCeUz9efQFo8cKF8h6UN/dM1Cvfe5/THDc6IoRZ8bMrTUDtvcXgBcYBZQxFGnW1MePHFpoUxTeRAHQC6k9vBdn49AiUOVEYh9qjQYI3N/DiQNsnoypEgAYCZrYvdoGY0l1cxKSfqjj4u5ReD4/TKw8HnrFsq1ze0FwCVZo96LOt2+8onYTUe+1hJnlTxgdhPEkir06Uo9xg0FgRJnXgD5ge5jSUuB/KQ0qyd9ahYAAJRc7FFKGxuBkrWo0132JJAE+2olaBeDkpQrADyV6R80o063pzz1twtzZqlKHFyOuu3JeTKJwjnAG5Cmdrl/j7Jwq0ICkFCdAACg5DayRt2bXcMmoDO28NExtwqeJup0K7KTfmVQcDu0MSZcijpdDnUH4HIfpa/8zLoDB77OikkLVq73cLe9HHXbqfIUkW+LIAnCcjidQYdAiRv6Af2WdbMFDwAAoIxueJqWgdXscJWN++TQ0o4wGxOBCbcYAJeZ53EsN4IlpXpmRt12TXmA5KbCyYQDTOtP/wuBEgcrJQApVQoAAEpoN2vUW/RHT4xACU4iKdH4jHYIAEcwqbhi2Q+WnDM7HYNmdpG0JX0iAiQI20N9LwIlLjzw68lAdtIdLMq6yV0IAABQFrtZo56EMkgoyFIZU1jg5MxklI0UH7ZS59n43BXSbwHwgUPBkqD7LmY+ry9pnbsOJdCb/hcCJY5WTACaVCkAACgJ34Mkts5HkEj7AzfHFP2SfS7tEIAv/ZWReWbZXGwc7DNzKkjCOSQog4Osnoym/4JAiTuCC5SwqwQAAJSA90GSKfsWPvNc1OnSZ8RxbJ1PYmVHicnDzzklAPDkZ+XA8nNrNcT0WwRJUELtR/+CQIk7+oH9niWxqwQAAIRtO6AgiWRv4U7CrYRHmbRsKyUcl9n4/KWo06UdAvBG1qj3JG1b/ApxgMXaEkESlMtjYx8CJa485POtPnuB/Sx2lQAAgFBtZI16aItC+rb6jNxOOEJSsnZg+/MTbjkAnkllLwVXUOeURN12TZxJgnI5yOrJ8NG/JFDilKwnZQroWpKyFvUKAAACMpb0Utaot4PrieapLA4tfPQKh7pjmklpcs7Sx/cst8Oe7Ez8rYWYSgZAuMx5JbYWW8TBvHO7O8tS1g5sPpKL62nXkWM5AiVu6QX4m9aj7g4dbgAAEIJDSbGZyKQ/Ol/sKsG01NLn7pmJN9v6JSt3AJiJWbhiY5HHUtTpVgMpxqby9PlAmRw55iFQ4tIDvr4RYvotOtwAACAEe5Kqtg55LlDf0ueuRZ1uzG2GqNNdlr30H31HisFWwHKdXSUAPJRa+lzv+y35bhIWq6B09rP6xvCo/4BAiXNPKfUUSYFd69FHOwx8AQCAr25kjXrNkZXmC2Ux7Y/E4hrkbE7YuLJbzOb3oB0C8K3v0padXSX+7yiJVFOkpQDnIbm4nnS1j2sSBErcE2oqBzrcAADANweSXsga9bKduWarP8qukpIzuxlsBUr2s0Z96EI5mKCsrUwD7CoB4KO2hc8M4VnJbhKUzfhJYx0CJY7Jrm6MJO0G+NPWoo92OKQTAAD4Ylv5eSSDEv52m4GhlFuv1FLZy5Pedqws2FUCAG4/w9d8LrDoo51lSavcOijbs8LMvR+JQAkP+LIMugEAAE5isoukWYZUW0cxwaFDSx+/FnW6LK4pIbOLYd3iV+g51g7bspcGj10lAHzruwxNH87Gu8tXMXcOSuiJc9MESlx8wF/d6FscnC7SSvTRTkoNAwAAB42Vn0VSLekukke1XR3AgHtuAXYdDYz2SlofADCLvoXPrHhcXlVuGZTMfnb16EPcJwiUMFAoWjP6aKdC9QIAAIdsS6qU8CwSV/uiK1Gnm1IF5WHOplkr6f3+JDafSezuAuCbvoXPXPa4vGJuGZTMU8cXz1BGzmpJuhng71oyv41ONwAAsG1PUtOVA5xdkjXqw6jT3ZN0ztJXaEadbpu6CV/U6S7LbqDiMGvU+462w0HU6R7IXg75VtTp9suahhBWnwsVFbtSf8Ru0iDYqMOqHEvdCOCY/l6ewemJCJS4Oji9ujGKPtrZld08vYtyLvpoJz7JDQoAALBAQybin6gte4GSJfP5MdUQvKakFYuf7/pOspakHUufvaJ89WWT2xQFS1TswtF93jf+M4s8KAgAR0lP8l8i9Zb7g1N+GwAAwGJsklrmeFmj3pPdc/NI/RO4qNOtyu4u+rHr4xLLh7pPnpMxdysAT+xTBAAecZhd3ThRf49Aicud4nzHRagPeQ52BwAALmibFB84Wkr9YBEcSLklST1P0kq1HGiHy9y1APAYDkQHAhrPECjxYPAe8G/jYHcAAGDbktjp+iQ92V3NTv2EPWhddeA7+MB2oGTFo7ICgCIRRAbcduLdJBKBEueZyjwM9Octyf2cwAAAIHxrUaebUgxH9EXz1fYt6gfzZFKqbVr+Gru+nFFk2uGu5a9BqkIACMuQIkAJnGoMQaAkwEr1zLnoox063AAAwLab5OE/Vkt2d5VQPwExqdTajLG8/L5tc64MAMB/A4oAgTs4zW4SiUCJJ7KelI2lTIFereij37FdEQAA2EYe/qN6om7sKpGkHueV+M20r57yneU2ebObZKodDmV/V8kSz0kACKaHNwh4npGLS1LWPG2reIYHgwePrqs/HUUf/a4l6WagP3GS87ZJbQMAAnQotrafxJojfZK2JHa7Pq5l+mo2J7iXlAdLYk8O4MbR99GqA98j9bT8Uknrlr/DKs9JBIidUpiVt7sysqs/7Ucf/W4s+4sXgEXYz67+tH/a/xGBEganrtiMPvpdO7v6U7b+AQBC084a9ZRieLKo023L/gSgJJ2LOt0ka9Tb1MrUYLpRH0WdrgsLd1ZNvzihVrxr46kjbdy73SRT7XAYdbq7DpTjuajTbWWNOgvdEAomisNRdNDL94UbPUfezcC8zTRWIPWWL53iqz91JeXBIrWpaQAASqupfPeNC1rk4T+6XGT/rBJJWjeBNXgi6nQTubM7PvW8OFNH2uGmqVdgEYYWnlO89/1/1yyLoNdp0Z9CiLazqz+d6T1CoITBqUtWo49+l1LNAACUj0ml5EoqlyUGjsfWkSsryNeZpPWDqacdZwbOnu4mmWqHQ7mzgG6HdogFsdFOCZT4z0Yder2jxKQm2ufWQUDGOsOiGAIlfj3AyrCr5Gb00e8q1DYAACXs6zTqA0lbjnydVZNqCg/XUVvu7PxhktZxZoW2K0GSMw2cHePSAjraIUJBoMR/sYXPDCF9fMqtg4A0zfz5TAiU0Cl2UZtqBgCgnMx5Lq6sbNuMOt2YWnlM4tB3YZLWUSZI0nfoK6VmV1QIz0mXdndJpCvE/O9xG8+OGiXvPRt9Nu/fK2ZXyR63DwKwn139afss/wcESvx7gI2kLJUyBXytRR99wMGAAACUV03uLAzpmZzXmPRH8wkslwbUBEscYwKMfbmTK/4ga9RbgbXDttwJKi9J6tMOMWdF9wNWok63QrF7+95ZlrRm4Vk8CKMEs0TKxoHPNXKFfY3z+/hsCJT4+Pi6er0ld1IeLEoaffQBnRQAAMrY18lXSyeOfJ0lST1q5TFNubXLmWCJI0w93JdbB+o2A26HrliiHWLObExAc//6y8aOoGDm5bKr1106KxCYRSu7en141v8TAiX+SgP/fRyiCgBAiWWNek/StiNfZy3qdNnt+nD9DB3sj+5EnS79R4scO7h9YttSGp8i2qFL5zpNt8OE1oA5IFAC1+tuEFIBZlev9yVtcCvBQwfZ1etzGZcQKPH3AdaWO1utF4UUXAAAlFsq6cCR7/I2Ofgf6Y/mqYxc64+uR51um3RpxYs63ZbcC5IcKvwFZi5mG9gx9wNwFjYmoVeiTpdV9f69f6qykHZLgQVKpO/mGgmWwCdjzTFQSqDE/8mD4H8jKbgAACinqRRcrqR4YgL+cS7Vz8S68vMS6EMWIOp0l6NOtydp08X7M5QD3E/wnHTNZtTpcsYTzqJv6XNZrOmfZsnu0cW+Vx4ES8bcWvBAml29PregJYESvx9efbl1kOYikBccAIAy93fy1DKpI19nVfnqbTyon6HcXLyzKmlgDhXHgphVvH1J5xz8esGm3DqiHfblTqrCaeeUBy3ZjbdYy4He10PZmahd493h3Xto3eKzN8z3Sh4sieXOzm7gKPvmHO+5IVDivzKsdliNPvogpaoBACgnk+LJlcUh66TlOLJ+XEwJuyTpftTp0o9cAHMORV95UMo1ZUi59Wg7bMrNCa1V5cESnpuLaYdNSZ8E/BP7lj63zd3lDVsLWIIPIGRXrw+yq9erys/CYncJXDOWNPe+BYES/x9cQ0XaUiQFft2M7nzASiQAAMorkVspuCpUyUNqDg+ib0adLqm45sSk2morP49kydX7MfSUWx48J6ctSfqE84Pm3g57kt4O/Kfayi6xQpDdi3bQlJ2zSWzem4XLrl5PFali5h7HJZh/5PLjSrKr1+fe1yNQEgYXD/BbzKTEnQ/oWAMAUEJm0tOVFcmkBj26fhKHv+Ka8lRcrGo/A5OOZiBLaU5O6IZJ2VfGdjiQ2xkH1kVKvHm0w5qkodxMeTdvfYuffZO0cU63g4rs7hwsVT8wu3J9lF25nmZXri9LeknSrsoxDwk3bWdXri+kDUZZllG8Ibwk7nyQKF/VVYbG0DS/uSKpQu1jRoPsyvXSrDQ0K6JuFjxYj7jN4Gh7KLrzs5U16ikl7+/zjLo9Vf205Oah3tP2lR/yPaTGTlyvy8onpFyv272sUa9RX9223A5mSfmZKmlJd/6cpR225UCApMh+ftTpDmQvxd+BpJj71Mn2YPO+OMwa9Qq1IJnFzJOAYlWBnplkUVXlCIqf6rmcXbm+sCA2gZKwHlB92dt2WPTgdo0axxyMla9S6knqhRw4IVACPNQeCJQwOJ6nF8tyYPQp6seHPulYUou2eaL6TJTvYF9y/Ksyofmgzpbl7vkx0w4lNbNGnR16T6/TpvJgpRPtsOBASVN2U4wRgHWvPbRlNxi8bc6FAhZ3n9/5oKY8OL5EaTzUf68scu6O1FthKcuDmiAJ5mVJeXR+R9Ln0Z0PetGdD2KKBQCc59J5GOTcP7p+XE/HsKQ8rcqQdFzHDNA73dgEvVw+i2R64JwQJMlNpcJz/fDdFeVnl3CG0JPb4UB5oKCsk2W2A2nnzMQ83GgTbdnfMcf9gMXe53nWoE9EkOSxMcaiFzgTKAmpQ3zl+kD5FmYAM3aCJd2P7nzQN6ndAAAu9nnylEmJI19nhQHzY/UzOU9m7MHXnZ6ojam9PO+7mYi6L38WKCVlPZfkCe1wIHfOdXqaNUl/Moe90wd/0A57ph2ulvxeHkras/w11gmWONEuUtkPkhzyvsFC7/PyHK1wWjeyK9f7i/4QAiXhScWBSsB8Bmt3PmA7LQA4yqRq2XXk65wzqUHwoH5cP1T6qHf//TIHTKYCJH+S++dbPDxwJnXTce2wL2nDo6+8rpIHTB5ph+Slf6Dtwv1JsMRq22jLjTPqWtQGFnaf3/mgLYIkR9nNrlwvpO0RKAmtM5xvQWKgDszH2yYdFylVAMBNTbmzQCSNOt0qVTLVL23U25JuePa1pwMmSSkG5Xlqn578C5DkA+dGnUmrp7fDXc++9nTApEo7hAmGuvC+X4863QEpNwttG8umbbjQLsZiFzEWda/nQRKe/487yK5cL6xPTqAkxE7Eles95QeeAzi7c5L6BEsAwME+z4MUTy5YYvB8ZB215N8krZQHTHbMGSZpaJNiZuIpMWcf3JefK9f3skY9oZWdqB0mnrbDdUl/DDVwGUg7LJIrQdFVSZxvVUwbiSUNHGobPc7CwkLudYIkxzmUFBdaF1mWUewB+v6d31bMC4WDf4D5OJAUf3vlVS87Riafa6FblbNGPeK2gaPtoejOz1bWqKeU/ELrtKn8oFsXbGeNOrt7H6+jEAaAe8onSdoe10NNeXCx5vk44UBSzITVqet/IL/Pu5is5m77fEaA2SXT9Lkd2ujnm4D10LEy25XU5Fm0kLpOJW069tWeN2fmAHPz/Tu/DaGPvKh3fvztlVcLfd8TKAm7saVyI4cjEIq9b6+86uXKIQIlwEPtgUBJmPXalzsHT7/EmQlH1lFPYayYHkvqSerLg9WlAQVHJgiSzH4vLJv7NoTDwQ9NO/QiaGJWxk/a4YrvhW+rn29jTHPCd0JLUovn0lyeUU1zufa+2mUXI+bp+3d+u2zeY2uUxpFeKDpIIhEoKUPD833VEOCarW+vvJp62OksfFBBoAQOtwcCJeEOroeODKzHkipMmBxZR/0A+6b75nf1zeHZtsu5qjxNQazwUvkQJKEdHvfM7csEMF1Y8f1IO4wVWKYHi4ESF3eVTN+HbeUBk6FwmnqtSErkZoBkgt0kmBsTJAmxTzwvG99eebVt5XlEoCT4xleV9EdKApgrK5HtM3Y+UxEoASbtgUBJuHVbk/SJI19nP2vUY2rlsToqw8BwX3kK3IGk4SKDJ2YytiqponwyNuRViQRJaIcnNTbtrz9pi4uc4DSTvJO2GJt/Bp0C22Y/37F0m096XrWV7zocCse1m8kuK9ffXaRVxdwQJHkqa0ESiUBJWRphS+7ldgR8tv/tlVdjzzqiqQiUAJP2QKAk7Pp1qd9zwxxmjofrqIwDxMnE7cj8U1P//jTLyidepTwgMrlWSlR+BEloh/O6j0ZTbW+6PZ5E1bTH5ak/l3Kiy3Y/P+p0hx49A6cDd0NzldGkzcSevcPYJYy5IUjyVLvfXnk1sfkFnqEOSiFVILlQAUesff/Ob+Nvr7zapygAwC1Zo940ueBdGIC8HXW6fZ8PHV5QHY1MHbUVXmqo4yzpwYrZc9wFp0KQZLHtsK/yTNhMfif54P2XSLrv2fOf+85PKe8fzFFbBEmOYz1IIknfox7C9+2VV0fKcz0CmGOHiSIAAGclylcAuqBnVm5jStaoj7JGvSZpl9LAExAkWXA7VL66e5/SgGf3bl/SHiWBBdtnZzDm5ft3ftsWi2WO40SQRCJQUhrfXnm1Fynbi5SJi4trLtfaM3fer/B0AQAnJ1AGcmeRyIokBtnH11UigiU4ZtAsgiRFtMGROU+JdgjfJHJnUQTCMzb3GHBmz9x5vx0pW2ce7cjLmSCJRKCEjgSAs6hRBADgpqxRb8ud1abrUafLYPv4ukokbVASmLKbNeoJQZLC2+E2JQGP7tmRmMjG4qRZoz6kGHBWz9x5vy1pnZI40sE/r7zm1HOcQEmJ/PPKa3QkgPkiUAIAbkskHTryXVpRp1uhSo5mAlsbYlEPpA0zaY/i22FTBC3h1z3bE7uhMH+k3MJcECR5ogPl6T+dQqCkZP555bWeyEELzAsH8gGAwxxbbbokqUetPLG+2mbAdEhplNJY0ovmPoDddviCCFrCH03lE27AvN5FLIjEmT1z5/2mCJIc50BSbBb0O4VASTkldHyBub38KpQCALjLHPi65cjXWY063ZRaeWJ9DSRVxcKeUg6YTXuFO+2QyWf4cL9OFkUwx4F54GwsnNkzd95PJL1NSRzf53MxSCIRKCmlf155bSiJQTowHxWKAADcljXqqdyZeL8ZdboxtfLE+pocLs15CeUwObR9QFE41Q6HWaNeFWmN4Mf9OhC7AHB2G7yLcFYmSLJDSRxpTw4HSSQCJaX1zyuvtcRKPQAAUB6J3Flt2os63WWq5MnMeQkviVXCoRrLnEfC6l2n22Eizg+CH/dqX5yxg9ltk/oRvVzL5gAAIABJREFUZ/XMnferkjjf5mi7/7zyWs3lIIlEoKTUIimJpHGU/5mLi2u2q8rTBAC8mEAZyq3zShiMn6zeesp3b7LAJyyTVFu0Az/aYVuk4oI/9+oWJYFT2jWLM4CZ/eDO+9VI6kfSEvNkj127/7zyWuJDPRIoKbFvSMEFzAMrIAHAE2bS3ZU0MueiTpdB+cnqbZKK64ZY1R6CraxRr5LexLt2OEnFxSQ0XL9XU5EyDie3a3bOATP7wZ33l5UvglqiNB5vY994EiSRCJSU3jek4ALOakgRAIBXmnJnVXQadbrsTDyhrFFviYPefXYo6UUziQl/22Eq6QWxuwRu36eJCJbg6QiS4MxMkKQvaZXSeMy2T0ESiUAJJClSokhj9oJxcc14AQB8mjwZybEUXJxXcqr6G7K7xEtbWaNeMWcIwP92OJjaXUI7hKv3aSKCJTgeQRLMR6SWIq0yN/bYtfHNlde82z1PoAT65vJrQ4cmDADfkDYCADxjUv7ccOTrrIpUqLPU4WR3yR6l4bR9Sc+ziyTYdpiKXV5w+x5NHHrfwx0ESTAXP7j7fippnZJ4zMY3l19r+/jFCZRAkvTN5dd6DDSBUzv85vJrnFECAB4yE+2u9H02o063Rq2cug6HWaNek/SiSAPkXB9J0kbWqMdZoz6kOIJvh7Gkl0y9Ay6+7zfE7ifkNgiSYB5+cPf9RNJNSuIhY0kv+hokkQiU4GEJnQfgVPoUAQDQ95kTUnDNKGvU+yYNEBNhbgyQtyRVs0a9TXGUqh32ska9ItJxwc37sy0p5t4s/fvpJd5NmIcf3H2/KqlFSTzWxuJvLr/W9/lHECjBd8zK+ISSAE6sTxEAgL/MeSWu7ORYktSjVs5Un21JFTFRa8u2pErWqKembaGc7TClHcLRe3Ng7k1SxZXPgfIAPv0snNkP7n53ePsSpfFwG/vm8mvep6YnUIKHmBRc25QE8FRjn7cTAgBy5nBpV/o+a1Gnm1IrZ6rPERO1hdtVfg5JkwAJaIfw4N6MzX2JctjOGvUqaSAxR30RJJm2r3wnSRBtjEAJjpKK/LLA07QpAgAIQ9aoN+XOGRc3o063Sq2cuU6ZqF2ssfIA4/NZo54wAQXaobV2uKX8fBic7t5MJb0gzrcK2aGkF00fD5iLH9x9vy1plZL4zu43l1+LQzq7l0AJHvPN5ddG31NW+54ycXFxHXuRjxIAwlKTO5N4Pc4rmdtk2PRE7YZYDDSPiact5Sm2mgRIMEM7vEE7nEs73DDtMJXETq7Z7suBOd+KIF54tpWn2upTFJiXZ+/+JvmesnXmwr67bnxz+bUktHp+hlsdR/n68s8Gz979zZakm5QG8Jitry//jIkBAAhrwmQYdbpNSTsOfJ0V5TsXa9TM3Op3ZMq0HXW6saSmpHOUzIntS2pzCC7m0A5bklpRp1tTfj4m7fDk9kw75JyF+d6XadTpts29yf3o/7uqac6jAebm2bu/qToyRnDBWFLz68s/C7JPyI4SHOvryz9LxUFnwKMOTScaABAYMwm858jXORd1ugm1spB67meNek3S82J1+9P6PJP0WjFBEsy5Hfam2uEW7fCJ7XDLtMMaQZKF3Y9Dcz++KOZAfG0nL5p3FUESzNWzd38zObwdeZAkDjVIIrGjBE+XSBqIg4qAidrXl3/G9nYACL/vs+LAd2lFnW6f9EaLYcp1srq9auq+5kjd2xwA9yT1mJBFge0wlZSadtg07bDM489D0w7bTPoWfj/2JcVm52EqaY1ScdqBpBaBfCxYT8yJTtpbHPp8GIESPNHXl382fPbubxJJn1AagDa+vvwzBisAELCsUR+ZlDB/dODrLJnBGYe7L77eB8onaJslDJocKl8pSXAELrTDRJLMczguWTskOOLOvdhXHjCZBO/WKRWn7CkPkPRD/6HP3v1NxTwLK6Y/yBl2xVoWh7dL0q7ydFvBLxqOsiyjunGSh3NL0iYlgRLb/vryz5rePuw73VQFnzmUNeoRtw0cbQ9Fd362zGGr4Lk58zsoa9Sb1IqV+6CifKI2Vli56/f1IDjCpCxcb4dV0wZDaodj0wYn7XB4hvKJJd2nn7/Qe3BZeRAvEZOmtkxSYPdC32lrzsNIxC5XODIO8Xku7NTPewIlONmD+r1JTj46BSijra8vv5563rlPRaAEmLQHAiU46b3SlztpN14sw8pJD+6JWPlk7WTi1odUDGPl6eT6kvrcR6AdWmuHfXMN5tkOCZQUfv9VlE9gJ2J+ZNEO9CAdZPBB/WfvvheLlG9wy8bXl19vl+kHk3oLJ/L15ddHz959LzEdO3LzoSzGkpplezEAAL6TquDJpyfoRZ1uJWvUOSfLIjO52Z/8u5kwq05dFdmdODuUNDTfcaB8QnZIzYF2WKgD0w4HtMMg77+hHpxvtawHu52qYoJ7Hm1n8v7qlaXPYxYmtxXWzlX4bSwp+fry66VLyUqgBCf29eXXB8/efa8paYfSQAnsmxcDg5rTdWwnA8I+xQGeIRqaq01x+Clr1PtRp7svNyY+lsy9VKNmnLpHJu38oYGkmbidvpb14KyZWfNdH0iaTBpNPndk3rsjUmiBdnhsO5zk9Z93OxyYP08+fxhwQGQ81c8nYP/g3huZ+643dd9Vp+676XcAu09yh4+8vyZtp5Tjx2fvvlcz/TsWJMOl53389eXXS9mvJPUWZnmQt8VhZgi745ayiwQAAAAAACyCWYj8NiUBh5Q6SCKxowQziKSm8q2lHCqFkOxJ6v0PARIAAAAAALAg/3L3vXbEAmS45VBS7X9KHCSR2FGC2R/qVXFeCfw12TLfl0kT9T+XX2cLOQAAAAAAWJh/yc//JaU9XHIgKWZejEAJeLjPavd/Lr+ecBcAAAAAAADgaf7l7nuxpPuUBBxCkGQKgRKcyQ/LfV7J7j8IlgAAAAAAAOAJfnj3vWXlh9eTmQWuOJAU/4MgyXe+RxHgjJqmYZXR+g/zXTUAAAAAAADAcVoiSAJ3ECQ5AjtKcGY/5LySjX9wADgAAAAAAAAeYebN/khJwBEESY7BjhKc2T8uvz5QvrOkrHZ+ePe9GncCAAAAAAAAHpFSBHAEQZInYEcJ5uaHd99rSdos6c8fmwfNgDsBAAAAAAAAP7z7XkXSnygJOIC5y6dgRwnm5h+XXy/zeSVLkvpmOyUAAAAAAABABhK4gCDJCRAowbzFpvGV0SRYUuE2AAAAAAAAKL2EIoBlBElOiEAJ5srkuItLXARLkno/vPveMncDAAAAAABAOZm5oVVKApbVCJKcDIESzJ1pfDdKXASryneWECwBAAAAAAAoJ9Kzw7aNf1x+vU8xnAyBEizEPy6/3pK0W+IiIFgCAAAAAABQXgRKYNONf1x+vU0xnNwzFAEWJVLWNC+Fsm4zXJXU58UIAAAAAABQLpEyFs/Clt2/X/55i2I4HXaUYGH+fvnnI0k1lfdwd0la/V93/782dwMAAAAAAACABdv7++WfJxTD6REowUL9/fLPhyr34e6StE6wBAAAAAAAAMACHUhKKIbZECjBwv398s8HUaSNKJJKfK3/6B7BEgAAAAAAgDIo+TwYV/HXOIpUMxl+MAMCJSjEV5d+3la5D3eXRLAEAAAAAAAAwNzFX136+ZBimB2BEhTmq0s/TyTtl7wYCJYAAAAAAACEb0gRoCAbX136+YBiOBsCJShYVpOyQylTia/1H917t829AAAAAAAAEKpsWPL5L65irm2TyQdnFGVZRimgUD+6925VUl/SUsmLYverS28k3BEAAAAAAADh+dG9d5l4xSLtf3XpjZhimA92lKBwX116YyApoSS0/qN771IOAAAAAAAAYdqjCLAgY0k1imF+CJTAiq8uvdGTdIOS0A7BEgAAAAAAgCD1KAIsSPzVpTdGFMP8ECiBNV9deqMlaZeSIFgCAAAAAAAQIAIlWIQbJmMP5ohACawyZ3TsUxIESwAAAAAAAEJiVvyzSBjztGsWn2POCJTABTVJBxQDwRIAAAAAAIDApBQB5uRAUpNiWIwoyzJKAdb96713K5IGkpYoDW387dIbbYoBAAAAAADAf/96791U0k1KAmf0wt9IubUw7CiBE/526Y2hpFjSmNLQzr/ee5foMAAAAAAAQAD+dumNVGRTwdncIEiyWARK4NJLYyC2j028/a/33m1TDAAAAAAAAEFIxAJhzGbvb5xLsnAESuAUk3LqBiUhSVonWAIAAAAAAOA/s0A4oSRwSofcN8UgUAIXXxwtSbuUhCSCJQAAAAAAAEH426U3epI2KAmcQvK3S2+MKIbFI1ACV18ciaQ9SkISwRIAAAAAAIAgmGwqL4k0XHi6rb9deqNPMRSDQAlcloiDriYIlgAAAAAAAATA7CyJxbwXjnfwt0tvpBRDcaIsyygFOOvH995dltSXtEppSJJ2v8x32wAAAAAAAMBzP773biqpKWmJ0sCUF77Mz7VBQQiUwIcXRlV5sIQXRm5XUvNL8hMCAAAAAAB4zywUTpVnV2H+Cze+zM9wRoEIlMCXFwbBkocdSIoJlgAAAAAAAITBBExq5orFPFgZ7X956Y2YYigegRJ49LL4dU3SJ5TEd0yw5BcESwAAAAAAAALz43u/rkqqSKpSGpLyAFLI6fnHkqpfXvrFkKouHoES+PaCSCTtUBLfIVgCAAAAAACAoP343q8rkv4U+M+88eWlX5Byy5LvUQTwyZeXftGWtEFJfGdVUt+8LAAAAAAAAIAQpYH/vn2CJHYRKIF3TLBkl5L4zqqkgdmOCQAAAAAAAATDLBBeD/xnJtS0XQRK4KUvL/0iEcGSaUvKd5YQLAEAAAAAAEBI2oH/vi3OJbGPM0rgtR/f+3Vb4UeUT2MsqfblpV/0KQoAAAAAAAD47Mf3fh1Luh/wTzz48tIvWPjsAHaUwHdN5QeaI7ck6b459B4AAAAAAADwWRr470uoYjewowTee+7eO8uS+srP6sAD25JGFANm1Jc0+OLSm9xDAAAAAACgcM/deydW2LtJtr+49GaTmnYDgRKE8uAkWAIsxoHyXKC9Ly69OaQ4AAAAAABAEZ67905f0lqgP+9QUpUFqu4gUIKQHp7LkgaSVigNYCH2JLW+uPRmn6IAAAAAAACLUoLdJC99cenNHjXtDgIlCO0hWlW+s2SJ0gAWZldSk1UPAAAAAABgEQLfTbL/xaU3Y2rZLRzmjqB8cenNgaRY0pjSABZmXdLQrO4AAAAAAACYm+fuvVNTuEESiQPcnUSgBMEhWAIUYknS/efuvcPLHQAAAAAAzFMr4N+2xRmwbiL1FoL13Mek4QIKsvvFxTcTigEAAAAAAJzFcx+/k0jaCfTn5Qe4XySVuYvYUYJgfXGRnSVAQdZNRwYAAAAAAOAskoB/W5MgibsIlCBoJljSpCSAhdt57uN3ahQDAAAAAACYxXMfvxMr5APcL77Zo5bdRaAEwfvi4pttSRuUBLBw7ec+fmeZYgAAAAAAADNIA/5tCdXrNgIlKAWCJUAhliS1KQYAAAAAAHAage8m2f7iIge4u45ACUqDYAlQiHOmcwMAAAAAAHBSaaC/a6ywd8oEg0AJSoVgCUDnBgAAAAAAuCPw3SQpB7j7gUAJSodgCbBwa899/E6FYgAAAAAAACeQBvq7Dr+4+GaL6vUDgRKUEsESYOGaFAEAAAAAAHiS5z5+p6pwd5MwN+IRAiUoLYIlwELVKAIAAAAAAPAUoQYT9r+4+GaP6vVHlGUZpYBSW/r4vxJJO5QEMHfPjy/+55BiAAAAAAAAj1r6+L8qkv4U6M97cXzxP/vUsj/YUYLSG1/8z7bYWQIsQpUiAAAAAAAAx0gD/V17BEn8Q6AEEMESYEEIlAAAAAAAgMcsffxfy5LWA/15nE3iIQIlgEGwBJi7CkUAAAAAAACOEGowYZc05H4iUAJMIVgCzFWFIgAAAAAAANPMbpJQAyUpNewnAiXAIwiWAAAAAAAAAAtTk7QU4O/aYjeJvwiUAEcgWAIAAAAAAAAsRBrgbxpLalG1/nqGIgCOebpd/M/28se/GkjqK8woN7BoQ4oAAAAAAABMLH/8q1okrQT401qji2+NqGF/saMEeILRxbcGkmLlUWEApzOkCAAAAAAAwJQQzyZhN0kACJQAT0GwBJjZgCIAAAAAAACStPzxr6qS1gL8aewmCQCBEuAECJYAMyFQAgAAAAAAJthNAmcRKAFOiGAJcCqHo4tvDSkGAAAAAACw/PGvliWtB/jT2E0SCA5zB05hdPGtgdkm2JO0SokAx+pRBAAAAACAopl5m6qkCqXhlGqAv4ndJAEhUAKc0ujiW8Plj38VS+qLYAlwnDZFAAAAAABYNLNToWauc5QICsRukoBEWZZRCsDsL+K+CJYAj9ofXXwrphgAAAAAAIti5mWa5lqiRFCwsaQKgZJwcEYJMCPzIIwlHVAawENSigAAAAAAsCjLH/+qKWko6aYIksAOdpMEhh0lwHxe0G2FeSAVcFp7o4tv1SgGAAAAAMC8mV0kPUlrlAYsYjdJgDijBJiD0cW3kuXf/0oiWAI6CgnFAAAAAACYt+Xf/6qqSH2xgwT29UYXCJKEhtRbwJyMLryVSNqlJFBiCR0FAAAAAMC8Lf/+V1WJIAmckVIE4SFQAsyRCZZsUBIooRujC2/1KAYAAAAAwDwRJIFjdkcX3hpSDOHhjBJgMS/xRNIOJYESdRISigEAAADA1Lg4Nn+c/LMqadn8+bTnSxxIGplroPwQ7+Howlt9Sjr4+2jZ1DdBErjieQIlYSJQAizuZV6T1OZljsDdGF14q0UxAAAAAKUd+8bKgyAV889qwePgQ+XBk4GkPsGT4O6vvji4He7YG114q0YxhIlACbDYFzrbQxGqsfIzSUi3BQAAAJRrjBvrQUBk1dGvemDG4n3lwRPOUvTzfktEtg645UWCseEiUAIs/MX+/6qSepJWKA0EYldSc3Thlww2AAAAgLDHs7HywEgsv1f1H5hxeX904Zd9ataLe29Z+S4h5lLgiv3RhV/GFEO4CJQAxb3g+3J3tQ1wok6BpJSBBQAAABDs2HWyY6SmcNMdjWWCJpJ6LABz9l5sSnqbkoBDXhpd+CVZNQJGoAQo7iW/bDpj5NaETyZb1lujC78cUhwAAABAcOPUWHlgpKZypo3e04PdJox53Lk3h2I3CdxxOLrwywrFEDYCJUDxL/u2pHVK4tT2KYKFG5pLyoMjA1ZXAQAAAMGNSSvKgyKxpHOUyEMOJLXEThPb92gs6T4lAYdsjC78sk0xhI1ACWDBT37//1qSNimJU9mXVPuczioAAAAAnHYMWlEeHElESuiTmuw06TEOLfx+Zc4ELhlLqvAcCB+BEsDeiz+RtENJnPrlVPucMzIAAAAA4GljzooIjszLrvKACecTFHPvDkXaLbhj6/MLv0wphvARKAHsvvxrktoqZx5YXlIAAAAAMN8x5rLywEgigiOLcKh8l0nrc84zWeQ9/DklAYc8T3svBwIlgPVOwHZV+XkQBEtO50BS7fMLm7ysAAAAAJR9XJko3z3CmSPF2ZfU/vzCZpuimOu9HIvzSeCO3c8vbCYUQzkQKAHc6AhUlK9KYcXP6YwlJZ9f2GT7MwAAAICyjSOrkprKAyQsvLM7Lu1JSlnIN5f7OhaBErjjxc8vbPYphnIgUAK40xlYNp2rNUrj1LZNp5SDtQAAAACEPm6sKQ+QsNDOPewyOfs9nkq6SUnAAQefX9isUgzlQaAEcMz//v12W9I6JXH6F5ik5LMLmwOKAgAAAEBg48TJ7hHGin4YS2pJan/GLpPT3uupCJTADRufEfQsFQIlgJsdg6aktymJmTqj6WcXNlsUBQAAAADPx4XsHgnDnqTWZ6TvOel9n4pACewbf3Zhc5liKBcCJYC7nYNE+QoUcs3O1hFNPiMVFwAAAAD/xoIV5cGRhPFgUA6VL+xrUxRPvP9jcUYJ7Nv+7MJmk2IoFwIlgNsdhKqkPp3jmTuhCat2AAAAAHgy/ouVB0jOURpBIy3X09sBgRLY9jzts3wIlADudxIqyg95Z6v1bLY+u7CZUgwAAAAAHBzvTdJrpZJWKJHS2VWelouzNh9uE59TErBo77MLmzWKoXwIlAD+dBTaYmXRrA4k1VgNAAAAAMChMV7TXGQQwL7ytFx9ikL637/fHorAIex56bMLmz2KoXwIlAB+dRZakjYpiZlw0DsAAAAA22O6ivLdI+uUBo7AOSZ5O2nTRmCrDX52YbNCMZQTgRLAM/+WH/K+Q0nMbE9S8lcOegcAAABQ3DguFueP4OQOZc4xKePY9d9+v12T9Am3ASzY+ivp20uLQAngZ6eBQ97PZiyp9le2NQMAAABY7NgtVr6DZI3SwIxj15akVtkCJv9G+i3Y8fxfSdteWgRKAH87DRVxyPtZbUtK2V0CAAAAYM7jtUT5DhLGa5iHsRn/p2WZxP2332+nkm5S9SjQ3l85xL3UCJQAHvs/f+CQ9zk4lFT7y/nNAUUBAAAA4IxjtET5DhJWwmNRdiWlfzkfdsDEzHcMRSYNFOelv5znEPcyI1AChNGBSMVKi7Pa+st58lACAAAAmGlMlogACYoVfMDk//xhuynpbaoaBTj8y3kOcS87AiVAWB3zllhtcRYESwAAAACcdhyWigAJ7NlXHjDpB9rG+uKMHywe80EgUAKE5P/+oVVVnreUTvrsnv/z+eaQYgAAAADwhLFXIgIkcMu+pPTP55v9wNpaRdJALArFYjEXBAIlQIAd9mXlwRJWXMzYufzz+WZMMQAAAAA4YryViAAJHB/TKrCAiVkU+keqFotqM8wDQSJQAoTcgW9J2qQkZnLjz+ebLYoBAAAAgBlf1ZSnOiZAAl8EFTAxQcodqhULsPHn8802xQACJUDYnflEnFsyi7GkKtsuAQAAgNKPqWLlO0jYsQ9fBRMwMe2xJ+Y4MD9jSZU/n2+OKAoQKAEC9++cWzJzZ/JTtl4CAAAAZR1HxSJAgsDGuJLSTz0PmJg5jrakVaoUc7D76flmQjFAIlAClKWTz7kls3np0/PNHsUAAAAAlGbsVFEeIFmnNBCoUAImqaSbVCfO6MVPAzrPB2dDoAQoV6efc0tOZyyp8ilbMAEAAIDQx0rLytMWEyBBWXgfMCGwiTM6/PR8s0IxYIJACVC6AcDbiTi35DT2Pj1/o0YxAAAAAEGOj5YlNc3FGAllZAImN/qet+PEXKTkwkltfXr+RkoxYIJACVDOwQA5PU/nRZ87jQAAAACOHBclYhEZMOF9wMS062VJVUmx+auqpGWqdy5CS+f+/KfnbwypVkwQKAHKOyhYVh4sOUdpPNWhpOqn52+QggsAAADwfywUm7HQCqUBPCaIgAnm/txMJO0E9JMOPj1/o0rNYtr3KAKgnD49f2NkUkrdoDSeakV53lMAAAAAnvr3P7xd+fc/vN2XdF8ESYDjrEm6/+9/eLtvgoqAFN6cSIsqxaPYUQJgsqKqJ7acPw0puAAAAAD/xjsc1A7Mblf5DpMhRVHaZ2iisHaTSNJPyBqCRxEoATA9eOiLc0ue5PDT8zcqFAMAAMD/z979vth13ffifzv0uef7pO293/vFJ1+4cKFQj6F8KYRGR9yLrR+WdSZcKCEEHVFKSZ945F+yE9k6kzhxnCbW6ElDCUFHhFACwR5FcSyLBJ3BBEIwaCYQCBiSGdKk7aOr+Qv0fbDPWGNZP2Y0v85e6/UCYcf50e619tl7rf1e67OgNfOcQRzUDjtBYFLnM3QqyVLK2oV3aVxhBT5C6S0gyYeluKaTnNcad/XIeKIFAABMsD9981z3T988t5LkbIQksBNOJPndn755bvinb57raI5qzKa8UoULupU7saME+Jg/e/NcL83hhiYUd/bYf37m1JJmAACAiZvLdMZzmQNaA3bVxSSD/7TDpPTn6VLK+ja0lqTzn8pucQd2lAAf85+fObWQZDrJsta4o6EmAACAyfFnb56b+rNm9/fvIiSBvXAiye/+7M1zgz9ryjNRnvmUt4B2QUjC3QhKgDsarwrpplklwkc9+mdvnpvVDAAAsP/GO+KX0pTZAvbW2SQrApMin6vHC7w0Zbe4K6W3gPv68zff6KfMlQTbsZZk+j8+88yKpgAAgH2Zp3SizBZM2jx5Psn8f3zmGav22/tsnUqykvK+Aa39x2eeEeZxV3aUAPf1H595Zphmd4lSXLc8HCW4AABgz/35m29M/fmbbwyizBZM4jz5bJKVP3/zDVUY2muYMhfK2k3CPQlKgE35j888sxSluG53wOAPAAD2zp+/+YYyWzD5Hk5y7s/ffGNlXKGC9jxjZ1Nmya3EYlfuQ+ktYMv+y1tKcW2wlqTz7zO2FQMAwC7OQTpRZgvaajXJ4N9nnhlqiol+zk4nuV7qPfjvM8909DL3YkcJsGXjwU03SnElSnABAMCu+i9vvTFIs4tESALt9EiSC//lrTdWxgsvmbzn7FTKLk011Mvcjx0lwHZfpvNJntYSmfn3mWfUuwQAgJ2ba3TT7GR/VGsUZTnJjTTh17125neTdNJ8ZKcsi2l2mIw0xcQ8b0cpO4z+5L/PPLOip7kXQQmwEy/UXso97GuzlOACAICdmV9MJRnEgqwSLCYZpQlFVv595pmlB7wfukmmx3+1s6is+0Ngsv/P3GGSEwVf4qV/n3mmp6e5H0EJsCP+a1MzeCF1r/Y6/8eZZxzuDgAADz6v6KZZhGUXQfuspQlFRklGf3yAUGQL90kvTWjSc68UYTHJ4I8Ck/145s4mOVf4Zc78UQUQNkFQAuz0S3aQ5GzFTXDQ4A4AALY8j5hKE5Ac1xqtspwmGFnYr3nQf20OoO4m6UeZtrZbTNL/oxJJe/Xb6Se5UPhlrv7RIe5skqAE2I2XbTfN7pIaS3GtJpn+oxJcAACw2fmDUr7tsjie7y1M2gftcaWDXoQmbXcxzQ6TFU2xa7+VfsrrS5BxAAAgAElEQVQPSZLk1B9nnpnX42yGoATYrZduzSvC5v4488zAXQAAAPedN/RTx8e6truUW+HIjZbcW50ks1Geq80EJp6727GWpGMhK5slKAF2+wU8m+YgxtpWhz22mzV5AQCggLlCP0KSSbacZvHbQts/VI+rHvTThCZ2LrWPwMRz90E4R5YtEZQAe/Einh4PsGva+rz8x5lnpvU+AADccY7Qj5BkEq2m2TkyX+JH6XHlg16anSZKc7WPwGR79/8wyYmKLvmT7hW2QlAC7Jn/+61vzSd5uqJLnvvDzLMDPQ8AAB+ZF/QjJJk0F5Ms/GHm2YWK7sPp3CrNZZdJ++7XwR9mnl3RFJu616eSzKeukOTiH2ae7et9tkJQAuz1C7qbeg56X0sybfAGAAAfzgf6EZJMitU0H0+Hf5h59kbF96RdJu0lMLn//d1J8w2mtnv7k+4LtkpQAuzXQHSYOg56X/zDzLNdvQ4AgHmAkGRCXEwTjow0xcfu0W6as0xOaI3W3dMCk4/fz700315q2zFlNwkPRFAC7OdLu5ZSXKf+MPPsvB4HAKDisX8/QpL9tJrmg+nQx+RN3a+dNIHJbJTlahOBST5cnDpIXaXPN7KbhAciKAH2+wW+lPK3gK4l6dS8nR0AgKrH/P0ISfbLYppwZKgptnX/DpI8ojVao9rAZLwraljx/Wo3CQ9MUALs90t8Osn1Ci710h9mnu3pcQAAKhvv9yMk2Q/Ka+38vdxNE5gc0Bqt+h1UEZjYRZLEObFsk6AEmIQXei0luGb+MPPsgh4HAKCScX4/QpK9tJZmJfm8D4W7el930nyQdo5Je1wc/y6WCn7WzkeZuLk/zDw7cLvzoAQlwL77b83Kh6WUvzV0LUnn35TgAgCg/DF+N8k1LbEn1s8fmTfX2NN7vBPnmLTNYpLBvxWy0+q/KQu3ke8tbJugBDCR2lvn/23m2Vk9DgBAwWP76SSj+Hi821bTfPQdaop9vd+n0oQl/fhg3RbLaYLFYUvvuX4EJLc76VnIdglKgEl62ddSguvgv6kVDABAmWN6IcnuW0zzkVdZ38m7//vxAbtN1tKUrBr+24SXqxsHcv00oZz767Zn4r/NPNvVDGyXoASYGP/PW9+cSrJSwaRqNcn072eesyUUAICSxvNCkt21mGTw+5nnRppi4n8L/TQftB/VGq1xKcnw9zPPLUzYvdRL0oszce7lsd/PPLekGdguQQkwaQPKXpK3KrjUud/PPDfQ4wAAFDKOF5LsHgFJe38X3TQ7TA5ojdZYS7Iw/jPa6wWO4wWk3TThSM8z9b7O/37mOeXN2RGCEmASB5MLSY5XcKlWPQAAUML4vZNkKT7o7TQBSTm/kW4EJm3+HY7Gz7il3888t7LD98Z6MDI9/qt7ZPPWknRU62CnCEqASRxE1lKCa/n3M89N63EAAFo+dh9FiaGdJCAp9/fSTVOS67jWaK21jEOTJDfSfLtYGf97N25fDDnebTc1/pdTaQKR9b9OR8C8HTOTViqNdhOUAJM6gJxNcq6CSz31+5nn5vU4AAAtHLMLSXaWgKSe304nzQ4T507Ag7n0+5nnepqBnSQoASZ58DhK+dtO19Ic7L6ixwEAaNFYXUiycwQk9f6OOhGYwFYpucWu+IQmACZYf/wCLNnDSYa6GgCAthCS7JjFJAd/P/NcV0hSp9/PPLfy+5nn+kk+meSiFoFN6QtJ2A12lAAT7ZGFbw6SnK3gUk+u9p4b6nEAAFowRl+IMxa2YznJ7GpPOMLHflud2GEC93J+tffcrGZgNwhKgDYMFpdS/mq1tSSd1Z5VEQAATPTYfBgfcR/UapKBBVJs4nfWicAEbrecpOu7CbtF6S2gDfoVXKMSXAAATDQhyQNbS7ODvCMkYTNWe8+trPaU5ILbnqN9IQm7yY4SoC2TskHqKME1s9p7bkGPAwAwYePxYYQkW7WWZD7JvI97bPP314kdJtRNuXJ2naAEaMvAcCrJUpJHCr/U1STTJlIAAEzQWLyf5IKW2JLzacpsGdezk7/FTgQm1OfieIcV7CpBCdCmQWE3ybUaJlUOJwMAYELG4P0ISbbiUpqD2lc0Bbv4u+xEYEIdlld7z01rBvaCoARo2YDwn+aTPF3BpR5c7T0/0uMAAOzj2LsfIclmLSeZNYZnj3+jnTRnXR7QGhRoLUlntfe8nXnsCUEJ0LaB4FSSlTSHnxc90VrtPW/VBAAA+zXu7qaO3dzbtZpksNp7fqgp2Off6yACE8qxlqS72nt+SVOwVwQlQBsHgb0kb1VwqXOrvecHehwAgD0eb08nGaX8xUnbseGgdqudmZjfbjcCE8pwUgDNXhOUAG0dAC4kOV7BpT5mBQUAAHs4zhaS3N/4HJLnVzQFE/o77kZgQnudWu09P68Z2GuCEqCV/t96SnAt/rb3fFePAwCwB2PsTpKlCEnuZjnJ7G+dQ0J7ftPdCExol4u/7T3f1wzsB0EJ0OZB32yScxVc6qnfWk0BAMDujq2n0uwkeVRrfMxakoExOS3+fffTBCaPaA0mmJCEfSUoAdo+4Bul/NUxa0mmf2trPwAAuzOmFpLc3cU0u0icQ0IJv/V+BCZMpku/7T3f0wzsp09oAqDl+mmChJI9nOagSAAA2FFCkrtaTnLwt73n+0ISSvHb3vPD3/ae7yQ5mWRVizBBz9u+ZmC/2VEClDC5GyQ5W8Glzvy29/yCHgcAYAfH0sMkJ7TEh5TZoqbf/2yaHSbOJWK/LCfpCqSZBHaUAK33297zg/HLtXTD8Yq/0gbnHXcxAMC+jMOGEZJsdClJR0hCRXPp+SSdJHMpv1IDk0dIwkSxowQown9f+MZ0kusVXOrFD3ov9Avru0GSbpLBB70XRu5mAGAfxyVTacp/DD/ovXCj8GudT/K0Xk/SlCDqG4vi+ZfZ8R87TNhti0l6pb9raRdBCVDSwG6QOkpwHSxpEjcekC+lOVBwMQITAGB/xiTrJWgGH/RemC/8WvtJLuj1JMn5cZ/7WAf5SGByVmuwS4pbAEoZBCVAaQO69Q/uJVtNMl3SZO6/L3yjl+StDf9oOcn8B70Xhu5sAGCXxyH9NAHJI0kufdB7oVfB9QpJGieNN+Guz4rO+NmoPB87SUjCxBKUAKUN5rpJrlVwqXMf9F4YFNZ3oyQHbvvHq2lW+JnAAgC7MW4cbBh/FLcYpeKx8mYISWBzz41OBCbsjFOl79ik3QQlQIkDuVrqLT/2Qe+FpYL67V7nzKwlmU+zy0RZBABgu2OO+Xx8gUZRY6u7XPcozh5IhCTwIM+QTgQmeO5SMEEJUOIAbirJSgWTwOUPei9MF9Z3w/sMvNcDk+EHvRdW3O0AwBbGGZ3c/SNf0atchSQf4WMdbP95cqewGe42h++WvBCBcghKgFIHb7efeVGqoib1Wwy5LqYpy7XijgcA7jG+6OTeq6AXP+i90C34+ms5x28zzn/Qe2FWM8COPFu6+Wj5QrjdcpKeOTttISgBCh64vb6Q5Hjhl7mWZPqD3umVgvptkOTsFv4ri0kGH/ROj9z1AMCGMcVUktnxn4fvMZbqfNA7faPgNhgledQdkYsf9E73NQPs+HOmG4EJd3jmJpkt9f1KmQQlQMkDtk6a1XOllxhY/KB3ultY361k66sel5PMf9A7PXT3A0DVY8DNBCTrDpa82OK/L7y+FCFJIiSBvXjedCMwoVmAMGteThsJSoDSB2uzSc5VcKkzH/ROLxQ2yL72gP/11STDNKGJ1SsAUM+4bysBSZLMfdA7PSi4PYZx6HIiJIH9mMsNIjCp0XKS/ge9084joZUEJUDx/selb4wqGKStJen85vgLN/TbR9pkIcngN8fVRAWAgsd6Ww1IkmT5N8dfmC64TYYRkiTJxd8cf6GvGWBfnkO9NIe+Ox+pDufHc2+LFWktQQlQwwCtk+R3FVzqpd8cf6Gn3+7cNknmf3P8hZFfBAAUM1Z4kIAkGZ/xVupCiv9x6Ru17KiuamwMLX4m9dPsMBGYlGk1Sd9cmxIISoBaBmeDbO2A8LY6WNIA5X9c+sZ8kqd38H9yOU1gMvSrAIDWjg8eNCBZN/Ob4y8sFNo2/SQX3CVZTtK1shkm7vk0iMCkJHaRUBRBCVDTwKyGwyxX06yQvFFIn00lWcmDfQS5l7U028CHynIBQKvGBdsJSJLk/G+OvzBbaPv0krzlThGSwIQ/q/oRmLSdXSQUSVACVDQg29YB4W1y/jfHT88W1G/97O7KyItJhr85ftogDwAmcyywEwFJkiz/5vjp6ULbaDrJKDu/uKRtxiHJaSEJtGOe149D39tmLsm85ywlEpQAtQ3GdrqU06R67DfHTy8V1G97sRtoXJbr9NAvBQAm4v2/UwFJ0uwm7ZY0PtrQTkKSW2M5IQm07xnWTbPDRGAy2RaT9H9z/PSKpqBUghKgxgn3Usrf5lvUisk93g20lmSYJjQxCASAvX/vd9KEI/3s3Mf/kyUuhhiPbUcpv7zsZsZv08Zu0Po53yACk0mznGRWBQZqICgBqvMX9ZTgmvv18dODgvptIcnxPf4/eynJ8NfHTy/45QDArr/rO2k+kp3Y4f/pi78+frpfYHsJSRprSbq/LnC3EFQ8X+/vwruArVlNMvi1igtURFAC1Dr42o+P7vsxaZz+dSEr68YfT363j4PE+TShiXIOALCz7/jpNDtIduOj2Op4PHSjwHarYTy7mfGukATKfDd0sjvhOfd/bwpIqJKgBKh10DWVZCXl13Je/PXx092C+m2Q5Ow+/79xMU1gMvJLAoBtvde72f0yK4+V+BH9Ly69PoyPh0ISqGfuvlPnVXF3AhKqJygBah5w9ZNcqOBST5Yy2PmLyTpjZjXNx50Fu0wAYMtjsNnsfsmoU78+fnq+wPYbZP8XjhjjAvv1/hik/DNH99JimoWAnqdUT1AC1D7QGqX8w+LWknRK+Zg/gQHXWpKFJPNWNALAXd/fU2lqzs9mbz5wXfr18dO9Attx0sZB+0VIAnW/U7pxjsl2qZQAtxGUALUPsDppdiiUvoW3qI8FExxwLac5y8QuEwC4NdaaTfNBa6/GW0WeS/IXl17vJXnLXSUkAT7yjumP/9hlsrn3o7M34S4EJYDB1aXXZ5Ocq+BSD5ayWmS8gujaBP+/uL7LxAodAGodX+3mAe3VjHlua89R1OcvspwasGNzxH6SnmflHeemKiDAfQhKAJL8xaWvL2X362Tvt/HqyhcLKcH19WHasdV6w6qdF63aAaD0MVU/zYeq/dr5Offr4y8OCmvTTurYAX0/F399/MW+XxmwiedmL01gUmtosh6OLPz6+IsL7gjYHEEJQDOQmk5yvYJLPf/r4y/OFtJnU0lWWjbwvZQmMDFYBaCkcdRenz9yN4u/Pv5it8C2HaX8BT33IyQBHvQ52k0TmHQLf5Yuj98Xw18ff9HOEXgAghKAWwOoQZKzFVzqY6UMnFrcZ6v5cPvziyt+fQC09D3cSTLIZKzYXUvSKW33ZiW7nu9HSALs1DN1avzOmk77g5PlNLsNR2l2jqheANskKAEY+8tm0LSU8g+BW/7V8RenC+q3lZb32WKSYZKFXxncAtCOd28/+1te605mflXYjs2/bE+Z0V0dtybpGiMBu/gNYD00mR7/mcS55WqaagqjjMMRz0XYeYISgI8OlLqZ7EPCd8rcrwqp3/2XTf3Ztwq4lA8PgP/V8RdHfo0ATNj7dipNaa1+Ju8j0vlfFVJadEN7DyMkEZIA+/ldoDP+M51kPVDZ7d2Ti+O/jpLcSBOKLHkOwt4QlADUOTFdSzL9q0LKPv3lpa+PMlmrWrfrw9Jcv1KaC4D9fcd204Qjkzo2Kmqn7LjN+0kuVH7rCUmASX1Gd9IEKMmtMGWr1kOQJLnxK2eKwEQQlAB8bODzWhsPCX8Qi786/lK3kD6bTnK94A8F80kWfnX8JR8LANirsVAvzfkjk1zecrzw46WVgtq+HyHJWpLur46/5MMhALBnBCUAd56kllLO6X5O/ur4S8NC+mw+ydOF99elJMNfHX9pwa8UgF14l06nKa81CYezb8ZMSe/EcfuPUv5inXsRkgAA+0JQAnD3yepCkuMVTEY7JexUqGgn0Hq/jc8zeWnk1wrANt+fvTQByaMt+n/94q+Ov9QvqB86acqwCEmEJADAPhCUANzFYz+qZsJ66fpTL/UK6bPZJOcqu1XXzzMZXn/KhwUANv3O7KY5e6Qtu0c2Wk7Svf5UGSUpH/vRa1NpdpI8WvltefL6U2XsdAYA2kdQAnDviWstH94PXn+qjJ0Jj/3otZVMdj313bSa8Xkm158qp147ADv2jpxKE47MtvhduZYmJFkqqF+WIiQRkgAA+0pQAnD/yesoyYHCL3M1yXQJKzPHK2SvuXOznGQYoQmAscyPXuulCUhKKCl66vpTL80X1DfDJCcqv0WL6lMAoJ0EJQD3n8BOJ7lewaWev/7US7OF9FkN58tsxXpoMiylTAkAmxq/9Md/SikjWky50HEfzSd5uvJb9eL1p8o5awYAaC9BCcDmJrKDJGdruNQSSlmMz5f5nTv3ji6lOdNkQWgCUNx4Zb20Vj/llXIqZvfruK/6SS5UfssKSQCAiSEoAdj8hHYl5Z99sXz9qZemC+mvQeoIt7ZDaAJQxjuvn+ZQ9pJ3Uz5WyrkkyoQmSRavP/VS168XAJgUghIAk9rbFVEneryqdiXllBvZbZeSjOJME4A2jUv6aQKS0t91xZxhMS6JNqp8fLKcpGuRBgAwSQQlAFub3NZQS3otTWmLlQL6qx9lLR6Eg+ABJvO9tn7uSC/l73JdV8zOA4s4PhxjCEkAgIkjKAEwwb2Tkj5KLKW8Ou17aT00GZVS8gSgZe+xTppgZDb1hCPr1pJ0SvioPh5Djiofk6ylCUmMJwCAiSMoAdj6RLeX5K0KLnXm+lMvLRTQX92oA75TVtOcaTL0kQNgV99dnTThSD91f1g/eP2pl0aF9OlCyj5D5n6EJADARBOUADyAv6pjsruWpPN+Aas4/+pHrw2TnHDn7vj9sZBk4f0CAjWACXhXdSIc2Wju/adeGhTSt8YhycH3Cwm9AIAyCUoAHmzC20mylPJLcF18/6mX+vqLTbiUW8GJuuMAm38/CUc+bvn9p16aLqSP+3Fe2sn3n3pp6LYGACaZoATgwSe+s0nOVXCpRawA/KsfvTZIctaduyeWcys0UWID4KPvo06EI/eylmT6/adeWimgr2sp13ovQhIAoBUEJQDbmwCPkhwo/DJX03ywuNHyvppKs6vkEXfunt8/ozTBychuE6DS8cJ0mnCkF+HI/cyUUNJx3Oej1L2btYidyQBAHQQlANuaBH9tOsn1Ci517v2nvjgooL+s7Nx/lzIOTt5/6osrmgMoeIzQza1wREi/Oefff+qLswX0/VSSlVQfknyx75YGANpCUAKw/cnwIHWUdHrs/ae+uFRAf41S/i6gtljNeKdJktH7T33RbhOgze+XqSTd3ApHnIu1NcvvP/XF6ULug1Hq3jlURF8CAHX5E00AsD3vP/XFwXinQukT4vk0H4DabjZ17AJqg0eSPD3+k7/60dcW82GJri862wSYeH/1o6910oQi3STHtcgDW0tzZksJhqk8JClkvAgAVMaOEoAdMC6vca2CSz31/lNfnC+gv4ZJTrhzJ9paPrrbZEWTABP0zl8PR5w3sjNOvv/UF4fGF0W8uzt2iAIAbSQoAdi5yfF8xivjC58AT7f9o7Xa4a20nHFoEmW6gL19Z3Ryq6RW17tjxxVxlsVf/ehr/SQXKu7HtSRdO0IBgLYSlADs3AS5lo/vl95/6ou9AvprkDrOlinVcm6V6RppDmCH3xHd2DWyF1bTLMC4UcD9cq3yvnxMSAIAtJmgBGAH/X+Xv9pL8lYFlzrzy2NfWiigv1bSnJNB+y1mvNvkl8e+NNIcwBbfB9NpQpFunDWylx775bEvLRVw74xS906jk7889qWh2xkAaDNBCcDOT5gXUv5HlrUknV8e+9KNlvdVN1aAlkpwAtzr+d/JrWCkG6H5fjj1y2Nfmm/5fTSVZKny+0dIAgAUQVACsPOT5s540lz6ysLzvzz2pdkC+muU5IA7t3gfBidJltoe8gFbftZP5aPnjAhG9telXx77Uq+Ae2qUukuzXfzlsS/13c4AQAkEJQC7M3meTXKugks92PbV+uNg63fu2upsPBx+6ZfHvrSiSaCo93AnycZyWs4ZmRyrSaYL2JU6THKi4n4UkgAARRGUAOzeBHqU8ncqLP/y2JemC+ir+SRPu2urtppxaJKmXJcDaaFdz/FOlNJqixIWWQySnK24D5eTdO3OBABKIigB2L1J9HSS6xVc6twvj31p0PK+mkqykroPYuXj1st1rYcnPgjBZL1ju+M/0xGMGDPs3b3XT3Kh4j4UkgAARRKUAOzuZHqQOlYcfrLtpYt8+GATVjMOTdKU6xppEtiT5/P6+SLr4Yhzpdpp8ZfHvtRt+b1YyyKYu1lLE5LYdQkAFGcig5K/vvzq1HgilPFfpzb82xv/vY1Wxn/u9s9WfnHszIouB/bhmbaS8le6Lv7i2JluAX21FHXs2ZrlNOHJUpKlXxw7M9IksO1ncXc83l8PRuwWab+1JJ1fHDtzo8X3ZWf8rH+44j7s/uLYGSEJAFCkfQ1KxoPNjZOgqezNB6rF8V9HG/56w6AP2KVnXTfJtQou9eQvjp0Z6isQnsAWnrvTG+YD07FbpFQzvzh2ZqHF9+nUeM74qD4EACjTngYl44lQd8OfSVyNs5xmF8rGDxwrbhVgm8+/Gg4Lb/1q0XFfLSQ57q5lF8cXo/H4Qn13ansXdpN0IhSpzflfHDsza2zQaq1fDAMAcD+7HpSMw5F+kl7avW1+MbfCk5HwBNjis7CWw8Iv/eLYmV7L+6qT5HfuWvbA2oaxxVKaMqEjzUIh77z1BVKd8d8ra1in5V8cOzPd8vu5hsUu99L6oAsAYDN2JSgZT45m0wQkpdYUXv+4MUoTnIzcTsB9no29JG9VcKkH2/5M/OvLrw6SnHXXsk9W0wSro/FfBShM8vOymyYM6eTWgesPaxnG86XpNi8w++vLr/aTXKi4Dy/+4tiZvlsZAKjBjgYl41W4gyQnKm3P5YyDkzThiZIawO3PyRpKN6ym+TDS5gNbp9KE4Q4QZtJ+WyvZEKBECS/27rnYzUcDkY5nJPfR9nNJuqn73LLlNIe3e8cAAFXYkaBEQHLPweUoyYKVoMCG5+VSyl9tO/eLY2cGLe+rfupeRUq7LGZDeJLkhrEHD/Dcm04ylSYIWS+fZYcID6LVOxHGv4VRxfe+kAQAqM62gpLxitv5CEg261Ju7TZZ0hxQp7++/OpsknMVXOpjbX/W/fXlV0dx2DDtt5jkRsYBSm6dh7Kiaap8B3VzKwRZ/2sndoewc1r9kX08xx2l3nN11sb9Z74KAFTlgYOS8Ye+Qawwe1Cr4wH4QpTpgupU8gF+8RfHznRb3k/d1F12gzrGIyv5eJASO1Ja+cy6PQBJmt0hidCXvdH6j+yVL5IQkgAA1dpyUDKegC2YbO249d0mC1Z4QvnGJR2uV3Cpp35x7Mx8y/tqGDsnqdtymgDlwxAlt0KVGz6o7dmzqDv+2874T3IrBOnEjhC8973zt+/kL46dGbqNAYAabSko+VQzQVuIXSS7bXnczgs/9/EBivWpy68Okpwt/DLXkkz/vMUB8KcsEICt/N7Xxy037vL3SbL088p30n6qOa+qs+EfdTf8/fqOkPW/N+6mLS79/NiZXot/l/3UfTbZqZ+3fHELAMB2bDooMXDcN6sZl+f6+bEzC5oDyjH+AL+U8lcBt/rDyYb+6iSZTdKLlduwk9Z3rKy7PVhZt3Tbf+5j//5OBzB3CDRud7d/v3vbv55KvecdUM+cZbqtIeinlNq8+PNjZ/puYwCgZpsKSj51+dX5JE9rrn23lls7TYQmUICKJuYzJT23PnX51V6SfpLj7mIAyGNt3Qn/qaYc6ij17t4qYkELAMB23Tco+ZQ6rRM9qM2t4MRh8NBSlTxnW73S9B59N5UmMOnHanEA6tTakk3j9/io4nf4cpKuuSQAwH2Ckkrq55dCaAItNZ6kr6T8lYznf37szGzB/TidW6GJMwUAqMHiz4+d6bb43T1KvWeQrSXpmDsCADTuGpQ4k6TVhCbQvol6L8lbFVxqa0tzPEB/9qM0FwDlavWH9srLS6+l2Umy5DYGAGjcMSj5m8tfqb1Oa0k+DE3eO/ay0AQm2N9c/soo5a9qXH7v2MvTFfXpVJrD32ejNBcAZTn43rGXRy19P/dT96LAmfeOvezMSwCADT4WlIw/6ozig06JhCYw2ZP2TpKllB9Sz7137OVBpf3bH/95xB0PgHf5vryPp5Ncr7jvTr537OWhWxgA4KPuFJQM4lySGlxKMrSSCCZu8l7DM3gtyfR7x15eqbifnWcCQFu1dndoRYtS7ubie8de7ruFAQA+7iNByXjg+DvNUpW13NplIjSByZjEL6X8XX2L7x17uau3k7+5/JVemvJcvQhNAJj8uUMrFzuonJBL7x17uecWBgC4s9uDklHKr4/PvSc+wzQ7TRzsB/s3ka+lJIT62B/v+36awMQh8AB4d+/sO3ah4vfrcpKu8ssAAHf3YVDyN5e/0k1yTZMwtppbocmK5oA9n8zPJ3m68MtcS9Ixab9j/68fAi80AWASLCeZb+vZFpWXlzbeAgDYhI1ByTDJCU3CXSZGwzShiQE27M2EfipNDe3SD/0+/96xl2f1+H3vhV6S2dRbLgSAvVfEbvPxbs0LFfdhV7UAAID7e+jmzZv5m8tfnkryfzQHm3ApycJ7x14ZagrY7Yn9l3tJ3qrgUg++d+yVkR7f1D3RSROa9CM0AWD3xvvD94690vrymH9z+cvTac4lqfUMsJkS+hEAYC+sByWzSc5pDrZg/Z29jeMAACAASURBVBD4+feOvWKFEuzeBL+GetrL7x17ZVpvb/ne6ERoAsAOvYuTzKdZEFXEDvLxYsAadufezUmL2wAANm89KFmKjyw8uA3nmbyyojlgxyf5Kyl/JeTce8deGejxB75POhGaAGAMv/HdWPMc9+J7x17pu8UBADbvoU9fnlN2i520OJ5wLSw++YrzTGAHHPhxFbv+1pJMLz4pbN2B+8VB8ADczWqaXeHDxSfL3RV+4MdfHqbe8zcXF598petWBwDYmoc+fXmulhr47K21DZOwkeaAbU/4R0kOmNizxftGaALA+rh8YfHJ8s+rOPDjL/dT7+Hty0m6FqwBAGzdQ5++PDdIclZTsIs+3NZvtTg88KR/Osn1Ci51poaPOPt0D00l6eZWcPKwVgEoVlXhyIZ3XTfJtYr73O5cAIAH9NCnL8/VcFAwk0NpLnjwyf8g5Qfba0k6ng97cj/1cis4eUSLABTxDq0uHNnwXuukOby91oUAj5VcTg0AYLc99OnLc6OUX86FyZ3IKc0FW/sIsJLyP2qfX3zylVm9vaf31XRu7TRxGDxA+8bUCzXvyBzvmhxV/A47ufjkK0M/BwCAB/fQpy/P3YjyG+yv1STz4wneiuaAe34I6KaOkhIHhaj7do91cmuniR2nAJNHOPLxd9cw9R7ePrf45CsDdwEAwPY89OnLczc1AxPk0njSN9QUUPXHgNXFJ1/p6O2JuN/Wd5p0o0QXwH4Rjtz9PTVIvWduXlx88pW+uwAAYPse6l4eCEqY1MngMMnw2pNn1dqFDQ7+eG4qyUrK3w04d+3JswM9PlH33nSawKQfJboAdttqxqVqjYfv+l7qJXmr0stfTtK99uRZ57oBAOwAQQltmQQMx5NEEwGo68PAJ689eXZFj0/kPTiVWztNelHGE2Anx70j4ch930PTac4lqfH9s5akY24EALBzBCW0zcUkC9eePKvkAD4Q/HhulORA4Ze5eO3Js1293Yr7cf1A+G4F9yXATrqUZufIyOKATb9zaj68fS3NThJBGgDADhKU0FbrpQjmTSip+CNBJ8lSyl9JefLak2eHerxV9+ZUbu006cbZJgC3j2NHsfhnO++ZUeoN5WfcNwAAO++h7uVBzYNMyrCYpkTBgu3n1Obgj+cGKf8AU+Ul2n+fdnIrNOlGmS6gzvHq+q4ROwG2906ZT/J0pZd/6tqTZ+fdBQAAO09QQknWcuvAy5HmoBYHfzy3lPJLT1y89uTZvt4u5p5Vpgso3Ye7RtKEI8L+nXl/9JNcqPTyjYUAAHbRQ93Lg0HKX41MnZPTYZrQZEVzULKDP57rJrlWw6UKQYu+h9eDk0e1CNBSl9KEI3aN7M67oubD25evPXl22l0AALB7HupePttL8pamoGAbSnMNrOajSAd/PKihDMXytScHPhKUfy+vn2+y/kdwAkzseykfBiMDZ0bs/rthKXWeebWaZNo8BgBgdz3UvXx2Ksn/0RRUYENprsFIc1CSij4gzF17cjDQ49Xd290IToD9t15OaxQLcPb6XTBKnaUa15J0rz05sEMJAGCXPXTz5s0c/PGghvr2cPtEd5gmNFnRHJTg4I8HNewQXEuzqtLvtt77fD04mY4zToDdHy+OcmvXiHfP/jz3az68fcZuJQCAvfHQzZs38z9/PJhNck5zUKnlJPNJFn5mZSAt9z9/PFhIcrzwy1z82ZODrt5mw33fza0dJ9Ops349sH0fCUZ+JhiZhOd7P/Ue3n7qZ08O5t0FAAB7Yz0oUX4LGpeSDH9m5RYt9T9/POikKcFV+ofiGb9T7vE7WN9tsv7XR7QKcAeCkcl/lo9SZ/h98WdPDvruAgCAvfPQzZs31weiwyQnNAkk2XCeyc+cZ0LLVLJLcC1Jxy4wNvmbUK4LSDYcvp5kSTAy8c/tWg9vX/7Zk4NpdwEAwN76MCj5X82KneuaBD5mNePQ5KcOUqQl/lcdZ0+d/+mTg1m9zQP+RjbuOpmOs9qgNGtpPrSPkox+auFL257Ro9QZaq8mmf6phSAAAHvuw6Ck8gEpbGXyMp9k4adWITLBKgq/D/r4xQ79ZqZya8fJeniiZBe0x3JuBSNLFre0+nlc6+Hta0m67l0AgP1xe1DSSfI7zQKbnpAPIzRhQlXyoWH5p8pTsHu/IeEJTKbVfDQUGWmSYp67/dR7ePvJnz45GLoLAAD2x0eCkvHgtNYVPLAdQhMmzv+qp7733E+fHAz0OHv4u9oYnnSibBfspvVQZGMwoixRmc/Xmg9vN5YBANhnHwtKHn+76oPzYCd8GJpcPSo0YX89/vagl+Stwi9zLcm03xv7/Fvr5lZwMh2lTOFBx1Ar2RCKXD0qFKnkGVrzHPTi1aODvrsAAGB/fSwo2TDZv6Z5YEcm/AtpQhP1htkXj789WEhyvPDLvHT16KCnt5mw314nt0p22X0Ct6wftL7+Z+XqUeWzKn9ejlJnwLycpCsQBADYf3cMSsaD1UGSs5oIdsxqmtBkdPXoYEFzsFfGqzRXUn4pixm/LVrym9y480SAQukWx++glTS7RFbsAOS2Z2LNh7fbEQsAMCHuGpSMB62jKB0BuzUxWkjzwWDBKjJ22+NvD2aTnCv8MlfTfHDwe6Ktv9ONAUpn/Mc4jLYQiPAgz71+6j28/TE7zgEAJsf9ghLnlcDeUKKLXVdJ+H3+6tHBrN6msN/u+gHyndwKUqYiRGF/xis3Mg5Cxn+cI8KDPttqPrz95NWjg6G7AABgctwzKDGAhX2xNv7NrZfpWtEk7ITx8/x6BZdqhSY1/a5vD1E2/rHQhQexmCYMWdrwV7tD2I1n1yh1lh20qAMAYALdNyhpBrJnu3G4O+yX1fFEcpRkdPXo3Iom4UE9/vbZQco/f2r56tG5ab0NyeNvn13ffdK57c9UnItSq8XxX0cb/3r16NxI07CHz6aFJMdr/P1dPTrXdQcAAEyeTQUl48FsP/XWj4VJIjjhgT3+9tlaSiqeunp0bl6Pw6aeCevB4u2hSqK8V9vGB+tjgtH4ryvjPzeuHp2z045Jee4MUv6ijTtZTtK9enROqToAgAm06aBkPKjtR1gCk2a9VNdSmuBkpEm4z7O8m/J3Ca4l6fgYATv23NgYqHRyK0hZD1fW/7lyXztrY/ixsuHv18ti2QlC254lvSRvVTpe7wosAQAm15aCkvHgth9hCUy65TQfUZaSLPmIwh2e5TWUvLh09ehcT2/DvjxjNgYryUcDlTv965JLgS3e9q9Xcivw+Ni/9s6m4OdCZzw2rfHsy5mrR+cW3AUAAJNry0FJkhwSluyG9Q/bvUonD+y+1WwIT5LcuOJjTLUONR8xVyp43hx0n0Orn1W3Byob3R7G7IV7PU9WriiHCfcad4xS59lIp64oBwoAMPEeKCgZD3b7EZbstOU0Qcn0+K9CE/bCelmP9TIeo/E/X7qibFFR7vDBsZ/kRAX397R7GQD2dQwyrGDMcScXrxyd67sDAAAm3wMHJeMBbz/Ckp22lmT2ytG54biN1wMToQn7ZTnjOuj56Era0W3/ueKClfusZN6M7gP8d7b6f3Pas+G+5q4cnRtoBgDYl/HUbJJzlY6huxZrAAC0w7aCkmbg+0o/wpLdcClJ/8rRL9/Y0NZCE0qzuM3/ficODmZzPnnl6JdXNAMA7J1Db78yneR6hZe+lmTa2AMAoD22HZSMB8C9JMP4eL/TVtOEJaO7tLnQBGBzFq8c/XJXMwDA3jj09iu1nId2J49dOfrlJXcBAEB77EhQMh4IT6cpxeOj/c47f+Xol2fvMQFZD0yOayqAuzp55eiXh5oBAHbfobdfWUqdh7cbbwAAtNCOBSXjwfB0koUohbMbltPsLlm6R/uvhyb9JAc0GcBHrCXpbCxpCADsvENvvzKf5OkKL/3ilaNf7rsDAADaZ0eDkvGgeCrNzpJHNe+OW0syuHL0y/Ob6IdOboUm+gKgcdcdegDAjswH+6nzDMvlK0e/PO0OAABopx0PSsaD46k0O0vsatgdHzvo/T79MZ0mMOnFbh+Ag3c6+wkA2PY8sNZyzHatAgC03K4EJeuOvv3yMMkJzbxrg/He20e/MtpinzgEHqjd8ttHv2LFJwDs7Nyv5soCj7199CsObwcAaLFP7Ob/+NtHv9JPMqeZd8XDSa4dffvl+S32ycK4XzpJTqbZnQJQk0ePvv2y8lsAsLOGqfTwdiEJAED77eqOknVH3365nzrr1O6V5ST9Bx2gH3375U6cZwLUZS3J9NtHv7KiKQBg2/O92STnKrz0828f/YrFFwAABdiToGQ8eK61Xu1eWUsyePvoV+Z3oJ/64z/6CijZpbePfqWnGQBgW/OHbpJrFV764ttHv9J1BwAAlGHPgpLxIHo69W7J3iuX0uwuubED/bW+y+S4ZgUKdXCrZz0BAB/OF6aSrKS+BVaraXamOrwdAKAQexqUbBhMjyIs2U1racKShR3ss36U5gLK40MHADz4PGGpwvnBWpKuc0kAAMqy50HJeEA9lWQ+yQldsKvOpynHdWMH+05pLqA0c28f/cpAMwDAluYF80mervDST7599CtDdwAAQFn2JShZd+wn1Q6u99Jykv7lIzu/4unYT5TmAorxyctHHOwOAJucB/STXKjw0s9fPuLwdgCAEu1rUFL5IHuvnbp8ZHsHvd+jDztJeklmkzyiqYEWWrx8xIGsALCJsf90mlLKte0uN1YAACjYvgcl48F2L80h70o57fLgPknv8pHdq8U/njjNpglO9CfQJjOXj+zM2U4AUKJjP6n2vMnVJNO7OY8CAGB/TURQ0gy6z9S6MmmvrSXpXz7y6sIu9+dUmrCkn+SAZgda8nzsXD7yqo8gAHDnMf5C6iu7u5ake/nIqw5vBwAo2MQEJeOBd60rlPbD+SSDvfggeOwnZzq5dQC80lzARD8bLx95Ve1xAPj4mH42ybkKL/3k5SOvDt0BAABlm6igZDwAn0pThssB4btvfND73q2OOvaTM700O01OaH5gQj1m1SgAfGQMP53keoWXbgEFAEAlJi4o2TAYH8bH9L0yd/nIq4M97t/10lyzsYMImCyLl4+82tUMAPDhuH0l9ZVIXr585NVpdwAAQB0mNigZD8pr3d69HxbT7C5Z2Yd+ns6t0lzOqAEmwanLR16d1wwA1O7YT86MUt+Zg84tAwCozEQHJeOBeT/JBV21ZxOCXT/o/T79vX4AvNJrwH4/D30gAaBqx35yZpDkbIWXrgwnAEBlJj4oGQ/Qu0kWYrfBXrmYZHY/PxCOt/j3x3+U5gL25Vl4+cirfc0AQI3GC5jeqvDSHd4OAFChVgQlSdJryjONIizZK6tJegsTsJKqpzQXsH8OLhx5daQZAKhJ7ydnOkmWKhx7X1ywSAIAoEqtCUrGA/bpJMPYYbCX5hb2+KD3+9wDSnMBe2l5wUGuAFSm95MzSxXOubzzAQAq1qqgZDxon0qzs0RYsoeThjS7S1Ym7D7oJZl1LwC77NSCg90BqETvJ2eGSU5UdtlrSaYnab4DAMDeal1QMh68C0v2Z/IwuzCB9XrHpQFm0wQnj+gqYBeef50FB7sDULjeT870k1yo8NKV2gQAqFwrg5INA/lh6lvttN8uJelP6gfD3k/OdNOU5urFeSbADj77Fo682tMMAJSq4jMh7RwFAKDdQcl4QD+MsGSvraYJS0YTfm84zwTYSVabAlCkinfsWwgBAECS5BNtv4CFI6/2k1zUlXvqkSTXej85M5jwe2NhPPH5v5KcTLMbBuBBDTUBAIWaT4WHt6dZVAUAAO3fUbLuMz85M5vknC7dnwnGm0deXWrJfTI1nhD144wbYOvm3jzy6kAzAFCKz9R5Lslakm5b5jAAAOy+YoKSigf5kzLRGLzZstq+n2kOgV8vzyU0ATb7vJt+88irK5oCgALmT9NJrld46TNvHnl1wR0AAMC6ooKS8WC/H2HJfrmUZnfJjRbeN50ITYBNPuveVM8cgPbPm6aSLKUpq1uT828eeXXWHQAAwEbFBSXNoP9L/TR1dh/WxXtuLUnvzSNfHbX4/ulEaALc28E2P+cA4DM/+dJCkuOVXfbim0e+2tX7AADcrsigZDzwn04yirBkv5xPMnjzyFdvtPw+6qQJTboVTiSBu1t988hXO5oBgJaOcWs833E1yXTb5ycAAOyOYoOS8QRAWLK/xge9f3WpkPtpKk1osh6cuK+gbnNvHvnqQDMA0MI5Uo3nkjxWyrwEAICdV3RQsmEiMIqP2vvp1JtHvjpf4L21MTR5RDdDdcYHu391RVMA0JLxa63nkpx888hXh+4AAADupvigZDwhEJbsv8U0Z5fcKPge68a5JlCbS28e+aqD3QFoy5i1xnNJLr555Kt9vQ8AwL1UEZSMJwXCkv23lqYU10Lh99p6ia5u7DaBGjjYHYA2jFFrPJdkOUnXuSQAANxPNUHJeHIwlSYsseJ/f11MMlvLhGXDbpNuHAgPJXKwOwBtGI/Wdi6JEpkAAGxaVUFJkvzvd74oLJkMq0l6Pzz8teoOVPzf73yxm1vByQG3AhRh7oeHvzbQDABM6PynxnNJZn54+GsL7gAAADajuqBkw2RhFGHJJKj+46LgBIqwlmT6h4e/tqIpAJiwsWaN55JYwAAAwJZUGZSMJwzCksmxmKTvA+OH9+bGUl3TccYJtMWlHx7+moPdAZikcWWN55Is/vDw17p6HwCArag2KBlPHIQlk2MtyewPD39tqCk+dp920gQm6wHKdJKHtQxMpIM/PPy1kWYAYALGkLWeS9L54eGvObwdAIAtqTooGU8ghCWT5VKa3SUmN/e+bzv5aHjSiZ0nMAlWf3j4ax3NAMAEzHFqPJfksRrPQAQAYPuqD0o2TCRGEZZMitU0YclIU2z5Pl4PTzob/t7uE9hbp354+GvzmgGAfRwX1nguifcvAAAPTFAy9rfvvCQsmTxzPzj82kAz7Mj93U2yHqR0NvyxC4WdtLiJ/8zK+D4s+Vm7lqTzg8Ov2RkHwH6M+2o8l+TiDw6/1tf7AAA8KEHJRycVwpLJs5yk/4PDr9lCv3v3fSdNaLIepCRNOa+M/5nfw/7/BrbywX20yf/cjTQlOTZjaSc/+o/vud8V3m8+2ACwH+O66fFYoKYdxctJuhYoAACwHYKSj08uhCWTZy3J4AeHX7OVfv9/H907/OPuJv/rG4OYvTKasP/NJZP4D++lQZKzhV/mwR8cfm2ktwEwj9nVeULXoioAALZLUGKS0SaX0uwu8aEZynjOln7I7PIPDr82rbcB2KN36zDJicou++QPDr821PsAAGzXJzTBx40/xHfTbONmchxPsvK377zU0xRQxHN2tvDLfPRv33mpr7cB2G3j901tIclFIQkAADvFjpJ7TzjsLJlc59OU47K7BNr9nB0lOVDwJTrYHYDdfpd20uzSrOpcErs2AQDYSXaU3IOdJRPt6SSj8YGVQHv104QJpXo4yUA3A7CLFlJXSLKWxA5zAAB2lKDkPoQlE+3RJNfHh0ID7XzGriSZL/wynx6v9gWAHfW377w0n/p2v/fH4wcAANgxSm9tfhKiDNdkWzRpglY/Y1dS9sHuiz84/FpXTwOwg+/ObpJrlV32+R8cfm1W7wMAsNPsKNkkO0sm3oEkSw56h9bql/6M8nwCYKeMF3EtVHbZi0ISAAB2ix0lW/TZd160s2TyXUrS/9fDX3d4MrTr+bqQ5HjBl7j6r4e/3tHTAOzAO3OUZqFQLdaSdIzvAQDYLXaUbNF4cN6NnSWT7HiSpc++82JXU0CrzKbsg90f+ew7Lw50MwDb8dl3XpxNXSFJkvSEJAAA7CZByQMQlrTCI0mu+SgJrXq2rqT8g91nxzsTAWDLPvvOi9NJzlV22XP/evjrI70PAMBuUnprexMVZbjaYTlNKa4lTQGteLaupOyD3S/+6+Gv9/U0AA8w91gq/B15u8V/Pfz1rt4HAGC32VGyDXaWtMajSUbjMgXA5OsXfn0nxiuCAWAr5lNXSLKWpKfbAQDYC4KSbRKWtMbDSc599p0XF5S9gYl/ro6SXCr8Muf1NACb9dl3XuwlOVHZZXedSwIAwF4RlOwAYUmrHE+yMp5sApOr9IPdD3gOAbAZn33nxU6SYWWXfUrZXAAA9pKgZIcIS1rl4SRvffadF+ftLoGJfaaupPxdF3aVALAZw/H4tRaX/vXw170jAQDYU4KSHbQhLFnTGq3wdJqzS5wVAJP5TB0kWS34Eh/57DsvDvQ0AHczfk8cqOiSV1P+WWUAAEwgQckOE5a0zqNJrvtYCROrX/j1zdrZBsCdjBfznK3ssnvOJQEAYD88dPPmTa2wCz7XTGxGqWubfNstJul/vyn5A0zO83QhzflCpbr4/cNf7+tpADa8+6bGc4lHK7rsU99XcgsAgH1iR8ku+X5z+GA3dpa0yYEkS59zwDJMmtIPdj/xueagXgBYN0hdIcklIQkAAPtJULKLhCWt9HCStz73zosLn1MOByblWbqS8g8+H+ppAJLkc++82E1zll4tnEsCAMC+U3prTyY7p5XhavGk7fuHXx9pCpiIZ+lKkkcKvsSDnjcA1b/rppKsVDZveOz7h19f0vsAAOwnO0r2wHjgr5xT+zyS5Nrn3jmtDABMhn7h1+dZA8AwdYUkc0ISAAAmgR0le+hz75zuJ7mgJVppOc3uEhM52N/n6CjNeUKlOvn9w68P9TSAuUIFFr9/+PWungcAYBIISkyA2Ly1NAdrCktg/3QKf4auJpn+/uHXb+hqgKrmCJ3xGLOW3SRrSTredwAATIo/0QR76/uHXx9+/srpRFjSRg8nOacZgF30SJLZNKEsAJX4xEPVldzqfe+QkAQAgAkak2uCvfe9Q68Pk5zUEgDcweznr5ye0gwAdfj8ldOzKbus5O3mvnfo9ZGeBwBgkghK9sk4LDmvJQC4zcNxsDtAFT5/5fR06tqxvPi9Q68P9DwAAJNGULKPvnfo9dkkF7UEALc58fkrpzuaAaB4w4qudS1JX5cDADCJBCX77HuHXu9HWALAx9lVAlCwz185PUjyaEWX3P/eoddX9DwAAJPooZs3b2qFyZgoDZOc0BIAbHBQHXeAIsf+00muV3TJ58e76QEAYCL9iSaYDN879Hr/81demE5dq8oAuLdBkq5mACjNzWFFF7v8vUPfEJIAADDRlN6aLN0ky5oBgLEDn7/yQl8zAJTj81deGKSexVHOJQEAoBUEJRPke4e+cSPCEgA+aqAJAMow3kF+tqJLnv3eoW8s6XkAACadoGTCbAhLVrUGAEke+fyVF5QsASjDsKJrvfi9Q98Y6nIAANrAYe4T6kSz2myU5GGtAVC9tSSdi02YDkA7x/eD1LObZDXJtPcWAABtYUfJhLrYbFHvpvk4BkDdHk5iVwlAS52or+RWT0gCAECbCEommLAEgA1mT1x5oaMZAFppWNG1zl10LgkAAC2j9FYLnLjyfD/JBS0BUL2LFw/9U18zALRqLD9IPbtJFi8e+qeuXgcAoG3sKGmBi4f+aZjkpJYAqN6JE1ee72gGgJY8tK88X1PJrbUkPb0OAEAbCUpaQlgCwNhQEwC0xnxF19q/eOifnEsCAEArKb3VMievPD9MckJLAFTt4IVD/zTSDAATPW6fTXKukss9f+HQP83qdQAA2sqOkpa50NSmv6glAKo20AQAk+tkUyaxlmf1svcSAABtJyhpoXFYcklLAFTrwMkrz/c1A8DEmk/ycCXX2r+g5BYAAC33J5qgrW72k4ySPKotAKo0iPNKACbOySvP9ZIcr+RyT1049M0lvQ4AQNs5o6Tdk7CpCEsAqn4VXDj0zaFmAJio8flK6thNsnjh0De7eh0AgBIovdViFw5980aSbpI1rQFQpfnxRzkAJsMgdYQka0n6uhsAgFIISlpOWAJQtYeTzGoGgP138spz3SRPV3K5/QuHvrmi1wEAKIWgpADjusDdCEsAajRrVwnARJiv5DovXTj0zQXdDQBASQQlhRiHJVYVA9Tn4TSlXgDYJyevPDebOs4NXI2SWwAAFMhh7uVN0vpJLmgJgOp8UhkUgH0Zf9d0gPvBC4e+OdLrAACU5k80QVkuHPrm8O/efW469dRHBqAxiFW+AHvuEw9lPnWEJOe/+4SQBACAMtlRUqi/e/e5YZITWgKgKo9994lvLmkGgD0bc3eTXKvgUpe/+8Q3p/U4AAClckZJob77xDf7SS5pCYCqzGsCAM/dXdDX1QAAlEzpraLd7CcZpY6DJQFIDvzdu892v/vEt0aaAmB3/d27z9ZygPvcd5/4lt2KAAAUzY6Sgn33iW/dSNJNsqw1AKox0AQAu+vv3n12qpLn7eJ3n/iW9woAAMUTlBRuHJb0k6xpDYAqHPi7d5/tawaAXTVI+Qe4r0XJLQAAKiEoqcB4q3w3whKAWgw0AcDu+Lt3n51O8nQN75LvPvGtFT0OAEANHrp586ZWqMTfNyuML2gJgCqc/M4T3xpqBoAdH1OPkhwo/DIXv/PEt7p6GwCAWthRUpHxB7OTWgKgCoO/b2roA7BD/v7dZ7spPyRRcgsAgOoISiozDksuagmA4j2SZFYzAOyoYQXXOPiOklsAAFRG6a1K/f27zw6TnNASAEVbS9L5zhPfuqEpALY9fu6n/DK2Sm4BAFAlO0oq9Z0nvtVPsqwlAIr2cOwqAdi2cSnD+cIvU8ktAACqJSipWzfCEoDSzf79u892NAPA9p6lacLnkim5BQBAtQQlFRuXYumnWT0GQJkeTjLQDAAPZrybpPTdeYvfeeJb83obAIBaCUoq950nvrWUZmeJsASgXCfsKgF4YKXvJlFyCwCA6glKWA9L1LAHKNtAEwBszThkPlv6+0HJLQAAaicoIUnynSe+NUxySksAFOvE37/77LRmANiSQeHXp+QWAAAk+RNNwLrvPPGt+X9495npJCe0BkCR5tOUCh/7AAAAIABJREFUWwTgPv7h3Wc6nyh7XKzkFgAAjNlRwkf8yxNv9JNc0hIARTrwD+8+09UMAJsyKPz65v/liTdWdDMAAAhKuLN+kmXNAFCkgSYAuLd/ePeZTsreTbL8L0+84X0AAABjghI+5l+eeONGmtIsa1oDoDh2lQDc36Dw6+vrYgAAuEVQwh0JSwCK5uBegLv4h3efmUrSK/gSz//LE28s6WkAALjloZs3b2oF7jVR7CV5S0twH5fiwytlGiQ5UOi1nfyXJ94Y6mKAj41/B0nOFnp5q0mmx4uiAACAMUEJ9/WFq8/0k1zQEtzHYpL+tx93KChFPf+mk1wv9PJWv/34Gx29DPCR5/5UkpUkDxd6iTPffvyNBT0NAAAfpfQW9/Xtx98YJrmoJbiPA0mWvnD1mZ6moKDn31LBz79HxkE4ALf0Um5IcklIAgAAdyYoYVO+/fgb/TQ7BuBeHk7y1heuPrMwXpEJJRi4NgDP/JZbSzKrewEA4M4EJWxFL8myZmATjqfZXdLVFLTduJzc+UIv75EvXH3GhzOAJONdsY8UennzyqMCAMDdOaOELU4gT3WSLKXckgTsvPNJBt9+/JxDQ2nzs6/kmvVrSTp+o4Bn/alRmlKipVn+9uPnpvUwAADcnR0lbMm3Hz+3kqSrJdiCp5OMvnD1lAk6bX723UgyX+jlPRzlWIDKjRcDHSj08jzjAQDgPgQlbNm3Hz+3lOSklmALHk1y/QtXTw00BS02n2b3RYlmx7tmAGpVaphw6duPnxvpXgAAuDdBCQ/k24+fGyaZ0xJs0dkvXD21NF61CW177t1IuYf82lUC1K5f4DU5wB0AADZJUMID+/bj5wZJLmoJtujRJEtfuHrKxJ02Pvfmk6wWenl2lQBV+sLVU72UeQbV/LhsLgAAcB+CErZrNsmyZmCLHk5y7gtXT418mKWFBgX/Lge6F6hQv8BrWh0vagIAADbhoZs3b2oFtuUfr85OJVlJmSvx2H1rSfr//Pj8gqagRc+9lSSPFHp5n/znx+dX9DJQ0Tj2/xR4aTPGVgAAsHl2lLBt//z4/I0k3ZR7yDG76+Ekb/3j1dmF8ccKaIN+wdc20L1ARXoFXtOikAQAALZGUMKO+OfH55fisEi253iSpX+8OtvVFLTgmTdKsljo5Z34x6uzHb0MVKLE8etAtwIAwNYIStgx//z4/DDJnJZgGx5Jcu0fr87O211CCwxcG0B7jccajxZ2WRfHYT4AAPD/s3dv23Gd173g//DoeyJPwNITsHRtkijwoIvuThPcvffO7hEnLMaHSJRogLasyIokFmVtxVbsJiDRsp04ZtGWh+OjQB9yoQNR2HJfC3gCAU8Q4AnQF6soihQPONRh1Vq/3xg1HDuJ7TXXAfNbc8357YFCCQP11hOLnSQ3RIIDmk/Su/DuQlMoKPHzrhddJQCTrIpjtzpOKwAA7J1CCcOwkGRdGDigI0k+uvDuggU/ZX/eVZV7D6i6qhVKbrz1xOKG0woAAHunUMLA2dw967Gx/SBdvvDuwpqv2ynp824t1e2iO6erC6i4VsWOp+OUAgDA/iiUMBRFsWSnlexsJzup2e9IsrOQ7KzW8NiHGdO1C+/OL7i7KJ+dToXvvUXnF6iiC+/Ot5KdQxV6XusmAQCAA1AoYWjeemJpLdUeS/MwiynGOdjcfnAOJbl64d353oV35230TpmedRupblfJTPEyEaByqvZs6zilAACwf1M7OzuiwFBdeHd+McXm3HWz/tYTS80L7843k3RT7LnBYGwnWRMGSmS6wvf46ltPLLWcYqBi+WkvyUxFDufGW08stZ1VAADYP4USRuKZd+eXk5yp4aEvXXtiaeGZogOik3oWjIDJN3vtiaWeMAAVyk2rtAh67FrR3QgAAOyT0VuMSjvFJud1M//Mu/Nz155Y2rr2xNJCktkkmy4HYMJ0hACoimeKbt+quKFIAgAAB6dQwkhce2JpK0WxZLuGh9+9vSDvf5HdTHLTVQFMkJln7FUCVEeVnmeLTicAABycQgkjc63Y3H2uhod+KEWxZLofh61rTyzNJTmbehaOgMnUEQKgIhoVOY71fn4NAAAckEIJI9XvqLhUw0M/knu++Lv2xNJyiu6SVVcGMAF0lQBVUZXRW7pJAABgQBRKGLlrTywtJrlRw0M/98y78+17YrFx7YmlVupZPAImT0cIgApoVOAYtpMsO5UAADAYCiWMy0Lqubn79fttINovHj1e05gAk0NXCVAFhytwDMv9PQABAIABmNrZ2REFxuLie1+dTrKRYg+POtlM0nzz9BtbD4jLYpJ5VwhQUqtvnn6jJQzAhOafjSQfV+BQzr55+g0dJQAAMCA6ShibfqGgVcNDP5yk+5C4LCSZTVFQASibmYvvfbUtDMCEalQkj1YkAQCAAVIoYdyLvLUk52t46GcuvvfVhYfEpZdio9GbrhKghDpCADA2q0IAAACDpVDC2L15+o1u6rm5+9WL7321+ZC4bL15+o25JGdTbNgJUBaHdZUAjE2jP8IWAAAYEIUSSuHN02+0U8+NzJcftdDtj1ZoxNeDQLl0hABgLB46xhUAANg7hRLKpJX6dU7saqHb7y5pJbkU3SVASZ5fukoAxubMxfe+2hUGAAAYDIUSSuPN029sZSet7CQ1+525+O6D9yu5J0aL/Rit1zBOfn5+5ft1/PUCJkq1nsHnLr6rWAIAAIOgUEKpvPlEbTd3v3rx3QfvV3JvjN584o1mkiuuGGDMDl98V1cJwBid8xwGAICDUyihdN58orabuy9ffHf3G3O++cQbnSSzSTZdNcAYdYQAYKyuK5YAAMDBKJRQSm8+UcvN3fe8MeebT7zRS9JMsuSqAcb17PKCDmDsFEsAAOAApnZ2dkSBUpp/76vTSTaSHKrZoV9aOv3G4j7iNZei0HLI1QOM2ObS6TcawgBMSI5Z5QXQ+aXTb3SdZQAA2BsdJZTW0uk3tpK0anjoV+ff291+JffEazlJI8lNVw8wYofn3/MlM0AJXJ9/76sdYQAAgL1RKKHUlk6/sZbkUg0PfbnfUbPXeG0tnX5jLsn5JNuuIGCEOkIATIjVih/f5fn3vtp1mgEAYPcUSii9YgzVzo1kJzX6HU52ugeIWTfZaSY7qzWLm5+f3xifW/PvXWz7qwWU385aDZ7J5+bfu9h1rgEAYHcUSpgUC6nf5u5n5t+7uLDf/+el029uLJ1+s5XkissHGJGOEAATYK0mx6lYAgAAu2QzdybG/HsXG/2Fbd02K3986fSbaweMXTPFRu9HXEnAkJ1fOv1mVxiAkueUH9fokFeTzC2dfnPL2QcAgPtTKGGiLLx3cS7JOzU77M0kzcUBLG4X3ru4mGTelQQM85m1ePrNhjAAJc8pN5IcrtEhrydpLSqWAADAfRm9xURZPP3mcuo3SupwksUBxW8hyWyK4gvAUJ5ZC/YqAcpvuWbHeyRJb6HopgEAAO6hUMLEWTz9ZifJzZod9rlBvXhcPP1mL0mzhjEERqcjBEDJdWt4zEeSrC0UI1kBAIBPUShhUrVTv66IxUEtbBdPv7m1ePrNuSRnk2y7nIAB01UClDupKvZ/q2OH7aEUnSUtVwEAANyhUMKkLm63ksylXi/5DyXpLrx3cXqAcVxO0kixySfAIHWEACh7SlnT4z6UZEVBGwAA7lAoYXJXtsWXgAs1O+wjGfDLx353SSvJpeguAQZHVwlQdt2a5z7XF9672HEZAACAQgkTbvH0m90kN2p22PML712cG0IsF1PsXbLuygIGpC0EQInzyK3Ub1P3e11eeO9i19UAAEDdTe3s7IgCE2/hvWfWUnRb1MV2kubi6WsbQ4pnJ8llVxYwALOLp6/1hAEoaQ7ZSPKxSGQ1ydzi6WtbQgEAQB3pKKEqarlfybD+zRdPX+skeTy6S4CD6wgBUFb9j06WRCIzSXr9whEAANSOQglVWuS267ag7Xd+DCuma0la8fIAOPizqiUMQIl1Yp+2pOjOXlt475mmUAAAUDdGb1Epl+o5Mmr26pDH2lwqXnJ2kxx2lQH7sHr19LWWMAAlziEXklwViSRF0Wjh6ulrXaEAAKAuFEqo4kK3l2J8QF1sJmleHfJM6UvvPTOdolhyxlUG7MPQi7oAcsjBhuTq6WuLwgAAQB0YvUUV1W2/ksMZ4n4lt109fW3r6ulrc0nOxngKYO86QgCUXFuOc3f6d+m9Z7rCAABAHegooZL6o6JWanbY50c1IqHfXbIcX10Ce6OrBCh7DtlOcl0k7rKaZG7Y3csAADBOCiVUeKH7dN1mTW8naV49/f2NEce4k+SQKw7YhdWrp7/fEgag5DlkN8k5kbjLepL21dPfXxMKAACqyOgtKuvq6e8vJrlZo0M+lKLLY9Qxbqb40hDgUWYuvfd0SxiAkueQ7RSFAe44kqTnGQ4AQFUplFB17RSbnddmEXvpvac7o/wPvHr6+xv9L8SvuNyAXT6XAcquVbMccjcOJVm59N7TnuMAAFSO0VtU3tfff7qZ5KOaHfbs9059vzemWHdTfHUI8CCPfe/U6MYEAhwgr+nFiNH7ufG9U99vCwMAAFWhUEJdFrp1269kM0nze6e+vzWmeC8mmXflAQ/gBRswKTlkK8mKSNzXapK5ceWbAAAwSEZvUQvfO1W7/UoOp+jsGFe8F5LMxsgK4P7Off39pxvCAExADtlLcl4k7msmSa/feQMAABNNoYQa2WknO5vJTmryO/P19y+0x/tiYaeZ7CzVKOZ+fn67/3X8XQImwfdOfb+b7Jz33L7v70iy0/v6+xfmXCkAAEwyo7eola+/f6Fu+5VsJ2l+79RbG2OO+1yKDhczvoFPe2zczyeAPeQzRos+3KXvnXprURgAAJhEOkqole+demstyaUaHfKhJMsliPtykkbqNf4MeLQFIQAmKI9cSHJDJB7o6tffv9AVBgAAJpGOEmrp6+9fWE5ypkaHfOV7p97qlCT27SSL0V0CFF1vje+destGwMAk5ZHdJOdE4oHWk7Q82wEAmCQKJdR1gTudZC3Fpud18Xi/o6YM8W+kGMU142ocivUkXk5UT6Oiz6zSFHIB9pDLdKNY8jDbKYola0IBAMAkUCihzgvcuu1Xspliv5KtEp2DhSSd6C4ZtO0k7f7IM6rzzGok+bii16uuEmASn8vdKJY8yvnvnXqrKwwAAJSdPUqorRruV3I4RVGiTOdgMUkrRQcEg3MoyTtff//CYr97imo8szZSzdn4h2KvEmAyn8vt2LPkUa5//f0LNngHAKD0dJRQe8/Wb7+Ss98tYafBs+9f6CS57IocuM0k7e+eeqsnFJV4XjVSza6Sze+eeqvhDAMT+mzuRmfJo6wmmfuu7kEAAEpKRwkk7RQvk+ui+2wJuwy+W+xR8Hh0lwza4SQrz75/YfFZ3SUT77vV7So5/Oz7F9rOMDChz+Z2dJY8ykyStWeL0bcAAFA6CiVY3BZfts3V6JAPpdhIvYznYi3FKK4lV+bAzad4QdESionXcVwApcth2lEseZTDSXoK4wAAlJHRW9D37PtPdVKv0U+XvnvqB4slPh+tFAWdw67OgbuRZOG7p35g/MXkPq+6qeaYl/PfPfWDrjMMeD5X3pXvnvpBRxgAACgLHSXQ11+srdbokDvPvv9Uo8Tno5ekGd0lw3Auycaz7z81JxSTe/9W9Lhs6g5Mej7ZTnJFJB7p8rPvP7X87PtPGQsKAEApKJTA3eaSbNfkWEs7guu27576wdZ3T/1gIcnZGp2XUZ7/d7ykmEzfPfWDjVRzxMuRfjcZwCQ/oztJzovEI51J0nv2/afsWwIAwNgplMDdC9utzyVzn+vfHDX4zTxXjBwr+3lZ/lzS+Fxys0bnZlS/M59LNp7TXTKJf8A7Fb0mO84uUIGcsvu55Lw845G/I59LevIQAADGzR4lcB/Pvf/UYorNr+vi8ddP/WBtQs7NXIpOmEOu1IG7maT9ur1LJulZ1U01Z+HPvl6M3wOY9Od0O8l1kdiVK6/btwQAgDHRUQL38Xox7mm9RofcnaBzs5ykkXrtJzMqZ6K7xL1bDm2nFqhITtlN8niMEN2Ny8+9/9Tyc0aCAgAwBjpK4AGeKzY6X0t9Ohcm7iu+595/aiHFmB7dJYOnu2Ry7oNekpkKHtpjrxd7sQBU4VndTNKTs+zKej8HWRMKAABGRUcJPEDxgm6nneykJr/Lz73/ZGvCztFistNMdlZrdJ5G9TuT7Gw89/6TuktKb6dT0Wuw49wCFcor15KdVrKzKcd45O9IstN77v0n264cAABGRUcJPMJz7z/ZTTX3ALifzSTN10/9cGsCz9NCkquu2KHod5f8UHdJea//XqrZVfIXrjugYs/r6RSdJUdEY1eWXj/1wwVhAABg2HSUwKMtpCgg1MHhFKOsJs7rp364mGIG+LpLduD6e5f4srPEOhU9Li/HgErpF39b8pVdm3/u/Sd7/QITAAAMjY4S2IXn3n+ymeSjGh3y7Ounftib4PPVSXLZlTsUqym6SzaEonTXfS/V6yrZTtLQVQJU9LndTX26lg9qM8nc66d+aN8SAACGQqEEdr+YrdNop4kdwfWp89VM0o3RFsOwnaTT7+KhPNf8XJJ3Knho518/9cOuMwxU9NndjWLJXvKPBX8TgD08YxtJGv1/Op2k+an/9Ub/lySZ5A8FARgMhRLYW6LVSzX3AbifSsyEfu79JxeTzLt6YWJtvn7qhw1hACqcX7aTXBeJXbvx+qkftoUB+NRztJGiCNJMMd6wkWKs9F5tJ1n79E8nG0B9KJTAHvzDB38/neKrk0M1OeSz3zn5o+UKnLdWiu6Sw65imEjnv3PyR11hACqcY7ajWLIX60la3zn5I6MZob7PzbkURZFWhjtFYDvJcpJekmXPHYDqUiiB/SVk79TkcLeTNKqQDPaLXJ3oLoFJtPqdkz9qCQNQ8RyzmeJF3CHR2HWeOvedkz/qCQXU6jm5kGRujM/Km0m6VfigEIC7KZTA/hK0Oo1zuvmdkz+aq9C5a0V3CUyiWS/DgBrkmM0UXy7LU3bv0ndO/si+aVDtZ2M7RYGkTPtPbidZTLKoywSgGhRKYH+J2nSKL/7qslH42Sp9MdM/f4uxeSpMkkoVbQHkmQN1I8mCl5VQuedhO8VUgDIXj2+P5vIMAphwCiWw/6StmeSjmhxuZUZw3XMO51J0lxhxAZPhse+c/NGGMAA1yDN91LF360na3zn5Ixsvw+Q/A9spf4HkfmtmHSYAE+xzQgD701+EXarJ4R5KUVCo2jlcTtJIMWcWKL+OEAA1yTO3vnPyR+0UnRLszpEkvf6HMMAE+ocP/r7xDx/8fS/J9UzeCMJDSS4nWfMcAphMOkrg4MlcL8lMTQ73bFU3rdNdAhOhkt1tAI/IUdopXhqye0vfOfmjBWGAiXrWdVIUGqriZoouN3krwIRQKIGDJ3TTSTZSjxfslX5J2T+X3SRnXNlQWle+c/JHHWEAapZv+qBj71aTzHlJCaV/vjVS7PFRxX2ZtlMUS5adaYDyM3oLDqi/+GrX5HArOYLr0+eyv1n0+X5SC5RPWwiAGuaby0laSTZFY9dmUozAaQoFlFO/CLyWahZJbq+f3/mHD/5+0dkGKD8dJTC4JK+b+my4ebbqX8X0v2zqpj5j1WCSnP/OyR91hQGoYb45naSX6r5U9HcD6vM8W0hytUaHrMsNoOQUSmBAnv/gK9MpvoY5XIPD3U7S+PbJf9mqwXldSLGBtFEXUB7r3z75L74QBuqccy6mPh/oDMqNJAt1yF9hAp5j3Zo+w9aTtDyHAMrJ6C0YkH6yM1eTw630CK57zutikmaKL4CAcjjy/AdfaQkDUNec89sn/6Wd5Ipo7Mm5JL3nP/iKQjuMUY2LJEnRDbjmOQRQTgolMNiF61qNFq1nnv/gK3M1Oa8b3z75L60kl2LvEiiLthAANc87Oyn2VWP3jqQolswJBYxezYsktx2Ooi1AKRm9BcNJAKu8Id2n1WYE16fObSP2LoGyeOzbJ/9lQxiAmuedzRT7lhgTujdL3z75LwvCACN7VnWjSPJpm0maxnABlIeOEhiOudSj8+BQihnZtXFPdwkwXm0hAOqu39HcTDH7nt2bf/6Dr/T6e74AQ6RIcl+3O0s8gwBKQqEEhrNg3UixAXgdnKvjXgH9vUsej5cSME6+BAa4k3u2ktwUjT2ZSbJhBA4Mz/MffKUdRZIHOZJkWRgAysHoLRhuUthLPUY01bpt+PkPvtJJctkVD2Nx/tsn/6UrDACf5CWLSeZFYs8u9T+EAQb3PGolWRGJRzIKEKAEFEpgiF744MvTSTZSj5nRS6+d/NeFGp/rZoq9S4648mGk1l87+a++BAa4Oy9pJ7kuEnt2M0n7tZP/as8AsBYetbOvnfxX3SUAY2T0FgxRf5HVrsnhzr/wwZdbNT7Xa/2XtVdc+TBSR+r87AF4QF7STTEidFs09uRMkl7/AxjgYJajSLIX3Rc++HJDGADGR6EEhr9QXU595kV3+18O1fl8d2LvEhi1thAAfCYnscn7/hxJUSzxtwX26YUPvryQeoygHqRDKSYUADAmCiUwGu0U+3hU3eHYXFl3CYzeOV/gAdw3J9lIscn7DdHYk0NJrr/wwZe7QgF708/JOiKxLzOKtADjo1ACo1mk1mkE12XjCj45753oLoFRsagEeEAe+trJf23HBxz7ce6FD768phgPe7IYI7cOFL+6T2kAGBeFEhjdIrWXZKkmh9t1xj8577pLYDQWhADgoTlJJ8n52Ldkr44kWXvhgy/PCQU8XH/fuDMicSCH5LUA46FQAqPVST1GcB154YMvd5zuO3SXwPAXlUYVADwyH+mmGMW1KRp7+xuT5B35LexqvcvBXdbJBjB6Uzs7O6IAI/TCB19qJVmpyeE+9trJH28465+5BjpJLosEDNzqayd/3BIGgEfmItNJeim6Jdjj35okc6+d/PGWUEBt17mjcOO1kz9uCwPA6OgogRF77eSPezGCq+7XQCe6S2AYZl744EsNYQB4ZC6y9drJHzdjk/d9/a1JstF/KQzc0RGCgTonrwUYLYUSGM/idCH1eEk+88IHXzJf9f7XwFr/BYW9S8AiHWBc+Ug7xb4l7M2hJCvyXCj0C4czIjFwnjEAI2T0FozJP976UjPJRzU41O0kjf95wniCR1wL3Rh/AZ45AOPLRXopCgDszc0kbX93qPkzpJvknEjIawEmmY4SGJP/eeLHa6lHN8GhGMH1yGvhf57QXQIDfObMCQPAnvPSZowF3Y8zSdb6xSaonX+89aXpKJLIawEqQKEExrso7dRkQXrmH299SYK3u+vB3iVwcMYUAOw9D9lI0op9S/bjcJKP/vHWl9pCQQ257sUXoBKM3oIxq9EIrs0kTW3Du74uOkkuiwTs2+P9L6QB2HsespDkqkjsy40kC3JeavS8WIsRwsP2WL+YDcAQ6SiBMavRCK7DscnyXq6LTnSXwEHoKgHYfx6ymGQ2xXx89uZckp5RXNTBP976UiOKJKNgOgPACCiUQDkWo53U44X4/D/e+lLLGd/1dWHvEjjAgrI/MxuA/eUhvdi3ZL+OpCiWtIWCirO2E2eAylAogZKYyk57KjupwW/R2d7zi4rOVHYen8rOek2uET+/QfwOTWXH13cAB8tBNqay05rKzg1/V/b1d+j6i7e+2HUlUeE17Jx7fSS/M642gBH8XbNHCZTHi7e+2Ek99qW48uqJf+s44/u+RhaSHBINeKTVV0/8W0sYAAaSg9i3ZP/Wk8y9euLfNoSCij0XtqxLRmb21RP/1hMGgOHRUQIl0i8e1GG8wcKLt77YcMb3fY00k6yKBjzSjGcNwMByEPuW7N+RJGsv3vqiTkcqo59jKZKMjn2PAIZMoQTKp12DYzyUpOtU78+rJ/5to/+V/KV4WQGPYlN3gMHlIL3Yt+Qg+e87L976ojG0VIUX96PVEgKA4VIogfItQNdSj827Z3xVd+BrZTG6S+BR2kIAMND8YyPFC7sborEv8y/e+uKajkcqQKFktDwzAIZMoQTKuQDtpB5f6nVfvPXFaWf8QNeK7hJ4uEOKsgADzz+2Xj3xb+1+/sHeGcVFFbSEYOTPDQCGSKEEyqtdg2M8lKTjVB/cp7pLbooG1PJ5CjCu/MO+JfvPg9958dYX5cLAruhEAxiuqZ2dHVGA0iZCf9dJcrkGhzr76omf9JzxgV03cyn2gLG5ItzxF6+e+MmWMAAMJfdoJFmOL573azXJnL9TTNh972WSdTNApegogRJ79cRPOqnHCC6bWg72ullOMcNWdwnc0RYCgKHlHhuxb8lBzCTZePHW37WEAgBgPBRKoPzaNTjGI/3uGQbk1RM/2Xr1xE/mkpxNsikioFACMILco53kvGjsy6EkK3Ji4CFaQgAwPEZvwQR4+dbfLSaZr/hhbidpvlJ8kchgr5/pFHvBzIsGNfeYZwzASHKPZpJejAHdr9Ukc68YxUW57/GPRGLkrrxSTJ0AYAh0lMBk6KT6XQGHYgTXULxy4idbr5z4yUKKzVZ1l1BnC0IAMJLcYy3FGNB10diXmSQbLxvFRXlNCwEAVaNQApOx2NxKPcbGnHm52Iic4VxHvSTNJFdEg5ryfAEYYf76yomfNJMsica+HEqy8rJRXAAAI6FQApOz2OzVZKG52B8VxXCuo61+u/bj8ZUn9XO4PyoCgNHlHgsp9i3ZFo19ufzyrb/ryY8BAIbrfxMCmCQ7nRRfRB+u8EEeTjEep+N8D09/JEbz5VvnO/14myFeDjeSbJTsv1MjybkKxbgdI7gARp13dF++dX4tyXLF89hh6Y/iOj/3yonrPeGgBOtS++cAUDk2c4cJ8/Kt83NJ3qnBoT72yonrG874SK6pRpJufxHO+N1I0inT9f/yrfMbqc6Lrc1XTlxvuMwAxvL3ZLqfc5wRjX278sqJ6x3Pd6iJAAAgAElEQVRhoAT3s5dJo3fplRPX7esJMCRGb8GEeeXE9eUkN2twqF1ne2TX1MYrJ663YixGWZxL8vHLt853+0Us9+NgHX751vmWywxgLDnH1isnrs/FfmkHcfnlW+d7/aITUC9rQgAwPAolMIGmptKemsr21FRS4d/M5ZXzNl4e7cuL7tRUGlNTuVnxa2tSfuempvLx5ZXzy5dXxvtif2oq3YrFtu2OBxhrztGZmspsDfLZoeXJU1PZGHd+QO3XpO7fMfwAGB6FEphAV2avbyW1eNHXvbzia7lRX1tXZq/PJZlNsikipXAmycrllfO9cb0QuTJ7fSPV6mRThAUYf87RS9JMsi4a+3Konx90hIIx0d0wehtCADA8CiUwuYvL5SSrNVgAWvyN5/rqpXh5YTRGecykeCGycXnlfHsM//ndKj1bLq+cb7qkAMaeb2wkaaXYn4v9udz/mMLHRYzahhCM5ZkJwJAolMBka6f6e0rMe6E5tkR868rs9U6Sx+NrzzI5nOR6v2DSGdWLkX5xtkpdRm2XEkBp8o12ir3S2J+ZxCguRm5DCEZqVQgAhkuhBCZ7YbmRenRcLDrbY73O1q7MXm8muRSbvZfJ4SSXU7wYWby8cr4xgv/MboXiZ/wWQLnyjW6KjzOM/twfo7gYtZ4QjNSGEAAMl0IJTP6icjHV/9p/ZkyjhvjstdZMtfaqqIJDSeaTfHx55Xx3yF+TdisUt8O61QBKl2us9XMNX07vn1FcjIo9SsQboFIUSqAa2jU4xo4F3/hdmb2+YbP3UjuX4mvStWEUF23qDsAIco2tK7PXW7FP2kEYxcVI7tUYzztKPSEAGC6FEqhGkrqWnZ0r2dlJhX+Hs7Oz4GyX5prrZWenWYPrblJ/R7Kzc/3yrfbW5VvtzuVb7cbATv7OznKF4qRQAlDeXKOTnZ2z2dnZ9nd9X79D2dlZuXyr3XE1MTQ7Oz332kh+2/2OOwCGaGpnZ0cUoAIu32pPp2jHPVzxQ33syonuhjNeqmuvkWIk04xolNrNJN0rJ7rLAzjnWylGfnmmADCKPGM5yRHR2LfVJHNXTnS3hIIB359zSd4RieHn8VdOdH3gAzBkOkqgIvoLn3YNDrXrbJfu2tu4cqLbSnI+NnsvszNJ3rl8q71x+VZ74YBdJssVikvLpQFQ+jyjmeSGaOxbMYrrVtvfPAZ9fy6LwkiIM8AIKJRAtRLV3tRUbk5NJRX+zXRW2r6mKef1152aSmNqKksVvwYn/Xd4aipXp6bycWelvbyf+2lqKosVioeXRgCTkWe0p6Zyfmoq2/6W7+t3aGoqK50Vo7gYrBqsP8vwUygBGMXfNKO3oFo6K+3pJBupzlic+9nszHYbznapr8NmksUYxzUx91SKL9UWO7O7G0PVWWlvpBqj/rY7s91plwDAROUYy6n+uNlhWk0y15k1iouB3JM9Of9Q3ezMGrsFMAo6SqBqiWqx4OlU/DAP+xqu9NfhWmf2k3FcmyJS/nsqyXySjzsr7bXOSnuhX3R9mG5Fjv1Q/6UbABOSYyRppth7i/2ZSbLRWTGKiwPej8WaTJFkuLpCADAaOkqgsknruV7Fk9btJM3O7I0NZ7v01+J0koUkl0Vj4txM8dXucmf2xtY957WR5OOKHOelzuyNRacbYOJyjIUkV0XiQK50Zm90hIF93H/NJB+JxFBtdmZvNIQBYDR0lEB1LVT8+A6l+p0z1VhEzd7Y6i/AH4uvPyfNmSTXk/xnZ+XccmflXLtf+Eq/SLlekeNsOdUAE5ljLCaZTfEBDftzubNyrnf77zvs6t4rrpeuSAydGAOMkI4SqHYC20n1v+Kf7cze6DnbE3VdtlLsX3JENCbWen/h1kxyrgLHs92ZveEFEcDk5hbTKTogjQA6wN/CJHPyanZ5zy2mGNvKcO/Jxr1d3QAMj0IJVH/RuJZqb3a53pm9YX+Bybw+2ykKJodEgxJ4vDN7Y00YACY6t/Dy9uCM4uJR91kryYpIuBcBqsboLahyElt8fdKu+GEe6b9wZ/Kuz26SRpIrokEJKLgCTH5usZDkbIziOojbo7gaQsFn7rE73VsM13aKD8oAGCGFEqj+grGX6u8LsWiu8sRen5/ev+SGiDBGLSEAqERusZyi+L0uGvs2k2Sts3JuTii4Rze6wUezvjVyC2DkFEqgHhZS7S/rDqX6m9dXWmf2xkZn9kY7xYasqyLCGOgoAahWXtGMjzAOml+/0x9nBrfH5p4RiaHbNHILYDzsUQI18crK3y4kuVrxw3zs5dmfbjjblbhe51K0mx8WDUbl5dmfTokCQOVyinbsiXZQ60nm5Nm1vo8aKfa+dB8N3+zLsz/tCQPA6OkogZp4efani6n+CAJfvFXnel1+efanjRT7l5gzzqheAugqAaheTtFNMV7RKK79O5Jkrf8hC/XUjSLJKCwpkgCMj0IJ1EvVx1OdeWXlb1tOc3W8PPvTTmz4zug0hACgkvnEWopiiVFc+3coyTuvrPytD5Nqpj+ZYEYkhm4zSUcYAMbH6C2oX6LbTXKuwoe4/vLsT30VXs1rt9FfPJwTDYbkSr84B0B184k6jKMder6dpN0vQFHt+6WZ5CORGInH3VMA46WjBOqn6hu7H+nPoqZiXp796cbLsz9tx4bvDM+0EABUPp9YTPJ4iq+32We+naQn566FrhCMxCVFEoDx01ECNdRf1Fyv8CFuJ2m8PPvTLWe70tdxq794s+E7g7L68uxPW8IAUIs8YrqfR5wRjQO5kWRB3l3Je2QxybxIDP8e6n8MBsCYKZRATX1r5W97qfas2SsvGaFTl2u5nWIkl4IJB7X6kkIJQN3yCKO4Dm49SfslX8RX6b5oJVkRCbknQJ0YvQX1VfWN3Re+VexpQcW9NPvTbpJmig3ft0UEANhDHrGYYqynHGL/jiTpfcsorkr41p1uK4ZrPcmcMACUh0IJ1HdRuJZkqcKHeChFlwH1uJ63+h1EjSiYsH8NIQCoZR7R6/8NsAfawXLv699a+dvl/ot2Jlc3OrWHbT1J6yUj6wBKxegtqLH+Imajv7CpqseNAajltd1IUSg7JxrsxUuzP50SBYBa5xCdJJdF4kA2k8zJwSfy+p9L8o5IDJUiCUBJKZRA7ZPhv2mn2hu7r740+7OWM13b67sRBRP24KXZnymUAMgfWkmWU+2PiUbh0kuzP1sUhonKm9dc90N1M0n7pdmfKZIAlJBCCZBvrfxNL9Xe2H32pdmf9ZzpWl/jrRQFkxnR4CHWX5r9WVMYAPjWyt9MpyiWyB0Oxotha0IKN16a/VlbGADKyx4lQFL9jd27TnG9vTT7s16/s2g25o/zYF7iAHA7d9jq5w5XRONAziRZ63+0Qkl9a+VvFqJIMizbSc4rkgCUn0IJkJdmf7aW5EaFD/Fwf8QYrnUFEwBgL7lDJ8nZFC872WcunmTlWyt/0xGK8vnWyt80k1wViaHo70fys65QAJSf0VvA7QS56hu7byZpavvnnuu+nWIk12HRIMnNl2Z/NicMANwnZ2ikGMV1RDQOZDXJnJy8VNf2mut6KK70C60ATAgdJUCSYrxAihfGVXU41R8xxt6v++5Lsz9rJDmfophGva0JAQAPyBk2+vtYLYnGgcwk2TCKqxy+tfI3i1EkGbTVJI8rkgBMHh0lwF1e7X2hyl8UbSdpvNh62xdsPOj6b0eHSZ1derH19qIwAPCIfGEuxR54h0TjQJZebL3tQ6bxXcetJCsiMTCbSTovtt7uCgXAZNJRAtyryouVQ6l21wwH9GLr7e6Lrbcb0WFSVzpKANhNvrCcpJli/wH2b/7V3hfWXu19oSEUo/Vq7wvTKYp9HNxmkvMvtt5uKJIATDYdJcD9EuflJGcqfIiPvdh6e8OZZhf3Qjs6TGrjxdbbU6IAwB5zhcUk8yJxINtJ2v0CFNZ7k2I1SVdxBKA6FEqA+yXOjRRfVld1nMCNF1tvt51p9nBPtKNgUnXrL7bebgoDAPvIE4ziGoylFKOLjMkd/vX6jkjsy2aS5SSLPryrxb3STNE92EjS6v/LzV086zeTbCTZSvFeZS3JmmsGyk+hBHhQUtBJcrnCh/j4i623jdlhr/dFOwomVWVOOgAHyREaKV6g2hj7YNZTdJfI04dznU6neIGrqLd7q0l6SZZdl5W/P5opCiJzSWaG8B+xfftaStJTOIHyUSgBHpZEr6W6L4RXX2y93XKm2ef90Y6CSdWcNfIDgAHkCEZxHdx2kgUjjYZyffYynBfAZbSevRUut/vr343c6QDouWoqf080k7RTFEcOj+Ea7aYowm04GzB+CiXAw5KGdpLrFT7EWckvA7hHFuLr0Um3/WLr7WlhAGBA+YFRXINxM0V3iVFcg7kuF5JcrcnhbiZp3r52+h1fjQf83665xqzjSvK8W/R+AsZLoQR4qNeq/dXR6gu6ShjMfdJK0WEyIxoT6cYL9i0CYLC5QSNGcQ3CZpK5F4w8Ouj12Ewx8qcuxbvZF7xw5rP3wXSK4shCie+FzSSdF3TUwVh8TgiAR+hU+Nhm+i+44UBeaL3d6xfdZlPMMWayLAoBAAPODTZeaL3dTLFBOft3OMlHrxXdEOxfN/UpklxRJOFerxV7sG6k2Ie1zPfC4STXX+t9YeO1ojsRGCEdJcBukopuknMVPbzNF1pvN5xlBnzPNFIUGc+JRumt919kAcCw8gKjuAbjZpL2C8Yk7fX666R4OSyvo47Xf6v//J3UvSVXkyzoqoPR0FEC7EYnxeZ2VXT4tWI+KQxM/yvSdpLHktyo8P1TBbpJABh2XrCcpJli417270ySDR3hu9ePVV2KJNspNuWGvNb7wvRrvS8sJ1nJ5BZJkmK080f9gicwZDpKgN0mGp0KJ9m6Shh6op7yz8OtI/c+AKPOCRaTzIvEgV15ofV2RxgemX+uZbJfEu/FpRdab/sAhip38a2n6KrTXQJDoqME2K3FFBuLVZGuEobqhdbbWy+03u680Hp7Osn5Ct9Lk8a8cwBGnRMsJDkb3aYHdfm13hfW+uNOefD6rS5FklVFEpJPitHvpJofpx1J0vPuAoZHRwmwl6SjneR6RQ/Pl+WM+n5qpRhrNyMaY1tQt4QBgDHlAY0kyylefLF/2ym+sF4Wiruur7kUL4vrcg007F1T+2t+uv9Mrcva6kZ/1DMwQAolwF4TkLUKL+jOv9B6u+ssM+J7qpGiYDIXY7lGuaBuvtB6e0MoABhzHmAU12AsJel4Wf7JC+ONGuWVZxXKan/NN1OM2qpb4Xk1yZznHgyO0VvAXlV5VE2nv7CAkfnUxu+NJJdiLNdI7nVFEgBKkgcYxTUY8ylG0jSFIsupT5HkhiJJvfXv+V7q2Z0303/ueYcBA6JQAux1MddLcrOih3c49ixgfPfW1guttxf7I+DOVvg+G7ebZlgDULIcYDlJM8VGvexf7ef3v9b7wkLqM3po09qt3j5VJKlzV/7t555iCQyA0VvAnv1T768bST6u6OFtJ2l8s/Vz7auU5V5bSNKOsVyDsJ6k5f4GoMR/+43iGoybSdp1+pv/T72/rttL49lvtn7ec6nX9lmpSGKdAwOnowTYs2+2fr6RYg5wFR2KL5Mo0b32zdbPF77Z+vl0kvMp5tCyP9up2QsTACbyb79RXINxJsla/2VqXXRTn5fGVxRJ6qv/MVkviiSfdiRJ7596f62zBA5AoQTYr06FF3ALEgzK5putn3e/2fp5K8ljKQqVXqDs3naKL6zWhAKACfibf3sUlw8kDuZwko/+qffXnaofaP8Y67JHw/o3Wz/vuLzrqb9Or9M+PHtxJIkRw3AARm8BB03IL1f08K5IwJmAe3AuxViuM6LxQIokAMi3WU0yV8XO0n/q/XUryUqNzuXj8rpaPxN7qc8+PPvlXQbsk0IJcJAkZTrJWoqvtarGXiVM2r3Y7v+OiMgn1lOM27KYBmCS/8634gvqQeX3c1Ua2VTx9dj9XPpm6+e+mK/vs7AThePdOtvvTgT2wOgtYN/6RYRORQ/PXiVM1L34zdbPF7/Z+nkzd0ZzbdY8LKvRSQJANf7O95I0YhTXIPL7lX/q/XWVXrR3Up8iyaoiSX31C8aKJLvXNU4c9k5HCTCIpGUjukqgjPdmM0WXyVyNFtGJdnMAqvu3vRMvCwdhPUV3ycYEXwtzSd6pyfnaTtKc5PPFga71unVODcpqf49LYJcUSoAD+/bq/9NKdefiXnl+5hcdZ5kK3Kd1KJqsJ2k/P/MLXSQAVD33Norr4LaTLDw/84vuBF4D00k2anQNnH1+5hfGCNX3mbeYZF4k9uX8JD7jYFwUSoBBJS+9VHNTte3nZ36hZZWq3a/NFAWTuVRjT5PtJJ3nZ35hHAMAdflbPp2iWGJT44O7meJr9UnSqtG5304ix6uv6SiSHPT+aTw/8wtTMmAXFEqAQS3WWqluV4mvMKjyvTudomDS6v/jJH2ZeHvhvCj5B6Cmf8cXklwVCQAeYOn5mV/YfxV2QaEEGORCbTnJmQoe2ubzM79oOMPU5D5upiia3P6VsXCymaQbBRIAuP23eznm9wNwf489P/OLDWGAh1MoAQa5SGsk+biih6erhLre158unDQzvpcw2yleAi2bUQ0An/l7PZ3iI4IzogHAPW48P/OLtjDAwymUAINepHWTnKvgoekqgXzyIuZ28aTR/w1rRvZqkl6S3vMzv+iJPgA88u+0UVwA3I+uEngEhRJg0IuzRnSVQB3v/dsFlNv/mE/980fZyp1NVHtJNiTxALDvv8lGcQFwL10l8AgKJcAwFmeLSeYreGi6SgAAmIR8fDrJYqrZ6Q3A/vyFPR7hwT4nBMAQdFLsJ1A1h7+9+v/MOb0AAJTZ8zO/2Op/OXy+onk5AHvXFgJ4MB0lwFC8vvo/OkkuV/DQVp+b+feWMwwAwITk5c0UG70fEQ2AWtt8bubfG8IA96ejBBiWxVTz67WZ11f/R8vpBQBgEjw38+9rSVpJlkQDoNYO94vnwH0olADDWpBtpSiWVFHHGQYAYJJy8+dm/n0hydkYxQVQZ20hgPtTKAGGqcpdJQ2nFwCASfLczL8vJ2kmWRcNgFpqCQHcn0IJMMyFmK4SAAAoV46+8dzMvzdjFBdAHR3x4Sfcn0IJMGxV7So5J7kAAGBS9UdxzcYoLoC6aQkBfJZCCTDsBdhWkoWKHt6CMwwAwATn6r0kjSSrogFQGzZ0h/uY2tnZEQVg6P559a82khyu2GFtJ2l8Y+aXW84wAAATnq93klwWCYDKW/3GzC9bwgB301ECjEqngsd0KEnbqQUAYNJ9Y+aXnRSjuDZFA6DSZoQAPkuhBBjVwqtb0UWX8VsAAFQlZ++lGMlyUzQAquufV//K+C24h0IJMEqdCh7T4X9e/au2UwsAQBV8Y+aXW9+Y+eVckkuiAVBZ00IAd1MoAUa56Oqmml0lbWcXAICK5e6LSR5Psi4aAJWjowTuoVACjFqngsc088+rf9VyagEAqJJvzPxyLUkryQ3RAKgUHSVwD4USYNSLrW6S7QoeWtvZBQCggvn71jdmftlOcr6ieTwAgEIJMA47i8lOKvY798+r/73h3AIAUEXFB087zWRnvYK5vJ+fn1/dfkZvwT0USoBxWIyuEgAAmCjfmPnVxjdmftVMsiQaABPN6C24h0IJMI4F1laKYknVLDi7AADUIJ9fSHI2RnEBABUxtbOzIwrAyH33f/336SQbSQ5V7NBWkywn6T17/FdrzjQAABXP6ZeTzIgGwERZffb4r1rCAHcolADjXFh1klyu8CFuJund/j17/FcbzjoAAPJ6AMZMoQTuoVACjHNBVdWukgf5dOFk+dnjv9pyFQAAUJHcvpWkm+SwaACU3tKzx39lfDh8ikIJMO4FVTfJuZoe/nru7jhROAEAYJJz++kUxZIzogFQaleePf6rjjDAHQolwLgXU40kH4tEkjuFk+Vnj/+qJxwAAExojr+QpJP6dI4DTBqFEriHQglQhoVUN/XtKnmY1dzpNukJBwAAE5TjN1N0lxwRDYDSOfvs8V8tCwPcoVAClGER1Yiukt24mTuFkzXhAACg5Hn+dIrOknnRACiVWR9kwt0USoCSLKL+23LMMt6L7dy1v8mvFU4AAChrrj+XorvEKC6AEnj2+K+nRAHuplAClGXx1EqyIhL7tpm7CycbQgIAQIny/UaS5RjFBTBum88e/3VDGOBuCiVAmRZPvSQzIjGYxCcKJwAAlC/n7yS5LBIAY3Pz2eO/nhMGuJtCCVAa/+//+m/tJNdFYijW86nCydeO/3pLSAAAGFPe30rRXWIUF8DoXfna8V93hAHuplAClG3RtJHksEgM3SeFk68d//WycAAAMOK8fzrFviX2KQQYrdmvHf91TxjgbgolQNkWTAtJrorEyK3mTuFEwgQAgPwfoHq2v3b819PCAJ+lUAKUbKH0X6eTbEQb/ritphiH0Pva8d+sCQcAAENcAzRTdJfY6B1guG587fhv2sIAn6VQApRxobSYZF4kSmM7d+1vonACAMDA1wDTSRaTnBMNgKE5/7Xjv+kKA3yWQglQxkVSI8nHIlFa2+l3m6QonGwICQAAA1oLzKXoLtFhDjD4tXzja8d/syUU8FkKJUBZF0jd+JpsUmzm7o6TDSEBAOAAa4FGig9zjOICGBxjt+AhFEqAUrr6v/5rK8mKSEyk9XyqcHLJ1yoAAOxvTdBJclkkAAZi9tLx3/SEAe5PoQQo88JoLb4iq4JPCieXjv9mWTgAANjDmqCVorvEKC6AA6zLLx3/TVMY4MEUSoAyL4raSa6LROWs5k7hpCccAAA8Yl0wnWLfkjOiAbAv5y/ZxB0eSqEEKPmi6P/eiq/Hqm41/c3hLx3/7ZpwAADwgLXBQpKO9QHAnmxeOv7bhjDAwymUAGVfDC0mmReJ2tjOXfubKJwAAHDX+qCZorvEiF6A3Tl/6fhvu8IAD6dQApR9IdRI8rFI1NbtwsntjpMNIQEAqP0aYTpFZ4kPqgAeTjcJ7JJCCTAJC6HlmEdMP8nL3R0nG0Ly0Hun1f8fG/3fg/T6/7ghpgDABOU6cym6S4ziAri/2UvHf9sTBng0hRJgUhZA74gE97GZfrdJisLJVk3vkekkzSSt/q+R5PAB/i3Xk6z1f0agAQBlzoMaKYolM6IxEEuXjv92QRgo0T2+ccC1TZ3dvHT8t3PCALujUAJIjqiS9dzdcbJV4XuikWSu/xv2i4Ht3ClILde1IAUAlDo36iS5LBIDy6nbPpahJPd2K8mKSOxrDdewdoPdUygBLHyostXcKZr0KnAfTCdp93/j3MD0RoqCybJLDAAoUa7UStFd4gOrg9tO0rl0/LeLQkEJ7u3F2JNor85ar8HeKJQAE2HxQ5u6MxC3CyfLC8cm5wu5/vXfSXKuZP/VNpMsJukuHPOlEgBQirxpOkWxxB6Hg3EzSVuuRwnu7bWM92OxSXJj4dhv28IAe6NQAkxSYmRTdwZpO58a01XGwkmJCyT3i+VikkWLaACgJHlUu5+f2Oh9MLne3MIxG0Iz1nu62V+7uacfbj1Jy7oM9k6hBJikxMim7gx7AdhLfy+OhWO/3RjjtT7dX9ifm8AYdhaOGdEAAJRi/dBM0V3iK/TBWFo4ZqN3vBMo+XqsNUnTE6BMFEqACUuM/stWfEHCaGzmro6T322M6BpfSNFFMsnX+XqShYVjv+u5jACAEqwh7G8w2DyvvXDsd17EMq77uZ3kukjc1+PuTdg/hRLAIgd2ZzP9bpMUhZOtAV/bjRRfPM5UKGZLC8d+56tDAKAM64hWP5fz0dXB9buIf6eLmHHdz91MXvf9sJ1fOPa7rjDA/imUAJOWEDWTfCQSlMB67u442TrAdd1OdWdo++oQACjLWmI6RbFkRjQGor/R++/shcA47uduFEtuUySBAVAoASbO0of/ZS3mDFM+q+kXTeZ3OXJqqVisT+JeJHu1nWRhXvIOAJRjPbGQ5KpIDCzPm5s3cpXx3MvdKJact86CwVAoASxsYDgeWjjpF0l6qVfRb2neKC4AoBxrChu9DzikSTrzuksY/b1c5/HciiQwQAolwCQmQtNJ/lMkmCDb+dSYrv6/tpzkcA1jcWP+2O/aLgkAoCTrijp0947KepL2vJGrjP5ebqdeG7xvJ2m512CwFEqACU2Ezi4nOSMSMJFuFovod3xxCACUYW0xl6K7xEbvg3Fp/tg7Nnpn1PdxK8XHaFW/j9eTzM0fe2fDWYfB+pwQABNqWQhgYp1J0lv68Oy0UAAA4zZ/7J3lJM0Uo1M5uKtLH56V6zHq+7iXpFHx+3gpSUuRBIZDRwkwmdlBkXQbvwWT7cb8sXfawgAAlGid0UlyWSQGYjtFF7GP3HAfu5eg9BRKgElOfozfgsmnWAIAlG2d0Ux995MbSkiTdIxdZcT3cSPFSL2ZSV8vJVlw/8DwKZQAk5z4tFOvDdugqsyxBgDKttaYTvGS1YdZg9Hf6P0dm08z6nu5naSTySt8rqYoMPacRRgNhRJg0pOerdh0Eapg1iIAACjheqOdZNGaY2B8IMO47uVOkoUJuJc3U3SQGLMFI6ZQAkx6smP8FlTDdpKGlnIAoIRrjkaKUVxHRGMgVlN0l2wIBWO4n9spZ4eJDhIYM4USYKK9+eFcO8ZvQWUWzRePLbeEAQAo6dqjExu9D8p2kvbFY8u+mmdc93MrSTvJuTHfB90kixePLW84KzBeCiXApCc300n+UySgMi5dPLZsHAMAUNb1RyvFi00bvQ/GjSQLF48t6ypmXPf0dJK5JK3+Pw57NNdmig61nkIhlItCCVCFxMb4LaiO7SRNX1QBACVef9jofbA2k8xdPLZso3fKcH83UxRNmv3fQUfurSZZ6/961jlQXgolQBUSmYUkV0UCKuPmxWPLc8IAAEzAOqQTG70PypWLx5Y7wkAJ7/Vmkukkjf7vYdaSbPid9JgAACAASURBVCXZUBSByaJQAlQhaWkk+VgkoFJmLx5b7gkDAFDytUgzRXeJjd4HYzXF3iUbQgHAKH1OCIBJ10+i10UCKqUjBADABKxF1i4eW24mWRKNgZhJsvbmh3NtoQBglBRKgKroCQFUa5Hc3ywVAKD0Lh5bXkgym2K/NQ7mUJLrb344t9zfDwYAhs7oLaASrv15rpVkRSSgUlafObrcEgYAYILWJTZ6H6zNJO0kG88cNY4LgOFRKAGqtCjxQIPqmX3mqL1KAICJW5vY6H2wfEADwFAZvQVUKnkWAqicthAAAJPmmaPLi0lasZfioMxc+/Pc2rU/zzWFAoBh0FECVMa1D890klwWCaicv3jm2M0tYQAAJnSdsphkXiQGYjtJ55ljNxeFAoBB0lECVElPCKCS5oQAAJhUzxy7aaP3wTmU5Oq1D88sX/vwjI3eARgYhRKgSguQnihAJbWFAACowFqlkeSmaAzEmSQb1z4844MaAAbC6C2gUq59eKaXZEYkoHKM3wIAqrJmWUhyVSQGZinFOC65IgD7pqMEqJo1IYBK8rUgAFAJ/f01Ho+N3gdlPknv2odnbPQOwL4plABVs1HDY95Mcj7Fl1QWW1RVSwgAgKp45tjNtX5+syQaA3EkyUfXPjzTEQoA9sPoLaBSrn14ppVkpYaHfuOZYzfb/RhMp/j6vtX/HXZlUAGbzxy72RAGAKCCa5i5JN0UG5VzcKtJ2s8cu7khFADslkIJUCnf//P/1Uo9CyVJcuPpo79v3ycmjdwpmrSicMLkeuzpo7+34AUAqriOmU6yHPstDsp2kvbTR3+/LBQA7IZCCVC1BUYr9S2UJA8oltwTo0bu7jjx5RqTYvbpo7/vCQMAUOH1jI3eB+tmioKJjd4BeCiFEqBqC4tW6l0oSZJLTx/9/eIeYtbM3R0nCieU1ZWnj/6+IwwAQMXXNM0Uo7iOiMZAbKYolvSEAoAHUSgBqraoaEWhJEnOP330990DxPD2T+s/ZfLIjikAgIqsa6aTdJLMi8bA+OgGgAdSKAGqtqDoJLksEkkOUCy5J6atFEWTufiqjfFaffro71vCAADUaH1jo/fBWk/RXbImFAB82ueEAKCyrvfb9g/k6aO/7z199Pedp4/+vpnkL5KcTbLUX2TAKDWEAACok/5m5I0Ue21wcEeS9Pp7wQDAJ3SUAJXy1p//shMdJZ+2naR14egf1oYU7+nc6TZpJTks5AzThaN/mBIFAKCma52FFOO4dJcMxs0k7QtH/2CjdwAUSoDKLR46USi511CLJffEv5G7N4ZXOGGgFEoAgJqvd2z0Pvi1UvvC0T8sCwVAvSmUAFVbOHSiUHI/m0mao/5aql84ud1t0oqv3zgghRIAgOStP//lYmz0PkhLSTq6SwDqS6EEqNqCoROFkgdZT9FZsjXG89PM3R0nCifsiUIJAMAnuXUrybKcemA2k8yNohMfgPJRKAGqtljoRKHkYcZeLLnP4u72b8bp4VEUSgAA7sqnp1OM4jojGgNz5cLRP3SEAaBeFEqAqi0UOlEoeZSbF47+Ya6k56+VO5vDm7vMZyiUAADcN4+20ftgrabYu2RDKADq4XNCAFA7Z9768192y/hf7MLRP/QuHP1D58LRPzST/EWSsynmBa87bQAA8MA8ejHFB0fy5sGYSbL21p//si0UAPWgowSoFJsa7smNC0f/0J6gczudO90mrSSHncJavgTQUQIAYE00SjdTdJfY6B2gwhRKgKotCnqx18VeTOz83bf+/JeN3L0xvMJJDSiUAADsKlduxUbvg7SdoliyLBQA1aRQAlRtQdCLQslenb9w9A/dCpz7Ru50m7QsCitpvT+WDQCAR+fHNnofjtUkvSTLF47+YU04AKpBoQSolB/8+f/sRaFkP84/dfSP3YpdC83c3XGicFKBRelTR//YEgYAgD3lxe0ki/LhodhOv2iSpPfU0T9uCAnAZFIoAaq2COhFoWS/Zp86+sdeha+NZu50nLhGJtPSU0f/uCAMAAB7zoUbKV7mHxGNodrsx7mXonBiXxOACaFQAlRtAdCLl+D7tZ2k9dTRP67V5Fpp5U63iWtmMlx66ugfF4UBAGDfOXAnyWWRGJlPxnTVZZ0FMKkUSoCqJf69eOl9ELUqlnzqupnO3WO6fGlXTpXuegIAGFHu20qxd8lh0Rj5WquXO4WTDSEBKA+FEqBqSX8vCiWDSOAbdW4Tv6dwMmcRWQ5PHf3jlCgAAAws3+3GRu/jtJm79zcxpgtgjBRKgKol/L0olAzCeorOEsl6Ppnp3PrUT+FkDNfkU0f/2BQGAICB5rnt2Oi9TGuw20WTnnAAjJZCCVC1RL8XhZJBJuqKJfe/zhq5023SsrAcCRu5AwAML7ftWkeVyqfHdPXsbwIwfAolQMWS/P9jK15aD9LqU0f/1BKGh15z3STnRGLoZp86+qeeMAAADC2v7cRG72V1e0xXL8nyU0f/5GM2gAFTKAGqltx7qA3ejaeO/qktDA+85tpJrovEUG0/dfRP08IAADD03LaZ5CORKL313Cma9IQD4OAUSoCqJfYeasOhWPLga246yX+KhOsPAKAi+W03OqYnzc18MqbrT8Z0AeyDQglQKT/8/xRKhmjpyc//yR4R97/uLCaH6+yTn//TsjAAAIwkt20k+VgkJtZ2+pvCJ+k9+fk/bQgJwKMplABVS+o91Ibr/JOf/1NXGD5z3c0leUckhmLzyc//qSEMAAAjzW+78SFQVdwe09Xz8RHAgymUAFVL6D3Uhk+x5P7X3kaSwyIxcFee/PyfOsIAADDS3LYRXSVVtZp+x8mTnzemC+A2hRKgYgn9/+6hNhpnn/z8f/ga6e5rbyHJVZEYuL948vP/sSUMAAAjz2+70VVSddvpbwqfpPfk5/9jQ0iAulIoAaqWzHuojS6hbj35+f/wBdKda286yUaSQ6IxMDee/Px/tIUBAGAs+W0zyUciUSubuWt/Ex8sAfWhUAJULZn3UBsdxZLPXn+dJJdFYmAe81UbAMBY89tekhmRqK3V9DtOrPv+//buJruN80wb8K2cnpNZgZgVkJmWBkIGSLozEb0CQQdyPAy9AkErCD3Ml+AIWkGoSRIbA4MDY9rgCgKuoMkV6BtU0ZJ/ZJEiUKif6zoHR85Pt1RPFZX3wV3P+wJdJygBuraQ95dava6THPky+/vnz1TJ5pgmAQDY/fp2kORblSC26QI6TlACdMZfLeJ35SLJ4Atj2TfP4SjJK5W4dxN24JkCAGjE+nYRUyX81GXeC06s3YG2E5QAXVrADyIo2RVhyQ+fxVWSQ5X4ZF9+8eifp8oAAKDPolU94U1oslAOoG0EJYAFPBtbGH/x6J9HyuBZ9BwBAHRufbuIqRJu72abrkWSsy9s0wW0wK+UAIANOfzrd3+cKUNSvUH1lUp8kpESAAA0zkQJuIO9JE+S/CXJf/763R/Xf/3uj7O/fvfH0V/Lcx0BGsdECdAZ3uJvjNdfOIT75pm0BdfdvPzi0T814QAAzVzbLmKqhM24yLtpk4VyAE0gKAG6tHAfRFDSFMKS8pk8qhqAPY/ER51/8eifA2UAANBv0Ttvqr5p8cWjf66UA9gFQQnQGf/vu/+xcG+WZ3969K+Z5/J/RkleeRx+0WWSoz89+teVUgAANHptu4ipErbfGyxuPn969K+1kgB1EJQAXVq0DyIoaRphSflsnib5s8fhZ10nGfzp0b+8OQYAoOeCH7vZpmvxp0f/OlMOYFsEJYBFO9smLCmfz1mSpx6Hn/hMwwMA0Kp17SKmStid8yRnKYMTL1sBGyMoAbq0YD9O8g+VaBwTA5rKDxGiAQC0b007iBfUaE6veRbbdN38bO4nOao++0kG1X+0n+TwA/9n59Wv6+qzSrLWv9NHghKgM/723X9PkrxQicYuYAefP/r3qufP6H61iD/0SOTZ54/+PVMGAIBWrmsX8QIQzfP9Nl1JFp8/+vdVx38O95McpwxEBkkebvi3OH+vlguPF10nKAG6tEiYRFDSZMKSd4vZWZInPS6DkAQAoN1r2kFMldB8N1/0n3WlD636yVH1qfMFvJvpnbPPH/3b1sl0kqAE6NJifRJBSdNdpAxLrjyv/z1L/84suU4ysrAGAOjEenYRUyW0qxdZpNqq6/NH/1637OdtkOQkzXjh7jrly3+nbasj/BJBCdChhfofJhGUtEEVlnwtLOnXM3uZ5PjzR1/b6xYAoBtr2UFMldDu/uT7802a2p/+7bs/jJJMsvlttTbldZLZ54++XnikaDtBCdClhfokgpK2EJa8e26PU76Ns9fhyzxPGZJcefQBADq1ll3EVAnd6VGraZPdf+nfgoDkx94kOfn80ddrjxJtJSgBurRIn0RQ0iZvPn/09bEyJH/77g8HKcOSLjaZLz9/9PXEXQYA6OQ6dhBTJXTPzTZdiyRndX75/7fv/nCU5LTFveFXSSZekqONBCVAZ/x9KShpodfPi69HyvD9M3yS8q2hLkyXXCQZPS9stQUA0PE17CKmSui2y7x3vsnzYvMhwN+Xf9ivesE/d6Be11Uv6GxKWkVQAnRpgT6JoKSNhCU/fI4PUr5B9KSll3Cd5PR5YYoEAKAn69dBTJXQLxepgpPnxf236fr78g9HKUOYhx2r05uUgYnpElpBUAJ0aYE+iaCkrb58Xnx9qgw/aThPkxy26I/9OsmJhTAAQO/WrouYKqG/3qTaquuuE/XVrgJ/6XBtLpMc22mANhCUAF1anJ+lvW/hkzx7Xnw9U4afPNejJKOGN56vk0yeFw7uAwDo6Zr1OMk/VAK+36ZrkXLi5OoDPzP7Kc+p7Mt3GPp9Gk9QAnRocf77RbzF1IHF0zcWTz//fA9SBiZPG9QAzJLMnhffrN0hAIDer1fX6d7WQXBfN9t0LZ4X35xVPyv71b932LNafPW8+ObEI0FTCUqALi3MFxGUdMFvnxffGMv98HO+nzIwGe1gYX2dcu/cs5tFPgAAVOvUUZJXKgG/6DzJQfobKr5+Xnwz8hjQRIISoEsL80XaHZRcJ1mnf2+V/FwdBsKSWz3zB0kGSY6rX/e28Nv85A0oAAD4wPp0HVMlwC8TltBIghKgS4vyRdodlJyn/MJ7ne184d0mwpJP+xk4SHL03me/+vU2z9Nl9eyt3vt19bz4xsHsAADcdj06iqkS4OOEJTSOoATo0qJ8kZYHJc+LbwZ/X/7+KOUb/H0PSy6THPmifuM/J4PqH9fOFgEAYAvrzXVMlQAfJyyhUX6lBADNUk1RDFJOVfTZwySL6kwONvd8LarPWjUAANiCiRIAt/D078vf+/uCxhCUAJ3xoAOfG8+Lb1YPkuMHHbmue3wOHySLqbAEAABa4XnxzexBcqmX8fHxucXnxbTcsg92TlAC0FDj4ptFkmcqkcMkDhEHAID2mCgBcEun03ILctgpQQlAg42Lb2YRliTJ4+ny9zNlAACA1vQxlyoB3MJeEv0+OycoATrk7ePkbdr9+VCT8fZl+6/t3p+n0+XQ4gkAANrRn030MD4+Prf8HE6Xw1N/b7JLghKAFhgX80mS1yqRp9PlcKIMAADQ+B5mFlMlwO39ebocDpSBXRGUALSn0RhFWJIkL6bL4UgZAACg8SZKANyBqRJ2RlAC0Byrj/0XqrDkjVLllbAEAACazVQJcEeH0+XwRBnYBUEJQHNc3fK/N0pyoVx5ZSwXAAAab9LR67pO8mW8yAYb/ztjuhzuKwN1E5QAtMy4mF8lGURYkiRn0+XwSBkAAKCx/css3Zwq2UtyNS7mx+Ni/iDJ75K81KfBRn62TJVQO0EJQDubjZuwpO9j7HtJFsISAABotEnXr2tczBfjYj4ZF/OjJL9O8lnKMyZtPQZ3d2KqhLoJSgBaqgpLjlOOfPfZTVhiEQUAAM3sXWbpZmDw8OfOThwX86txMT8bF/PRuJgfJPlN3m3Tde2JgFv1+aZKqJWgBKDdDccq5WSJsERYAgAATTbp63WNi/l6XMxPq2269vNum65zjwV80EgJqNODt2/fqgLQetUX5P/X8st4OS7mk0+8/qMk/+tJyEWSQTVtAwAANKtvWyd52MFLe1ZNzXxqLzuoPscdrQ98qs/GxfxMGaiDiRKgK3p9RkU1WfLMY5DDJAtlAACARpq4rp/0cjfbdJ28t03Xs9imCxJTJdTIRAnQCdPlcJDk25ZfxidPlLxXh1GSV56IvB4XcwsqAABoXu+2jqmSu9TrKOWkySDJY08QPfRru0ZQBxMlAB1SLcy/VIk8nS6HM2UAAIDGmbiuO/V4q3Exn4yL+WBczB8k+SzJVym3HYY+OFYC6iAoAWiOxYYW0qdJXitnnk6Xw1NlAACA5qhe7urillIPqwn/bdfvZpuuo7zbput1bNNFdwlKqIWgBKCbzccowpIk+XMdzQoAAHAnXX2h6aTmvm89LuazcTEfjYv5fpLfptxh4NwjRoc8UQLqICgB6ChhyfdeCUsAAKBRTtPNCYjD6vzMXfWAq3ExP7VNF12zy58r+kNQAtBtJxbFScqwxLguAAA0QHUwc1enSiYNqvP723T9Ou+26br0FNIyAyVg2wQlAN1vQAYRliTJbLocHikDAAA0QlenSh438e33cTG/em+broO826brjUeRFtDLs3WCEoCOE5Z8by/JQlgCAACN6VNMleyu/jfbdB1X23T9Lrbporn08WydoATwP5r9aUJG6eYbW3dxE5YceCoAAGDnTJU0p2dc/Gibrs9imy6a46ESsG2CEqAr9pXgowvfVcrJEmFJcjZdDj0zAACw2x7FVElD70t1vsnNNl2/ybttuq49ueyCA93ZNkEJQL8aEWFJ6TDlZImwBAAAdstUSfP7yPV723Ttp9ym62Vs0wV0iKAEoDmualrkrpKcKLewBAAAds1USSvv2WJczCc/2qbrq9imi+0aKAHbJCgBaM5ic1Xj7zVL8kzVc9jhpgwAANrCVEl7+9ibbbpO3tum61ls0wW0jKAEoKeEJd97Ol0OZ8oAAAA7601MlXTnXq7HxXz23jZdv025Tde5Jx1oMkEJQL8bklnKEem+E5YAAMBumSrpZs+5qrbpGsQ2XUCDCUoAem5czE+SvFaJPJ0uhyNlAACAnfQlpkp6cI8/sE3X69imC9gxQQkAGRfzUYQlSfJKWAIAADtjqqRffejNNl2j97bp+jK26QJ2QFACwM0idZTkQiWEJQAAsKOexFRJv+//alzMT8fFfDAu5g/ybpsufSqwdYISoCsGSrCxOlqEJqfT5fBIGQAAoP61eEyVkOS9bbqO8sNtupxvAmycoASA9xeiVxGWJMlekoWwBAAAdtKTmCrhx8/F+9t0HeTdNl1vVAfYBEEJAD/XmBzHYXrCEgAA2A1TJXysb73Zpuu42qbrd7FNV9ddKQHbJCgBaIZGLebGxXydcrJEWJLMpsvhvkcUAABq60dMlXDXZ2bx3jZdv45turpopQRsk6AEoBka92bEuJivIixJksOUkyXCEgAAqI+pEj61l7360TZdv8m7bbquVai1TJSwVYISAH5pgblKMlIJYQkAANTci5gqYVPP0vq9bbr2U27T9TK26WrbfTRRwlYJSgD42GLkLOXYct8dJpkpAwAA1KarQYmpkt32uItxMZ+8t03XZ7FNV9MJtdg6QQkAt1lIziIsSZIn0+VwpgwAAFBLH3KV8gvsLpq4w814xsbF/OxH23Q9i226msY0CVsnKAHgtgvIWcrx5L57KiwBAIDaTDp6XY+ny+GB29u4vnddnW9ys03Xb6s++Fx1dkpQwtYJSoCucHZEPYvGSbr7RtddPJ0uhyfKAAAAW+9B1jFVwu6ev1W1Tdcg77bp+iq26arbQgnYtgdv375VBaD1psth2/8yO68WXm2p9yzJU09enlWTNgAAwPb6j4Mk/+no5f2mCoNo33N5nOQfKrF119V0D2yViRIA7mxczEcxepwkr6bL4UgZAABgq/3HOqZKaN5zeaYKtVBnaiEoAeBTHSe5UIa8mi6HR8oAAABbNenodT11VkmrvVGCrROUUAtBCUAzLNr2Bx4X86skgwhLkmQhLAEAgK32H+uYKqF5fIm/Xdcmd6iLoASA+zQrN2HJdc9LsRdhCQAAbNuko9dlqqS9PfFMP7xVQhJqIygB4L4LQ2FJ6SYsccgcAABsp/dYx1QJzePL/O05VQLqIigBYBMNyyrCkkRYAgAA2zbp6HWZKvFM8kMX1XcNUAtBCQAbUS1gjlUihxGWAADAtvqOdUyV0Lxn8lwlNs40CbUSlACwyQXiIskzlchhjF8DAMC2TDp6XaZKPJOULqvzX6A2ghKg9Ryg3SzVYkZYkjyeLocWdgAAsPmeYx1TJTTrmVzEVImfA1pNUAJ0gS2OmrdInCX5UiXyVFgCAABbMelwD3Hg9nome+zCNAm7ICgBYCvGxfw03X3L666NjgUzAABstt9Yx1QJzXomF3rgjThRAnZBUALQDFcdXSiOLBSTJC+my+FIGQAAYKMmHb0uUyXtdZLkWhk+2ZsqcILaCUoAmmHV1QurwpI3bnFeCUsAAGCjvcY6pkpo1jN55d59suskemZ2RlACQB1GSS6UIa+my+FAGQAAYGMmHb0uUyUtVW1D7WD3uxtVQRPshKAEgDoWildJBhGWJMnZdDk8UgYAANhIr7GOqRKa5zi24LqL1+NifqYM7JKgBIC6GpibsOSy56XYS7IQlgAAwMZMOnpdpkra3f+OVOJWLuIAdxpAUAJA3YtFb9a8C0s0PQAAcP8+Yx1TJTTvuTxL8lIlftF1bLlFQwhKAKh7sbhKOVkiLCm34dr3VAAAwL1NOnpdpkra3f9O0t0QbxOOq+8IYOcEJUAXDJSgdYvFlfuWJDlMOVkiLAEAgPv1GOt09wDtiTvc6mdzFOd1/pxn42K+UAaa4r+UAIAdLRZX0+XwWZJXPS/FTVhysyfrfpIfn1+yrj5Jsq6aQAAA4IcmSb7t4HU9nS6HJ7YnarVBkkXV/1GGJDNloEkevH37VhWAVpsuh5MkL1p+Gb/r65sU0+VwFGHJp7hMGZ4sqs9K4wQAgP5wuEjyuIOX9rLaxon2Ppv7EZYkQhIaytZbAM3Q2z05qwXSM4/AnT2sGsAXKd+a+7/pcriaLoeT6XJ4pDwAAPTUpKPXdWLL3tb3vlcpJ0vOe1wGIQmNZaIEaL0uTJSMi/kD93E4S/LUE70xl0lmSWa26gIAoGe9xSKmStD/Nsl1ktG4mJ+5+zSViRIAGqE64O61SmzMw5QB4n+my+HZdDkcKAkAAD0x6eh1mSrpVv/7ZU8u9yLJQEhC0wlKAGjaYlFYsnlPknw7XQ4XAhMAAHrQVyzSze2N9pKcuMOdeU5Pk/w25W4AXfUmZUiycsdpOkEJAE1zkvKNEzbvcQQmAAD0w6Sr/ZKpku6oAoSjlIFCl1ynPI/kuDqbBRpPUAJA0xaKNwfcCUu25yYwmWmyAADoaF+xiKkSWtIDj4v5cZLP0o3pkjdJjhzaTtsISoAu8EVvBxeKEZbU4WmS9XQ5PFYKAAA6aNLR6zJV0s0++CzldMnLll7CZZLfVVMka3eUthGUAF1wpASdXCReJRmlHNlle/aS/MN0CQAAHewpFjFVQsv64HExnyT5Tdpzfudlym22DqqfOWglQQkATV4krlJOlghLtu9pksV0ORQ8AgDQJZOOXpepkm73wutxMR/lXWDSxJ74/YBk5q7Rdg/evn2rCkCrTZfDRcozF9q8CHrgTv7iPT5Kskj55hTbdZ3k2JtAAADoGRvvIslZklWShUOzO/0M76fccWGU5HDHf5zXSWZ6RrpGUAJY9O7e+biYD9zJj97n4yT/UInaPPNWEAAAHeklBkm+7cGlXqR8wWxWTefTzef5IGVgcpx6QpPr6rk6S3ImkKOrBCVAFxYJiwhK+nKvR0leqURthCUAAOgb2+kyySxlaLL2BHT2ud5PuV31IOX5rY839Oys8m5SaaHS9IGgBLDg3T1Byd3u9yjCkjoJSwAA6EIfMUg/pkp+jq2S+vWsHyQ5SBmc3Jxj8/4/31glufrRP69MjNBXghKgC4uARQQlfbvnp0n+rBK1EZYAAKB3bL/zJBOBCcBP/UoJAGibcTE/SflWFPV4VU3yAABAm016fv2Pk3w7XQ4X1dQBABVBCQCtNC7mowhL6nQ6XQ6PlAEAgBb3EIuUUxV99zjJf6bL4aQ64wKg9wQlQBf48ra/jc4oyYVK1GIvyZlGCgCAlpsowfdeJFl5IQpAUAJ0w54S9NogwpK6PExypgwAALSVqZKfXeP/73Q5nCgF0GeCEgDa3uhcRVhSp8fT5fBEGQAAaLGJEvzEi+rsEhPkQC8JSgB270oJ7qcKS46TXKtGLf5iPB8AgBb3D4sklyrxE49jKy6gpwQlALu3UoKNNDvrlJMlwpJ6nCoBAAAtNlGCn/UwyUJYAvSNoASAzhgX81WEJXV5PF0OR8oAAEBLe4dZTJV8yF7KsGSgFEBfCEoA6FrDs0q5DRfbd2oPYwAAWmyiBB+0l+RbYQnQF4ISADqn2nP4mUrU0jw52B0AgLb2DbOYKvmYM9twAX0gKAGgy02PsGT7TkyVAADQYhMl+EU323AJS4BOE5QA0FlVWPJSJbbeOJkqAQCgzT2DqZKPr/nPvCAFdJmgBGg1+6Vyi8ZnkuS1SmyVoAQAgDY7VYKPepjkTBmArhKUANB542I+irBkm/amy+FIGQAAaJtqSmKiErfyeLocqhXQSYISAHqhCksuVGJrTJUAANBGZym3luJ2XtjZAegiQQnA7q2UYPuqN8UOVGJrDqfLofoCANCmHuEkyWOVuLOZ80qArhGUAOzelRLU4jjeFKujxgAA0Hi23LqXhzFRDnSMoASAvvAl/vaNlAAAgJY4jRep7uOFiXKgSwQlAPTFQAm2zvZbAAA0XnXGxlOVuLeZEgBdqvj+8gAADPBJREFUISgBoC+NkLfF6jFQAgAAGm6iBBvx2MHuQFcISgDoA4t3tQYAgJuXqBzgvjkTJQC6QFACtN2+EnALAyVQawAAiC/2N81UCdAJghKg7Y6UAM9JozycLocCTAAAGme6HB7FNMk2nCgB0HaCEgC63gwdxPkkdRNMAQDQRL7Q344nVd8F0FqCEgC6zoK9foISAAAapZp6fqoSWzNSAqDNBCUAOzYu5gtV2Cpf2tfP1lsAADTNsRJs1UgJgDYTlADQdb60r59wCgCAphGUbNfD6gwYgFYSlADQdQdKUDvhFAAAjVFtu/VEJbZupARAWwlKAOi6AyUAAIBeM01Sj4ESAG0lKAEAAACgywZKUIvD6XJ4oAxAGwlKAIBN0xwBANAkAyWojXNKgFYSlAAWYcCmPVQCAACaoJpwsD6tz0AJgDYSlABt59BoaJ4LJQAAoCEOlKBWXmYEWklQAgBs2pUSAADQEAMlqJWgBGglQQnAbl0rAQAAwNYcKEGt9qbLoZ0fgNYRlADs1koJ1BgAANiaAyWonakSoHUEJQB0nW2g6rdWAgAAGuJACQD4GEEJAF0nKKnfWgkAAGiIh0pQu4ESAG0jKAGg62y9Vb+1EgAAAABtISgBoOsEJfVbKwEAAADQFoISADptXMyvklyrRK01X6gCAAAA0Bb/pQRAG02Xw/0kp0keqwa3sEjyRBlqcaEEAAAAQJuYKAFaZ7ocHqfc2udpBy7nYLocHrirW2f7rfoslAAAAABoE0EJ0BrT5XB/uhyeJflHkr2OXNbDJKvpcnjiDm/VmRLUZqEEAAAAQJsISoBWmC6HRymnSLq4fdJekr9Ml8OzaksxNmxczFdxTkldFkoAAAAAtImgBGi86XI4SvK/6c4UyYc8SbKoQiE2z1TJ9p2Pi/mVMgAAQK+tlQBoG0EJ0GjT5XCW5FWPLvkwwpJtEZSoMQAA/XOuBLVbKwHQNoISoLGqkORpDy99L2VYMvIUbM64mJ/F9lvbNlMCAADoPVPmQOsISoBG6nFIcmMvySthycaZeNieN7bdAgCggRZKUK/qjEiAVhGUAI0jJPkBYclmnSrB1syUAACABlorQa0ulABoI0EJ0ChCkp916sySzajebLJH8eZdVlubAQBA06yVQL0BPkZQAjTGdDmcREjyc27OLBGWbMZECdQUAIB+GBfzhSrUSr2BVhKUAI0wXQ6Pk7xQiQ/aSzKbLof7SrGRRslUyeZcjov5TBkAAGgw6//6OJ8EaCVBCbBz1aTETCU+6lCdNmaiBGoJAEBvLJSgFtcmeIC2EpQATTBLOTHBxz2ZLocnynA/pko2xjQJAABt4Dy9eiyUAGgrQQmwU9W5JIcqcSeT6XJ4oAz3JnC6v5ESAADQdONivkpyrRJbJ5ACWktQAuxMteWWc0nubi+24NpUs/RSJT7ZG2P1AAC0iC/x1RjggwQlwC7NlOCTPbYF10acJrlUhju7jmkSAAD0n7zzZlzMr5QBaCtBCbAT0+VwFFtu3ddkuhzuK8OnqxbyxypxZyNNEAAALVv7L+IlqW2aKQHQZoISoHbVl/unKnFve3HOxiYaplWSL1Xi1r4aF3Mj9QAAtJE+dDsu9QhA2wlKgF04SfklP/f3wsHu9zcu5qdJ3qjER12Mi7lwDgCAtprFoe7bqitAqwlKgFpV0yS+aN2siRJsxCjJhTJ80HWSgTIAANBW1faxpko23yeoKdB6ghKgbqOYJtm0Y2eVbKxpOo43zD7U/AycSwIAQAecWvNvtp76BKALBCVA3UyTbN5eygCKexoX83XKqQmN0zs3IclKKQAA6MCa31TJZnsFtQQ6QVAC1Ga6HB4neagSWyGA2lzjtIqw5P3GR0gCAEDXmCrZjIlpEqArBCVAnUZKsDUPp8vhQBk2Q1iSREgCAEB31/tX8bLZfV2Mi7lpEqAzBCVALaozNJ6oxFaNlGCjzdNNWNLHA96FJAAAdH29P0tyrhKfTNAEdIqgBKjLsRKocQubpz6GJRdJjoQkAAD0wCi24PoUX42L+UIZgC4RlAB18SX+9u3ZfmvzxsX8alzMj5J81YPLfZ1ykmTtzgMA0IO1/jrJRCXu5ELNgC4SlAB1GShBLQRS22uiTpJ8lm6+cXad5Nm4mI8cxggAQM/W+adJ3qjErfsGPQPQSYISYOumy+FRkj2VqMVACbbaRJ0lOehYI3WecqutmTsMAEBPjdLPswnv6sQWvUBXCUqAOgyUoDaHSrBd1VZcxymnSy5bfCk3UyS22gIAoPdr/Div5GO+8nIV0GWCEqAOR0pQH+eU1NZMnVXP9ssWNlQvkxxodAAA4Pv1/SrlS37Ckp96XW1FDNBZghKgDoIS9e5qM3U1LuaTlNtxNT0wuU55WPtvxsV8Yl9hAAD4yfp+lUQg8EPn42I+Ugag6wQlQB1sB1WvAyWovaF6PzD5Ms3akusy7yZIRrbZAgCAX1zbz5I8U4kk5bktx8oA9MGDt2/fqgKwNdPl8CDJf1SiVufjYj5Qhp0/+4OU+xwfJ9mr+be/TnKW5KzaIgwAALjben6U5HQHa/mmeJ3y8HaT6EAvCEqAbS8uB0m+VYlaXYyLue23mvdzcJxyz+NtTVhdJFkkWQhHAABgI+v4o2qN3bew5LXttoC+EZQA215YHif5h0rUa1zMH6hCY38m9lOeIzNIuVXXQfWvb9t8XSdZJbmqfl0kWXnTCwAAtrJ+P0oyS3+2lP5yXMxP3XmgbwQlwLYXlZMkL1SiXoKSVv/MDD7wHwlDAABgN2v0/ZRhyZMOX+Z1kuNxMV+440Af/ZcSAEBzaEwAAKBxa/SrJMfT5fAkySTd24rrPGVI4sUsoLd+pQQAAAAA8MuqLamOUgYLXXCdcqutgZAE6DtBCQAAAADcwriYr8fFfJDkWcqgoa1eJzlwHglASVACAAAAAHcwLuazJAdJXqZdgcl5kt+Ni/nIFAnAO84oAQAAAIA7qoKGyXQ5PE1yUn2aen7JeZKJMxEBfp6gBAAAAAA+0Y8Ck1HKwORhA/5o10nOkpyOi/nKnQL4MEEJsG1GeQEAAOi8KjA5TXI6XQ6PUoYmx6k/NHmTMiA5s70WwO0ISoBt89ZK/a6VAAAAYHeqCY6TJCdVaHKcZJDk8RZ+u8ski5ThyEI4AnB3ghKA7hFOAQAANEQVmnzfp1XByVHKw+CPkuxXv37sfJOLlLs2rKpfF0lWghGA+3vw9u1bVQC2aroc+oumXm/GxfxYGQAAAADg436lBEANbAVVLxMlAAAAAHBLghKgDr64V28AAAAAaCRBCVCHhRLUSlACAAAAALckKAHq4Iv7+lyOi/laGQAAAADgdgQlQB0WSlAboRQAAAAA3IGgBNi6cTG/SnKhErU4UwIAAAAAuD1BCVAXX+DXY6EEAAAAAHB7ghKgLoKS7btwPgkAAAAA3I2gBKjFuJivklyqxFbNlAAAAAAA7kZQAtTpVAm2aqYEAAAAAHA3ghKgTrbf2p7X42J+pQwAAAAAcDeCEqA21fkZr1ViK2ZKAAAAAAB3JygB6jZTgo27GBfzhTIAAAAAwN0JSoBaVV/on6vERjn7BQAAAAA+kaAE2IWJEmzMxbiYz5QBAAAAAD6NoASoXTVV8kYlNuJECQAAAADg0wlKgF3xBf/9nTubBAAAAADuR1AC7MS4mK+TvFSJT3adZKQMAAAAAHA/ghJgZ8bFfJLkQiU+yWkVNgEAAAAA9yAoAXZtpAR3dl6FTAAAAADAPQlKgJ0aF/NVbMF1F7bcAgAAAIANevD27VtVAHZuuhwukjxWiY/6bFzMz5QBAAAAADbDRAnQFMdxXsnHvBSSAAAAAMBmmSgBGmO6HB4lWSTZU42feD0u5iNlAAAAAIDNEpQAjSIs+VkX42J+pAwAAAAAsHm23gIapTrcfZDy0HLK7cgGygAAAAAA2yEoARpHWPK9iySDcTG/8lQAAAAAwHYISoBGEpbkTYQkAAAAALB1zigBGq06s2SW5LBHl+3gdgAAAACoiaAEaLzpcrif5CzJ4x5c7rNxMZ+56wAAAABQD0EJ0BrT5XCS5EVHL+8yyXG15RgAAAAAUBNnlACtMS7mkyS/TRkqdMlXSY6EJAAAAABQPxMlQOtUW3GdpP3TJZdJRuNivnBXAQAAAGA3BCVAa02Xw4OUB7237eyS6ySn1YQMAAAAALBDghKg9abL4SDJJM0PTK6TnKYMSa7cOQAAAADYPUEJ0BlVYHKS5EnD/mgCEgAAAABoKEEJ0DnVllyj6vNwh3+UN0nOxsV85q4AAAAAQDMJSoBOmy6HRykDk0GSwxp+yzdJzlIGJKZHAAAAAKDhBCVAb1STJkcpQ5Oj6rN3j/+Xl0lW1WcxLuYLVQYAAACAdhGUAL02XQ73UwYmSRmg/JKrlKHI1biYr1QPAAAAANrv/wNB1bG87ANK4wAAAABJRU5ErkJggg=="

const logoCoral = "iVBORw0KGgoAAAANSUhEUgAABkoAAAhPCAYAAACXR9fmAAAACXBIWXMAAC4jAAAuIwF4pT92AAAgAElEQVR42uzd7Xpb53km7As5+l8cNmmTNAmRepJ42rcV4uS/0C0QswWCNoAU3Ui2I8sW5A9Z8kdEkxsgcAtCbUHA/9OGbKfTpp00ZOK2aafliFug98cCTdrWBykCC2stnOdx4LCd+EO4sZb43LjW/TytR48eBWBW7S8vdUd/2j32P3c/97ftjl5J8jDJdpLd+bX1XRUEAAAAgHprCUqAWbG/vNRJEYJ0k3SSLIzhX7uVIjjZTrI5v7b+UKUBAAAAoD4EJUCj7S8vLSY5fJ0r4T+5k2SYZDC/tr7tEwAAAACAahOUAI0zmhxZSXnhyJPsJBmkCE1MmgAAAABABQlKgMbYX17qJekluVDBX95Gkr5zTQAAAACgWgQlQO2NApJ+xnPmyKQJTAAAAACgQgQlQG3tLy91k6wmOV/DX/7HKQITW3IBAAAAwBQJSoDa2V9emksRkFyq+Vs5SLIyv7Y+8KkCAAAAwHQISoBa2V9eWkxxQPq5Br2trSSLpksAAAAAoHyCEqAWRlMk/SRXGvoWD5L05tfWN33aAAAAAFAeQQlQefvLS+0km6nnWSSndWt+bb3vUwcAAACAcghKgErbX17qJBmmWVttPctGirNLbMUFAAAAABP2JSUAqmp/eamX2QtJkuKQ+uFouzEAAAAAYIJMlACVNApJ7s94GXaSdE2WAAAAAMDkmCgBKkdI8qnzMVkCAAAAABNlogSolP3lpcUkP1OJzzBZAgAAAAATYqIEqIzRwe0DlfiC80k2lQEAAAAAxk9QAlTCaHupYWbv4PaTurC/vDRQBgAAAAAYL0EJUBXDCEme5dLo/BYAAAAAYEwEJcDU7S8vrabYXopnWx1tUQYAAAAAjIGgBJiq/eWlbpIrKnFi5+IcFwAAAAAYG0EJMDWjc0kGKnFq5/eXl/rKAAAAAABnJygBpqmfZEEZnstNW3ABAAAAwNkJSoCpGH3Jb8uts1lVAgAAAAA4G0EJMC2+5D+7C/vLS4vKAAAAAADPT1AClG50gPsFlRgLgRMAAAAAnIGgBJiGvhKMzcL+8lJPGQAAAADg+QhKgFKZJpmIvhIAAAAAwPMRlABlW1GCsVtwVgkAAAAAPB9BCVCa/eWldpKLKjERPSUAAAAAgNMTlABlMk0yORdHQRQAAAAAcAqCEqBMtodSXwAAAACoFEEJUIr95aVOkgWVmKieEgAAAADA6QhKgLL0lGDiztt+CwAAAABOR1AClKWrBKWw/RYAAAAAnIKgBJi40ZTDeZUoRVcJAAAAAODkBCVAGTpKUJquEgAAAADAyQlKgDJ0laA055xTAgAAAAAnJygBymCiRL0BAAAAoJJ+TwmAEvjivvx6byoDAABA/ewvL3WP/eX2/Nr6Q1UBmCxBCTDpBd5cknMqUSrBFAAAQHV75E6KLarbx14LT/lnjv/lVpKHSbZHr935tfVtlQU4G0EJMGm+tC/fnBIAAABUw/7y0mKKYKSb5PwZ/3UXRn+8eOzff5BkOHptzq+t76o6wOkISgCaRzgFAAAwRaNw5PA16V0WzqUITi4mube/vLSTZBChCcCJCUqASfOlfflsdQYAAFCy/eWldpLe6LUwxV/K+ST3UoQmD5Kszq+tD31CAE8mKAEmzTZQAAAANNYoIOknuVTBX97FJBf3l5f2kvTn19YHPjGALxKUAAAAAMApjQ5mX001A5LPW0hyf395qZ+kZ8IE4LO+pAQAAAAAcHKjwGE39QhJjltI8vP95aXhaBIGgAhKAAAAAOBE9peXOvvLS9tJbqbe50NeSPLrUeADMPMEJQAAAADwDKNQ4RcpDktvipv7y0vbpkuAWScoAQAAAIAn2F9emttfXhqmmCJpovNJtveXlxZ92sCscpg7AFSj+WonaT/jb9udX1vfVS0AAChtnd5JMky9t9k6iXNJfra/vPTx/Nr6ik8emDWCEmDStpUAvtBoHX+1UxyoeNJ/PkkORvfWp6/5tXX3GgAAjHftvphkkOaHJMdd2V9emkuyMr+2/tBVAMyK1qNHj1QBmOTCspvk5ypRqq35tfWuMlTmHphLspikO/rjpJqsgxRPum0mGZo8AQCAM63je0nuz3AJdpJ0hSXArBCUAJNeXLaT/FolSiUoqU5jtZjk4rSugxRPv21qbgAA4NRr+fsqISwBZoegBChjkek3mnLdml9b7yvDVK71dpKVJL1UZzz/IMWUSd+UCQAAPHNN34uQ5DhhCTATvqQEQEkLK8qzqwSlN1Pt/eWlQYrpqSup1h7G55JcSvLr/eWlweiMFAAA4Ivr+sUIST7vfIpJdYBGE5QAZXDIdLl2laC0RmruWEByqQa/5EtJfjEKTNo+QQAA+HRt34lA4EkujvoegMYSlABlEJSUaH5tfagKpTRSKylCqUs1/OUfTpj0fZIAAFjbL82l2K72nGo8uYcYbUsG0EiCEqAMQyUozZYSTLyJ6uwvL20nudeARurm/vLSru24AACYcZtJFpThme7rHYCmEpQAEze/tr6d4kBpJm+oBJMzmiIZptintykWUmzH1fcJAwAwg2v8fpILKnFim6MJHIBGEZQApS2mlECda9w8ze0vL22mGVMkT3Jzf3lpqOkBAGCG1vmdJDdV4lQWkvSVAWgaQQlQFl/gT97eaHqH8TZP7RRTJBdn4O1eSLJtnB4AgBkxUILncmV/eamrDECTCEqAUsyvrW/G9luTJowas1FgsJ1mbbX1LAtJhvvLS4uuAAAAGrzWX5mxdf64DZQAaBJBCVAmX+RbqNapceqkmCQ5N4Nv/1ySn+0vL/VcCQAANHCtPxfbR53VgnMOgSYRlABlGijBxNh2a7yN0yyHJMfdF5YAANBAfWv9sVhxxiHQFIISoDTza+vDJHsqMbGFPmMgJPkCYQkAAE1a77eTXFGJsTiXZEUZgCYQlABl6yvB2B3EtmbjapqEJI933wHvAADoSXkMUyVAIwhKgFLNr60PYqpk3Fbn19YfKsPZjBb3mxGSPMlQWAIAQAPW/JdUYqxMlQCNICgBpqGvBGNzkGRVGcZimGRBGZ7aAA08LQYAQI35Ql9dAR5LUAKUzlTJWJkmGYP95aXVJOdV4pnORzAHAEB99ZRgIs451xCoO0EJMC19JTizvfjS+sz2l5e6cZjjaVzSBAEAUMN1/2JMkE/SohIAdSYoAaZiNFWypRJnsmKa5MzN0lySgUqc2ur+8lJbGQAAqBFf5E/WRdv0AnUmKAGmqacEz21rfm19UxnOrB9PlT2PcxEwAQBQL4ISNQZ4IkEJMDXza+u7SW6pxKkdRMh0ZrbcOrMLo+0LAACgDmv/cyoxcfoDoLYEJcBUza+t92MLrtPqjUImzqavBGfmjBwAAOrAF/jluKgEQF0JSoCqLFoPlOFENmy5dXajw8gvqMSZLewvL/WVAQCAiusqQWm9lloDtSQoAaZudCC5J3yebWd+bb2nDGPRV4KxWXFoIwAAFXdeCUrTVQKgjgQlQCXMr60Pk1xWiSc6sOAcj9E0iQPcx+dckhVlAACgout/fVS5OkoA1JGgBKiM+bX1QZKPVeILDpJ0R5M3nJ0v9cevpwQAAFSUL+7VG+CZBCVApcyvra8k2VCJTx2GJNtKcXajp8mM3Y/fwmhSBwAAqqatBOX2BkoA1JGgBKic0TkcwhIhyST0lEBtAQCYKSYcSra/vKTmQO0ISoBKEpYISSawWJ9LsqgSE3Nhf3mprQwAADDz5pQAqBtBCVBZo7Dk5Rl863sRkkzCYoqDx5lsjQEAoEouKEHp2koA1I2gBKi0+bX11SQ/SjFhMQt2knSEJBPhS/zJ6ykBAADMvLYSAHUjKAEqb35tfTNJN0WI0GQfz6+td+bX1h/61CeiqwQTd360xRkAAABAbQhKgFoYTVh0k3zcwLd3kORH82vrKz7pydhfXurGtltlMbkDAAAA1IqgBKiN+bX1h6Mw4S9SnOPRBHtJ2qOpGSanqwRqDQAAAPA4ghKgdubX1odJOklupf5nl+zaaqsUXSUoTUcJAAAAgDoRlAC1NJou6Sdx6Dkn4cv78pxXAgAAAKBOBCUANNr+8lI7zicpu+ZdVQAAAADqQlACQNO1lUDNAQAAAJ5EUAJA09l2q3xtJQAAoCL2lKB0QyUA6kZQAkDTzSlB6dpKAABARewqAQDPIigBoOnaSqDmAADMrF0lKN22EgB1IygBmC7bQk1eWwkAAGBm7SpBqQ7m19YfKgNQN4ISgOk6pwQAAAATM1SCUpkmAWpJUAIAjJtzYQAAqApf3JdrqARAHQlKgLrbVQKonPNKAABAFYy2gdpTidIIpoBaEpQAdberBFA5O0oAAECFDJVArQGeRlACAIybwxsBAKiSTSUoxY6D3IG6EpQAAAAA0GRDJVBngKcRlADQdPbIBQCAGTaacnigEhM3UAKgrgQlADSd0e/y7SoBAAAVY/utydqbX1v3kBpQW4ISAJpOUFK+XSUAAKBiNpMcKMPErCoBUGeCEoAp219e6qrCRHmqqXy7SgAAQJWMtt8yVTI5agvUmqAEgKYTlJRvVwkAAKigvhJMxMb82roeAKg1QQkAjTZ6csyIfbk1H6oCAAAVXKfuJtlSibEbKAFQd4ISoO5MC3ASQyUozY4SAABQYX0lGKstD0oBTSAoAerOQd2chEBNrQEA4HD62VTJ+PSVAGgCQQkAs8DBguUZKgEAABW3ogRj8cA0CdAUghIAGm9+bX07zikpi1AKAIA69AcbKnEmBxE4AQ0iKAFgVvgCf/J25tfWbYcHAEAdrMTDVGexOr+2vqsMQFMISgCYFYKSyRsoAQAAdTB6wKenEs9lZ35tva8MQJMISgCmr60EpTRCm/HE2KQJowAAqFuP8EAlTq2nBEDTCEoApq+tBJO3v7w0l8S2UJOzZfQeAIAa6iXZU4YTe3l0xgtAowhKAJgVwyQLyjAxAyUAAKBuRltwrarEiTyYX1tXK6CRBCUANN7+8tIgyXmVmJi9+bX1gTIAAFBTK0rwTDux5RbQYIISoNbm19aHqsDTjEKSSyoxUQMlAACgpv1CLybPn+UgyeJo+gagkQQlADS56VmNkKSMpsn4PQAAddVXgmeu97vOIwSaTlACQCONngy7ohITt+rJMgAAatwzmCZ5ssOQxOHtQOMJSgBoasNzXyUmbm9+bb2vDAAA1JS17JMJSYCZIigBoFH2l5cWIyQpi0MvAQCoa9/Qi2mSJxGSADNHUAJAk5qdThwsXpat+bX1TWUAAKCm+krwWDtJ2kISYNYISgCmr6MEZzcKSYZJzqnGxB0k6SkDAAA17R16MU3yOBspJkmcQQjMnN9TAoCpm1OCMzc67QhJyrQyv7a+qwwAANRUXwk+4yBJf35tfVUpgFklKAGg1vaXl+aSbEZIUpaN+bX1gTIAAFDT/qEX0yTH7STp2WoLmHWCEqAJ9ix0Z7bJmUsxSXJeNUprohzgDgBAnfWVIIkpEoDPcEYJ0AS7SjB7hCRTaaR69isGAKDGPUQvHrJLirNI2kISgCMmSgCoq9UIScrUNY4PAEDN9Wf8/W+kmCLZdSkAfJagBIDa2V9eGiS5pBKluSwkAQCg5j1EL7M5TXKQ4kxHAcnsXOvdJO3RK0m6T/nbd3O0S8cwyUO9H7NKUAJA3RZ9gwhJynTZ4e0AADRAb8be706KKfxN2+c2uj/upAhCukk6OX0YeOHYn98c/TuTZCvJdorwZOgaYhYISgCo0yKwFyFJmYQkAAA0oY/o5rNfCDfVVorpkU3TI42+njspgr/FTG5K6sLodWX033Rt0XiCEgDqshjsJbmvEqU4PLh9UykAAGiAfkPf11aOnvgf+pgb3Q+3U4QjvUxnC7nD4OTe/vLSgxSBycAnQ5MISgCm74ISPHNR2IuQpCwHcXA7AADN6SW6De25DpIs2hKp8ddvJ8lKqrWzwsUkF/eXl/pJBklWXYc0gaAEgDosDFdVohRbmi0AABqm39D35cvpZvfB7RQhRJVDvoUU55qs7C8vrbomqbsvKQEAFV4cdlKMkp9TjYm7Nb+23rWwBQCgQf1EN82dJvEwWTOv2bn95aVBkl/X6No9lyIw2R3tBgG1JCgBmsAWQc1cIApJyrGX5Pvza+t9pQAAoGGausb15H4ze+CVJLup1jZbp3Euyf395aXhqJ+HWrH1FtAEFojNWyDOJdmMkGTSbglIAABoaE/RjWkS6nGttlP9bbZO40KSX+wvL708v7buWqU2TJQAULVF4lyKSZIF1ZiYjSTfFpIAANBgTV3rmiZpVv+7mGKXjCaGevdG0yVzPmnqQFACQJUWiYchyXnVmIgHKbbZ6s2vre8qBwAADe0rujFNQvWv036Sn6XZOylcSHF2ia24qDxbbwFQJYMISSbRTG0m6QtHAACYEf2Gvi/TJA0wekBwNfU9i+S0zqXYiuvy/Nr6wBVAVQlKAKjKYnGQ5KJKjM3OaPG9qZkCAGCG+opuTJNQ3etzlndRuL+/vBRhCVUlKAGoxmKpPctP+49CkkuuhDM3TsMU0yND0yMAAMyofkPfl2mS+ve9tpouwpLO/Nr6iiuCqhGUAFRDO8nujC4WVyIkOa2DFAf+ffqaX1vfVhYAAGaZaRIqfG0KSY5cGU2WCEuoFEEJANNcLPaS3FOJbCRZSfKsA+52TYoAAMAT9Rv6vkyT1LvvFZJ80ZX95aVt23BRJYISAKa1WOwlua8S2ZpfW++N/nyoHAAA8Fz9RTemSaimQYQkj+PMEirlS0oANMBQCWrXxHQiJEmKA9cXlQEAAM6s39D3ZZqk3r3vapKLKvHk63v0/QBMnaAEgLIXip0It5IiJOlqegAA4Mw9RjemSajedbmY5IpKPNW5JJuj7clgqgQlAJS5UDwMSc7NeCkOIiQBAIBx6Tf0fZkmqW/v206x5RbPtqBWVIGgBICyFoqHB9gJSYQkAAAwrj6jG9MkVM+m3vdULu4vL60oA9MkKAGgjOZFSHLU7HTn19a3XRUAADAW/Ya+r00PV9W2/+3H4e3PdS+PJnFgKgQlAEx6kXgYklgoCkkAAGCcvUY3zZwmSZobADX9mmwnMRnxfM7FFlxMkaAEoBo6DX5vmxGSJMllIQkAAIxVU7+Q3phfW9/18dbSauykcBYX9peXFpWBafg9JQBqr9WIdzHXxI9m/8rSIK3GPuF1GpfnP14fKAMAAIyt12inlYsNfXt9n3Atr8lug6/JMq2meOASSmWiBIBJLRIHSS6pRF4WkgAAwNj1G/q+NuY/Nk3impxpC/tXlnrKQNkEJUATWERWzP6VpX6EJIdNzqoyAADAWPuNdoP7jb5PuJbXZDexm4L7gDoTlAC1N//x+u6jJHV/NcV/XVnqPUpuNuEzOeNrY/7j9Z47FAAAxutR0m9wD7HrE3ZNemXhv0yVUDJBCQBjM1rI3FeJPPh9IQkAAEyi52jHNAnVuiY7MU3ifqD2BCUAjGtx2I2QJEl2kvSUAQAAJqLf0Pe18fumSepqRQkmYmH0PQOU4veUAGiEVksNpui/VpY7abU2VSI7Sbq/v7r2UCkAAGDsfUc7rZZpEqp0Tc6l1VpUiYnpJRkqA2UwUQLAWReGndHC5dyMl2IvQhIAAJikfkPf18bvr67t+nhraVEvPNn6/tfK8pwyUAZBCQDP7b9WltsRkiTJQZJFIQkAAEy09zBNQtWYJpmsc0m6ykAZBCUA1VC7H/yjpzo2IyQ5SDFJsu0yBgCAiek39H2ZJqmpUU98USUmThhFKZxRAjTCI0eUlOo/X16eSyvDJOdnvBQHSbpfvickAQCACfYf7bRMk1Atj1omHUoiKKEUghIAnscwQpIkWRGSAADAxPUb+r42vnzPNEmd/OfLy90UO0Is6olLc+4/X17u6L2ZNEEJ0BQ7FimlLQwHap0kufzle2sDZQAAgIn2H+04m4TpXX+dFMFIN7bZmqZuEkEJEyUoAZrCIdrlLBIHDW5STkNIAgAA5eg39H2ZJqlmzzuXYlqkO3otqEoldJOsKgOTJCgB4KQLxtUISQ4bmoEyAADAxHuQdkyTMPnrrJujcMTuCdXUVgImTVACwEkWjr0kV1QiG1++t9ZTBgAAKEW/wX3Fro93av3t4XZai0kuqEgtCLCYOEEJ0AytlhpMahH5l1d6abXuq0Q2vvzTj3vKAAAApfQh7bRapkkYz7V0tJXWYlqtc6pSy8+x8+WffuycEiZGUALA0xYivSRCkmQnyYoyAABAafoNfV8bX/7px7s+3on3ssfPGTGN0AxzSsAkCUoAqqFdwYVlJw5LS4qQpPvln378UCkAAKCUXqQdZ5Nw+v71MByxnVYzdZIMlYFJEZQAVMNCBReZwySzPpIsJAEAgPL1G/q+HpgmGVvP2s7ROSNdvetMMFHCRAlKgEZ45IiSsfm/P77SSUtIkuQgSe8rHwlJAACgxH6knVZjp0lM7D//dTGXz5wzUq2HDYH6E5QA8PnF5yBCkoMk3a985KA4AAAoWb+h72vrKx99PPTxnqo/7eYoHLGdFjBRghKgKYYWTmdehM6N6jjrB90JSQAAYHo9yWJD317fJ/zMz7+do620uvEAH1AiQQnQDC17b51pQXp1ZS6t1jBCkiTpfeXDVSEJAACU39etpJlfjm995cPVoQ/4MX3o8XNGWi3baQFTIygBICn2yhWSJJe/8uHqpjIAAEC5Rl+arzT07fV9wp9+zt0chSN6UKAyBCUAFqqDpLGHJZ7G5a98uDpQBgAAmArTJM3sNzs52kqrG9tpARUlKAEa4ZESPJf/EJIc+vgPhCQAADCtvsQ0SbM+y+PnjNhOC6gFQQnA7DYjvQhJkmTjDz5cXVEGAACYmsZOk/zBDEyT/EexndZhOGI7LaCWBCUA1Vlcdv6gpEPERyHJfVXPxh98uNpTBgAAmFofZJqkhr1rjiZGLrqKKclQCZgkQQlAdcyVtKjtRUiSJDtCEgAAmDrTJBX3H1dX2jkKRhbjnBGggQQlQCM4o+Rk/r148kdIkuyMFvkAAMD0+hPTJNX9bI6fM2I7LabuD2dgGzumS1ACNMWuEjxzoduJUdVkFJL84YerD5UCAACmqrHTJHX7Uvffj7bTWkxywaVJxewpAZMmKAGaYlcJnrnoHcaI9EGSRSEJAABMvUcxTTLd+rdzFIx09YpU3LYSMGmCEqAZWkrwxAXwtZW5tLJp4ZuDJN0//GB111UBAABT7+GaO03yQfWmSf792spcjp8z0sqCi5AaEZQwcYISgAYbLYaHycwvgg9DEosrAACoRp9immTyde7kaGLEdlrU2VAJmDRBCUCzm49hHLyXJItCEgAAqAzTJJPpAduxnRbNc1DFKS2aR1ACNMIjJXhcTQYRkiTJ5a9aVAEAQCX8zjTJuGvZzVEwYjstmkg/TykEJQDNbD4GSS6qRC5/9YPVgTIAAEBlNHaapIwHtH53baWbo3DEg3HMgk0loAyCEoDq6GYMT0qMQpJLyplbQhIAAKgO0yTPVbN2jiZGurGdFrNHUEIpBCVAM7RaapDkd6+8vJJWS0iSbHz1/Xt9ZQAAgEr1bc2dJnn/3nBMPd1cjgcjrZbttJhlD776/r2HykAZBCUADfG7V17uJbmnEtn46vv3esoAAACV6ldMkzy5Nt0chSO204IjAyWgLIISoCm2Z7zp6CW57zLIlpAEAAAqqanTJDunnSb53Ssvd3K0lZazJeHx9r76/j3bblEaQQnQCF99/97D373y8ky+99HTR0KSZCfFU1gAAEC1epYmT5OsnuD9t3MUjHST2E4LxnBvwTgJSoDGeDSDx5T826svd9JysFmKkKT7tbv2LgUAgAr2ak2dJtn72t17gyf0asfOGbGdFpzSQWy7RckEJQA19W+vvtxJMmxow3Gq5iRCEgAAqLLGn00y6s+6KabcL/jI4UxW9fiUTVACUEP/9urLcxGSJMVTJosWUAAAUNnepdfQvuVg9P4GKcKRcz5tGNu9ZdstSicoAahfoyEkOVo8db929962qwIAACqr39D3dS7OioRJWPEwJNPwJSUAqIz2s/6GYyGJPW6FJAAAUGmjaRIHlwMntfWkc39g0gQlANXRPsHfsxkhSZJcFpIAAEDl9ZUAOIUVJWBabL0FNEir0e/u3179y0HScihgcvlrd386UAYAAKh0/9JLWqZJgJO69bW7P/VAJFNjogSgHk3GIMkllcjLQhIAAKiFvhIAJ7Tztbs/9XsGUyUoAZpkq4lv6t9e/ct+hCRJsvG1uz9dVQYAAKh8D9OLs0mAkzlIsqgMTJugBKD6DcZNlcjG1+7+tKcMAABQC30lAE5o8Wt3f7qrDEybM0qAxnjUatYZJf/62o97abXu+2Tz4Ot3PuopAwAA1KaPMU0CnMTlr9/5aKgMVIGJEoBqNheLSYQkyU6SnjIAAEBt9JUAOIGNr9/5aKAMVIWJEoCK+dfXftxJYrFQhCTdr9/56KFSnPmamkvSecL//fDrdz7aViUAAMaw7uzF2STAs23YOYKqEZQAVKux6CQZJjk346UQkjzf9dNNEYh0krRHfzx3gn/ueN0fjq7B3STDr9/5aFdlAQA4ob4SAM8gJKGSWo8ePVIFoBH+9bUfD5NcqPFbOBj9cdZDkoMUIYkph2df850ki0m6E7z2D1IEJ5tJNoVXAAA8YW3ai+2D4Vl2Rn88P6PvX0hCZZkoAaiOc0ogJDlBA9pJcW7LYsrZ1uBckouj1/1/fe3HWym2hhOaAABwXF8J4Av2cvTg2fDrdz56ONoaeZjZC0te/vqdj1ZdElSViRKgMf7lJ7WfKJl1B0m6f/SekOQJ13cvyUqFFtMHo8V+/4/esz0XAIC1qmkSyNFE/jDJ5tN6pX/5yY8HSS7NSE16f/TeR5suD6pMUAI0aXE+K4uMprr8R+99NFCGxzad/VT7UMytFIHJ0CcGADCTa9bdOMSd2bWVo2Bk+5T3Tiot65wAACAASURBVC/Japq7w8ROipDEA5FUnqAEaNLivJ/kpkrUkpDk8Qvmfs0azq3RInjXJwgAMFPrVtMkzJK9jLbSSjL8o/fOtiXxv/zkx50U2xs3bSuuj1M8UGfLZmrBGSUATJuQ5IuL5NXUcxu5C0l+/S8/+bEFMQDA7OgrAQ13uJ3WZopgZHec//LRtEWnQQ9/7qV4gG7o0qFOTJQAjfHJdRMlNbTxjdsf9ZQh+eT6j+dGTeaVhrylvSS9b9y2OAYAaPAathfTJDTTVkbByDdul7dt1CfXf9xOMV1SxwfnDlI89Lf6jdsemqN+TJQAMC1CkqPFcBNHrReS/PyT68V0iYUyAEAj9ZWAhtjJaCutb9ye3qHj37j90W6S7ifXf9wd3V91CUw2Rn3frkuJujJRAjSGiZJaEZIcXbe9NPvwvsOmY9GiGQCgcetY0yTU1UGOnTNS1V6lBoGJgITGMFECNEhLCephJ8mKMiSfXL86SFqXZuCtnk+y/cn1q4vfuP3h0CcPANCI/quvBtTMg3wajHy4XYdf8Ggr4+4n1692Rn30Yqb/kN1eiof9Bt+4/aGdA2jOTzUTJUBTfHL9aj8mSqpuJ0l31hdTn1y/Opfi6aULM/j2L3/j9ocDtwIAQK3Xs90kP1cJatB/DpNsNuWBrVEvuTh6XSzxP7036mEHdQmZ4LRMlABQ5iJVSFIsbIdp1nkkp3H/k+tXIywBAKi1vhJQQXujXmuYIhxpXO85ek+D0SufXL+6mKSbpJPxPoh3cKyWQ+EIs8BECdAYvzVRUmUHSTrfvP3h7oxfo7Mekhx3+ZvCEgCAOq5puzFNQnX6zOHh65u+zM9viy262imCk7nRHw+1kyyM/nzrc//oMMnDJNtJtr9pSy1mkKAEaNKCYDHJz1SikovX7qwvWoUkjyUsAQCo37p2mNncQpZq2MnoEPZvOv8QGCNbbwFN4omH6hGSHNmMkOTz7v/2+tUISwAA6mE0TSIkoUyH22kdhiP6fmAiBCUATFJPSJL89vrVgYbyie7/9vrVXU+DAQDUQl8JmLDj22ltzvr2zUB5BCVAc7SUoGIuf/PdDzdnvQi/ff3qSlq55HJ4qs3fvn618813NUEAABVe13bT8vAPE7GVw3NG3vUAFTAdghIAJuHyN9+1ndJvX7/aSXLP5fBM51KM0neUAgCgsvpKwJjsjdb/wxThiO20gKkTlAAwbh8LSZLfvn51brT452TO//b1q6vffPfDFaUAAKjc2rYbW8ny/A630yrOGTFJDlSQoARojEcte29VwMa33vnAF93F9dhPsqASp3LlNzeubX7rnQ+GSgEAULm1LZzG4XZam99654Nt5QCqTlACwLhsfOudD3rKkPzmxrVukisq8VwGSdrKAABQqbWtaRKeZSejrbS+9c4HJuuB2hGUADCWRbGQ5DMGSvDcFn5z41r/W+980FcKAIBKsC7jcQ5y7JyRb73zwa6SAHUmKAHgrHaSdJWh8Jsb1/qx5dZZrfzmxrWBZgsAYOpr225Mk3BkK6NwxHZaQNMISoDG+NY7Hwx/c+OaQpRrJ0n3W+988FApkt/cuDaXxBktZ3cuxZOLPaUAAJiqvhLMfL83THHOyFA5gCYTlADwvA4iJPm8lRRf8nN2l0ZbcO0qBQBA+UyTzKS9jLbSShGO6PWAmSEoAeB5CEm+2EiaJhm/fkyVAABMcy1G8z3I0TkjttMCZpagBGiWlhKUoAhJ3raI/ty1Z5pk/C795o1r/W+9baoEAKBMv3njWjct0yQNtZPDc0betp0WwCFBCQCntSgkeayeEkysrn1lAAAolfVXcxxup3UYjtgVAOAxBCUAnMZlTx190W/euLaYZEElJmJFow4AUOrathtnk9TZQY6fM2I6G+BEBCVAozxSgkm6vPD2BwNleOx111OFiTm398a1xYW3P9hUCgCAUta2fVWonU+301rwYBvAcxGUAHASt4Qkj7f3xrW5JBdVYqIWR40fAACTXdt2Y5qkFh/VaH08TBGO2E4L4IwEJQA8y8bC2x/0leGJFpVAjQEA6m7vjWsrSe6pRCUdbqd1ODWyqyQA4yUoARqmtRdnRYzTxsLb7/eU4anXnC/xJ+/c3huvLC68/b6pEgCAMdt745W5JJtJyyRJtWxlFI4svP3+tnIATJagBGia3QhKxuWBkOSJzWQ3yeFLQ1mObmy/BQAw7nXtYpJBknOqMXU7OTqEfbjw9vu20wIokaAEgCct0nvK8GkD2Umx/VM3gpFp6SoBAMDY1rdzKQ5tv6IaU3OQz5wz8v6ukgBMj6AEaJRHLTUYg50k3fZbs/sE0+6br3RyNDHSTcsTdhVwXgkAAMa01m1lMybxp2Ero3Ck/ZbttACqRFACwHF7mcGQZPfNV9opQpHDqRHBSDU/p277rfeHKgEA8NzrqX6SmypRmk+302q/5bw9gCoTlABw6CDJ4iyEJMeCkcOXp+nqoTNqNAEAOP36dxDbyE7aXo7OGdmc5Sl9gLoRlACQFCFJt6nj37tvvjKXz06MCEbqqa0EAACnXgs7sH2yHuRoasR2WgA1JSgBmqXlkJLn1G3futuYRf3uzVcPg5Hi1Wo536IZOkoAAHCqNfFqWq1LqjFWh9tpbbZv3R0qB0AzCEoAuNyEkGT35qvdHE2NCEaaaU4JAABOtDbuJA5sH6ODJCspwhHbaQE0kKAEYLZdbt+6O6hp89fN0dSIvZZngwAMAODZ6+R+HNg+TltJFgUkAM0mKAEa5VGyHV+an9TL365RSPLr4qm47rGXPZYBAOBovdxOMUXi4ZLxOEjS//atu6tKAdB8ghKgaTzlczIbVV/wjxq9w8PXuxGMAADAk9bOvSSr1sxjs5Ok9+0GneMIwNMJSgBmz8a3b93tVbC5a+ezEyP2UwYAgKevoeeSDJJcVI2xufXtW3f7ygAwWwQlQKM8UoJn2fjjioQk/1w0dd0cTY0IRgAA4OTr6W6KkMQ6ejz2kvT++NbdoVIAzB5BCcDs2EmyMsVG7jAYOXzZOxkAAJ5vbd2PA9vH6UGKkMRWzgAzSlACMBt2knTLXviPnnLrppgaEYwAAMDZ1tftOLB9nA5SBCSbSgEw2wQlAM1XWkhyLBjpJrmg9AAAMLa1di8ObB+nrRQhya5SACAoAZqlpQSfUzwh1Z9MSPLP/Vc7Ob6dVkvTBgAAY15zFwe2txzYPkYv/3H/7qoyAHBIUALQXAdJun/cv7s9xiatnaPD17vxNBvl2lMCAGCW/HPfge1jtpPiQbJtpQDgOEEJQDONJSQZBSPdYy8NGtO0qwQAwKz4574D28fs4yT9SU3bA1BvghKgUR4lQ81EkmTlhecISX5VjPUfnxgRjFAlu0oAADTdr/oObB+zgySLL/TvDpUCgCcRlAA0z+UX+ncHJ2zC5vLZiRHNGFW2qwQAQJP9qu/A9jF7kKT3gikSAJ5BUALQLM8MSX5V7HN8ODUiGKFOhkoAADTRrw4PbI8D28fkIEn/BQe2A3BCghKgWVqtWX73Gy/cvDP4QtN167VujiZGLsx4jag3h24CAI3zq1uvddNqDWLb23HZSbL4ws07u0oBwEkJSgCaYeOFm3d6o0ark6NgxBNpNMXeCzfv2DIBAGiUX916rR9nLI7TrRdu3ukrAwCnJSgBmqY7g+95J8n2r269tjl6//YzpomGSgAANMWvbr3WjgPbx2kvSe+Fm3esGQF4LoISoGk6M/iezye556On4TaVAABogl/deq0XB7aP00aSFdPHAJyFoARomo4SQCMNlQAAqLNf3XrNge3jdZBiisQDNQCc2ZeUAGhY4+EARGieB54QBABq3qt0k2xHSDIuW0k6QhIAxsVECdAkXSWARtIAAwC15cD2sXv5hZt3VpUBgHESlACN8aglKIEGOoigBACoof/z1ujA9pYD28dkJ0nvv795Z1spABg3W28BTdJVAmiczf/+pm23AIB6+T9vvdZLsdWWkGQ8tpJ0hSQATIqJEqApjcicJgQaqa8EAEDN+pJBnEUyLgdJekm2PTwDwCQJSoBGeJQsqgI0ztZ33ryzqwwAQB3801uvdVOEJAuqMRYPkvS+IyABoASCEqApukoAjdNXAgCgDv7pLQe2j9FBkv533nRgOwDlEZQATdFVAmiUre+8eWeoDABAlf1TcWD7IMkF1RiLnRRTJM4iAaBUghKgCc1JJ8bboWlWlAAAqHgfspgiJDmnGmPx8XfevGMNSNXu87kknSSHfzzUHr2SZPi5f2yYJB78gnoRlAAN0HI+CTTLxnfefM9ThABAJf3TWz+ZS7KatC6pxljsJel95833hkpBBe7vboodK7pJOknrJEHo5yfKbo7+XYfX93aK8GSoz4HqEpQATSAogeY4iGkSAKCi/umtn3SSbMZE+7iMDmx/z4HtTOuebqf4TqGb5OIE/hMLo9fF0X/vYPR7yDDJpmsfqqP16NEjVQDqvqj5tUpAY/zoO2++t6kMAEAFe49+HNg+LgdJVr7z5nsDpWBK93MvRUByccr3wWaSgYkqmD5BCVBr//j29ZUk91QCGuHBd9+4bUIMAKhazzGX4stMB7aPx06Sxe++cXtXKZjCvbwyelXtbKG9JP3vvnF74JOC6bD1FlB3vlSFZthL0lMGAKBK/vHt6w5sH69b333jdl8ZKPk+rnJAcmghyf1/fPt6PwITmAoTJUDdFzv/TyWgEb7/3TduO9gQAKhSr9FPckU1xmIvSe+7b9weKgUl38sro3v5nHsGeBoTJUCdmSaBZrgsJAEAquIf377eSTFFcl41xmIjycp337jt0GrKvI+7SVZrfB8vJPn5P759/cHo/tn1qcJkfUkJgBrrKQHU3sfGygGAqhg9ff6LCEnG4SDJj777xu2ekISS7+PVJD9vyH18Mcn2P759veeThcmy9RZQ14VPO8mvVQJqbeO7b9y24AcAqtBfOLB9vLZSbBu0qxSUeB83fRrswei+EjzCBNh6C6ilRy3bbkHNbXzvhpAEAJi+X75zvZtWNuPA9nG59b0bDmyn9Pt4Ma0MGn4fX0yy/ct3ri9+74ati2HcbL0F1FVPCaixgxl//0ISAKASfvnOp1v0CEnObi/J94UkTOE+Xknysxm5jxeSDH/5znUPj8KY2XoLqOMiqB3bblG/pnGYYjuH4eh/G2Y2974WkgAAVegpHNg+5jVekpXv3bAlEKXfy4Mkl2b07V/+3g3nPcK42HoLqKMVJaDiDoORYZLh9258cW/mX75zvTtqzi9ayAMAlOeX71zvJVmNKZJxOEjS+96N25tKwRTu5UFmNyRJkvu/fOd69FgwHiZKgNr5h3eu76YYN4UqNYjD0WvzxRsnP7TyH4rtHq7MQH0WX7xxe+hSAQCm2EfMZfYeVJmkrSS906x9YYz38yCzHZIcd/lFYQmcmaAEqNtiqJtiD2GYpuPByPDFMx6k9w/F/rKDNPOpxq0UIYltGACAafcRg3jgalxuvegsEqZ3Pw8iJPk8YQmckaAEsCCCk9nKUTAynMC13bQnHA+S9F+8cXvVpQMATLmH6Ce5qRJjsZfiIZhtpcD9XDk/etE2ePDcBCVAnRZEc0l2Yy9hyrGT0eHrZW4ZNZouWU29n3a0DQMAUIX+oZ3iQZQLqjEWG0lWTAozxXu6l+S+SjzRQZKuIBOej6AEsCiCwk4+u53Wwyle63NJVkavOgWDe6Pm2VNMAMC0e4cmb21atoMUD8FY4zHNe7oz6tXc08/uyToCTTg9QQlQp4XRdpLzKsEYF5DDHE2NPKzgNT+XYrrkUg1q2bcnLgBg/dQ4JoWpyn29HWcMndSDF2/cXlQGOB1BCVCPhdG7r3eS/EIlOIPDYGSYZPji6+/u1uj6r+qEyVaSwYuvvztweQEAFekZBvFw1bjcevH1d/vKQAXu7UGEn6f18ouvv+u8SDgFQQlgYURTHeT4xEiNgpFn3Au9JIuZ3qHvBym+gBi8+Pq79r4FAKqyRlpJck8lxqI4sN1aj2rc24tJfqYSz9W3dZrSB0MZBCVAHRZGDnHnpAvBYY4mRrZn4L5YHL26E74/Ds9v2Xzx9XeHLjUAoGJros04sH2c675+EucbUBWD2HLreW29+Pq7XWWAkxGUAHVofnpxiDtPWPjl6Av87Rm/TzopApNOkvYZvizYSxFMDlPsAzx88fV3NcoAQBXXP90UIYkHqgAe70cvvv7upjLAs/2eEgBV96iVFVVg5DAYGf6P6yYbjhsFRV8Ii/7+9uvdY3/ZSTJ37K+3c/S04O7/uG4sGwCoh7+//fpqWrmiEgBPtZoiUAaewUQJUPUGyCHus+1wy6dhinDEZAMAwGz3B+0UX/o5sB3gZC7/j+vvDpQBns5ECVB1pklmy96o8R1GMAIAwDF/f/v1Xoqno221BXBy/RRnvQBPYaIEqKz/ffv1uST/TyUabS/HJkb+xNZPAAA8vi9YTXJJNQCey+U/MVUCT2WiBKiynhI0zkFGh69HMAIAwDP872Ir3s0kC6oB8Nz6MVUCT2WiBKhyU7SrIaq9w2BkmCIY2VYSAABO2A/0k9xUCYCx+Is/uf7uUBng8UyUAFVtihYjJKmrrYymRgQjAAA8Ry8wl2KK5IJqAIxNb9SrA49hogSoanM01BjVxmEwMvR0CgAAZ+wDFlNsD+PAdoDx+29/cv3dh8oAX2SiBKhic9SOkKTKdvLZ7bQssgAAGEcfsJrkikoATMxhGA18jqAEqKK+ElSKYAQAgIkZHdg+SHJeNQAmSlACTyAoASrl7967MZdW65JKTNVejgUjf/qTd3aVBACACa3/e2m1VmOrLYAydJUAHk9QAlTNihKU7iDFYZnDCEYAACjB3713Yy7FU80XVQOgNOf+7r0b3T/9yTtDpYDPEpQAVSMombyDfHZiZFtJAAAoy9+9d6OT4kGdBdUAKF139H0AcIygBKhOw3TnRi8tI/cTsjVqRod/+ppgBACAqa35+2nlpkoATE1XCeCLBCVAlfSVYGy2cjgx8pqRWgAApuvv7tyYS/HgzgXVAJiqjhLAF7UePXqkCkAVGqfFJD9Tiee2k6NgZFM5AACo0Fq/myIkMT0OUA3/7U9fe+ehMsAREyVAJTxyNslpfRqMJBn+fxY4AABU0P+6c2M1yRWVAKiUTpxTAp8hKAGq0Dx1YwT/Wfby2WBkV0kAAKjwGr+dYorkvGoAVM6cEsBnCUqAKjBN8kUHo8ZyGMEIAAA18r/u3OglWY2ttgCqqpPiOwdgRFACTLuJaie5qBI5yGcnRraVBACAmq3t51IEJJdUAwCoE0EJMFWP0urP8Nvfymhq5M9ee1swAgBAbf3tnTc6SWszyYJqAFSerbfgcwQlwDSbqXZm62mzrYwmRv7stbeHrgAAABqyrl9Jck8lAGqjowTwWYISYJr6DX9/OymCkU3BCAAATfO3d96YSzKIrXQBgJoTlADTaaruvjGXViOnSTZyuJ3Wq28/9EkDANDQ9Xw3rWzGge0AQAMISoBpWWnge9r7s1ff7vloAQBosr+9+0Y/yU2VAACaQlACTKOxmkszg5KBTxcAgAav49ujNe8F1QCoNTtgwOcISoDSPSpCkiaO6K/6dAEAaKK/ufvGYoqQxFZbAPW3rQTwWV9SAqDkBqup0yQbf+5MEgAAmrmGX03yswhJAICGMlEClK2p0yR9Hy0AAE3yN3ff6KSYIjmvGgCN4kFP+BwTJUCZjVZTp0m2/vzVt3d9wgAANGjt3ksyjJAEoIlsvQWfY6IEKJOzSQAAoMJGDzetJrmkGgCNtasE8FmtR48eqQJQVsO1m+YFJXt//urbbZ8wAAANWLN3kmwmWVANgOb681ffbqkCfJatt4CyOJsEAAAq6m/uvrGS5BcRkgA03ZYSwBfZeguYfNP1/ptzabWaeDbJwZ+/8tbAJwwAQK3X6skgrdZF1QCYCc4ngccwUQKUwdkkAABQMX/z/pvdFF+YCUkAZsdQCeCLBCXApJuvuRRBSdMcRFACAEB91+n9JD+PrbYAZs1QCeCLbL0FTNSj5k6TbJ5/5a2HPmEAAOpkp3iQaTPJBdUAmL0fA77LgMczUQJMuglbaejb6/uEAQCo2fq8m2Q3QhKAWTVQAng8QQkwSU2dJtk4/8pbuz5eAADqYuf9N1dTbLV1TjUAZtamEsDj2XoLmIjtZk+TOJsEAIC6rMvbKb4YO68aADNtp+OhT3giEyXApKymmU+rbXVeeWvbxwsAQNVtv//mYpLtCEkA8NAnPJWJEmASDVk7yaWGvr2+TxgAgIqvx+dG69YrqgFAkoPYdgueSlACTEK/oe9rq/PKW0MfLwAAVbX9/pudFIf1miIB4NBm55W3HioDPJmgBBhvY/bBm+20GjtNYkwVnnzvd5PMJemM/qfusf+7nWThCf/o1rE/HyZ5mGKLkO3ONQt5ADjlz+NeWo3dAheA59dXAni61qNHj1QBGGdztpnkYgPf2l7n2lttnzDu8Tc7KcKQ469JfRmzlyI8GSbZFJwAwBN/Ps+leKjnkmoA8DkbnWtv9ZQBnk5QAoyzQesm+XlD397lzrW3Bj5lZuyenksxGdJNEYhcmPIv6UGKfXWFJgBw9PPaVlsAPM23O9fe2lUGeDpBCTA2v/jgzWGm/0XqJOx93zQJs3EPHw9GuqnuFy6HBxH2v2/BD8Bs/+xeSbGdiq22AHicW9+/9lZfGeDZnFECjKtJ66aZIUliL0+afe92kiymCEbqcg+fS7G1yKVffPDmRgQmAMzez++5FFMkF1XjzB6kOB+tTprce33eQZwVOetuKsFz23P/wMmZKAHG1axtp5nj/qZJaOL9upijcGShIW/rVpLV79uSC4Dm/xzvpJisXFCNMzlI8bDFag2vgbkU4c6sXAMv1/FzYmzXez/Ckuf1o+9fe2tTGeBkBCXAmf31Bzd7Se439O1dfunarYFPmZrfo4dbah0GJE3dnmMvSe+la7eGPnUAGvozfSXJPZU4s53RmmG7xtdCN809H/LzDpJ0Xrp2a9elO7O9zDDOYTqtBy9du7WoDHByghJgHAuX3TTzaaa9l67davuEqfG9eRiMXJqxt/5xkv5L126ZLgGgKT/TbbVlnfC462I1yZUZ+dx2Xrp2q+PyndnfAztJfqESJ7aXIlzUD8EpCEqAsy5Y+mnuGKxpEup4Tx6GI02eHDlRM51k0ZOHADTgZ7uttsbjIMUUyWbDro+mboH8OLdeunar71Ke2d8LTdSd3F+YsofTE5QAZ1mozCXZTTO/jDVNQp3uxU6SXopwxJcoRw6SdOu8rQYAM/8zvh97849DYx+gmMEn7b9vbTfTvycOMnvT8qf18kvXbjnTB56DoAR4/kXKh/0mN26XX7raH/iUqfD9N5ciGFmJ/XqfpghLrvY11ADU7ef8ZpILqnFmt1662u83/HqZpSftiy2FrvZtKTS7vzcO9T9PtPHS1X5PGeD5CEqA512gtJP8uqmL75eu9ts+ZSp673VTTI94kurkhCUA1O1n/WZmewvNcf38X3zpan84I9fNMLMTrH380tX+ikt8Zn+PnEuyHZP0n7f10tV+Vxng+X1JCYDn1PfeoLxm4K8/7K/89Yf93SQ/j5DktM4lGf71h30HgAJQ9Z/5/dHPeiHJ2TxI0p6VkGSklyIcmgVXRoEiM2g0TbQ4Q9f7SeyMagKcgYkS4NT+qliU/ryhb2/vB6ZJqNa91otgZFwOkrR/YKsGAKr3M99WW+Pz8g+u9ldn9DrqJblvXceMXO+dFNtwzXqwvJOk616AszNRAjyPvvcGE1vwz/3Vh/3eX5kemYRzo2YKAKr0s7+bZDdCkrPaS/L9WQ1JkuQHxRmLD2ZoXTdw2c+uHxTb6nZH9/6sEpLAGJkoAU7byC0m+VlTmyvTJEzx3mqnOJi9F09FTdqtHzT8UFcAavPzv5/kpkqc2UaSFV8WfjqdtDtD68nLo4CI2b7mh5m9A943fuDgdhgrQQlwKv+zeMq9qYemXf6hRTbl31PdFAHJRdUo1fd/6HB3AKb3899WW+NxkGTFGv6x68ufz9A10Pnh1f6uT37mf08dzFBPdeuHHvyCsbP1FnCaxcdKmhuS7GmwKPl+6v3Po+21hCTlc78DMK01QDe22hqHnSRda/gv+mFxiP3HM/J2bcFFfni1//CHV/uLSW41/K0eJPmRkAQmw0QJcNKGrukj3KZJKOs+Whm9bK/lvgdg9tYC/dhqaxw+/uHV/ooyPHPdOczsbEfkCXsOr/1uivCsaQ95biXpmZ6CyRGUACddbKwmudLQt7fzw6v9jk+ZCd4/7ST9OJi9avZ+6FwiAMpZC9hqazwOUnxRuKkUJ7ruOkl+MUNv2daqHP89t///s3en23Fd553w//Dyd6KvgMgVCF62Wh0lDktxbCdOYsJOO+kMIouaOYgskNY8sOBZsiQCsizKlmwWpLydvG3HAtOdpDN0VOjBmfpdBq7AwB0IV4D3wyla1EARQ1Xh1Nm/31q1KMuTzrNPndr7PHs/T5rxDmMrSfcTX+4uGlkYLYkS4Kb+v+e7M0l+3uBLvOPjF7p9I80IvjutVM3ZJUjq68THLzhVAsDI5wMrcZp0v1aTtD9+wW7qXd5/3ZRzimk9SevjF7pvG3mue/4uZnJPVl1N0vHcg/GQKAF2MrlYSXN7KKx+/EK3ZZQZwYS8G7tGJ8Hmxy84VQLAyOYE3Si1NQwLH7+grNI+7sN+QfPSpY9fUJaN930H2oP12aSU41pN0rWhE8ZLogS42YSilarZdFM5TULJE3A8BwAYzZxAqa3h2Eoy53d63/fjTJK1lHOqydyOSV2vSZDAAZIoAT7U/31hYS3NbQC4+onzF1tGmSF8T+o+4ebDLX/i/MW2MAAwpHlBK0ptDcPVJO1PnL+ojNLw5qtXCrncrSQznzh/8e3/+8LCTJKZm/zn19xnxX0f5lKVSD5ak/t1SGYpsgAAIABJREFUJcniJ85f1GMHDpBECfBhk4dOkksNvsQ7PnH+Yt9Is8fvx3SSuUiQNGIx/YnzF6eFAYAhzA+6UWprGOY/cf6ixsXDvz+bXFJ5GNaTvJ2kn+oETl8CpfHfiZnBmq6d8W8QvZoqQbLiPoN6kCgBbjRhmE6ykebuhLODnP18NzqDj52izfGFT5y/uCIMAOxjfqDU1v5tJpmzq9oar2b35EqqpIm5YrO/HzNJWtd9hr0Zbj1VEq4fSTioJYkS4AP92/MLi0nONfgSf+nWCxc3jDS7+E5IkDTb0q0XLmr8CcBe5gitKLU1DMtJOrde8PJwDPfrWyKxJ9dKJPVuvaAyQQHflZlUZdtaSaaTzA7+rSM3uUeuJXr7qU4orblfYDJIlAA3mhD8vMmLsFsvOE3Cjr8PEiRlWL/1wsVZYQBgl/OEbpTa2q+tVAmSnlCM7b5t+qa4cdhMVYJ3RXIPoBkkSoAPmjj309yyAVtJZkxm2cH3QIKkPP/OswGAXcwTlNrav/Uk7VsvKLV1APdvP+PvydDU9eVikkXzSIDJ9hEhAN4zaZ5r+ILPBJabLhwHu0M3Uu0QlSQphxMlAOxkrtAazBMkSfZnKUlLkmT8BuuhtkgMxaHBmmHj355fUMYVYIJ9VAiAd5nKYoOv7tpuH3iff7vWpH3KCZKCzabaXQkAN5ovdDOl1NYQ5uTtWzXGPlC3Xri49m8vLCxE6bhhOZTk0r+9sNAZ3N/mlAATRukt4N0Lv2ZPlOdvPX9RooT33vdKbHHNwq3nL3aFAYAbzBeU2tq/9SRzt56/uCEUtbm316IE1ygsJeneel41A4BJofQWcG2CPJPqRXFTbUqS8AH3fTtKbPGOlhAA8AHzhVaU2hqGpVvPX5yVJKmduVSnfBiuc0nW/u2FBaVdASaERAmQJNlOFreTQ9vVXzfx0zXKXPOvLyy0//WFhY3t5ErD73ufXX4A4D1zhu528pb5wr4+W9vJHbeev6h/Qw3dev7ixnbSdZ+O5HN4O/nZv76gdwnAJFB6C8i/Vrvk3mrwJa7++/MXW0aaf61OkHSTHBYNPCsA+JA5g1JbQ/ptTTL375UfmoR7fiXJUZEYmeUkHd8FgPrSzB1Ikl7Dr69riItf+LUG97kECR9mWggA+NeqVM6KecO+Lfx7vb8mSTtViTnlaEfjeJLZf31hoSVZAlBPTpRA4f6l+Q3cr952/uKckS72/m6lSpTZDcqO3Hb+4pQoABQ9d+gkuSQS+7KVZO628xf7QjFx9/9ckjdFYqTWk7RukywBqB2JEih7Ijyd5u8a+qXbNIws8d6eTbIYCRJ2SaIEoOh5cS9KD+3X1SRtL4En+ruwmKoROaMjWQJQQ0pvQdkW0+wkyZIkSXELu5lUJ0iOiwZ7XLQCUN78Qamt4Zi/7fzFRWGYeN0kc74PI3VLkv6/vLAgWQJQI06UQKkLwktfaaXZDdy3kszcNv+0iWcZ9/P0YFFn9xv7sXrb/NMtYQAoag7RTnJFJPZlM8ncbfNPrwlFY74Xs0l+JhIjV50ssWYFqAUnSqBcvYZf36IJZxGLuOkkncFH40kAYDdziMU4hbpfVakt8+5GuW3+6bV/ufSVhTS7l2Ud3DJ4DrWFAuDgfUQIoMiFYTfNPkq9edv8010j3fj7uJ1kbbCAkyQBAHY6h5hN0o8kyX7N3zb/9JwkSTMN1lPKko7e8cH6HIADJlEC5S0MZ1Ltvm+yjpFu9D3c+pdLX9lIVSZD7WSGqS8EAI2fR7QHz/tbRGPP1pN87Lb5p/Ujab65VCWNGa2Lg9LYABwgiRIozHayuJ0c2q7+uomf1dvmn14x0s3zz5e+0vrnS1/pbydvbSeHG3wP+xzgB4BGzyV628mVhs+FR/1Z3q56KuhHUoDb5p/e2E667vuxfFb+uSoJCMAB0aMEyloctpIcbfhldo104+7bmcG4Ko/BqPWFAKCxc4mVOEWyH1tJOv9h/umeUJTlP8w/vVjIOvKgHUrVR3ROKAAOhhMlUJamL2yW/8P8033D3Az/fOkr0/9c1ev9eSRJGA811gGaN5+YS9XTTJJk79aTtCRJitaOElzjcHTwzALgAExtbys0ASX4p+qF88UGX+JWktlfnn96w2g34n7tpDpFokk7Y/PL809PiQJAo+YTi0nOicS+LCfp/LKG7b5P1Qv8N0Vi5DYH61rfOYAxU3oLypjUzqTZSZIkWZQkacwCbDGatDN+q0IA0Jj5xHQ0bN+vrVQJkp5QkCS/PP/0yj9d+spSJB9H7XCSa5vGABgjpbegDE1f4Gz+8vzTJpIT7J8ufWX2ny59pZ9ql5okCQdBU1qAZswpWkk2IkmyH+updrT3hIL36KY68cBodf5JY3eAsXOiBBrup4tfncvU1JGmTySN9MTenzNJupma0oOEgyZRAjD584pupqYuisS+LN3eecrcmg/0y/NPv/3Txa+2k7wlGiN1KNUp+7ZQAIyPHiXQ7MXidKoddU3u87B6e+epltGeyHuzM/joQ0IdfOz2zlOSJQCTO6/oJTkqGnu2laR9e+epFaFgB9+5bppf2rkO/t3tnaf0KgEYE6W3oNm6af5LaDveJm9h1U61e/9iJEkm0VaSq0lOJFlqyjVJkgBM7LxidjCvkCTZu/Uks5Ik7NTtnae6g/sGa12AxlB6C5q7aGyl+Y32lr3cnLh7spvkiGhMnK0kK0lWrn+J8tPFrzbl+9c3xAATObdoJ7kiEvui1BZ71R7MoWx8Gh1N3QHGSKIEmmoqiw2/wq3YYTMRfrr01ekki5mKPiST9x2rkiPn3r/D9KdLX53NVGMa5fYNN4C5RYG/8+0P+o2Hnbi989TaT5e+2k1ySTRG5tBPl77avv3cUz2hABg9iRJo5uKxmzTmBeaNdG8/p17rhNyL+pBMlqupkiM3W5C1G3TNfcMOMDFzi9lU/UhuEY09W08yd/u5pzaEgv24/dxTiz9d+upcnBgfpbnBMw+AEZMogeYtHmfS/JMW67efe2rRaNf6PmwNJvSHRWMyvlOD8ertIgE515Br37z9nBJ+ABMyv7j2wtAGjL1buv2cUlsMlc1ro3X0p0tfnbZJEGD0JEqgabaLWDxa3NXUTxe/OpNkMRqqToJrpbUWd9vrZ9BvpilJsL5bAWAi5hiLaX7/vVH/7rc1bGfI38tp8/6xcKoEYAwkSqBZE9USjj1fvb3zVN9o1/L+60aZrUmwmqR3e2dftY7bDYqH5wlAvecX06kS+0r77F1Vaquj1BZD1xKCsZAoARgDiRJo1iKy6ZMnDdzree+1Up0iUSu83t+dPZ0eucGzZq5BsbGzFqDec4yV2ISxH0u3d5TaYmTmhGAsWkIAMHoSJdAQ21NT3QIWkYu/cu7JDaNdD/9n6WvTSRYzNXVcNGprM0k3ycqvnHtyKHWNt6em5hr0rFkfVlwAGPo8o5OpqUsisWdbSeZ+5dyTfaFghGvQliiMxaH/s/S12V8596S+egAjJFECzVhIttL8ms2bv3Luya7Rrs091051isQOz3q6miqx2B/B/3a7QXHquVUAajfHuHZKWt+DvVtNlSSxGYBRf1cPi8TYtJJIlACMkEQJNEOvgGtsG+ZaLIhmUyVI1Amvn2vltbqjOnn1f5a+NtOwsVd2C6B+84xelPPcjwWbixiTWSEQb4AmkSiByV9QdtP8nTxXlQ048PtsOlV/mIuiUTubqZJXvTHsHG1SjfNNpfwAajXXaMdp1f1QaotxawnBWEmUAIyYRAlMsP9d7bpr+otrDdwP/j5rpdrd6Wh9vawnWfzVc0/2xvV/uN2sk11OkwDUZ66xmOaXkR2l1SRzv6rUFmO07cX9uDlpBzBiEiUw2RZLuMZftev7QPxvNcLrajVJ91fHvGP0fy99rUlN3BP9SQDqMtfoxwvA/Vj4VaW2OBjTQjD2Z+aMtTHA6EiUwOROkjppfp+ITQu/A7u/2lH+om6WUyVIDmpx1G7Ys0UzTICDnWu0Up3uM9fYm61Up0j6QsEBcaJk/GaSbAgDwGhIlMAE+l8vfm0mU+kWcKlto30A91bSy5Rm7TWynKT7ybMHt3ts8Mxp0skiZbcADna+0clULonEnq0naX3yrFJbHJztKUlOAJpFogQmUy/N33139ZNn7ZAbp//14te60ay9LrZSnehZrMlLkHYDn6EAjH+uMT34fTsuGnu29MmzT+rfB2WaTVWuEIARkCiByVtgzqX5Jbc0cB/vPdVK9dJCffB63Pt1SpBc025QjDc/eVbZLYADmG/MpkpUm2/sfY7Q/uTZJ52KpC7fZ8ZPXxiAEZIogcmakF5rrt10iwdZZqiw+6mb5Jxo1MLWdd/vzv968Wt1+eeaSXK4QXH2gglg/HOOuZRxInpU1pPMmR9TI17YA9A4EiUwWUpYYK5/8qwG7qM2OEXSS7NegE+6Q5G0GtdzFIDxzTm6UdpzP5TaAgAYA4kSmJxF5lzSqGbKN2IhONr76NqppKOiQYGU3QIY75xjJc0vGTsqSm0BAIyRRAlMzkKzV8ClLmvgPtL7SNkLSrcoBABjmXPMpkqSOLm6N0ptUXdvCwEATSNRAhNgO1PdNP/ltgbuI/I/X/z6TJLFZMopEkpnVy7A6Ocd7WRqMTZm7NXSr519wpyYWvvk2SfX/ueLXxeI8ZOgAhghiRKo/2KzlTL6FnR/7ewTJn7Dv386qRq2e1lB6VZ/7ewTG8IAMNJ5x2L029qrrSTtXzv7hKQ+cCNKyAKMkEQJ1HuxWUrJrdVfO/uEkjjDvXdmBveOuuBQ6QkBwEjnrP0kt4jGnqwnmZPQBwA4OBIlUGPbU+mmjNrOygsM0ep3vt7NVDpxigSuZ4cuwGjmHbOZSt+8Y8+Wjjyo1BYTuVZdjU1Z47YhBACjI1EC9V10tlJG6YKFIw8+4QjxcO6Z2VS75u3mhHdbPvKg0n4AI5h7tJNcEYk92UrSOfLgEz2hYEKZW43ZkQedOgMYpY8IAdRy0VlKya3NJEpuDeee6Sb5WSRJ4IP0hABg6HOPXiRJ9mo9SUuShAlns9v4nxsAjJATJVBD25nqpoySW+3Wg4/bibQP/e98Y3CKZEqCBD7YZuvBx/vCADC0ucegH4m5xx4tJ+mYA9OANatEyXiJN8CISZRA/RafrZRRcuuql5f7vle6SS6KBHyonhAADG3uMZvoR7JHW6kSJH6XaAov7sUboFGU3oJ6LT5LKbm1laRtxPd8n7T63/nGRiRJYCd6QgAwlPlHO1WZT0mS3VtP0pIkoUlaDz6+kaqUMmN6DAsBwGg5UQL10k0ZJbe6yg3sYWZcJdK6KePEEQzD6mARD8D+5iC9JMdFYk+U2qLRjwfPhrHYaj34uBMlACMmUQL1WYC2UsYL8NXWg49r4L63+6OXMhJpMCw9IQDY1/xj0I8k+pHszbx5L01/TESiZFxxBmDEJEqgPovQXiGX2zHiu743unGKBHZrS4kTgH3NQfQj2bvNJHN2gFOAlSRXhGEscQZgxPQogXropoyTAgsWjDs3OEWyFkkS2IueEADseQ7Sjn4ke3U1yaw5LyUYlJRbF4mRkygBGAMnSuCgF6IvfaOVqSJehG+2zjzeNeI7uieqUyRTEiSwD0qdAOxtHtLLlFI6ezTfOqPUFoWZymKcKhmlq60zehwBjINECRzsQrSkklttI76je6IVvUhgv1ZbZzRxB9jDvLQf/Uj2YivJXOvM432hoEDKb40+vgCMgdJbcLC6KeOF+JKF44frv/SN6f5L31hM8lYkSWC/ekIAsKt5yGyqcp+SJLu3mmTGXJdSDU47LIvESGy1zui5BzAuTpTAAXmrOjlQQmmlrVQJIT78XuhFggSG8sy5w4ISYDfzkHaqcoX6kezewh1Ky0K2q2eIkn3Dp5QfwBg5UQIHsyAtquTWHWqq3vA+eMspEhi2nhAA7Hgucq23gCTJ7mwl+YIkCVTuOPP4WqrTVQyXRAnAGDlRAgejmzJejF+948zjaqp+AKdIwIIS4ADnIdc27RwVjV1bTzJ3h15Y8EFr3LeEYWiWbTgEGC+JEhizf3zpG3Mpp+RWx4i/b/ynB4uIc6IBQ3f11724ArjZXGQ2VZJEP5LdW/r1M4+b38IHuOPM4/1/fOkbq0mOiIa1NMAkUnoLxrswLankVtcLy/eNfytVo1RJEhiNnhAA3HQu0o8kyW5tJTkhSQI3XwMKwVAs/rrTJABjJ1EC49VLGTWgV3/9zOPK3wz840vfmP5HvUhg1DZ/Xak/gA+bj3QGcxH9SHZnPUnr18883hMK+HC/fubxfpJlkdjfnDZKyQIcCIkSGN/idC7l1IFuG/FfjHsrTpHAOFhQAtx4PtJLckkkdm05VZJkTShgxzqpTmGxx/g5TQJwMKa2t7dFAUbsf3z3m9NJNlLGDr6FT51+rGvMv6kXCYzXv/vU6ccsKgHePx/pR6mtvZj/1OnHJOFhb8+euSRvisSuXf3U6cfmhAHgYDhRAuOxkjKSJOuSJMn/+O43W3GKBMZpWZIE4H3zkdnBfESSZHc2k3xMkgT27lOnH1tJclUkdmUrKjMAHKiPCgGMfJHaSXKkkMttFz7WTpHAwfAyC+Ddc5L24NmoH8nurCaZk3yHoa0N16JH40559gAcMKW3YLSL1JnB5FDJreaPdStJz0IAxm71U6cfawkDwC/mJN0kF0XCXBZq8DyaTfIzkfD8AZgETpTAaCm51fzJv1MkcLB6QgDwiznJYpLjorErW6l2cveFAobrU6cfW/sf3/3miSRXROOGliVJAOpBjxIY3WK1m3JqQncKHeNW9CKBg7T5qdOP9YQBMO/8RdN2SZLdWU8yK0kCozOYqy2IxA2fQR1hAKgHJ0pgBP6hOmJcSsmDpd8obHH5D06RQF30hAAw7/zmbKokiX4ku7P8G6cfawsDjN6nTj/W/YeqLLVk7jvWk7R+Q18SgNpwogSGv1idTjkv7zZTJQxKGt9WnCKButDEHSh93jkXSZLd2kpyQpIExmvwnVsWiSSSJAC1JFECw9dNOSW32iVN7v6hKqf2VjRshzpYtrgESvYP3/1mJ8mbkSTZjc1ULyd7QgHjJ1mSRJIEoLamtre3RQGGt2BtpXqRXoKl3zj9WKeQcZ1NdUroFnc51MbHfuP0Y2vCABQ65+xFCZvduprCNvlAjZ9hiynzhL4kCUCNSZTAkPz9y9+cTrKRMnb1bSaZ/fSp5k/w/v7lb3ZTTr8ZmBSrnz71WEsYgELnm/3YvLFbC58+9VhXGKBWz7N2kisFXfJykk4Ja2iASaWZOwxPL+WUPmg3fYL39y87RQI1pjcJUBxzkz3ZSjL36VOP9YUC6uXTpx7r/f3L31xLGX2W5j996jHzV4Ca06MEhrNw7SQ5WsjlLjV9sTk4RfKzeBEBdbT56VOPrQgDUNhcczZOkuzWeqoT0H2hgHr69KnH1pLMJFlt6rw1ycckSQAmgxMlsE9/9/I3Z1I1cC/BZpOv9e/s1IRJ0BUCoLC5ZjtllacZhuXPnHqsLQxQf4NKBa2/qzYfdtOc0yVLSbqfUWoLYGI4UQL7t5KCSm41daI3mJj3I0kCdbY1eOYCFOHvqlOukiS7+504IUkCk+cz1amL2SRXJ/xSNpPc8ZlTj3UkSQAmi2busP/FaymNvpc+c+qxTgPHcCbVKZIj7miovYXPaMYLlDPP7CU5LhI7tplk7jNVKR9gsp9/rVQ96SZpE9tWqhMkymwBTCilt2DPk7dvtZKpUpIkjSy59Xcvf6uTTHVTzokgmHQ9IQAKmGNOJ+knU0657tzVJO3PnHrU7m1ogM9UvYVm/+7lb7UH69DDNf7H3UqV1Fn0DAKYbE6UwN4XsGs1n7AN0x2fOfVov0HjNxOnSGDSLH/m1KNtYQAaPsecSVViUJJk5xY+c+rRrjBAo5+NrSSdJEdr9I91bTPhigQJQDM4UQJ700s5SZKlhiVJ2ql2/DhFApNFGQOg0f7u5W/NpuqXZo6yM1upTpHoXQUNN1iP9gfJ5PbgcxDr8Wv98npNWiMDUHGiBHa/iG2nnKaam0lmm7BDZnAKqJd67UICdmb1M6cebQkD0OD55dxgniJJsjPrSeY+c+rRDaGAYp+bs0laSeYy2koBm6mSI32JWYBmkyiBXfjbl5+ZSVVyq5RF7B2fPfVIvwHj5uUDeBYB1HWe0k45m3CGYTlJ57OnHlHqBrj+WdpKlTiZGXz2kjxZT/J2qtN9a0n6njUA5ZAogd1NvtZSTs3opc+eeqQz4ePlFAlMvs3PnnpkRhiAhs4tu0kuisSOzX/21CNKMQK7ec7OJpm+yX9sTUIEAD1KYHcL2VKSJOupGtNN8ni1Uh2Rdopk+LaStD976hFHz+t1z7fTzB3JXaMLNPS53UtyXCR2PPeYc7oQ2K3PnnpkTRQA2AmJEtjJQvbyM61MFbXbr/3Zk5O5o+ZvLz8znaSbqZxz547EUpLupN4fjTbVyITC5mdPPtIzuEDD5pXVidcpJ153aD1Jy9wDAIBRkiiBnS1mS9o5v/DZk5O56+ZvLz/TSlVq67A7d+g2UyXQ+kJRy3t/rqH3fc/oAg2cV/ZTzinl/Vr+7MlH2sIAAMCoSZTAzfVSTvmm9c+efKQ7af/QvzhFEqdIRsQpkvrrNPCatpKoQw80xt9efmYm1eYbSZKdOeFUIQAA4yJRAh/iv19+ppOyGoG3J3CMZlMls7x0GL7NJO3fdIqk7t+BVpIjDby0xd+UnAOa86yeTXWSRO+0m9tK0vrNk/oKAAAwPh8RAvjQBe2lgi55ftIWpP/98jPdJD+LJMkoLCWZlSSZCN2GXlfP0AINmlP2I0myE+tJZiRJAAAYNydK4IMXtFWTzXKs/ubJRxYnaHycIhkdp0gm61nVSjNPkyz/5slHNoww0JDn9EokSXb67G8LAwAAB8GJEvhgiynnJfxWJqjk1qAcmlMko7EQp0gmTdd1AdR2ztJO8lYkSXbihCQJAAAHyYkSeI+/ufzMXJLjBV1y97cmYOf231QNUHtp5u75g7aepP1bylxM2rOq1dDvw9XfcpoEmPxndDvJFZG4qa0kLXMQAAAOmkQJvHtRO5OySm5d/a0JKLn1N9Upkm7syByFhd86+UhXGCZSU8dt0dACEz6fbEeSZCfWUyVJ3hYKAAAOmkQJvFtJNaRrX3Lrb6peMStximQUnCKZYH9T9elp4vdi9beUfgMm+/ncSXJJJG5q+beU2gIAoEYkSmDgr195ZjFTRfW9aH/ugfru4PvrV56Zy1R6cYpkFBY+94BTJJNseyqdhl6a+xKY5LlkL1NFlW/dqxOfe+CRnjAAAFAnU9vb26KAhe0rz8wlebOgS17+3AP13MX31688M52q/NlRd+bQradKkDlFMtnPq5kkP2/gpW1+7oFHZowwMKHP5l4iSXITW0la5iEAANSREyVY2L7zYr4Um0k9d6P/9SvPtFJW+bNxcoqkObquC6BW85deJEluZj1VkkQ/EgAAakmiBLaLezHf/lzNmmb+ddWLpJvknBty6NYHY273ZgP89eVnZtLMl3GbnzupDAswkc/lXiRJbmb5c/qRAABQcxIllL647aasRuELn6tZo+S/vvxMK9WJnsPuyJGMd1cYGqXrugBqM4fpRZLkZuY/d/KRRWEAAKDu9Cih5MVtK8lbBV3y+udOPjJbszFYjFMkIxnrOEXSxGfWTJrZm2TrcycfmTbCwIQ9k3uRJPnQZ3uSubpt0AEAgBtxooQi/dUrz05namqlsMVqu0bxn03Sy9TULe7GkXg7yeJfvfKsSDTJ1NRMQ6/MTmNg0uaRvUxNSZLc2HqSud9+4OENoQAAYFJIlFCq0vqSdH/7gYdrcbrgr155tpvkoltwpI4IARNiKxIlwAT5q1ee7cVJkg9zNUn7tx94WNN2AAAmikQJJS5wuynrRfLqbz/w8GIN4j6TqheJl/jANYtepgETNIdsR5Lkwyz89gMPd4UBAIBJ9BEhoLAFbitlnWbYSjJXg7h3kqxFkgR49/PJaRJgUuaQ7SRXROKGz/MTkiQAAEwyJ0ooxn975dnpVCW3StL+nQPcrX1dzCVIgPda/B2nSYDJmEO2I0lyI1tJWr9TkxKvAACwV06UUJLS+pIs/c4DDx9YYui/vfLsXJKNSJIAH6wnBEDd/bdXnp2N0283sp5kRpIEAIAmcKKEUha53ZT1wn49SfeAYj2d6gXoUXcecAPLv/PAwxvCANR8/jibpJ+yNtrs+DmepONkIAAATSFRQuP91/L6kiRJ+3cPYOE6iHVpJ3eA3esKAVDz+eO1jR/mNO+38Lv6kQAA0DASJZSwyC2tL8n87465BMIgzt0k59x1wE0s/67TJED9rSS5RRjeZStJ53cfeLgnFAAANI1ECU3XT1k7AVd/94GHx1pH+79WZSlWkhx2uwE70BUCoM7+6yvPLkaPtffaStL6Xf1IAABoKIkSGusvv/fsYqaK2gm4lWRuzDHuZqq4smbA3i1//n6nSYBazx/nMuWE7HusJ2l9/n79SAAAaC6JEpq7yC2vDFR7XAvYv/zes7Op6nYrSQHsRlcIgBrPH2cG8xvesZykI0kCAEDTSZRgkdsMS5+//+GVMcW3k+plp+amwG5cdZoEqLme+c375pcdYQAAoAQSJTTKX37vF83bS1rkrmcMu7SvS0Cp2Q3sxaIQADWeQ7bNcd7lxOfv17QdAIBySJTQNItJcX1JRl5ya1DKrBe7LIG9Wf38/Q/3hQGoo8FGG8ncd+aWrc/fr2k7AABlkSihSYvcdpLjhV12d5QL2cGLg16So+4wYD/PKiEAaqwTm0GSZDPJnCQJAAAlmtre3hYFJt6guXi/sEXu1c/f//DcCGPaSnllzIDhW/38/Q+3hAGo6RxyOsmG+U7WU50k0bQdAIAiOVFCUxa4pb3Q30zSHmE8u0nOubuAIegKAVBjTpMky0k6kiRxqgqkAAAgAElEQVQAAJRMooQm6CU5XNg1j6QvyeBkzkqB8QRGQ28SoLYGm0M6hYdh+fP3P9x2NwAAULqPCAETvsDtpLz+GQujePH4l997tpvkZ5EkAYanKwRAjbVT9mmSE5IkAABQcaKEiXX1e99uJVOXCrvs1aP3P9Qdchxnk/SSqVvcVcCQn1d9YQDqajtTpZ4m2UrSOXr/Qz13AQAAVCRKmEhXv/fta31JSlvUtoccx06qHd8atgPD1hUCoMZzydmUeYp2K0nr6P0PrbkLAADgHRIlTKp+ynu53z56/0MbQ3o5MJOqt8sRtxIwAk6TALWfVxV4zZIkAABwA3qUMHGufu/bvSSllYlaOnr/QytDit9ckrVIkgCj0xUCoObmCrve9SQzkiQAAPDBpra3t0WBibHy/W+3k1wpbWE7d99Ds0OI3XSqUyRH3UnACK3O3fdQSxiAGs8nZ5L8vKS5ZJLW3H0PvW30AQDggzlRwiQtameTLBZ22UPpS7Ly/W+3kmxEkgQYva4QADXXKuhaVyNJAgAAN6VHCRNhcBpiJeX1JenM3bf3EgmDuHWTnHMXAWOwOnef3iRA7c0Wcp3Lc/c91DbcAABwcxIlTITtKklyuLDLXv7CfQ/19vpffrM6gdNLef1cgIPTFQJgAuaVJSRKlr8gSQIAADum9Ba19+b3v91NeY3H15N09hmzn0WSBBif1S84TQJMhqYnSiRJAABgl5woodbe/P6355JcLOyyt5K0v7CHWtJvVs1JVyJBAoxfVwiACdHkUq6SJAAAsAcSJdTWT77/3Gwy1Svw0jtfvO/La3uIVyeZ6qa8Pi7AwVv94n1f7gsDMAHzy1Yy1dTLW/7ifV9uG2UAANg9iRLquoidTtVfo7SX/stfvO/LvT3EaiXllScD6qMrBAAHPodsCwMAAOyNHiXUVS/llY/adV+Sn3z/ubkkG5EkAQ6O0yQAB0uSBAAA9smJEmrnJ99/rpvkaGGXvZWk/cX7vvz2DmM0nWQxyXF3DHDAukIAcGAkSQAAYAgkSqiVn7z63FymimveniSdL967s74kP3n1uVam0kty2B0DHLDVL97rNAkwQZrVnmT5i/dKkgAAwDAovUVt/OTV52ZTldwqzfIX791ZX5KfvPpcN8lbkSQB6qErBAAHYl2SBAAAhseJEmrhJ68W27x9R31Jrksi3eJuAWrCaRKAg5s/toQBAACGR6KEWtguMwmwlaT9e/d+eF+Sv3j1uU6SS+4SoGa6QgBM4JyzCd6+2fwRAADYHYkSDtxfvFpk8/Yk6fzeh/Ql+YtXn5tJlUA64i4Bamb195wmATgo5oYAADBkepRwoP7i1efmkiKbty//3of0JRnEZc1CGKiprhAAE2qjQXNoAABgSJwo4cD8uNzm7TfsS/Ljd3q1HHWHADW1+h+dJgEm1O/d++WNH7/6XBMuZS7JihEFAIDhcKKEA/Hjcpu3byWZ+48fUFf6x68+10p1ikSSBKizrhAADZiPTTonSgAAYIgkSjgoKymveXuStP/jvV/eeO/f/PGrzy0meSvJYbcGUGNOkwBNsNaAazj041efaxtKAAAYDqW3GLsfvfr8YjJVYu+NpS/de2HlPbEYlB+busWdAUyArhAAk247U03pA9dOmWVsAQBg6JwoYax+9Orz7STnCrz09S/de6Hznlh0k/wsZZ6sASbP6pfuvdAXBqABNhpyHUcGm24AAIB9cqKEsRks5BYLvPStJK3r4jCTavffEXcFMEG6QgA0xFqDrqWT6mQJAACwD1Pb29uiwMj96NXnp1Pt3jtU4OXfcW0X9uBEzWKhcQAm1+qX7r3QEgagQXPTJi2CfulL917YMKoAALB3TpQwHlPpp8zkwMKX7rnQ/9Frz08n6WUqR90MwATqCAHQsLnpappzurfjOQ0AAPsjUcLI/ei153spsw/H1S/dc6H7o9eebyVZiVMkw7SZ5tQXpxmmG/ycW/7SPRfWDDHQMP00J1HS/tFrz3e/dM+Ftw0rAADsjUQJI/Wj157vJDle4KVvJun86LXnF1Nm8/pRWkriZQB1e9b10txESdcIAw3UT3KxIddyKNWJEs9rAADYIz1KGJn/8trzc0neLPDSt/JOCYRb3AlDjWv79++5sCIU1OxZN5Pk5w29vOXfv+dC2ygDDX1+N2khtJVk5vdtJAEAgD35iBAwooXnbJJeoZf/dpIrkSQZpquDxb8kCXXU5Gdd1/ACDZ9fNMUhz2wAANg7iRKG7r9ca1xebk+Ow+6CodlKcuL377kwZ4ckNX3etdKcGvfvtfz791zYMMpAgzVtA8a5wSlHAABgl/QoYei2q0Wn0xTs12qS9h94UUu9n3fdBl9e1wgDDX+G9xv67G4bXQAA2B09Shiq/7dqaHxcJNin+T+458KiMFDz510ryVsNvbzlP9CbBCjjWb6W5m3w+dgf3HNhzegCAMDOKb3FMBea7UiSsD/rg8W9JAmToKn36VacJgHK0fP7BAAASJQwFIOd1VdEgn1Y+IN7LszaAcmEPPPaaW6JwUUl74CCrDTwmo4M5uYAAMAO6VHCvv35ay/MJlMrIsEebSZp/6d7zveFgkmxnaluQy9tK3YiAwX5g3subPz5ay9cTXK0YZfWSzJjhAEAYGecKGFf/vy1F6YHC7FDosEeLCWZlSRhwp577SSHG3p5i//pnvNvG2WgME3c8HP4z197oWNoAQBgZzRzZ1/+/LUX+kmOiAS7tJXqFImTSEzaM286yUaamRzeSjIjUQIU+nx/u4HPds91AADYIaW32LM/e+2FXiRJ2L2rSdp/aNHOBNpOOmnuCbpF30ug4Od7L8m5hl3WoVTlFNtGGAAAPpzSW+zJn1VH+Y+LBLuwleTEH95zfs7LWCb0uTedKlHS1O+n3iRAyZr6DDz+Z6+90DK8AADw4SRK2LU/e+2FuSSXRIJdWE0y+4f3nO8JBROsyadJOhKYQMn+8J7zG4P5ShNJhAMAwE3oUcKu/OcfvDCbpB/N29m5hT+6+3xXGJjwZ99Mkp839PI2/+ju8zNGGfCsf6Gd5EpDL2/+j+4+L2ECAAA34EQJu1k8TkeShJ1bT/IxSRIaouvaAJrtj+4+30uy2dRn/WAuDwAAfADN3NkRSRJ2aemP7j7fEQYa8vybSXN7Mm0OXgwCUFlMM0vMHkrVsH7OEAMAwPs5UcJuFo23CAM3sZnkDkkSGqbX4GvrGl6A9z3ztxp6bUf/8w80dgcAgA+iRwk39f/84NJiknMiwU0sJ+n88d3zGkLTpOdfK8lbDb289T++e37WKAO879nfTXKxoZe3+cd3z88YZQAAeDeJEm62UGynuU0tGZ6lJCvCQAN1kxxp6LXd8cd3z/cNMcD75r8zSX7e4Etc+OO757tGGgAA3iFRwoctEltp7k5qgJKt/vHd8y1hALjhPLiX5vanSpKP/fHd82tGGgAAKpq584H+9AeXZuOEAEBTdYUA4Ma2q+dkkxMli0laRhoAACqaufM+f/qDS9OpkiSHRAOgcVb/RMktgA/1J3fPb6Tqv9ZUR/70B5c6RhoAACoSJbzLIEnST3JYNAAayYsxgJ3pNv36/rTqxwIAAMWTKOFdtpPF7eSW7eqvfXx8fHya9Vn+EzXpAXbkT+6e39hOlhv8m3BoO+kZaQAAkCjhOm/84NJiml2LGaB0XSEA8Ny8zpE3fnCpbZgBACidRAlJksEC6ZxIADTW8p1VzX0AdujO5vcqSZLFN6ryuwAAUCyJEvLGDy7NJbkiEgCNtRWnSQD2qjN4jjbVoSjBBQBA4SRKCvfGDy7NWhgBNN6i0yQAe3Pn3fNvJ1ls+GUeHWyeAgCAIkmUFOyNH1yaSdJPtYsMgGbaSvNf8AGM2mKafaokSXpKcAEAUCqJkkINFkErkSQBaLrFwW5oAPZo8BztNvwyleACAKBYU9vb26JQoDd+uLiW5BaRAGi0rSQzd97VkSgBGM4ceiPJ4YZf5hfuvKuzYrQBACiJEyVlLvB6kSQBKEFHkgRguM/VAq6x98YPF5XgAgCgKBIlhXnjh4uLSY6LBEDjbd55V6cnDADDMzhpsdrwy1SCCwCA4kiUFOT1Hy62t5Nz20l8fHx8fBr/6frlAxi+7aRbwG/I0dd/uNg22gAAlEKPkkK8/sPFuSRvigRAEdaP3dWZFQaAkc2te2n+Ke2tJLPH7upsGHEAAJrOiZIyFnKzcXweoCQdIQAY+XN2q+HXqAQXAADFcKKk4ZarJEl/sNABoPlWj9/VaQkDwMjn2d0kFwu41Pnjd3UWjTgAAE3mREmzF2/TqXaBSZIAlKMrBACjd/yuTjfJZgm/K4PNVwAA0FgSJQ01SJL0k9wiGgDlPP6P39XpCwPA2LQLuEYluAAAaDyJkubqRZIEoDRdIQAYn0Fy+moBl3rLoNQYAAA0kh4lDdS7sthLclwkAIqy3D7RaQsDwNjn3jNJ1lJGuduPtU901ow6AABN40RJ8xZq3UiSAJRmK0lHGADGr32is5GklGbnK70ri9NGHQCAppEoaZDelcV2kosiAVCcxfaJztvCAHAw2ieKaex+OMo8AgDQQB8Vgma48sOldjJ1RSQAirOVcnYyA9TW9vZUO8lbBVzquSs/XOqfuOvcilEHAKApnChpgCs/XJqNl2QApeqeuOuc0yQAB+zEXef6SZYLudzelR8uKcEFAEBjSJRMuEGSpJ8ymkcC8G6bJ+46J1EOUB+dVCf9mu5Qkp7hBgCgKaa2t7dFYUL98MrSdJKNSJIAlOrEXSfO9YQBoFZz9HaSUkrizt91QsIeAIDJJ1EyuQuw6VQnSW4RDYAird914tysMADUcq7eT3KkgEvdStK668S5NaMOAMAkU3prMhdekiQAdIQAoLbaUYILAAAmhkTJZOpFkgSgZKt3nTjXFwaAerrrxLmNJKWUpLrlh1eWlN8CAGCiKb01YX5wZamX5LhIABTtY3crcwIwCXP3tZSzwemOuyXxAQCYUE6UTNZCqxdJEoDSLUuSAEyMdkHXuvKDqkQwAABMHImSCfGDK0udSJIAkHSFAGAyDBLbC4Vcrn4lAABMLKW3JsBrV5baSa6IBEDxlu45cU4Td4DJm8+XVIJr/p4T5/QsAQBgojhRUv9FVTuSJAAkW3GaBGBSlZTkvvTalaVZQw4AwCSRKKmxwQJDkgSAJFm858S5t4UBYPLcUzU5Xyroknuv6VcCAMAE+agQ1NOrV16cTab6IgFAks0kypgATLDtTHWTzCU5XMDl3pLqFKRykQAATAQnSmqoSpKkn6ohIgB07z1x1mkSgAk2eI63C7rkc69eeXHOyAMAMAk0c6+ZV6+8OJ1kI5IkAFQ27z1xdkYYABoz319Mcq6Qy91KMnvvibMbRh4AgDpzoqRei6bpOEkCwLu1hQCgUbqpSiqW4FCSFUMOAEDdOVFSE99/J0lyi2gAMLB634mzLWEAaNzcv5XkrYIueeG+E2e7Rh4AgLpyoqQeCyVJEgA+iCa4AA1034mz/SQLBV3yxUFyCAAAakmipB56kSQB4N2W7ztxdk0YAJppcMJivaBLXhlsEAMAgNqRKDlg37/yYi/JUZEA4D26QgDQeO2CrlW/EgAAakui5AANkiTHRQKA91i478TZDWEAaLbBycGSSnAd+f6VF5WVBACgdiRKDogkCQA3sJVkURgAylBgCa5L37/y4qyRBwCgTj4qBOP3vd6L3UxJkgDwgbr3t8++LQwA5dieylyStVTlqUqw8r3ei7N+7wAAqIup7e1tURij7/VebCe5IhITaStJJ8mGUMCBmU1yqcHXt3l/++yMYQYocp3Qafhv3Htdvb99ds7IAwBQBxIl4138tCNJMqlWk8zZ9QYH/hztJznS4Ev8wv3tsxrdAvidK8X8/e2zyk0CAHDgJErGt+hpR5JkEm2lKoNjAQeeo6O2en/7bMtIAxT9Wzed6vTyoYIu+2P3t8+uGX0AAA6SRMkYvNL7TjuSJJNoPUn7gfaDFm5w8M/REl4c3fFA+8G+0QYo/jdvLsmbBV3yZpLZB9oPOrkNAMCB+YgQjGWhI0kyeZYeaD84K0kCtdFJs5Mky5IkACTJA+0HV5IsF3TJh5P0jDwAAAdJomSEXul9Z9akf+JsptrV3REKqM2zdCbJxYZfZtdIA3CdzmBeWoqjr/S+Y/4NAMCBkSgZkcu978xuJ/3t5NB2Ep+J+Fzdro79993BUB/bSa/hz56FB9oPbhhpAK55oP3g29vJXGFz8UuXq41mAAAwdhIlIzCY4PdTVhPGSbaV5MTJ9oNzJ9VGhro9T+eSHGn482fRSAPwXierErALhV32yuWqLxkAAIyVRMmQSZJMnNUksyfbD/aEAmr3PJ1O85MIXQlaAG7kZPvBbpL1gi5ZvxIAAA7ER4VgeF6WJJk0C6eqxSdQQ9tVffbDDb7EzVPtB50mAeBmv4dzSdYKWmMcfbn3nY7fSAAAxsmJkiGRJJko60k+JkkCtX6mzqT5DdzbRhqAmzlV9bEqrdH5pZf1KwEAYIwkSoZAkmSiLCVpnapqPgP11Wv49a2eaj/YN8wA7MSpqkzs1cIue+Vl/UoAABgTpbf2aTB570WSpO62krRPtR9cEQqo/XO16Q3cE6dJANjbb8daml2W8nrX+pXMGXoAAEZtant7WxT26Lu9l6ZTnSS5RTRq7WqS9un2GQ2TYTKeq01/CbR0un2mY7QB2MPv5GySnxV22fOn22f0KwEAYKSU3tr7IkWSpP62BgurOUkSmBhNb+C+laRrmAHYi9PtM2tJFgq77EuDBBEAAIyMEyV7IEkyEdZTnSLRiwQm59k6k+TnDb9Mu2IBGMZvZj/NL1N5vc0kszY/AQAwKnqU7NJLyy9NZ0qSpOYWzhw/0xUGmCzbU41v4L5+5rgkCQBD+c1spypVWUqfxMNJVpK0jD4AAKOg9NYuvLTsJEnNbSa5Q5IEJvL5WkIDd31JABiKM8fPbKRq7l6SIy8tv2SeDwDASCi9tUOSJLV3NUn7zHHH8WFCn69Nb+B+9czxM3NGG4Ah/4YuJjlX2GXfceb4mb7RBwBgmJTe2oHv6ElSZ1tJ2g+2z6wIBUym7e100/wG7k6TADCq39BWYeuUle/0Xpp5UL8SAACGSOmtm5AkqbXVJLOSJDDRz9jZNH8n7OKD7TMbRhuAYRskC9qpkvKlOJSqXwkAAAyNRMmHkCSptYUH22daXj7CxGt6c/PNAq4RgAP0YPvMWso7uXjkO72X/L4CADA0epTcwIt6ktTVepL22eNn1oQCJv45205ypeGX+YWzx516A2Asv6srSY4Wdtl+ZwEAGAonSj54kSFJUk9LSVqSJNCY52zTd4KuenkDwBi1U51kLEnvxeWXZgw9AAD75UTJe0iS1NJWqlMkXjge3PdiJsn1i9D3/uvs8N+rq43BZ7/6e/jvvF1i8u/F5ZcW0/zeJB+T2AVgzL+vs0l+Vthlr6faTKW5OwAAeyZR8u6FhSRJ/awmmbPwGdk9P5MqqTGdZHbwt1uDP2eSHBal2r4Q2Ol3YiM7TwKt7fB/d20/38lCXuIsnT1+puNWBeAA5nedJJcKu+zls8fPtI0+AAB7JVEysCRJUjdbSbrnjp/RpHH/9/ZsqkRIK+8kRGYiCcLord7g7zf9/ttKMnNOgheAg5v/ldiv5MS542d6Rh8AgL2QKIkkSQ2tJ2mfU7Jmt/fxbN5JgrRSJUXc0zB+XtQAUIf1zVrK2hizlaRlDQEAwF4UnyiRJKnfkJxTrmYn920rVVLk2sf9C/Wweu74mZYwAFCT+eJbhV32ZpJZpzoBANitjxa+eJAkqdeipn3u+Jm+UHzgIldSBCaDRC8AtXDu+Jn+0vJLC0kuFnTZh5P0ksy5AwAA2I1iT5QsVU2sV+Klcx1cTZUkKX7n1yB51xp8ZpMccXvAxFg+p5EsAPWbX/YLnFMunDt+pmv0AQDYqSJPlAx6OfSTHHILHKitJJ2Sa/kPEnat6z4arMMEP8+EAYAamkuyUdja5+LS8kt9p9UBANip4k6ULC5/V5KkHtaTzHWOn94o7P6bHixWW5EYgSaZ7xw/vSgMANR0DtpKef1KtpLMlrbeAABgb4pKlEiS1MZC5/jpbkH33fWJEaXeoHnWO8dPzwoDADWfk3ZTVr8Sv9EAAOxYMYkSSZJa2Ex1imStgHutlerkiB4j0Hx3dI6f7gsDABMwT+0XOD9d7hw/3Tb6AAB8mCISJZIk9VigJOl0jp9+u6H32FzeKamlnBYU9Gzz8gWACZqzTqe8fiVJcqJz/HTPHQAAwI00PlFy6XVJkgO2laQ9f+z0SsPuq5m8c2rkqGGGYp9vM/PHmpkABqCx66NWyuxX0po/1uyT7QAA7F2jEyWXXv9uO8kVw3xgVlMlSTYacj9dK6nVjl4jQDI/f0wDdwAmcl7bTXn9SjaTzNrgAADAB2lsokSS5MA14gXiIDnSTnVyREkt4Jr1+WOawwIw0fPclZR3Mvrq/LHTc0YfAID3+mgTL+qFZUmSA7SepH1+ghu2v7AsOQLcVEcIAJhk29tpJ1krbL579IXl73bPHz/ddQcAAHC9xp0okSQ5UEtJuucnsGG75AiwC8vnNXAHoBlrp9kkPyvw0u84f/x03x0AAMA1jUqUvLD83cUk5wzr2G2lOkWyMmH3i+QIsJfn3cwkJoQB4AZz4k6SSwX+ns+eP96MXooAAOxfYxIlz7/+3V6S44Z07K4maV+YkKaIz+s5AuzP/AUN3AFomOfL7FeynqR1QXN3AADSkB4lkiQHYitJdxJeGD7/+ndnUiVGOpEcAfZuVZIEgIZqp7x+JbckWRxcOwAAhZvoEyXPv/7d6SS9lLf76aCtpzpFslbze6M9+NxiyIAh+Fidn3sAsM/582ySfpJDhV36iQvHTvfcAQAAZZvYRMngRXg/XoKP29KFY6c7Nb4v2qlOj0ieAcU8+wBgiHPpKwVeus0QAACFm8hEyXOSJAdhK8ncl4+d7tfwfmjlnb4jhwwVMILn38yX1TAHoADPlVnW2G89AEDhJq5HyXPVkfCV6DUxTleTtOu0cHiu6jvSiabswOh1vDgBoKTfvSSzKWtT2qFUG/FmDT8AQJkm6kTJc+XWzT0oW6leEPZqMv7Teacpu9NEwDisfvnY6ZYwAFCSgtddS19WahMAoEgTkyj59usvt1KdJJEkGY/1JHMPHTu1UYOxn0uVIDluWIAx+9hDx06pWQ5AcQZz8DcLvPQTDx071XMHAACUZSISJd9+/eV2ymwqeFAWHjp2qnvAYz6bqu9IO5JjwMFYeujYKbtKASjWt19/eTHJucIueytJy0YJAICy1D5R8u3XX+4kuWSoxmIzSfuhY6f6BzTWSmsBdXoezj507JTeJAAU7duvv7xW4NzcPAAAoDC1bub+7Osv96Lc0rhcTdJ++AAWA88qrQXUT+dhL0cAINtJK8lGyjrlfThV2eeWOwAAoAy1PFHybHWyoJfkqCEaua1UCZKVMY/xTKqTI3ODhQhAXaw+fOxUSxgA4Bdz91aStwq89KWHleEEAChC7RIlgyRJP0ovjcNqqiTJxhjHdi5V35Ejwg/U1C+N67kIAJPi2ddf7ia5WOClf2Hcm8oAABi/WiVKnq0aeK/ECYNxWHh4TA3bBzvQ2qmSJBqzA56NADCBnn395ZWUd+p/K0nrYc3dAQAarTY9Sp6pXqavxIv0UdtMMvfIiCf6z1Slta41Zpf4Aibl+bgoDADwwbarzU9rhc3vDyXpPfP6y61H9C8DAGisWpwoeeb1l9tJrhiOkVtO0hnlBH8wlnPRXwaYPHc8cuxUXxgA4EPn+7NJflbgpV995NipOXcAAEAzHXii5Jlya92O01aS9iMjqq07WCy1Bx8ngoBJ5OUHAOx8/t9OmRvdFh5RohMAoJEONFHyrdcv95IcNwwjtZqk/eixkxtDHrvpvJMcuUWYgQm2lWR22M9JAGiygtdyX3j02EnN3QEAGuZAEiWDl+z9eME+aguPHjvZHfLYzaVKjiitBTTF/KPHTupNAgDWdDuxlaT16LGTmrsDADTI2BMl33r98kyqpu2SJKOznuoUydoQx6wTpbWABj4vHz12clYYAGDP64S1AtcI66mSJZq7AwA0xEfHPJGeTbXryMv20VlK0t3vpF1pLaAQHSEAgL159NjJjW+9frmd5M3CLv2WJL0k+psBADTE2E6UDCbQi5EkGZWtVKdIVvY5TkprAaVYfvTYybYwAMC+13rdJBcLvPSlR4+dtOkCAKABxpIo+dbrlztJLgn3yKwmmdvrKZLBSZ92lNYCyrGVZEbJDAAY2pqvn+RIgZd+4tFjJ3vuAACAyTbyRMk33rjcS3JcqEdm/vE7d9+E+BtvXJ5JdVS8k+SwMAKFOfH4nV5qAMAQ133TqfqVlLa22ErSevxOzd0BACbZyBIlg4lyL0o4jcp6kvZuJuSDMZkbfIwLUKrVx+882RIGABj6GrDUnpSbSWYfv9NJVQCASfWREU2QpwcTZC/jR2Mpu9i19I03Ls8NTvZsJLliXIDCqSUOACMwWJ+U+Dt7OMmKOwAAYHIN/UTJYBfRSpRzGoWtVKdIVnY4Du3oOwJwvYXH7zzZFQYAGJ2Cyy8vPX6n5u4AAJNoqImSr5d71HocVpPMPfEhx7m/XvUdaQ8+ElUA77aZZPYJZTEAYOS+/sbltSS3FHjpJ57QBw0AYOIMLVHy9Tcuz6XqSSJJMlxbSbpP3KBh+9ffacreLnQhArBTX3hiByfyAIChrA9nUjV3L219uJWk9YTm7gAAE2UoiZKvv3G5nar3BcO1nqT93kn2199pyt6J5AjATlx94s6Tc8IAAOPz9Tcut5K8VeClbyWZcYoVAGByfHS//wNfkyQZlaUnr6tv+7V3kiNz0YydybGepE4LxOlILpZoKxq4A8DYPXHnyf7X3rg8n+RSYZd+KJfizxkAACAASURBVFVJ6ll3AQDAZNjXiZKvvXG5U+Ckd9S2ksw9WS0qJEc4aNcSHW+nKp2QJBuDT5LkyTtP9ksMzNeqnkzTe/ivzgw+u7Gb/y/JoPebf/IG5QuB2j5jp3PjF4x7eY5erzX4cz+/X2u5wUaAUn8X4Sbf6ZVC1zPLT955su0OAACovz0nSr72xuVekuNCOFRXU+16bkVyhPHYSvWyZ2PwufbiZ+1JpQIa72tvXO4mudjwy1x/8s6TdnPCeJ8t701yvDfZ+95/PZPkcNOfRXl3YuX6DQiJTQiU8Vzop9Dm7k9q7g4AUHt7SpR8VZJkVAvojUiOMBrXEiLXkiJrSdaekgwp1lfLabB6x1NeOMIwnhmtwV9enwSZyTsnO2bS/GTHQc4Rr/1eX3+S5dqz7e2nNI1mMp4js4P79lCBl28+AgBQc7tOlEiSQO1dS4r0805CZENYeM+zvJ/kSMMvc+mp63o9AR/4LLh2umMm7yQ9WoM/ZyL5MWk+qGRmf/CnDRLU4Zkzl+TNQufns+bkAAD1tatEyVffuLyY5JywQa2s552kSN8CjB08y0t4SbGVZMZLQQr/rl87/XH9KZDW4M8jIlSszbxT6utdH3MIxvRsKnVNuZ6kZW4CAFBPO06UfPWNy+0kV4QMDtxqqsRI3xF+dmvw4nQjzS97ceIp9cAp4zt9LRHSGvyta39KhLBX1xIpv+hblqq8lzkHw3x29Qt9Tl196s6Tc+4AAID62VGiZEGSBA7SLxIjF72kYJ8WytjFuXrxzpMto02DvrfXJ0OunQ6ZibJYjN+18p4bg08/ydsX9Uhh98+16cG9VOJzbOHinSe77gIAgHq5aaJksDj/mVDB2FwrpdW/eOfJFeFgaKvyqhnzWwVc6i9dVD6Gyft+Xp8Amck7SZFbRIcJmr+8PZjDbCTZsMGDHawz+ymzufuJi06+AgDUyocmShbeuDyTaqfPIaGCkdkaLBJXUiVHNoSEUVh44/Jamv/S1S5N6v49vJYQuZYUufbX5lo01bVSXv3BumLDCRSueya2U2blgq0kLd8FAID6uGGipFst5PuxkxFGYTNVYmSla7clY9B943I3ycWmf6+6d56cMdrU6HvXyrtPiEiIwDvW804Zr36Sta4m16U+K3tJjhd46VtJZtz3AAD18GGJkhLq2MO4Xwj0UiVHNoSDcelWpwN/XsCl3iHxyAF+x2byTjJkJjaawF5c64HSH/y5Zs5UzHO0hFOvH7g+6N55ctYd8P+zd7chkqWHfej/rWwIxpBpES4XLiFbgoRAPtypDZcLIdhTEwjmgvH2Irhku3q2q3e1LybB2xtkO45lpgbLMrKEpkfIaF+yO9U73T3CILbHCIwRaKplhMAIbbc+GIQN022MwJig6UC4BGP3/XBOT8/Ozku/VHXXOef3g2J2VxjPec5zznme5/+8AACcvYcGJf0bX59J8oHigRO7lYOVI2aLcSb6N74+THKh5pe53L/0yz13m1N4nlo52C6rE6tEYNyEJ814t06nWF3UxPepNgwAwAT4WFBy+cabTW6kwijcC0euXHpNOMKZunzjzV7qv/f3bpKW540xPD/7gcj+74JSgYl5798fngx9A2rzzv2woZf/xpVLry2pBQAAZ+dhQckgzdwjFk5COMLEaVDwbXCBUTwvrVgpAlW2k/vCkyuXXhsqkkq+i3tp5uHuSfLclUuvrasFAABn4yNByeUbb3aS3FYscCjCESZaQ4LvjSuXXuu42xzx2ZjORwORToQiUMtvRD4anmwrEu2XCbabpHPl0mubagEAwOl7MCgZxrYS8DjCESqhQcH3MwYUOMTz8OBKEQetQzPtpAhNhimCE9+PyX1vN/Zw9xRhiX4GAMApe2r/H36rGFQTksDDOyyDJIPf1mmhIv6+qLN1d+W3DXLxEGWbphOrRYCPejrFSoX58l2xm4PgZOibMlHtmE6aeW7m+RSTsjpqAQDA6bq3ouS3bry5nuRZRQJJihmHgxThyLbioEp+68ab/SSXG/CMtoWX/FaxjVYnB8GISR/AcQlOJuv93uTD3Zd/+9JrPbUAAOD0TO3t7eW3igNM7ygOdI7vhSM6xlRSg97nF3/bQb1NruOd2EYLOJ224TCCk7N85/fS3MPdF3770msDtQAA4HRM7e3t5XM33lxMclVx0FC3kgw+f+m1dUVB1X2uGWdN3fr8pddm3O3G1OlWDoKRToqtcwDOwv3ByfrnrTo+re/AIM083D1JLn7exBAAgFOxH5Q09bA8mmsryVLZybV1D7XwuWbMutxN0vLc1roetyIYAaph/3D49SRD36axfhua2l/dTdL5vNVMAABjN/Wb7399OslPFQUN6cyuJ1kyA5C6+VxxTsN26n/o6Rufv/Takjteu7rbSTITwQhQbVs5CE2GikM7Z4T1qiOIAwAYr6dSDEpAnS2nWDliay3qbJD6Dx5sCEnq4XM33twPRTqxohWoj/Pl7/Lnbry5v03XfnCyrXiO7/OXXrv7uRtvdtLMw93Pl/VIvx0AYIymfvP9r/eTXFYU1IyttWiMcuDgdgMu9RlbT1S2jrZzsGLkghIBGto2HZZt06HiOPb3pJfmHu6+/PlLr/XUAgCA8Zj6zfe/PoxBC+rB1lo0TrkVxWbqv13Rlc9feq3vjlemXrby0e20zikVgHt2yzbrMCb1HOcbM0hzD3df+Pyl1wZqAQDA6AlKqANba9FYn7vxZj/1XxW4k6RtIGni62InB8GI7bQADm8rxRaa6yb7HPqb0+Q+7EWrkgAARm/qv954c08xUOEO5eB35l41eEoj/ebKW+00Y6/ui78z96oBgcmrf60cBCPPKhGAkdhfIb3u2/fYb1BTVtQ+zG6Szu/MvWo7UgCAERKUULVOwSBFOKJjgEGClbeGqf9sylu/M/fqjLs9MXWuE6tGAE6z7bsfmlg5/fFvUjvF9mVN3N5xJ0nbhDEAgNF5ShFQAbfKDuJAUcC9wYHF1D8k2U3Sc7fPtJ5NpwhGnDUCcPrOpTiLY/43V97aTXmmSdkubvwA+e/MvbpZtoeaeLj702V9aHtMAABGY+o33reihIm0k2QpyfoXLr26rTjgwH+98VYrxXYTdR+0fuMLl15dcsdPvX61U4QivVg1AjCpbqUMTb5wqdmhyX+98dZSktcbevnLX7j0as/jAABwcoISJsn+9gKDL1yyJzM8ZkBgPfU/E2LjC5de7bjbp1an9leMzKSZ+70DVFnjQ5OGtI0excQSAIARmPqN99+8G1tpcLY2Upw90vgZcXCIgYCZJB804FKf+cIlZxGNsR5N5yAYmdEOAKiNRoYm5XdtmOauhFz4wiXbFAMAnMTUf7nx5jD13+eeybNTduKWfnfu1W3FAU/2G8V5EZup/4z/K78792rfHR9L/dkPRp5VIgC1dy80+d0GnGnyG80+3H03Sed350wyAQA4rqn/cuPNJi9T5vQtl521dUUBRx4AaMIe3DtJ2r/rkNpR1ZlWimCkF+eNADTZrSSDurfBf2OlMStvH2Y3SUsbCgDgeKb+y403+0kuKwrGaCvlwewa7nDsjn8nye0GXOrF351zRtEJ60orwhEAHm7/TMDaTlz6jZW3FpNcbXC/q6PPBQBwdFO/duPNTpox+Mbpure11hdtrQUn9usrb22m/oPet7449+qMu32s+tFOceZIL8IRAI7WXh98sWZbNv36yluDJPMNva/aUwAAxzC1t7eXX195a09RMCLLSda/aGstGGVnv5/6r/zbTdL6ohmQR6kX7RTByEzqf24NAOO1k3IFeB0mOf36SuMPd7/2xblXF1VrAIDD2w9KnFPCSWzd17EyyAmj7ei3UhzgXveDSd/44tyrS+74oerDYoQjAIzPRpJB1dv2ZViynWYe7p4kC1+ce3WgOgMAHM5+UNJLcl1xcAQ7ZQdqYGstGGsnf5jkQs0vc+OLc6923O1H1oFWnDkCwOnbP89k8MWKnh9Wrr78sMH38OIXnf0GAHAoU3t7e/m1YrbNTxUHh+wsLf1ezfYxhkn0a80JsZ/xTvnYvW9FOALA5NhJMvi9uVf72lOV6791tLMAAJ5sam9vb78BOUhzD7zj8W6VHSPnjsDpdeqbsl3ElSoOuozxns+k2FpLOALAJFr4vQpu5/RrK28tJXm9ofdsJ0n792yRDADwWPcHJa0kdxQJpXt7E2tUw5l06Aepf3jd+I77feHITJwVBsDk2y2/3dsV/OY2+VzOrRQrS/TrAAAe4an9f/i9uVe3f3XlreVYVdJkWynDkS85dwTOzK+uvNVpyLu496WGdth/deWt/XBkJs09ZBaA6jmXYivedtX+4nvFdpbDNHPV5vkkSynKAACAh7i3oiRJfrVYVbIZgzZNslN2dgZfsnctnLlfLVYYbCZ5uuaXeutLc6/ONOzetlMMUPR8ZwGouGtfmnt1saLf4mGDv8OVvG8AAKfhI0FJ2XjsJ7msaGpNOAKT24Fvwjt4N0mrCatJfvXgUPbF1D/8AqBZnvtSBc8wLFfu3m7wfVv4UgXPmQEAGLePBSVJ8tmVtzbjINm62U0Rjqx/2aHsMJE+W8xy/LABl/rGl+deXarxfdw/d6SX5IKaDUCN+xftL1dwy97PrrzVS3K9wffu4pfnXh2qwgAAB556xH+fiS246tJ5EY5AdSw14Bo36hqSfLaYodqLc0cAaIZzKc437FTtL/7luVcHn23OmXAPs/7Zlbc6X7a7AADAPQ9dUZLcG/C5rYgqRzgCFfTZlbcWk1xtwKV+qoozTx9z31o5OHfE1loANNGVL8+92q/od7zJOynspFgRdFcVBgB4TFBSNhx7afaS5KoQjkCFlYPtTVjFV9mBlAful621AOCjKrmVU/lN30xzJztsJekISwAAnhCUJMl/Xnm7F2HJJNo/kH34lblXhCNQYf955e31JM/W/Z31lblXWhW/T+0Uh7LbWgtGZyvJ/QN02+XvfndTDGQ+zN2vzL2yeUrvgM5j/ueH/W/tJNP3/XsrVp5RX7tJWl+Ze6VyA+7l933Y4G/78lfmXumpwgBA0z0xKCkbj70ISybBfjgyOK1BAWDsnfOZJB804FIvfmXulWFF71ErxQCKAU54vI3yzweDjfuf/e2vzL2yrajuDc7uBynTKYKVfZ37/vt5pUVF3PrK3Csz2mOVdO0rc68sqsIAQJMdKii5r/E4iFm0p22rLPd1AwtQL/955e3pFDOn6/5erfRMxYas+IFH2c1B6DEs/9zOwaqPzSrOIK/ou6iVYlVKchCk7P83gQqT4o2vzL2yVNFnrCnnxT3KwlfmXhmowgBAUx06KEmSN4qZbwMdsbG7lXJbravCEaitN1beXkryes0vczdJ62pFB1LfKLbaua22UmP7q0CG5Z+bKVaEbGuDVPbb0in/cX/Fyv1/mvDEaXjmakVXv7+x8vYgyXyD791zV23rDAA01JGCkrLxOJ2kn/oP7p2mnRQDFOsaptAMDRqAr3SH+42VtzdjcgDVb2Ns5yAA2Uxy92pFt8JjJO+1/eCkU/6nTqxIYfTvnXaFJ0k0+du/m6Rz1TbPAEADHTkoua8B2UmxusSe7cezlWLVyLqGKDRPQzrhG1fnXulU+B714nwuquH+MOTen1aEcIz3XivFVl7tB/7U3ueobl2t6Hkl5cTAzQbX+0qvBgYAOK5jByX3NSIXy5+l/I+3v2pkmCIc0fCEhnpj5e1+kssN6GS3qzpQ+0Zzzo+hWjZycD7IfhhisgWn9V7s5GALr/0AxSoUHmfhakXPvChXXg0b3A7YSrGyRJ8VAGiMEwUl9zUkp5Mspdn7uT5oNwfByNBABlC+L1tJ7jTgUq9cnXulX+H71ITzY5hc9wciw1gdwmS/L+8PTjqxAoWP9oc6FT6vZCbJB03+FlV5ZTAAwFGNJCi5rzHZ5BUmghHgMO/JYZILNb/Mratzr7QrfI9aaUaYxQQ8KzlYHbKZZFMgQk2+dfevPNkPUS4omca+5zoVPq9kMcnVBt+/5atzr/RUYwCgCUYalDzQqOwl6dW4U7SVYlBjmGJgQzAC6GwXLlb5oOiGhFmcvo3cd4aIw9Rp6Hfw/vCk7V3bGNeuzr2yWOF6O0izd06o9CphAIDDGltQsu/1lXdaSWbKX1U7Q/fP+Bxem3t5qOoAR3wXNuXMi2vX5l5erPB96iS5rcZyArs5mEixnWTz2tzLJlPAo9+7wpNmeO7a3MvrFa6nw4bXzYVrcy8PVGMAoM7GHpQ80MCcTrF38f5v0g6A3MlHt8DYFooAI3r/rSd5tuaXuZOkfW3u5bsVvk/bsbc+R7NxX7theG3u5W1FAid+F3dyEJx0vJdrYbdsI2xXtE5OpwjAzzf4Hl7UNwYA6uxUg5IndIRa9/05zs7QRvnnZpK7+39q9AFjfM815TDQqs8Wbfo+5DzZR7bdtFIETu39vD/Zaj84seqkou/Qa3MvtytcD9vl+/9cQ+/fbpKObx8AUFdnHpQ8yq8UHaL9hvT9/3xYw/v+efurZngCZ/cu20z9Z8Pe+urcyzMVv0/bae7gBx+3W7YlNpMMv2pCBUzae3s/NOmU/QSrTqrh2lcrvEXnr9iiczdJ66sVXj0MAPAoExuUANTBr6y8s5Tk9QZ0mttVDqR/ZeWdQZp9UCvFapFhDoKRbUUClXqPt/LRLX4FJ5PrYpXD519ZeaeX5HrDv5cdYQkAUDeCEoDxdaQ7acaswze+OvfyUoXvUzvJh2ps42ykCEaGSTYN+EDtvsGtCE4mVeVXJTRkIsxjv6FfnXu5oyoDAHUiKAEYk/+08s5m6n/o58bXKt5R/k8r7wxjv/u6299Ga5hk+DX7q0MTv8mtCE60H0Zbp9aTPNvge7j8tbmXe6oyAFAXghKA8XSe+0kuN+BSn6nyoPN/WnlnJskHamztCEaAJ73/WzkITWbijKqzcOVrcy/3K1yHpsvvzPkG38NrX6vwmTMAAPcTlACMvuPcSnKnAZdahwGOzZhVXAeCEeCk34T9w+FnYpXhaar6hIvpJNtpdtC28LW5lweqMgBQdYISgNF3moep/yDLTpL21yq8v3iDVv3U1a0IRoDxfSNmcrDi5LwS0Z54TF1pl9+jJoclz31t7uV11RkAqDJBCcAI/ceVd3pJrjfgUi/+/tzLwwrfp1aK1SS2WqmOe4evV7nuAZX9ZnRSrDbp+HaM3K3fn3t5Rvuv0naTdH7fxAUAoMIEJQCj6yQ3ZfuF5d+v+OGd/3HlnUGSebV2ou0kWc9BOHJXkQAT8g3ppAhNZmL7xlF54/fnXl6qeL1YTHK1wfdQWAIAVJqgBGB0HeT1JM82oBPcqvKgdTnAdVuNnci6NUwZjvz+3MvbigSowDellYPQxNkmJ/NM1QfZTcTIVoqwxOQGAKByBCUAI/DLzRl8f+7rFd+D+pebcYZMVWylDEa+bjstoPptgekcbM81E1t0Heeb0Pl6xQfZtTPqcR8BgOZ5ShEAnLhDPJ1k0IBL3ahBSNKLkOQs3b9qZN0gClAn5TttsN8m+OWDA+Ft0XU455MsJelV/Dpmym/d+Qbfx0FZDgAAlWFFCcAJ/fLKO0tJXq/5Ze4maX+9wtsh/XJzzpCZNFspwxGrRoAGtxXaKQIAocmTLXx97uVBxe93K8lmw9scy1+v+Jl2AECzCEoATuC1YuDjwwZc6pU3517uV/xe9ZNcVmtPxa2U4cibzhoBeFjboZMiODmvRD5mN0m76t+P8j4P0+yw5Nqbcy8vqtIAQBUISgBO1gneTP0HObbenHu5XfH71EpyR40dm92U22klGb5pSy2Ao3yfZiI0qV3bo7y/vSTXG34vF96s+AohAKAZBCUAx+/89tOMFQrPvDn38mbF79V6kmfV2pHaSRGMDKpePwAm5FvVitDkfrVYjfDayjuLSa42/F4KSwCAiScoAThep7eVZqxQqPwgxWsr73SS3FZrR2IrxQGtttQCGH87Q2iSPPfm3MvrNbifgyTzDb6Pu0k6JlYAAJNMUAJwDK+s/rdhkgs1v8ydJO23u5+5W/F7tR0H557EvfNG3u5+ZltxAJz6d6zJB8Hvlm2R7Rrcxya0HZ90Lztvdz8jLAEAJpKgBODoHd2mbKFw8e3uZ4buVSPdSnnmSNWDMoCatUH2Q5NemnNI+Mbb3c90anDvplNMPGjyCqHdJC1tCwBgEglKAI7eyd1O/Qcnbr3d/cyMe9UowhGAan3nZlKsMplpwLfuytvdz/RrcM9aSTYb3jbZSrGyRFsDAJgoghKAI3h59b814VDw3SStdyregX159b8tJXldrX2se+HIOwYsAKr6vZvOQWBS5zbKxXcqvtK1vF/tFCtLGh+WaHsAAJNEUAJw+I7tTJIPGnCpb7zT/cxSxe9VK8kdtfahhCMA9W2rtFIEJoup33kmtZjIUd6nXpLrDa+uy+90P9Pz1AIAk0JQAnC4Du10iq0S6n6I6sY7NdgH/GUHpj5IOALQvLZLO0VgUqetuW69U/GtQe+7P70IS4QlAMDEEJQAHMJLq+82ZRunT73bfWm74veqKSt/nuReOPJu9yXhCECz2zG91Gdrrjfe7b60VJP7Mkgy3/Dqee3d7kuLnlIA4KwJSgCe3IntJLndgEu98m73pX4N7td26r/y51G2kgySDIQjADzkG9lK0it/Vf5WPvNu96XNmtyTJpx/9yQL73ZfGnhCAYCzJCgBeHIHdjPJ+Zpf5ta73ZfaNbhX/SSXG1ZF98OR9aqvBgLgVL+Z+wfAV3FFw06Sdh0mBby0+u50isPdzze8SgpLAIAzJSgBeHzntZ9mDLxffLf70rDi92o6yXbqsw/74+yk2FZrUJcZtQCc6fezl+odAH/r3e5LMzW6B004C6/27VEAoLoEJQCP7rS2ktxpwKXWYm/oBuzzvZuDcGToCQVgDN/STorQpCrf09qsQnhp9d12ipUl5xpcBXeTdEwCAQDOgqAE4NEd1mGSCzW/zFpsXVHzc2RupdhWa+CpBOCUvqtVWWVSq4H1Miz5sOHVT1gCAJwJQQnAwzuqi0muNuBSn3u3+9J6De7XMPUKtZw7AsCkfGNnUoQmk3rg+FaKgfW7NSnvXpLrDa92tTmDBgCoDkEJwAMWmnPWxa3rNdjbe6E+Awq7KcKRwXWzKAGYvO9tKwerTCatjXTteg22Eb2vrJsyYedxtpJ0rgtLgMl8T7eTTJf/2ip/h3U3xblUSZLrtlWGiSEoAfh4o2c9kztrclR2k7Sq3vlcqMfhp7dShCPrnj4AKvL97aUITM5P0F/ruTp9Sxfqf/baYQhLgLN6B+8HIZ3yz/1/H+d3byfFhM3932aSbZPo4PQISgA+2iCaSfJBAy71jevdl5ZqcL/6SS5X8K++k2QpRUCi8w9AVb/D7RSBySQM6O8maV+v0ZaVDZm88yQb17svdTxtwBjftZ0UQcj+7/wE/jW3UgQnm0k2rUKB8RCUAJR6zdlya2NQgw5nr9gCZLNC92s3yXqSpYFZQQDUrw21mLPflmtr0H2pXbNyHWYyB+1O0/Kg+1LPkwaM6L3aSRGIdFLtcy43yv7wcGB3AhgJQQnAQaNpKcnrDbjUTw1qMNuyV51ZllspVo+sD6weAaD+7aleznZbrmuDGp1X0qvHNqOjICwBjvsebSeZSfWDkSfZSDExb2hiHhyPoASgaDx1ktxuwKVeGXRf6rtfY7d/MPvSoEZbgADAEb/VizmbSQ0XBzXalqQc5Bum/quen6RWIRgw1vfmTA7CkSYGzTspQpOB0AQOT1ACkOSF1Xe3G9CA2nq/JttRvLD67mYmcxuKjSSD97svDTxVAJC8UGyV2U8xYHVaA/27SVrv12gl5wvCkn0L2lnAY96TvfJ787QSuWc/NFl63yQ+eCxBCaBBVd0DwY/q4vs1mF35QrGlx/UJ+ivdWz2i4QkAj/x+n/Y5Jhvv1+wQ8AlsA50VYQlw/7dlJme75WOV3NsW+n3bQsPHCEqApjes2kk+bMClXnu/BlsVlA3h7UzGbEqrRwDgeN/zXopVJuOe8Xvl/RpsOfqQshOWCEtAP74IR05ztWKd7KZYZdI32Q8OCEqApjewhqn3gW5JsdS2XYcZIy+svruU5PUzblAOYvUIAIziu74/C3icbbFn3q/Z/uwvrL47SDLf8Oqzm6Tzvr33oWnfjV6K7bUuKI2R2UgRmAwVBU0nKAEa69Lqe4tJrjbgUp+70X1xvQb3q5Xkzhn9v7+3RPlG90VLlAFgtN/4TooVJuMY+NpJ0q7b9/vS6nuDCEt2k3RudF8UlkC9vxHTKcKRxTh7ZOx93hvdFweKgqYSlABNbWy1kmym/st0b93ovjhTk3s2zOnPHFpOMrjRfXHoqQGAU2mf9TP6AKA27aEHymsz9uQXlkC9vwm9nN7ZVhR2kvQFJjSRoARoaqNrmPov191N0qrDDMpypuntU2wYDlLMprF6BABO/7vfyugDkzdudF9cqlk5TScZRliym2LV0LanB3wDGGm/uGfSIE0iKAEap7v63kySDxpwqW+s1mRAoLv63nbGv8x6I8nSag22KQOAmnz/WxntbOJnVmu28qBbhCXbMdt6K0ln1SQXqPL7rFO+8wUkk2UjSX9VYEIDCEqApjW+mtKZ3FjtvtipyT0b51kyu0nWy4bfticEACa2/baYkwcmtRxM766+106xskRYIiyBKr7DOhnfOVWMzrJ+M3UnKAGa1ggbpBkzVD5VhwbMGIOtnRSHsw90pgGgUu2CkwYmy6vdF3s1LJt2kg/VEmEJVOi91YmApGp2U+zC0FcU1JGgBGiM50/3nIuzdOVmTRouz48+2NpIsnTT9loAUOX2wUkDk4WbNTyk9vnV93pJrqshRVhyU1gCk9wv70dAUvX37OJN23FRM4ISoEkd6s2M/5yLM2+w3Oy+2K7JPRvlzMjlFAHJpqcBAGrVvjtOYLKbpH2zOoEeogAAIABJREFUhtuHCEvuuXWz++KMYoCJej91IiCpm2tJ+oJp6uITigBoiH7qH5KkHCioi5MeRL+b5EqST97svtgTkgBAvdzsvni3XEXbKr/5u4f8Pz2X4oyyOpbJIMXAVdM9W65MBs7Y86vvdZ5ffW+YYncHIUm9vJ5kswzBoPKsKAGa0DBryp7N1252X1ysyT2bSfLBMf/Pd1LMatE5BoBmtfmOusKkNm2nh5TFIM04l+9Jlm/W8EwaqMh7qBMrSJqkNluA01yCEqD2/sPae5tJztf8MneStL8xW/0lr/9h7djbpG0k6X9j1j6pANDwtt9RApPnvjFbz7PL/sPae+tJnlUjsvyNWWEJnOK7pxMBSVNtJZn5xmz9trakGQQlQN0baf0klxtwqbXp5B/jni0nWfrGrK21AICPtCn2A5PHtSt2U0w22a7p9Q9T/wlDh2ovCktg7O+cTgQkFN/VXl0nIVBvghKgzg21VpI7DbjUW9+YrcdhleU928yTZ3/uJhmkCEi21XYA4Anti34evRXVxjdmX+zU9NqFJQeufGPWtjAwhvdMJwISPu7aN2brub0l9SUoAWrr/y0OjKt7Y203SesPutXfcqu8Z4M8fj/t3RSHvC/V5ZoBgFNrZ7Ty6MDkyh/UdG/18roPMxGlCRb+wDl2cBrvVEiK7bFn9N2pCkEJUNdG22KSqzp7lbpnnSS3H/E/7yTp69gCACNoc7RTTLx4cELNxT/o1vOss/KahxGW1Kr9DGf0PmlFQMLh7aQIS2yVzcQTlAB1bLhNJ9luQEdw4w+6L3ZqdN+G+fiAxVaK1SM6swDAqNsenXx0u5hardR9yPUKSw4IS+Do75BWBCQcz26S3h90nVvCZBOUALXz6dX31pM824CGRvub3Xqcz/Hp1fd6Sa7f9582kvS/WdNZnQDAxLVD+kmeTnLrm916nP12yDZXky18U1gCh3lvTKdYhScgwXuXWhOUAHVrxM0k+aABl3rlmzXZR/vTH10BdCvJkoAEADiDNsliisCk/83ui0s1vs5ehCX7DNrB4/tpi+XPSjRG5do3uw55ZzIJSoC6NeS2G9CI2/pm98V2je5bP0krxaDEtpoMAJxxe3IxxcSNuzW+zn6Sy+54khpNQIIRvwcFJIzL8je7L/YUA5NGUALUqUG3lOT1BlzqM9+s0UFon159b7rOAxEAABPaBhvEVjr7dpL0rGqm4e8EAQmnSVjCxBGUAPVo1K2910lyuwGXeu2bs5apAgAwkjb0IMKS+y0nWfzmrEk8NO5d0MvBWU1wau/cb84KS5gcghKgDo266SSbDWjU7SRp67gBADDCtvQwyQUlcc9uirBkoChowPPfi4CEsyUsYWJ8QhEANbDYkIZdT0gCAMCIzSTZUgz3nEty/dNr7w0/vfZeW3FQR59ee6/36bX3tpNcj5CEszVfrm6EM2dFCVDtXt3q9XaSDxtwqcvr3YWeOw4AwBja1NNJhknOK42PuZakv95dMGGJOjzrnSRLnnUmkDEPzpwVJUDVDRpwjbspVs0AAMDIlSFAp2x38lGvJ9meWb3eUxRU1czq9c7M6vVhinM9hSRMovmZ1esDxcBZsqIEqHJjr5/kcgMu9bn17sK6Ow4AwJjb1+0UK0vOKY2H2kiyuN5d2FQUVOSZ7qQ4g8Q5RFTFtfXugominAlBCVBJv7R2vZXiAPe6d+I2/nB2oeOOAwBwSu1sYcmTLSdZ/MNZ23Exsc9xJwISqmvhD2cXBoqB02brLaCqBg3ovO0m6bnVAACclj+cXdhMsQ0XjzafZPuX1q73FQWT5JfWrrd+ae36eoottoQkVNX1X1q7PqMYOG1WlABVbPwtJrnagEt94w9nF5bccQAAzqDN3UtyXUk80U6K1SW2yuUsn9dWihUk80qDmthN0inDezgVghKgUn5x7fp0ku00YMutb9lyCwCAs2179yIsOXT7PUn/W7MLQ0XBKT6jrQhIqK+dJO1v2eaQU2LrLaBqBmnGfskOLwMA4Ex9q9gjfkFJHMqFJLd/ce36oBy8hrH5xbXrrV9cuz5IcidCEurr6RRnZsGpsKIEqFJjcCbJBw241Cvfml3ou+MAAExIO3wpyetK4mht+iRLZkIz4mexFStIaJ5r35pdMJmUsROUAFVpEDZly62db80utNxxAAAmrD0+iMHZo9pNsR2Xcwc56fPXioCEZlsoVznC2AhKgEr4f5ozi+3iH9nXGACAyWyTD2Kg9jh2kvT/yCAfR3/mWhGQQFIEz+0/ml3YVhSMi6AEqELjsJPkdgMu9dofWU4KAMBkt80HMWh7XFtJFk2M4hDPWSsCEvjYO/SPZhfaioFxEZQAk95AnE6ymeIQrzrbSTE7wh7GAABMevt8mOS80ji2jRQrTIaKggeer1YEJPA4JpgyNoISYKL9wur1fpLLDbjU5/64u7DujgMAUIE2urBkNDaS9P+4KzDxTAlI4Aguem8yDoISYJIbi+0kHzbgUm/9cXdhxh0HAKBCbXVhyegspwhMthVF456jVgQkcFQ7Sdp/3LUjB6P1CUUATLBBA65xN0nPrQYAoErKAapOinM3OJn5JHd+YfX6oBw4p+Z+YfV66xdWrw+S3ImQBI7q6RQBI4yUFSXARPr3q4N+mrHl1hvf7vaW3HEAACrabm+lOFPwnNIYmeUk/W93e9uKopbPSz/CkarbSHK3fPclxeq6w2gnmb7vzwuK8kQufrvbGyoGRkVQAuhsnWHj6tvdXscdBwCg4u33doqBQmHJaAlM6tXH7UdAUkVb5fttM8nmt7u9zTG8P/d/ndjO8Ch2krS/3e3ZgouREJQAk9iIHKb+Myt2yw+6Tg8AAHVowwtLxkdgUt3nopMiILFyoFp99WGS9STrpz0I/+9XB9NJZsrfs27HE135drfXVwyMgqAEmLSG5GKSqz7mAABQuba8sGS8lpMMbDVTiWehEwFJ1WykOCd1fVJWKPx7oclhPTPqlT40k6AEmBj/bm0wnWS7AR2rre/M9truOAAANWzTC0vGbyNJ/zuzApMJrP+9JIuxfVJV7KYIR5a+MzvZK7b+3dqglWS/fnm/PvBO/M6sbc05OUEJMEkf/vU0Y5bEM9+ZNdsBAIDatutnknygJMZuI8ngO7O9gaI48zrfS7GC5GmlUQk75f1a/85s9c63UN8easG7kJMSlAA6U6fryndmbbkFAEDt2/e9JNeVxKnYSbHCZKAoTrWOT6eY3W+Gf3XUKlwUmHzsPdiuYvDF5BCUAGeus9qYLbd2krSHXR9uAAAa0c7vRVhymnaTLCVZ0ucYa71upRicnomApCo2kvSHNT3fp7M66EdglyRXhs6C5QQEJcAkfNSXkrzegEu9OHTwIgAAzWrr9yIsOW27SdZTDAxvK46R1eVOijMi5pVGZSwnGTShH15OQB2k2Ye+7yZpCYo5LkEJMAmNzdsNuNRrw25v0R0HAKCBbf5ehCVnZSPFCpN1RXGi+ttLckFpVMZyGhoUlmMsgzR3Oy5jLxyboAQ4Mz9fzHjYbMAHfDdJ67tmNQAA0Ny2fy/CkrO0k2JbroF+yaH7qospAhLnP1THcpL+dxu+kurnrS751HetpuMYBCXAWX68B2nGsuXnvmsGFwAA2v+9CEvO2v62XEvf7fY2FcfH6mg7RUBie61qEZA8+p27lOadXbL83W6vpwZwVIIS4Cw+1q2ycX6+AZd767vd3oy7DgAAyc+vDhaTXFUSE2ErxSDqetNXmfy87bWqSkDy5LrdTrG65HzDLt2qEo5MUAKcRQO0KTMabLkFAAAf7xMMYsb+pPVbGrfKpJzAt7+91jnVoFIEJEer69PlM96kINCqEo5MUAKcip9ba+QemW/8yWxvyd0HAICP9Q8GEZZMov2zTNb/ZLaeg9A/t2b1SIUtJ+nXtW56747cJ/9k1sRVDk9QApzGx7iTIiRp0iF4G38y2+u4+wAA8Mh+wiDCkkl2K8Us9PWqDzb+3NqgnSIc6cXqkSoSkIzuWegnudyQy73yJ7O9vrvOYQlKAB/h0dtN0taIAwCAJ/YXBhGWVEHlQpOfWxu0ksyk2F7rabewsvVuUd965M9GL8n1BlzqbpKWVSUclqAEGIt/26wD2x905XtdsxYAAOCQfYfFJP2Y6V8V90KT703YeYz/tjiLYT8cOe9WVdZGkv73ur2hohjbs9JLM8KShe91ewN3nMMQlADj+ODOpNhqq4kdna3vdXtttQAAAI7Uh2ilOBvjWaVRKRspQpPh987oIPiy7syUP+eOVL8+CUhO79nppf5hyc73ur2Wu81hCEqAUX5kp8vOTZOXzj9zVh0EAACoQZ+iyZOuqm4nyXD/973u+LZL+rerg06KYKQTK0fqQEBydu/cQeo/hnNR3eIwBCXASPybteV22aFpciP1yvdn5/tqAwAAnKhvYQJWPeymCE02yz+3vz87v33MOtFJEYq0yz8FafWwk6T3/dn5oaI403fuoObv21vfn52fcad5EkEJMIqPqj2FiwZe+/uz8w4JAwCA0fQzOikmYzmIu142ktxNEaDkgX9OiiAkKUKRVqwYqWv/uf/92fmBopiY9+1mzZ+1Tx03qKU5nlIEwAk+pNNlx8U+wsUsGCEJAACMSDnLvPVv1pb7SS4rkdrYP0dEP7J5BCSTq5NkO/WdADuTYqUiPJIVJcCxlFttrcfsriS59v3Z+UXFAAAAY+t/tFJM0nJYN1SPgKQa79l2kg/rWge/Pzvfcpd5HEEJcGT/d7HV1lUlkaTYd7f1p1aTAADAafRFeilmBTujAqrRX15KsqTPXJl3bJ3He57509n5TXeZRxGUAEf5YNpq6+Oe+9PZ+XXFAAAAp9ov6Sd5XWnARBKQVPsdO0w9V+8t/+nsfM8d5lEEJcBhP5S22vq4W386Oz+jGAAA4Mz6KEuxHRdMCgFJPd6trSSbqd/Kvd0/nZ2fdod5FEEJ8ET/16qtth7RAGz9oKvxBwAAZ9xf6cV2XHDWlpMs6iPX5r1a13Gg537QtSsIDycoAR73YbTV1qO98YPu/JJiAACAiem79GM7Ljhty0n6P+jObyuK2r1Xh6nfir3lH3Rtv8XDCUqAR30Q2ylCkvNK42M2ftCd7ygGAACYyH6M7bhg/AQk9X+ftpLcqdll7f6ga/stHk5QAnzMv7Z0/bEf1STtH2oMAgDAJPdpZso+jTMWYbSWk/T1iRvzLu0nuVyzy3ruh7bf4iE+oQiABz6CgyTXIyR5FA1CAACYcD/szq//sDvfSnIlxWQn4GQ2klz8YXe+p0/cKEs1fIf23FYexooSIEnyr1eXW0nWY6utx9n6YXe+rRgAAKByfZ1+knmlAUe2kWLC4FBRNPYd2ksxobZOPvnD7vxdd5f7WVEC7C9L34yQ5El6igAAAKrlh9357R8Wh/c+k2LQF3iy/RUkHSFJ49+hgyQ7NbusGXeWBz2lCKDZzq8t9zNVu/0mx+HK1uz8pmIAAIBq+mF3fjNJ5/ya80vgMTaS9LdmhSMc+Lup9FOvVSW9JAN3lvvZegsa6vza8nT5UXhWaTzRztbsfEsxAABArfpEiym25HI+IwhIePI7czv1Cpg/tTXrvB0O2HoLmvlxa6fYaktIcjg9RQAAAPWyNTu/lKQVB77TbDtJLm7NzneEJDzBUs2ux/ZbfIQVJdAw/2dxCNdSzJo6rGs/6s4vKgYAAKh1P6kVB77TLDtJ+j8qzp+Aw7wnp5Nspz7jSTs/6to9hAOCEmjWR20pyetK4kgNx/aPuvN3FQUAADSiz9RKMbHM6nvq3M8VkHDcd2TdxpWe+VHXebQUBCXQjA/ZdJL1JBeUxpFc/FHX0mMAAGhgH6qTYoWJPhR1ISBhFO/GVpI7Nbqk5R9153vuLImgBGrvX60ut1OEJE8rjSO59WfdeftVAgBAs/tTnQhMqLadJP0/a2BAUj6/jN4g9Rlj2v2z7vy0W0oiKIG6Nwp6cR7JsT6USVp/ZsstAADgoG/VjwloVEejApJ/VeykMVP+2p5VjmDhz6y0IoISqHMjwXkkx/fcn3Xn1xUDAADwQD+rF4EJk20jyaBBAUknSS/JvFvPMdlRhCSCEqidf+k8khN/IH/sAwkAADy+39WLwITJspGk/+OGnLP5L1eXWym2gDL2wSh86sfd+W3F0GyfUARQq4ZCO8mmhsKx7SZZVAwAAMDj/Lg7P/hxd76VZCHFFkdwVjaSXPxxd77ToJBkMcWB4sY+GJWeIsCKEqhPQ2EmxWwK55Ec3xs/7s4vKQYAAOCI/bFerDDhdDVqBUn5nE2nGPd41u1nxHbK8JsGE5RAPRoL/SSXlcSx7ZYNTCEJAABwkr5ZLwITxms5yaBJAUn5bE0nGSY5rwowJs/92Hm1jSYogQr7F2vvTydZikPLTmIjSe/PZ1/YVhQAAMCI+mq9FNv6GtRlVJaT9JvYdy3HPoaeJ8b9jP357As9xdBcghLQUGiyK38++0JfMQAAAGPqt3VSrDBxlgLHsZtkPQ0NSO57joaeIU7JJ/989oW7iqGZBCVQzUZCO0VI4jyS49lKsYpkU1EAAACn0IfrpFhh4mwFDmM3xe4RS00ftP0Xa+/3Y6txTs8bfz77gm3ZG0pQAhXzz1ff75UNJiHJ8VxL0v+LrhkCAADAqffnWilWmNg+mYfZKevHuj5r8s9X328n+VC14DSfwb/ovtBSDM0kKIFqNRL6MZPiuHaT9P6i+4KDuQAAgLPu202nWGGyGJPgKM7OHPxF94WBovjIczKMLbc4fc8ZO2omQQlUp4EwiFlHx3UrRUhiFQkAADBpfb1eilUETyuNRvZVl/6i+8JQUXzsuegkua0kOIvn8i+6L8wohuYRlMCE+9SqQ9tPYDdJ/07X/pIAAMDE9/06cY5JU/qp62VfdVtxPPJ5GMZqEs6wCno+m0dQApPdMGiXDSgzi45uK0nvTteB7QAAQKX6ga0UgUkvtuWqk50U540O7tjt4DDPwB0lwRm6cqf7Ql8xNIugBCa3YdBJEZJoGB/dtTvdFxYVAwAAUOE+4XSSmRShiR0GqmsjydIdZx4cpe4vJrmqJDhDu3e6L0wrhmYRlMBkNgp6Sa4riaN/yFKsItEABQAA6tRHbKcITGZiMl1V+qa21zp+fR/GtlucvYU73RcGiqE5BCUwYf7Z2o2lJK8riSPbSDLzl7OXLGEGAADq2l+0ymSy7STpJ1nXNz1RPTdYySTY+MvZSx3F0ByCEpisxsAgybySOLIrfzl7qa8YAACABvUf2ynOMenFKpOztpxk8Jezl4aKYiT1+kMlwYR45i9nLzn7tiGeUgQwEQ2B6STDmBF0VDspVpH4aAEAAI1S9oMWkyz+s7UbMykCk2eVzKnZSjJIEZBYPTI6zoVgkiyW71YawIoSOGP/dPVGK8XepUKSo7mVpPdXXQ1SAACAsn9pa67x2j97ZOmvuibsjakOO8idSfOpv+pe2lYM9WdFCZxtA6CdYiWJZdJHa5j2/6p7aUlRAAAAHCgnkg2SDMpJefsrTYQmJ3MryfpfdS8NFMXYWVHCpOmlOHuImhOUwBn5p6s3ZsoGrJDk8LZSrCIxcwcAAOAxyhnQS0mWhCbH7n8OkgzsZACNthhBSSPYegvOwP+xeqOX5LqSYELtJNlOsdpp/SeCKQAAqFN/tJUiNOnEmSYP2g9H1n9iq52zqp+9GC9h8iz8xIqy2hOUwOl/9PtJLisJKmS37Cws6SwAAECt+qfTKQKTmfLXxB0PhCOTVSc7SW4rCSbMzk+6l1qKod4EJXC6H/xBknklQYUtJ+nrQAAAQC37rO0cBCcXanypt3Kwgl7fZrLqYCvJHSXBBLr4k+6loWKoL0EJnM6HfjrFDBXLmqmD3RRhyZKiAACAWvdlOymCk06qHZzsJFlPMvxJ99K6Ozvx9e5unOfK5Nn4SfdSRzHUl6AExux/X7sxnWKmigPzqJtbSXp/PetgQwAAaEj/dn/FSbv8TWo/d6fshw+TDP961qqRitWz9ZhoymS6+NezVpXUlaAExvtxF5JQd1tJOsISAABobL+3kyI0aeUgQDnN1QC7STbLvvdmimBE/6TadaoXB7ozmZb/evZSTzHUk6AExvdhb5cNNctFqTthCQAA8GCfuJNkOkVwkhQrUVL+t6NOJtwPQ1L2s++W/75ttUgt6850kp8qCSbUp7x36klQAmPwv60KSWicrSSdv+kKSwAAgCP3oe8PVPI3DkxWJ1ZvDJLMKwkm0PLfdK0qqSNBCYz+Yz6T4uB2IQkaCwAAAHBE/9vqjVaSO0qCCfVJE0Xr5xOKAEb6Ie8l+SBCEpppvgwKAQAA4Nj+pntpO8mykmBCLSqC+rGiBEbkn6ze6MVhY7CTpP3fzawAAADgBP5JsSXbdkxGZfLsJmkZ+6gXK0pgNB/vxQhJIEmejpkVAAAAnFA5CG3XAibRuRj7qB1BCZzQPykOGLuqJOCeniIAAADgpP5799IwyRUlwQRaLFc9UROCEjiBMiSZVxLwEU+XW9EBAADAifz37qV+nFfC5LGqpGacUQLH9Mk1IQk8xq2fzl6yRBoAAICRMA7DBNpN0vrprLNK6sCKEjj6h3n6k2s31n2c4bGeVQQAAACMyk9nL/WSLCgJJohVJTViRQkcwSfXbkwnGSY5rzTgiS7+dPbSUDEAAAAwKp9cu9FOMoixGSaDVSU18ZQigMOZXhWSwBG1y2cGAAAARuKns5c2k7SnV2/0kvSTPK1UOEP7q0r6iqLabL0FhyAkgeM9OooAAACAcbjbvTS4273USrEd14YS4QwtlmOHVJigBJ5ASALH1lYEAAAAjFMZmHSSfDJFaHItRXCyo3Q4Jc4qqQFnlMBj/GMhCZzExv8oGqsAAAAASZJ/vHpjO/XbMm03Set/dJ1VUlVWlMCjX9r75ysISQAAAABgNJZqeE1WlVScoAQeQkgCAAAAAGMxSLECo24W/7GzSirrKUUAH/WzByHJOaUBJzJUBAAAAMD9/kf30t2fXb2xlORyzS7tXIrVMj13uXqsKIH7CEkAAAAAYOwGNb2u+Z9dvdFye6tHUAIlIQmM3FARAAAAAA/6n91L20mWa3p5fXe4egQlECEJjKnRM1QKAAAAwCP0a3pd8z+7eqPj9laLM0povJ9Zu9HOlJAERuyWIgAAAAAe5X92L23/zNqN5STzNby8fpKOu1wdVpTQaD+zZiUJjMm6IgAAAACeYFDT67rwM2tWlVSJoITGEpLA2OxGUAIAAAA8wf83e2mYZKOmlzdwh6vD1ls00j9aXWknU8MISWAclv5Xd+6uYgAAAACe5O/3pvpJbtfw0p7+R6srvf/VnRu4y5PPihIapwhJrCSBMdlNsqQYAAAAgMP4X925Yeq7qmTpH62uTLvLk09QQqMISWDs+laTAAAAAEfUr+l1nUuy6PZOvqm9vT2lQCP8QyEJjNvG33bnOooBAAAAOKp/uLqyneTpml7ep/62O7ftLk8uK0poyot2OsUBSkISGI+dJDOKAQAAADimfo2vbeD2TjYrSqi9MiQZJjmvNGAsdpN0/rY7t6koAAAAgOOq+aqSi39bnMfCBLKihLq/XIUkMF5CEgAAAGBU+jW+toHbO7msKKG2/oGQBMZtK8nM39ljEwAAABiRf1DvVSVX/q4713eXJ48VJdT1hSokgfG6lqQjJAEAAABGrF/ja1v8B6srLbd48lhRQu0ISWCsNpL0/86emgAAAMCY1HxVya2/687NuMuT5SlFQN38fbIUIQmM/COeZGlPQAIAAACM2d8Xq0qu1/Tynp1aXekYY5ksVpRQrwq9ujJIMq8k4MR2kmwmWU8y3LPFFgAAAHCKplZXNlPfydA7Sdp73bm77vRksKKEOr08BxGSPGgryaJi4Ai2hSIAAADABFhMcrum1/Z0eX19t3kyWFFCPSqykORhlpMsSqYBAAAAqKKp1ZVhkgs1vsRn9rpzm+702bOihDq8MHsRkjxoea8711MMAAAAAFRYP/VdVZIkgyRtt/nsfUIRUGVlSHJdSXyEkAQAAACAyisPPN+o8SWen1pdsW3+BBCUUFlCkodaEJIAAAAAUCP9ul/f1OpKy20+W4ISKmlqdbWdTF1PpuJ377ew150bqB0AAAAA1EWxqmRqucZjeueSqYE7fbYEJVROEZJkqCQ+YmGv2/VCBQAAAKCO+jW/vgtTq6u24DpDghIq5b6Q5JzSSJLsJnlOSAIAAABAXe11u9tJlmt+mf2p1dWWu302nlIEVMXU6sp0kkGEJPt2k3T2unObigIAAACAettbTDKT+o4Nnksx9tlxr0+fFSVUQhmSDJOcVxpJhCQAAAAANMhed+5ukqWaX+aFqdUVW3CdAUEJVbEeIck+IQkAAAAATbSUZKfm19ifWl1pudWnS1DCxJtaXR0kUxeSqfhN7SZTQhIAAAAAGqdYVTLVr/n437lkat3dPl1Te3t7SoHJraCrq0tJXlcSSZKtJL29bldIAgAAANAg5SHfLSVxz3rqf47xlb1ut+9Wn9IzJihhgj8AvSTXlUSSIiTp7HW7dxUFAAAAQH1Nra7OpDjQu53kghJptGdMmj6l505QwgR/ED5QEkmEJAAAAAC1Vq4Y6SeZSf1XSnB4O0naxgXH7ylFwAR+GNpJBkoiiZAEAAAAoLbuC0jmlQYP8XSKA+x7imLMz6IVJUzgx2EzkvNESAIAAABQW1Orq4spQhLjYDzJwl63O1AMY3weBSVM0MdhOskwyXmlISQBAAAAqKNyDGyQ5FmlwSHtphgrdF7JmHxCETBB1iMkSYQkAAAAALV030RhIQlHcS7JoKw/jIGghEn5SAySXFASQhIAAACAOrKbCid0PsV5JYyBoIRJ+EgsxoFViZAEAAAAoM6GEZJwMvNTq6s9xTB6ghLOVPlgX1USQhIAAACAuppaXV2KkITRWJpaXW0rhhE/ow5z5wwwxd2gAAAgAElEQVQ/EO0USfq5hheFkAQAAACgpqZWVztJbisJRmgnSdt44uhYUcJZfSD292QUkghJAAAAAOpsoAgYsaeTrCuG0RGUcOqEJPcISQAAAABqrNx2/mklwRhcKLd0YwQEJZwFezIKSQAAAACaoK8IGKPXHe4+GoISTtXU6mo/yXzDi0FIAgAAAFBzU6urM7GahPFzuPsICEo4zY9DL8nlhhfDboQkAAAAAE0wowg4BeeSDMvjDjimqb29PaXA+Cvaymo7ziUpQpK57qYaAQAAAFBvUyurd+OMXk5PsYvNnAnax2FFCafxUXB4u5AEAAAAoDGmVlZbEZJwus6nOBuaYxCUcBqGEZIISQAAAACaw5kRnIX5qZVVYckxCEoYq6mVtUEydT6ZSkN/u8mUkAQAAACgUabaDR4P8zvb3+tTK2s9z+DRCEoY3+egeCDnG14Mnb25WSEJAAAAAHBargtLjkZQwlhMray1k1xveDEsCEkAAAAAgDOwVI7RcgiCEkZuamVt//D2JlvYm5sdqA0AAAAAwBk4l2QoLDkcQQnjMEyzD28XkgAAAAAAZ01YckiCEkaqOLw95xtcBNeEJAAAAADAhDiXZFDuAsQjCEoYGYe3Z3lvbnZRTQAAAABoPOfWMknOp1hZIix5hKm9vT2lwMkr0upaO8mHDS6C5b3ubE9NAAAAAGBqda2V5I6SYMJsJensdWfvKooHnllBCSN48U+nSMmfbuoLZq87a58/AAAAAO6ZWl3bTnPHy5hcwpKHsPUWo7De4Jf+VpKOKgAAAADAA4aKgAlUbMO1ahuu+wlKOJGplbV+9nIhe0kDfzvZk74CAAAA8BB7GTR0zMxv8n/ns+fMkvvZeovjV56VtU6S2w0ugp0k22pCJd1NsV3cdpLh3tys+wgAAACM3NSK7beYaMU2XHMmggtKOO5LvpVioPmc0qAGdlJsIbckNAEAAABGZWplrZfkupJggglLIijh+C/5zRT72UHdLCfpC0wAAACAUbCqhArYSTKzNze72dQCcEYJx3m5L0VIQn3NJ7kztbK2ZJ9GAAAAYAR6ioAJ93SS4dTKWrupBWBFCUerMCtrM0k+UBI0ROPTdAAAAODkyonHrysJJtxuim24GjcWJijhKC/0VpxLQjM/EIt7c7ODaj+/N1tJWm4nFXB3b+75zTE/Dx3FPLE29+aev6sYaEbb+mY7yaFWr+7NPT9UYnC2bQLPIaf1zq8zz5Gt7KmUhaqPhR35+RSU4GUO9f9ATK3c7Ce57DZSARt7c893xvw8aPxUpC6Ufw6T3E0xWUOQQhW+ufuDYfvvsv0/WxnN3uQ7Sbbvez5SPh93DUDBveewUz6H7VN8Doc5hQkfTPz7v13Ws/06aAzl8c/Q5v6fTfmGlVt8D9UNKuKNvbnZpca8xwUlHPJFbnkgJBf35maH1XyGBSVUhqCEw3SsN8sO5tCAFGf4bd0fhO3kYGDs/IQ8I9vlM7IfMG67Y9T0OWyVz9/+s9jKZByWvP+t2vQc1rr+dcp610lyQYmMxNZ9bbz1+tYdYQmVsrw3N9trxHtdUMIhXuDOJYHCbpL23tzsdvWeY0EJlSEo4Tjv5mGS9bJTva1IGNO74/5QpJPJGIw96nMyjICRejyH+89ilZ5DQX896uBMkv2fbcnH71bZxluv26riMiwZJHnWbaYK/fQUZ/jWenW/oIQnvbhbcS4JfOTjsDc326lgg74fQQmVecYEJZzIVtnpXBeacMJ3xXSKgbBOqheMPImAkao8h63y+dt/Fs/V7Dlc338WbS050fWwnWQxwpGzdivJoG4rTaZW1haT9NUtKtLP6tX5kHdBCU96YQ9jCSk8qHJ7NApKqBBBCSOtTzkITQxAcZj3QysHM4Wb1AbeDxjNcmeSnsNemrUtjaB/8upiL0VAYnukybJTPitLdWnflZOU+0nm3V4m3G6KlSXDWr73BSU85kXdj4FVeNSHoVWlJYeCEipEUMK43tvrSfoGn3jIO2E6xYBsLwbDEoO1nM1z2Eozw5EnPYcDQf+Z1MdeikHrp5XGxLfvllLPwMTqJSbdwt7c7KB2739BCY94OXeS3FYS8EhX9uZm+xVq7PcjKKEaBCWM262yQz1UFE1v797cH5S1N/hj3skpBmoHioIxPYe9FAOCnsPHf7cGdT7YesLqYz8CkqqpXWBS1Me1/S0H2+VPcMKkqd0h74ISHvYynk5xLonGATzazt7cbKtCjf5+BCVUg6CEU6trKVaYDBVFk9q5N6dTbKPS09Y9kt0cbHOyrTg44XPYKp/BxRj4O1L/IzXbbmiC6mSnLFvfhep/qxaF+4zvXbE2neJcKSsfD9xKcW5JPVZ1CUp4yIO/HjN64DCe25ubXa/Gcy0ooTIEJZx6nSs71c5lqHX79mYr9v4eZYfYqiyO8xx2UgQknsOTW47tJEdRJ6dTBCTGP7Tt4JDvjbV2irBE0H9gK0mnDmHJJ9xLHnjgexoJcGgdRQBQeReSfDi1cnNQDphQq7btzc7Uys1hkjsxODsqzya5PbVyc1gOfMNhn8PbnsORmU9yx3N4ono5k2Q7xj/q3LbrKwpGbW9udjPFlpEcOJ9kswyRKk1Qwn0NhbVWin0dgcPRKQGoj/kk21MrNxcVRR3atR8ZmL2gRMbiQgQmeA49h9Wrl9NTKzfXk3wQM8Lr7nL5bLQUBaO0Nzc7TPKGkviIp5MMqx6WCEq437qGAhyJfSkB6uVckqtlp7qtOKpnauVmy8DsqTNQy4PPoYDkbJ9D369H1812ivNYrSJp1rOxWa4ggpHZm5tdSrENIh/tSw2nVtYq+7wJSigbDGv9GPSF4zw7BgQA6tmp/tDqkip9j29OT63cHKTYYsvA7Nk9N7fN3m30c9gqZ+oLSM7++zXwHH6sfvZSnCvgwPbmOZfkA1txMWp7c7O9FGfi8LHnba1Xxb+8oIRyVsXU5WQqfn5+x/kBUFP7q0ucXTLZbdl+in3mnX0wGS6kODthybPTmGdwunwO78RM/Ukxn2IWfd9zeO87cT120Gi6y+WkChjlG2YmmdoyLvax3/UyoK4UQYkGw3SKLbeA4zEAAFBvF1KcXdJRFBPXju1MrdzcTnI5Br8m0evls2O7k3o/hzMptjK6rDQmzrnyvmw2+RtWDoyrn+ybn1q5uSlAZFT25p6/m+Jw912l8THXqxZOCkrox9JTOAl7AAPU37kUWwr1FcXZu2+brdvasZV4dj6wHVctn8P984A+8BxOvKfLb9h60waHy2+F1YY86HwSK4YZmb2557eTdCIseZj5KoUlgpJmN247KWZ6Acc3VAQAjXG53Pddx/rs2q8zsc1WFe0fpuvcn3o8h4spVpE4h6Rank2DVnmVQZ5vBY8iLGGk9uae30yinfNwlQlLBCXNbdxOJxkoCQCAozX0dazPpu1aHhL9QWyzVVXncnDuT0txVPY5HCa56jms9HP4Qd1Xl5QDcoI8nkRYwkjtzT0/SLKgJB7eh6pCWCIoaa5+LJGGUbirCAAa2bHenFq5afvFU1Cugt6MQ6LrYn91ibNLqvUc7q/mMvhcD/urSzo1rKuDWEnC0dp0whJGpgxLriiJh5r4sERQ0tzOpi23YDQfwU2lANBIT5cda2HJeNut/TiLpI72Z7Xbyq4az+FSrOaq63N4u7y/daqrQhKO6nzsuMII7c0930+yrCQeaqLDEkFJ8xq5ttyC0dlQBACNdi7CkrG1Wcstfi4rjXp3lj1DE/0ctqZWbm7GJLu6e73cEm+64vW1p65yAs/WKTTk7O3NPd+LsOSR7b9JDUsEJc3Tjxl5MCpDRQDQeMKSESvL0kHRzbG/7YmtuCbrOeyUz+F5pdEIF1JsxdWuaH1tJ7nuNnJCr5eBG4xEGZaYYPtwExmWCEqa19g1wwJGZ10RABBhySjbq70UExFM7GneM/RBudUaZ/8cLqbY8u7/Z+/+XxxJ8jv/v7JnFuPDXNXCGcOyuDRguPvFLs1ibI4DV47BHIZlW4MxWF9qlDUzH/P5rdV/Qav/glH/uuuZSk1LJYMxozIDZlnYyTKYxcbsqry/2LAwKmMMyy5s6Th8HMeR90OGutXdVdX1Rcr4ks8HJN0z+0VSREZmRLwj3kGqreq1wx/5NlFsdsJkVB/WZEB/DmvWkHRKMVzIuWAJgZLqdHZJuQWs1ynnkwAAVhAsuXt/daBiRTCTs9X1yPVDPivQDlNJH1ESlXboWTuc8t7AmvtznJ+Ftck7zXNJsQiWXMapYAmBkuroiZV5wDqRvxQAcNHgOmNwfXNmgMTOZywHzDPaUeltcNucR8JB2Fi2w6nr7dDsfiJNI9ZtV0XaemAtCJZc652TuvBFCJRUo9NbFwdhAut0lneaKcUAALgAwZKb9VOZnMVFlueW1CiKctqhitRFnEeCVfddfp+Z50OfasKGPDDp64G1IFjyWl0T/LaKQEk1pBQBsFYJRQAAuMIu/a/XY3IW12hHM9LZbbwd1sWh7bi6HboaLElFyi1s+B5j4QvWiWDJa31k+5wsAiXhd3x7dHqBtXqSd5oZxQAAeI37HEx9ZR+VIAmug7N/NtsO66YdkqIZV3EuaGkm0ki5hU3bUZHGHlgbgiWvdRiNJg1r75c8z6mCcDu+NRWrg1hlAazHqaTYvNh8ex70VXIKvrzTjLhl4Gh7KLvz8zjvNPuU/JV1Upe0ba66uWoKYxL93bzTnFLLr9T3VNWZnD2VdK5iQlorf+o6iy9W2odM29he+bMqE4UL0web0YLW2g6zCo0VX26HM/PPkjTPO835Ndvg9kvtsFahZ5kT7dAE2uee3LsLc69lK/fczMfx5BrqLTZ/jU3biT16/rx11TMCuMOzLBOLhpx63xAoCbvRTVXkFQWwngd13dcOEoES4IX2QKDErwFEXVLDDKh9HEh4/f7YQJ2GPjl7qucTYrMyBnhmcdQywBgr3OAJwRLaocvtMFYRNKl7/L7y4p1mY1xzizJKJU3JRHCtZ1Fi+nkuBxyP806zQY1hQ2OdTARLnHnfECgJt7E1JH1GSQAMzG0NKAiUwOH2QKDE37qrmcF04tmA4iTvNGPqL8jB4HJCNpOUubJK2Ezaxqa9hFTeBEvufm+EGCRZtkNnJqbN8y5euYJ67uWdZt1iuc4dvX9PJKV5p5nypLlV3TZUpLlyNdj/DoEv0D+28n4vNasLgZJwG9lM5JoF1vVgbvi+EphACfBCeyBQEkY91s2AuuvJV670fRDYIPBUz1cLzz0p+4a5QthtTrDkbs/NTGEESY71PDjiQzusyc9A/2We5J1mz0I5pg6+988kJUyir62OY0l9uRcwYdEL6CdXoO0RKAmzgfXl9lZUwKcBWBJCDlkCJcAL7YFASXgDi565XJ/8e7uKk7uBDP7OVARHUp8XT5i6SOT/ZC0p7W5X974vpvMqSHlFXdRUBE16ntdHqe80B3eTLCT1805zwBNmI/WdSBo41rdjVwk2fd+n8mcRWJmGeaeZlFIHBEqCa1Q1SV9SEsCdnEnqhXT4LoES4IX2QKAkzHrdVrEC8YHDX9NauhLLdTOTv5Pyx5IGIU6MeLgr65X2pJLTMXj+fMw8bodD0w5nAdZNrCJw6Vs7LP3MBscWhAaRdcCTZ9dU7uwuKW2yFpW+71MRLLnIQRmpDe9RzsFJKQLg1s7Mw7cWUpAEAKog7zTPTRqQt1TkCXfRbjSa9KpUL2aw59vk7ELSE0lv5Z1mI9TVo3mnOTMTPl+V9Nj8bp/sqpj8x+tNPW2HjyV9Ne80k1B34+WdZmba4VsetcMzFcGdsrny/hzmnSY72srr28WmbbigaxYnA5u87xPTD8WLDs0in40iUBLWQDSWuwdfAS539IcqttHWOHwPALwfXMzNoPpduTnh1DcrJKvQN+3LrxVxy4nZWt5p9qoyCWYmovqSavIvYLJrgnG4vB2mno0RV9thvyo7hsy7y5d2WHpqYpOGyYUUTAfsKLDSPvqSDly5/6kRlHDP9xy6510y3fQ46k3KOChVGSS8bf7clhRT7biFcxU5mmekawCAYAcYU7Pqz6WUDVIx0TMIfaBtJrV8OjPvsYrUPucVbjPnKgJ5A/lz7o9UrPCdk+LwwnboU2q1hXk20g7dbocHlnbZJY789pQni7W2kUajiSQdWv4qiYpUr0BZ97xrZ/XYtGPGdvHG+k6cURJUJ/ijCvzUhxyWBtzqGdEXZ5QAy/bAGSU8A10Q7IGgZlt85smg7ljFuWRzWsor9ejDuT+r3iV16gv1F0v6wpOv+0TFodgsYLq4HQ7kRsDLSqDAkXNYCZK40yYS2Q+W8L4B/Wq7Nja+JvVWWIOY0J0QJAEAADdlOtKupeIKsu+2cvCq64O5MxXBKg7jvbzdLM/9eVvunvuzKiV3/LN2WDPt0PnxnaS3Tao7giSXt8PEtMNTi1/FZqCgYbkanhAkcapNpJIeWv4aDWoCJd7zM0l1y+8A1zwyC0LWjkBJGPoKP7K4ELkgAQDA7QcZy23argRL9jbVwbcsVbEt3mWPzblkGS3jegN0c+7PQ7l9bsKWSshd7QnXg5ULFZkC4lAPad9QO6xbaoe2d1PYnAc4MQFjuNUeBirOGbWFQAnKvufnZhxzQmk87+tsos9HoMRzZrXQgwr81ITVfgAA4I6DjJncCpb0A+uX9iTdd/grnqpYvd6nNdyq/QxUrGh0eZC+qyJNUZXHhwNTDq46kVQnU4A37dBqkMTMd9i6nxdiQtxlPRW7Q23YikYT7g2U/fw/NwtXhpRG0Q61gbO6CZT4rwodzGPyPwIAgDUNMmaSahYH16uC2VVi8ie7fF7ek7zTrLN6/c7tZ76yu8RV3apOYJnf7fIiuuUukjmtaS3t8PGGP8qFczlstuWElHBOt4Nz2d1tFFMLsHTvJ473w8p03yzUWps3KVOvO8Kx3F61tw5nIuUWAABY8+DaTChmsp+epu/7YHvlXBIXLSQ1SLO19jY0iEaTTMVKPhd3L6TRaFKv0oS8aYepw2O6BoHKtbfDfjSaTM3zd90pD105vNzW+/GExZpetIEsGk2GkroVujddeefUVQQy6yoWIO1yR8LWWCoaTabr6vOxo8Tzm6ECv5FVHAAAYBODa1fScO2ZwabvfVIXzyU5VZHiJ+OO32gbOnbw620kHYPjXD2X5Ni0Q4Ikm2uH607FdeDQ4eWxpc/lXBK/+iA27FbtTKxoNKlFo8kgGk3OJf1I0iMVi7cJkiCYPh+BEn8fUA1Je4H/zCcMbAEAwKaYCabEga/i7YSM2eHsYqqfoSRS/Gy+DZ3nnWZDm08BdBt7607H4HA77Dk6Nnycd5oNFr6V0g5jSU/W8H/nTJDELCKwEfwbEtjz6v6fy96ZDXFF3jG1aDRJJX1p+nxb3HkItc9HoMRfoZ9NcqZq7JgBAAB2B9hT2Z/k7fq4KtHhVD8P806TXcnltqO+pAPZ36H1sr45DDpY5ve5OG46MPcFymuHPdMO71JnLj3Tbe22HHA3eadfsXu0zHdMX0WApMttBtefA+vo8xEo8fNBlcjN9AbrxOAWAACUwkzmnVj+GomPAxIH+6QHeafJJJeddpTKjXR2q6qQgmsgt1b3LiS97diEe9Xa4bu3aIcHDtaZjUnoU3aTeHnfz2UnDWQcaplGo8m2OYvsEXcYPLGWPh+BEj/1A/99pNwCAABla8juBG/i2QC6LrdSbi0kvcvkrF0Onf2zas+kLQ6O+V33HWuHMRPN1tvh9Ibt8MDRZ6eNQAmBdn/ZuIdrgb5b6pJmCj/dP8Jz5z4fgRL/HliJwt5NQsotAABQOrOTNbH4FXY9O9Q9dei7LCdnp9zJTrQlF4Mlg9AO3TW/Z+BgOyRI4lc7PHA4wGzjnch7xN97fmrhvRPc3Jzpi2YKP4sNwpXepc9HoMQ//cB/Hym3AACAzUH2scWvkHgyiE4k7TrydZicdbMtuRYs2ZEU2sHuPbkzkUU7dLsdnl7yXzlwfBde2SnlTpmL8F5moU8Uh1J4K2fPcVg7fLZ1lz4fgRK/HlqJwo7qDkm5BQAALLM5mep8eiDHVrEzOeswB4Mlj0I52N38jke0Q9ygHQ5f+o+cDpJYmnxmN4n/Morgzm1gl2JAAG7d5yNQ4pd+wL9tofBWeQEAAM+YA0EfW/r4HQ8mcntyZ6Vhj8lZ59uTa8GSUM4fcGVcSJDEj3Z4nneaiaSH5l8dcJ7ThbiPqcPbiEMouGg06YkzSRCWW/X5CJT489BKFPZuElJuAQAAlzrWtiZ2nd1V4tgqdib6PLESLHHBfd/TpJjv33Xk6xAk8astDiR91ZNnZ83CZ3Iv+3+PZ5TCrd4r2+KsYITnVn0+AiX+PPL7Uq5ArxMO3wQAAA4NtM9lb+W5y+m3XBlEPyZI4l2bmkk64D4O6vsfECTx9v3mg5qFsplzhwThjCK48d0/kPKtgOccuap73bjPRKDEA9HoKFG4u0kW8uTgUgAAUCm2dpU4mfbA7CZxYRX7MO80+9yeHk7DFMGtxw58lT1fd5WY7+3CM4JgJULD5Ho45iV/Xs3nwopGR9tyZ5cisIE+39GN+nwESvwQ8mBwkHdac6oYAAC4xKy6Te0MWp2cxHWhP3oqzrTzvV31JR1zP3v9vY8JViJAc4oAt1Tz/PsnVCECd6M+C4ESx5nIV6i7Sc7yTotONgAAcJWt9FuxW/1RJ3aTLCQ1ONMuCInsr972bleJI7tJzsSkGgCE9k4GQnajXSUEStzX54EMAABQPpOv/NTCR8eOFYUL/dGE/PHBtKtzuXEWj2/jLBe+L8FKAAhENDqqSdqlJFAB1+5DEShx+6EVy9E81WtwnHdaGbUMAAAcZ2NXSd2d/qgTu0mGeac55VYMhzkE/KHlr+HNrhLTDm2PCx9yeDsABCWmCFAR195VQqDEbUmgv2sh8ksDAAA/2Jig3zITo/RHi1Q/9BsDlHeaA0knjLeupW/5809MfQGh2qYIUEE1igAVcq2+FIESR5ktcN1Afx4HuAMAAC+YNDM20m+5Mni1HaRISPUTtETFIipbug4FJS8ZF062LY8LFyJlMsJH+iFUUUwRoEL2zFz7lQiUuCvUlXNnsncwKgAAwG3Y2FViffAajSaJpC2LX+FJ3mlm3H7hMufO9C1/jYRx4ZX6nA8EC0oPkJugJAAgXK/tc75JGbknGh1tK9xVO/2802JVIAAA8Ekm6VHJn1lz4HfbnKA9k3+HbeMW8k5zEI0mDdk7g6Pn+L1mc1xIyi3YYuM8nLp538Pvd0pMKQC4RCMaHW1fNS/NjhJHK052V+9tsKPdSqleAADg2aA7s/CxNZu/ORpN6rKbiqRHyq1KsRmU2zK7p5xjAkg7Fa0XoGwxRQAAQdtSMed+KQIlDBTK1KdqAQCAp8o+dLpm+fcmNss67zSn3HLVkXeaM0lPLH6FhqNFY7MdDk29ADbY2lECAAjblXPuBEocE42ObK/e25TjvNPKqGEAAOCpsidtdiz/3sTiZ/e53SqpL3sHu9937VB3c17CfUsfvxC7SWCRpR2F9yl5AAjerpl7vxCBEvf0+F0AAADOqUwaKJPux1Ya2CEHuFeTmRi1eR6Ga7tKbH6fAanv4IBTS+8/oCrYNYiqSi77DwiUuCfEF/Mw77TmVC0AAPBYVvYHRqNJXMH+aJ9brdIGsrerJHGsLGwtNFvIbsAKWJrxHAA2ak4RoKIufdYTKHFINDpKFOYh7gx4AQAAvOiPTrYldS19/DDvNBm0V5jlXSW7rqTfMt/DVjpmdpPAFTbeB86l4QM2KKMIUFFb0ejowoVhBErcEuJuksfsJgEAAL6rUDqo2OJn97nTILu7SlwZj9n6HuwmgUtsvXcTih7V6Nu2ZpLOKAlUFIESl0WjI5uH9dHRBgAAwKWDhhKwmwSSrO8qSSreDtlNApeeBZmlj+6Z3ZVAFUwpAjDmeY5ACYPSDXe0W3S0AQAA6JO+TkrRY3UcYelzraffMhO0e7RDQJJ0YuEzt8QOR/C+BUJ3YfotAiXuiAP7PewmAQAA8Ig5PN7GeXmnFUpthmswuxqGFR2XsasLeM7Wu+FBNJrUKX6E/75tzWUnIAm44JU+H4ESd4S2o4TdJAAAAJ4PFsrqN1L0cOi+aFS0HabccnCQzbRAtAlURY8iQEWxo8RF0egolp3Ve5vCbhIAAIAABgsl9RvJj41X5J3mTNKphY+OLf90G59/xq4uOPwcWFj6+N1oNGFeAxVoZ62ZpCeUBCpoJxod1Vb/BYESN8SB/Z4pu0kAAAD8Yc5F2LXTb+TwaFwqtfCZW7ZS7pjzUXYsfDSTwXCZzWD6g2g0SagCVEBf0hnFgAqKV/+BQImDlRLIAxYAAAD0R1+H3SRw8f6IaYeAM1LLnz/gvBKEzix2bsjeDi7Alhd21L9JeThhL6DfciYpiUZH1KrfziXNJJ2bbZgAAFSaWekdMhuTQGd5p8kELS6Vd5rzaDQ5lnS/5I+OZWeXRWzhM085xB2OPweyaDQ5k53dVlKRJj2LRpPYpAIDAm1rrVk0OkokfUZpoEJe6HsRKLE+6D6KA/tJO5IeUbNB3aOSdKJipdk077QYSAEAqqhWpUFCSTJuK1zDVHYCJVVphym3GDyQyu48A8ESVELeaU2j0dGBpENKAxWxFY2Oasu5TlJv2RYpViRxcTl+7SnSR4r0ZTQ+SqNxcAE+AABep2bhM+clfpaNHc7sJsF1ZHYGzeXuIjPnBO3QDoELpQ58h2WwJKE6ELK800oV6W1FWjAXxlWRK17e/wRK7IspAnimK+mLaHw0jcZHNYoDAFARpb/zykqHYyn3+oK0W7hBOzi18NH1wD9PKtLfzbnL4MlzYOjAV9mSdBiNJgNqBUG3uXZrZvq+J5QGKuBZH4xAiUOVAXjmvqRZND5KKAoAQAXE9EfXKuOWguP3S9ntwsYzhmAlfJI69F0eRKPJjEPeEbK83VJA4kMAACAASURBVDrP261Y0oGK84iB4MdCBEosikZH28q1pVzi4vL02lKuw2h0lNKiAQBV6UCXpMwVfDUL5ZlxS+EGbEzox4E/Y2iH8EreaWZya3X7rqQfRaPJwKTOA8Jse+1WmrdbNeU6UK5T5sG4AryepSAmUFKtATewKV2CJQCAUJmzCrZK/tjzEj8rtlCsGXcWrj1JU0yQhj5Wq9EOgdfqO/idHkiaR6NJv+yzjYBy38WtNO+06pLelvRYReByQckgjPHeUV2S3qQorIopAgSkG42OlHdaCUUBAKDPdmezEj+rVvJvW+Sd5ozbCjd0Ij1f8VeCsoOjuyV/3lneaZ5zW8EneaeZRaPJsYo00C7ZkvRI0qNoNBlKmnIOF8Jth63Zaj81Gh1ti4XgVdYvuX+2yfHQjECJXWzPRGi60ehonndafYoCABCQhoXPnJf4WTsl/zaCJLjtfVPqQDwaTeIydrNYOucg45aCp3pyL1Dywpi4GBdPFqadZeb5NSM4iRDlndY575TqMtllQgiU1CVNCZRYvZuIuCJIj6LxUZa3W7woK//CnHAPODaoZAU3cGuxhc+cl/SstvHbeD/gNmy8w7YD+xzb5YnNPMfrkgZlfmbeaca2fm/eac6j0eSJipRXLttSEdC5v1JXklvnrNh8/2eSzhmfAL6/hDSVdBjAL6lJpN5yohKAAKXR+Kiet1usmKm2PYrAKexiBG7T9x9NGio/BY+tMxnKwqQIfLlv6irnIPmYdog79vGq1u/uq9jtuePhd6/yGGn1tz8y/SxJOjPPpJmkLPA+EBCUvN06j8ZHpyo/hei61SQOc7dthyJAwPd2j2IAAATARtqt0xI/K7bw++bcVrjxQNzOquOQFxkQKIHPz4NzxptB2VGx8+aRpC+i0SSPRpMsGk160WhSo3gA54VwJlNNIlBiTTQeb0u5uLgCvnrFfQ4AgKf9tdFkW0Wu8bJlIZcraTZwB6clf149sM9ZWnBWAgJ4l0wlHVMSwdqT9JGkL6PRZE7QBHD6iZwFMIe5IxEosYnzSRC6LUkJxQAA8Jit91iZgYSy+6Rn3Fa4g1An98teXESwEiG9p3mvhG9Hz4MmWTSaJBQJ4I683c5C+B3ReLxNoATAJrEdGgDAe+zmyhxslD1BO+e2gidtQyrvLAHaIXALZmdUg5KolD1Jhyu7TMhiAbjhNIDfUCdQYg8Pc1TBTjQes3sKAOAds1rRxnlyZ3mnOQ+4aFnJDryq7ANQ5xQ5QmHSOT6kJCpnuctkHo0mfQImAH38dSBQYg+Tx6iKmCIAAHiob+lzyz4Msew+Keci4C4yigDAy/JOcyBpSElU0paKQ+DnpOQCrJoH8BtIvQVg42KKAADgE4u7SaTyJ4K3qHHgyudBLcCflVGzCE3eaSYKI/ULbt+fOYxGk1k0msQUB1C6EHaUkHoLwMbVKAIAgGf6lj53kXea08DLNuP2An3Z5wINxAC2xCJYUnW7kr6IRpMB6biAUgWxa5xACYAyOioAAHghGk36srebZEoNAFcK8YybGtUKrIc53D2WtKA0Ku+BJHaXAOUhUAIAAACEwqzsfmTxKxAoAa5gJkEB4HXPiVgES1AsfPnCLIIBsMlnb7vNYe4AAABAQFKLn12FtFsA3DCjCBCyvNOciWAJnnsUjSYZqbgAvA6BEgAAAFSeWW24Z/ErpNQCgDKwMwcVuc9nKlLbcWYJZPp4WTSa1CkKAJchUAIAAIBKM4PmR5a/RkpNAACwPitpuAiWQCrOTyVYAuBSBEoAbNoZRQAAcJVJw5BZ/honZuUrAABYo7zTPM87zbqkIaUBSVuSfhSNJglFAeBlBErsva65uKpyzWnvAAAXrQRJtix/lZTaAFDis69GKaByMzCdZiLpISUB45BgCbDGvsV4tB3CHCaBEgCbllEEAABHDVSkYbDpLO80U6oCQIlqFAGqKO80B5LeFlkPUCBYAqxPECntCJTYQ3oFcK8DAGBJNJqkkroOfJUBtQFcu91uUwoA7sKkuiQVF5YIlgB4hkCJPecUASpgkbc7U4oBAOASh4IkC1Uv7RYT3biLEA/gZVERUDJzbkki6V2xuwRFsIQD3oG7iUPokxEosTdE5+KqwkWQBADgVg/MnSCJJA3yTrNqi2eYiIB3g+ZN/p9begYQsASK9jc176XHlEblZQRLgDuNsrYDmMM8J1Biz5wiQAX0KQIAgBNd99FkOxpNMrkTJFnIjbRbrKSFT0qf4A80mMlkILDSxvNOsy/pLUnHlEhlbUlKSfEIVLtvQaDE1su43Z5TCgjcCfc5AMAFZoVgJmnPoa/Vc2QCtux3dY07ElUfhANwT95pzvNOsyHpHUknlEgl7ap6KVGBddkL4DfMCZTYfRUvpFxcXIFeCW0cAGBbNJo0VARJdh36Wmd5p1nVgXiNuxJ3UPZK30VJn1P2pCwBJ+CyWZpOM8s7zVjS2+LA9yq6H40mfYoBuMF4azyKQ5jHzNttAiWWcXAfQvU4b3fmFAMAwFqHvUi1NZD0mYp0Ci5JHPouZb+va9yduIOyJ/hDHa+RWgZ4jbzTnJkD399ScYYJqSqr4xHnlQA3EgfwGxYSqbeqNjAFynCatzt9igEAYEs0msQqJjgfOPj1jvNOM6twf3SHOxR3UAv0d5Wdhm+PWwm4HpOSq593mjUVabmGKm+3GeyZcl4JcG2NAH7DTCJQUrWBKbBpZwojkgwA8FA0mtSi0WQq6Qu5OSG/kNRz7DudW6gn+gq4rbLb9Sywz3nhecntBNyMScuV5J3mtorUXI/FeSYhv2/6FAPwmv7EeFSTWymOb2suSW9SpVaRegshWUhq5O3OOUUBACi1g15M+PUldR3/qv2805zTHyX9Fm7VzmMLH3se2Oe83A7n3FnA7eSd5mz1HWqeUbFpWzWxcysED6LRJDV1DeBijUB+x1wiUOJEJQABOJWU5O0OHQisekwR8M4BNsmjAIkkneSd5sDB72Vjgpa837iNmoXPDHZHiYoJ3YzbClgPk1Yze6mfsr3yzquruucD1VYu31JwDkTWDOAqSSC/YyYRKLH7Im13ZtF4REHAdydiJwkuHiz0KQUA62YmHRqmU+7Las2Fq4OIvNOcRaNJ2R9LoAS3EVv4zLL6t3MLv412CGz+HXuu58GTjBJ51peLzTM99qAvtxeNJkneaabUHPBSWx6PYoWRdutZX4xAiX0nYksm/LSQ1M/bnQFFAQDY8IC6ZgbTDUn3PfwJiYMpt1adqdwVnvR9cRulT+ybFeJlfM6cgCWAqljdfWMWwCQqznBzdbdJX1JKzQGvjnGCeS6ZDDkESuybM1iEZxaSppJ67CIBAKzbSpqK5RXLvzQNq4Z5pzn1oD+6U3I9x2VNQiOY50LZKxbPSv68shfQ7USjSc3xIC6AwJldNwNJA7PTpC/35sh2otGkT8YEYKVvVhzi3g3k55ws/0KgxL4soBsLYTtVsYoiJUACADcSR6MJA6srymfl76EtHjlVsULSh/7onoV6z7j9cYvnRFnKPjdkbqkdptxeAFxgFlDE0WjSUBE8cWmhTE9FEAdAIaT28KzPR6DEocoIxAlVGoxzc3/OJM3ydmdOkQDAreyJ3aNVtJDUMCsl6Y++KuYWgeP3y8zC53UtlGvK7QXAJXmnOY1Gk0zFROwDR77WFmeVPGd2E8SSavTpKj3GDQWBEmdeAMWB7gtJW4H8pH7e7mTULAAAqLjYo5Q2NgIle9Fosu1JIAn2NSrQLmYVKVcAeC3TP+hFo8lURepvF+bM+qpwcDkaj5bnySQK5wBvQFrZ5X6PsnCrQgKQUJ0AAKDiDvJO05tdwyags7Dw0TG3Cl4nGk1qspN+ZVZyO7QxJtyKRhMOdQfgch8lU3Fm3akDX2fHpAWr1nt4PNqOxqO+ihSRH4kgCcJytppBh0CJA+5J2T1TGQFc3TeKLXgAAABV9NDTtAysZoerbNwnZ5Z2hNmYCEy4xQC4zDyPY7kRLKnUM/ON8ahxT5rfkx7dk7YCmrvk4lpe2eo9T6DEDVlgv6dPlQIAgAoa5p3mgP7otREowXUkFRqf0Q4B4AImFVcs+8GS+2anY9DeGI+23xiPUkmfKZyjAoDX9r0IlDjg/7Y7M9lJd7Ap3TeK3IUAAABVMcw7zSSUQUJJtqqYwgLXZyajbKT4sJU6z8bn7pB+C4APHAqWBN13MfN5maQudx0qYLr6DwRKHHFPmga2dalHrQIAgIrwPUhi63wEibQ/uJqtMUVWsc+lHQLwpb9ybp5ZNhcbB/vM/Mp4tG2OB9glJRNXBa7T/9vunK+2AQIl7piGNqj5CrtKAABA+LwPkqw4sfCZ96PRhD4jLmPrfBIrO0pMHn7OKQGAq5+VM8vPrd0Q02995flOEg5rR1WkL/8LAiXuyAL7PVtiVwkAAAjbk4CCJJK9hTsJtxJeZtKy7VRwXGbj87ei0YR2CMAbeac5lfTE4leIAyzWgQiSoFpeGfsQKHHE/ym2+hwH9rPYVQIAAEJ1kHeaoS0KyWz1GbmdcIGkYu3A9ucn3HIAPNOXvRRcQZ1T8pXxqCHOJEG1nP6fdmf+8r8kUOKQAM8p2bpXRKQBAABCsZD0bt5ppqH9MJPK4szCR+9wqDtWmZQm9y19/NRyO5zKzsTfXoipZACEy5xXYmuxRRxKOf5ScS5JynkVXBW7LhzLEShxyzTA39T9pfGIDjcAAAjBmaTYTGTSH10vdpVgVd/S5x6biTfbsoqVOwDcilm4YmORx1Y0mtQDKcaeivT5QJVcOOYhUOKQ/x1m+i063AAAIATHkuq2DnkuUWbpc/ei0STmNkM0mmzLXvqPzJFisBWw7LKrBICH+pY+1/t+yy8V6fJZrIKqOfnfF6TdkqQ3KRu33IvyqextM99Yh/uXj56m/6u1n1HDAADAQw/zTrMS6UTzTnMajSYL2VlZ2FeYh6PiZmxO2LiyW2wq6dDSZ/fFeSUA/Oq7pNFo0pe0U/JHe7+j5F6UN8RuElRPemmboGycE2oqhz5VCwAAPHMq6e2qBEkc6I+yq6TizG4GW4GSk7zTnLtQDib9l61MA+wqAeCj1MJnhvCsZDcJqmZx1ViHQIlj/ldr/1zSMMCftvfLR085pBMAAPjiiYrzSGYV/O02A0N9br1K68veytbUsbKY0g4BwOln+J7PBfbLR0+3Je1y66Bqzwoz934hAiUOinKlUS4FeA2oXQAA4LjlLpKeI4c6l84Eh84sffxeNJqwuKaKY6BiF0PX4leYOtYOUxWrHm1gVwkA3/ouc9OHs/Hu8vO9mysOdO6Ri+vWc9MEShz07+39zOLgdJN2/sP4aZ8aBgAADlqoOIukXtFdJC9LLX42i2u458o2dDQwOq1ofQDAbWQWPrPmcXnVuWVQMSf/3t6fX/VfIFDCQKFsvf8wflqjegEAgEOeSKpV8CwSV/uiO+ZQVlSEOZtmr6L3+1VsPpPY3QXAN5mFz9z2uLxibhlUzGvHF29SRs4aSHoU4O/aMr+NTjcAALDtWFLPlQOcXZJ3mvNoNDmWdN/SV+hFo0lK3YQvGk22ZTdQcZZ3mpmj7XAWjSanspdDfhCNJllV0xDC6nOhpnJX6p+zmzQINuqwLsdSNwK4uL9nMjhdiUCJo/69vX/+K+OnQ9nN07sp939l/DT+n9e4QQEAADZozkT8lVLZC5Rsmc+PqYbg9STtWPx813eSDSQdWvrsHRWrL3vcpihZonIXjp7wvvGfWeRBQVwTKYZQMX3aRRiDU34bAADAZjwgtczl8k5zKrvn5pH6J3DRaFKX3V30C9fHJZYPdV8+J2PuVgCeOKEIALzk7H+296/V3yNQ4jCz4yLUh/zOr3CwOwAAsC81KT5wsT71g01wIOWWJE09SSs1cKAdbnPXAsArOBAdCGg8Q6DEcfek9J6pqACv3n/kYHcAAGDXMsUTLjaV3dXs1E/Yg9ZdB76DD2wHSnY8KisAKJO3QeR7XFzVuK69m2TZLuCw/1FU5lmgP29L7ucEBgAA4duLRpM+xfAqs9p+QP1gnUxKtQeWv8bQlzOKTDscWv4apCoEgLDMKQJUwI3GEARKAqxUz9z/j+OndLgBAIBtj8jDf6mB7O4qoX4CYlKppYyxvPy+qTlXBgDgvxlFgMCd/o8b7CaRCJR44Z40vSctAt4GNdgePyXnLQAAsI08/BdwZFeJJE05r8Rvpn1NVewst8mb3SQr7XAu+7tKtnhOAkAY7kkz0jJxBX71btou3uTR4L7z9v759vjpQNKjQH/iMudtj9oGAAToTGxtv449R/okqSR2u75qYPpqNie4t1QES2JPDuDGxffRrgPfo+9p+fUldS1/h12ekwgQO6VwW97uyjhv72fb46cL2V+8AGzCyXl7P7vp/4hACYNTVzzYHj9Nz9v7bP0DAIQmzTvNPsVwtWg0SWV/AlCS7kejSZJ3mim18lzeaZ5Ho4kLC3d2Tb84oVa8a+N9R9q4d7tJVtrhPBpNhg6U4/1oNBnknSYL3RAKJorDUXbQy/eFG1NH3s3Aut1qrEDqLU+ct/ddSXmwSSk1DQBAZfVU7L5xwYA8/BeXi+yfVSJJXRNYgyei0SSRO7vj+54XZ9+RdvjA1CuwCXMLzyne+/6/a7ZF0Oum6E8hRE/O2/u3eo8QKPHpoR9pEEVaRJEU6LX71aOnfWoaAIDqMamUXEnlssXA8dI6cmUFeZdJWk/GMEU9HboycPZ1N8lKO5zLnQV0h7RDbIiNdkqgxH826tDrHSXn7f0sinQS8DwjV/WuRRTdflEMgRKP/KJViV0lj7569LRGbQMAUD15pzmT9NiRr7NrUk3hxTpK5c7OHyZpHWdWaLsSJFnI/90kS67s7qIdIiQESvwXW/jMENLH97l1EJCemT+/FQIldIpdlFLNAABUkznP5cSRr/MgGk1iauUViUPfhUlaR5kgSebQV+qbXVEhPCdd2t0lka4Q67/HbTw7GpS892z02bx/r/yitZ9JOub2QQBOftHaT+/yf0CgxL8H2PkbUv8NSQFfe//p6CkHAwIAUF0NubMwZGpyXsMwE1guDagJljjGBBgzuZMr/jTvNAeBtcNU7gSVtyRltEOsWdn9gJ1oNKlR7N6+d7Yl7Vl4Foewo0RvSMkb0iLwuUausK/FG2tYzEWgxEM/b+0P5E7Kg03p/ydScAEAUElmtXTiyNfZkjSlVl7Rk1u7nAmWOMLUwxdy60DdXsDt0BVbtEOsmY0JaO5ff9nYERTMvNzPi1RF7KqCzwY/b93uAPdVBEr81Q/893GIKgAAFZZ3mlNJTxz5OnvRaMJu1xfrZ+5gf/QwGk3oP1rk2MHtS08spfEpox26dK7TajtMaA1YAwIlcL3uZiEV4M+LFFwH3Erw0OnPW/trGZcQKPH3AZZGuU6iXAr42vvVMSm4AACosL6kU0e+y0fk4H+RSWV04tjX6kajSUq6tPJFo8lA7gVJzhT+AjMXsw0cmvsBuAsbk9A70WjCqnr/3j91WUi7pcACJdKzucaDwOcaucK6FlG+vkApgRL/Jw+C/42/OiYFFwAAVbSSgsuVFE9MwL/KpfpZ6qo4L4E+ZDkTVNvRaDKV9MDF+zOUA9yv8Zx0zYNoNOGMJ9xFZulzWazpn17F7tGN+ll7P1Wxs2TBrQUP9H/W3l9b0JJAid8Pr0xuHaS5CeQFBwCgwkxqmb4jX2dXxeptPK+fudxcvLMraWYOFceGmFW8maT7Dn69YFNuXdAOM7mTqnDVfRVBS3bjbdZ2oPf1XHYmavd4d3j3HupafPYGyQRLYrmzsxu4yMnP2vtrHZsRKPFfFVY77P7q+GmfqgYAoJpMiidXFod0SctxYf2cOPjVtiR9EY0m9CM3wJxDkakISrmmCim3Xm6HPbk5obWrIljCc3Mz7bAn6bOAf2Jm6XNT7i5v2FrAEnwA4Wft/dnP2vt1FWdhsbsErllIWnvfgkCJ/w+u+b1Ij+9FUuDXo187espKJAAAqiuRWym4alTJCxoOD6IfRaMJqbjWxKTaSlWcR7Ll6v0YesotD56Tq7Ykfcb5QWtvh1NJHwX+U21ll9ghyO5FO+jJztkkNu/N0v2svd+/F6lm5h4XFZh/5PLjSn7W3l97X49ASRhcPMBvI5MSv3b0lI41AAAVZCY9XVmRTGrQi+sncfgr7qlIxcWq9rtNSsUqDq/tOvw1H5qUfVVshzO5nXGgK1LiraMdNiTN5WbKu3XLLH72I9LGOd0OarK7c7BS/cCftvbPf9ra7/+0tb8t6V1JQ1VjHhJuevLT1v5G2mCU5znFG4BfO3qaqFjVVYXG0DO/uSapRu3jlmY/be1XZqWhWRH1qOTBesRtBkfbQ9mdn8d5p9mn5P19nlG3N6qfgdw81HvViYpDvufU2LXrdVvFhJTrdXucd5oN6muSyu1gllScqdKv6M6fu7TDVA4ESMrs50ejyUz2UvydSoq5T51sDzbvi7O806xRC5JZzLwMKNYV6JlJFtVVjaD4jZ7LP23tbyyITaAkIF8bP81kb9th2YPbPWoca7BQsUppKmn6b+1wAycESoAX2gOBEgbH6/ROVQ6MvkH9+NAnXUga0DavVZ+Jih3sW45/VSY0n9fZttw9P2bVmaRe3mmyQ+/1ddpTEax0oh2WHCjpyW6KMQKw7rWHVHaDwU/MuVDAxnxt/LShIji+RWm80H+vbXLujtRbYanKg5ogCdZlS0V0/lDSL742fjr92vhpTLEAgPNcOg+DnPsX14/r6Ri2VKRVmZOO62LRaBKboJfLZ5GsDpwTgiSFlVR4rh++u6Pi7BLOELq6Hc5UBAqqOllmO5B230zMw402kcr+jjnuB2zU18ZPE0mfiSDJK2OMTS9wJlASkH9r789UbGEGcMtOsKQvvjZ+mn1t/JTBGgA4yqRMShz5OjsMmF+pn+V5MgsPvu7qRG1M7RV5381E1BfyZ4FSUtVzSa5ohzO5c67T6+xJ+tIc9k4f/Hk7nJp2uFvxe3ku6djy1+gSLHGiXfRlP0hyxvsGm2SCJIeUxCse/lt7P9v0hxAoCcw9qX9POrtnKpeLi+tW19496cuvj5+ynRYA3J04mao4SNIF901qEDyvH9cPlX7ZnqQvqhwwWQmQfCn3z7d4YeBM6qZL22Em6cCjr9xVxQMmL7VD8tI/l7pwfxIssdo2UrlxRt2A2sCmfH38NL0nHTIn98o1/Lf2filtj0BJYP612ILEQB1Yj4++Pn46/fr4KSlVAMBNPbmT4qkfjSZ1quS5vNNMJT307GuvBkySKtSTSe0zlX8BEkka5p0mk1avb4dDz772asCkTjuECYa68L7vRqPJjJSbpbaNbdM2XGgXC7GLGBvy9fHTlOf/hU7/tb1fWp+cQEmA/rW9P1Vx4DmAu7svKSNYAgDuWUnx5IItBs8X1tFA/k3SSkXA5NCcYdIPbVLMTDwl5uyDL+TnyvXjvNNMaGXXaoeJp+2wK+lHoQYuA2mHZXIlKLorifOtymkjsaSZQ21jyllY2ASCJJc6kxSX+tzJ85xiD9CvHz2tmRcKB/8A63EqKf6X1r6XHSOTz7XUrcp5pxlx28DR9lB25+dx3mn2KfmN1mlPxUG3LniSd5rs7n21jkIYAB6rmCRJPa6HhorgYsPzccKppJgJqxvX/0x+n3exXM2d+nxGgNkl0/O5Hdro55uA9dyxMhtK6vEs2khd9yU9cOyrvWXOzAHW5tePCJJc8c6P/6W1X+r7nkBJ2I2tLzdyOAKhOP6X1r6XK4cIlAAvtAcCJWHWayZ3Dp5+lzMTLqyjqcJYMb2QNJWUyYPVpQEFR5YIktz+Xtg2920Ih4OfmXboRdDErIxftsMd3wvfVj/fxpjmmu+EgaQBz6W1PKN65nLtfTVkFyPW6dePnm6b99gepXGht8sOkkgESqrQ8HxfNQS45vG/tPb7HnY6Sx9UECiBw+2BQEm4g+u5IwPrhaQaEyYX1lEWYN/0xPyuzByebbuc6yrSFMQKL5UPQRLa4WXP3EwmgOnCiu+X2mGswDI9WAyUuLirZPU+TFUETObCTeq1JimRmwGSJXaTYG1MkCTEPvG6HPxLaz+18jwiUBJ846tL+hElAayVlcj2HTuffREoAZbtgUBJuHXbkPSZI1/nJO80Y2rllTqqwsDwREUK3Jmk+SaDJ2Yyti6ppmIyNuRViQRJaIfXtTDtL1u2xU1OcJpJ3mVbjM2fQafAttnPdyzd5lXPq1TFrsO5cFm7We6ycv3dRVpVrA1BkteyFiSRCJRUws7404Hcy+0I+OzkrP1e7FlHtC8CJcCyPRAoCbt+Xer3PDSHmePFOqriAHE5cXtu/tTKP7/OtoqJV6kIiCyvnQqVH0ES2uG67qPzlba32h6vo27a4/bK3ys50WW7nx+NJnOPnoGrgbu5uapo2WZiz95h7BLG2uyMPyVIcrXhWfu9xOYXeJM6qIS+AsmFCjhib2f8aXzWfi+jKADALXmn2TO54F0YgHwUjSaZz4cOb6iOzk0dpQovNdRltvR8xex97oIbIUiy2XaYqToTNsvfST54/yWSvvDs+c9956c+7x+sUSqCJJexHiSRpHvUQ/jO2u+dq8j1CGCNHSaKAACclahYAeiCqVm5jRV5p3med5oNSUNKA1cgSLLhdqhidfcJpQHP7t1M0jElgQ07YWcw1mVn/GkqFstcxokgiUSgpDLO2u9N70nH90ylc3Fx3fnae2v8aY2nCwA4OYEykzuLRHYkMci+vK4SESzBJYNmESQpow2em/OUaIfwTSJ3FkUgPAtzjwF39tb40/Se1GUe7cLLmSCJRKCEjgSAu2hQBADgprzTTOXOatNuNJow2L68rhJJB5QEVgzzTjMhSFJ6O3xCScCje/ZcTGRjc/p5pzmnGHBXbxU7SbqUxIVOv3QoSCIRKKmUL4sUXHQkgPUhUAIAbksknTnyXQbRaFKjSi5mpVeJWwAAIABJREFUAlsHYlEPpAMzaY/y22FPBC3h1z07FbuhsH6k3MJaECS50qmK9J9OIVBSMV+235u+IZ28IYmLi+vOFwfyAYDbEyguLRLZkjSlVq6sr9QMmM4ojUpaSHrH3Aew2w7fFkFL+KOnYsINWNe7iAWRuLPfGH/ae0PqMm924XX6hhSbBf1OIVBSTQkdX2BtL78apQAA7jIHvj525OvsRqNJn1q5sr5mkuricOmqWR7anlEUTrVDJp/hw/26XBTBHAfWgbOxcGe/Mf40kfQRJXF5n+8nDgZJJAIllfST9ntzSQzSgfWoUQQA4La80+zLnYn3R9FoElMrV9bX8nBpzkuohuWh7TOKwql2OM87zbpIawQ/7teZ2AWAuzvgXYS7MkGSQ0riQsdyOEgiESiprJ+03xuIlXoAAKA6Ermz2nQajSbbVMnVzHkJ74pVwqFayJxHwupdp9thIs4Pgh/3aibO2MHtPSH1I+7qN8af1iVxvs3Fhj9pv9dwOUgiESiptDeUJ28oX7yhXFxcXLe+6jxNAMCLCZS53DqvhMH49eptqmL3Jgt8wrJMtUU78KMdpiIVF/y5Vx9TErihoVmcAdzafx4P628oz95QvsU82SvX8Cft9xIf6pFASYX9c7s7Fym4gLtiBSQA+DOBMpU7aWTuR6MJg/Lr1dsyFddDsao9BI/zTrNOehPv2uEyFReT0HD9Xu2LlHG4vqHZOQfc2n8eD7dVLILaojRebWP/3O5608YIlFTcP7e7pOAC7mZOEQCAV3pyZ1V0PxpN2Jl4TXmnORAHvfvsTNI7ZhIT/rbDvqS3xe4SuH2fJiJYgtcjSII7M0GSTNIupfGKJz4FSSQCJZAURUqiSIsokri4uG5+AQC8mjw5l2MpuDiv5Eb1N2d3iZce551mzZwhAP/b4WxldwntEK7ep4kIluByBEmwFlGkQRRpl7mxV66Df253vds9T6AE+qdWd+7QhAHgG9JGAIB/kyczFRPtLtgVqVBvU4fL3SXHlIbTTiS9xS6SYNthX+zygtv3aOLQ+x7uIEiCtfgvR8O+pC4l8YqDf2p1Ux+/OIESSJL+qdWdMtAEbuzsn1pdzigBAA+ZiXZX+j4PotGkQa3cuA7neafZkPSOSAPkXB9J0kHeacZ5pzmnOIJvh7Gkd029Ay6+7w/E7icUDgiSYB3+y9EwkfSIknjBQtI7vgZJJOlN6hBLXyl2lczF4UPAdWUUAQB4zaW+TxqNJjWTGgw3YNI51aPRJJE0oC9rfYA8kDTgXq5cO5xKmkajSV/FWVC0Q7h0f6bRaDIz4zfuzeq+nxLzrALu5DePhvWvFP0dvNjG4h+3ul5nXWFHCZ75cbEyPqEkgGvLKAIA8JeZyHVlJ8eWJAbvd6vPVFJNnJtgyxNJtbzT7BMkqXQ77NMO4ei9OTP3JqniqudUUp0gCdbhN4+eHd5O0PWlNuZ7kEQiUIKX/LhIwfWEkgBea/Fjj7cTAgAKZjeCK32fPbMaG7evz3Mmaks3VHEOSY8ACWiH8ODejM19iWp4kneaddJAYo0yESRZdaJiJ0kQbYxACS7SF/llgddJKQIACEPeafbkzhkXj6LRpE6t3LlOmajdrIWKAONbeaeZMAEF2qG1dvhYxfkwuNm92Zf0tjjfKmRnkt4xfTxgLX7zaJhK2qUknhn+uNWNfxzQ2b0ESvCKH7e651GuRpRLXFxcl17kowSAsDTkziTeNBpNtqmStUyGrU7UHojFQOuYeHqsIsVWjwAJbtEOH9IO19IOD0w77EtiJ9ft7stZ3mnWRRAvRE9UpNrKKAqsy2+Nh0mUq8tc2LPr4Y9b3SS0euYwd1zoH9vd2W+Nh48lPaI0gFc8/sd2GNsKAQDPJkzm0WjSk3TowNfZUbFzsUHNrK1+z02ZptFoEqs4bPo+JXNtJ5JScw4McJd2OJA0iEaThorzMWmH13ds2iHnLKz3vuxHo0lq7k3uR//fVT1zHg2wNr81HtYdGSO4YCGp94/tMFPRs6MEl/rHdrcvDjoDXnZmOtEAgMCYSeBjR77O/Wg0SaiVjdRzlneaDUlvidXtr+vzLNNrxQRJsOZ2OF1ph49ph1e2w8emHTYIkmzsfpyb+/EdMQfiazt5x7yrCJJgrX5r/OzwdhRBkjjUIInEjhK8RhQpkTQTBxUBS43TgPIvAgBesez77DjwXQbRaJKR3mgzTLkuV7fXTd03HKl7mwPgqaQpE7IosR32JfVNO+yZdljl8eeZaYcpk76l34+ZpNjsPOxL2qNUnHYqaUAgH5sURZqKOdFle4tDnw8jUIKrW0GrO989GiaSPqM0AB2ctroMVgAgYHmneW5SwvzIga+zpWKyjMPdN1/vMxUTtL0KBk3OVKyUJDgCF9phIknmORxXrB0SHHHnXsxUBEyWwbsupeKUYxUBkiz0H7p7NKyZZ2HN9Ac5w65c2+LwdkkaSupVYdFwlOc51Y3rPJwHkh5QEqiwJ6etbs/bh/1o0lfJZw7lnWbEbQNH20PZnZ/H5rBV8Ny89Tso7zR71IqV+6CmYqI2Vli560/0PDjCpCxcb4d10wZDaocL0waX7XB+h/KJJX1BP3+j9+C2iiBeIiZNbVmmwJ6GvtN292jILle4xOu5sBs/7wmU4Dq+8TwnH50CVNHjHxZn9vjcue+LQAmwbA8ESnDdeyWTO2k33qnCykkP7olYxWTtcuLWh1QMCxXp5DJJGfcRaIfW2mFmrtk62yGBktLvv5qKCexEzI9s2qmep4MMPqj/jfEwFinf4JaDHwZ8HslFSL2Fa/lhu3v+jfEwMR07cvOhKhaSelV7MQAAnumr5MmnK0yj0aSWd5qck2WRmdzMlv9sJszqK1dNdifOziTNzXecqZiQnVNzoB2W6tS0wxntMMj7b67n51tt6/lup7qY4F5H21m+v6ZV6fOYhcmpwtq5Cr8tJCU/bHcrl5KVQAmu7Yft7uwb42FP0iGlgQo4MS8GBjU369guB4QZxQGeIZqbK6U4/JR3mlk0mpzIjYmPLXMvNagZp+6RZTt/YSBpJm5Xr209P2vmtvmuTyUtJ42Wn3tu3rvnpNAC7fDSdrjM67/udjgzf19+/jzggMhipZ9PwP75vXdu7rvpyn1XX7nvVt8B7D4pnL30/lq2nUqOH78xHjZM/44FyXDpeR//sF3N83lJvYXbPMhTcZgZwu649dlFAgAAAAAANsEsRP6IkoBDKh0kkdhRglu4F6mnYmsph0ohJMeSpv/QIkACAAAAAAA247ePhum9iAXIcMqZpMY/tLqV3qHMjhLc9qFeF+eVwF/LLfOZTJqof2h12UIOAAAAAAA25rePholIaQ+3nEqKmRcjUAIe7rc1/IdWN+EuAAAAAAAAwOv89tEwlvQFJQGHECRZQaAEd/I7R5U+r2T49wRLAAAAAAAAcIXfORpuqzi8nswscMWppPjvCZI8c48iwB31TMOqou7vFLtqAAAAAAAAgMsMRJAE7iBIcgF2lODOfofzSg7+ngPAAQAAAAAA8BIzb/YjSgKOIEhyCQIlWIvfHVf+MKp3/67dnXInAAAAAAAAYOl3x8OppPuUBBxwKin+uzZBkosQKME6H/wDSQ8q+vMX5kEz404AAAAAAADA746HNUlfUhJwAHOXr8EZJVibv2t3q3xeyZak7HfHwzp3AgAAAAAAACQ1KAI4gCDJNbxJEWCd7kWKJc1VzfNKtiRl//VoWP9BqzvnbgAAAAAAAKiue5ESSgGWLSTFP2gRJHlte6UIsE4/KA4CiitcBFuSpv/1aLjN3QAAAAAAAFBNZm5ol5KAZQ2CJNdDoARrZxrfwwoXwa6KnSUESwAAAAAAAKqJ9Oyw7eAHrW5GMVwPgRJsxA9a3YGkYYWLgGAJAAAAAABAdREogU0Pf9DqphTD9XFGCTbmXp73zEuhqtsMdyVlvBgBAAAAAACq5V6es3gWtgz/tp0MKIYbtlmKAJvyt+3kXFJDxaFBVbX738Zpyt0AAAAAAAAAYMOO/7adJBTDzREowUb9bTuZq9qHu0tSl2AJAAAAAAAAgA06lZRQDLcT5XlOKWDjfm+cJpIOK14Mw78hogsAAAAAABC83xunfUmPKAmUZCGp/jfFonXcAjtKUIq/aSepqn24uyR1f4+dJQAAAAAAAADWKyZIcjcESlAas5vipOLFQLAEAAAAAAAgfHOKACU5+Jt2MqMY7uZNigBluhepIWkmaafCxdCNj1JlLdJwAQAAAAAAhOheRKAEpXiStZKUYrg7zihB6eKjtC4pk7RV8aIYEiwBAAAAAAAIU3yUMvGKTTrJWklMMawHqbdQuqyVzCQllIS68VFKOQAAAAAAAITpmCLAhiwkNSiG9SFQAiuyVjKV9JCS0CHBEgAAAAAAgCBNKQJsSJy1knOKYX1IvQWrfv8oTSV1KQkdfJ98ggAAAAAAAMH4/aN0W9IvKAms2cPvt5IBxbBe7CiBVd8vzug4oSR0+PvsLAEAAAAAAAjG94sV/0NKAms0JEiyGQRK4IKGpFOKgWAJAAAAAABAYPoUAdbkVFKPYtgMAiWwzkTXGyoOIao6giUAAAAAAACB+H4rmUt6TElgDZLvcy7JxhAogUsvjVgES6QiWEJ0GAAAAAAAIADfbyV9kU0Fd/Pw+61kRjFsDoESuPTSmIntY0sfmYPuAQAAAAAA4L9ELBDG7RxzLsnmRXmeUwpwyh+M056kjygJSdLwe+0koRgAAAAAAAD89gfjtCHpM0oCN3Amqf69Nim3No0dJXDO99rJQNKQkpAkdf9gzM4SAAAAAAAA332vnUwlHVASuIGEIEk5CJTA1RdHIumYkpBEsAQAAAAAACAI32snqaR3RRouvN7j77WTjGIoB4ESuCwRB10tESwBAAAAAAAIgNlZEot5L1zu9HvtpE8xlIczSuC0/z4+3JaUSdqlNCRJw++2DxKKAQAAAAAAwH//fXzYl9STtEVpYMXb320fzCiG8hAogQ8vjLqKYAkvjMJQUu+77QPyEwIAAAAAAHjOLBTuq8iuwvwXHn63fTCgGMpFoAS+vDAIlrzoVFJMsAQAAAAAACAMJmDSMFcs5sGq6OS77YOYYigfgRJ44w+PDhuSPqMknjmVFP91i2AJAAAAAABAaP7w6LAuqSapTmlIKgJIIafnX0iq/3XrYE5Vl49ACXx7QSSSDimJZwiWAAAAAAAAIGh/eHRYk/Rl4D/z4V+3SLllyz2KAD7569ZBKumAknhmV1JmXhYAAAAAAABAiPqB/74TgiR2saMEXvrm0WEqqUtJPLOQFH/eOphRFAAAAAAAAAjFN6uxm+Stz0m5ZRU7SuClz1sHiaQhJfHMlqTsm0XuSgAAAAAAACAUaeC/7zFBEvvYUQKvsbPkFQtJjc9bBxlFAQAAAAAAAJ998+gwlvRFwD/x9PPWAQufHcCOEviup+JAcxS2JH3xzeLQewAAAAAAAMBn/cB/X0IVu4EdJfDeN8eH25IyFQeb47knks4pBtxSJmn2efuAewgAAAAAAJTum+Pgd5M8+bx90KOm3UCgBKE8OAmWAJtxqiIX6PTzNvkyAQAAAABAOb45Pswk7QX6884k1Vmg6g4CJQjp4bktaSZph9IANuJY0uDzNmfgAAAAAACAzanAbpJ3P28fTKlpdxAoQVC+dXRYV7GzZIvSADZmKKn3Vy1WPQAAAAAAgPX71lHQu0lO/qp1EFPLbuEwdwTlr1oHM0mxpAWlAWxMV9L8W0eHvNQBAAAAAMBafevosKFwgyQSB7g7iUAJgkOwBCjFlqQvvnV0yMsdAAAAAACs0yDg3/b4r1qcAesiUm8hWI0xabiAkgyn7YOEYgAAAAAAAHfRGB8mkg4D/XlnkupTDnB3EjtKEKxpm50lQEm6piMDAAAAAABwF0nAv61HkMRdBEoQNBMs6VESwMYdNsaHDYoBAAAAAADcRmN8GCvgA9yn7YMptewuAiUI3rR9kEo6oCSAjUsb48NtigEAAAAAANxCP+DfllC9bnuTIkAVTNsH6R8dfSKFm+MQcMGWpFQSO0sAAAAAAMC1/dHRJ/EbUbC7SZ78Zev9ObXsNnaUoDL+svV+KnaWAJt2/4+OPokpBgAAAAAAcAP9QH/XQmHvlAkGgRJUCsESgM4NAAAAAABwh1lwGepukv5ftt7nAHcPRHmeUwqonD8++iQRabiATXrrL9hWCgAAAAAAXuOPjz7JFGag5OwvWu/XqGE/sKMElfQX7CwBNq1HEQAAAAAAgKv88dEndYW7m4S5EY8QKEFlESwBNooD3QEAAAAAwOuEGkw4+YvW+1Oq1x+k3kLl/QlpuIBNeevPSb8FAAAAAAAu8CdHn9QkfRnoz3vnz1vvZ9SyP9hRgsr7c3aWAJtSpwgAAAAAAMAl+oH+rmOCJP4hUAKIYAmwIQRKAAAAAADAK/7k6JNtSd1Afx5nk3iIQAlgECwB1q5GEQAAAAAAgAuEGkwYkobcTwRKgBUES4C1qlEEAAAAAABgldlNEmqgpE8N+4lACfASgiUAAAAAAADAxjQkbQX4ux6zm8RfBEqACxAsAQAAAAAAADaiH+BvWkgaULX+epMiAC7256330+b4k5mkTGFGuYFNm1MEAAAAAABgqTn+pBFJOwH+tMGk/f45NewvdpQAV5i0359JilVEhQHczJwiAAAAAAAAK0I8m4TdJAEgUAK8BsES4NZmFAEAAAAAAJCk5viTuqS9AH8au0kCQOot4Bom7fdn7fEnsUjDBdwEgRIAAAAAACBJusduErh9fwK4jjE7S4CbOBu3359TDAAAAAAAoD3+ZFtSN8CfNhizmyQI7CgBbmBc7CypS5pK2qVEgEtNKQIAAAAAQNnMvE1dUo3ScEo9wN/EbpKAECgBbmjcfn++/zwNF8ES4GIpRQAAAAAA2LT9YqdCw1z3SZ+DEg2espskGFGe55QCcPsXcSaCJcDLTp62348pBgAAAADApph5mZ65OE8WZVtIqhEoCQdBVuCWzIMwlnRKaQAv6FMEAAAAAIBN2R9/0pM0l/RIBElgB7tJAsOOEmA9L+hUYR5IBdzU8dP2+w2KAQAAAACwbmYXyVTSHqUBi9hNEiDOKAHW4Gn7/eS98ccSwRLQUUgoBgAAAADAur03/rgeFSnQ2UEC26aftj8gSBIYUm8Ba/Jp+4NE0pCSQIUldBQAAAAAAOv23vjjugiSwB19iiA8BEqANTLBkgNKAhX08NP2B1OKAQAAAACwTgRJ4Jjhp+0P5hRDeDijBNjMSzyRdEhJoEKdhIRiAAAAALAyLo7NX5d/1iVtm7/f9HyJU0nn5pqpOMR7/mn7g4ySDv4+2jb1TZAErniLQEmYCJQAm3uZNySlvMwRuIeftj8YUAwAAABAZce+sYogSM38WS95HHymIngyk5QRPAnu/srEwe1wx/Gn7Q8aFEOYCJQAm32hsz0UoVqoOJOEdFsAAABAtca4sZ4HRHYd/aqnZiyeqQiecJain/dbIrJ1wC3vEIwNF4ESYMOSoiM5lbRDaSAQQ0m9lMEGAAAAEPp4NlYRGInl96r+UzMuz1ImOX2597ZV7BJiLgWuOEnbH8QUQ7gIlADlveAzubvaBrhWp0BSn4EFAAAAEOzYdbljpKFw0x0tZIImkqYsAHP2XuxJ+oiSgEPeTcmqETQCJUB5L/lt0xkjtyZ8styyPkg5rAwAAAAIcZwaqwiMNFTNtNHHer7bhDGPO/fmXOwmgTvO0vYHNYohbARKgPJf9qmkLiVxYycUwcbNzSUVwZEZq6sAAACA4MakNRVBkVjSfUrkBaeSBmKnie17NJb0BSUBhxyk7Q9SiiFsBEoAG0/X8ccDSQ8oiRs5kdQ4pLMKAAAAADcdg9ZUBEcSkRL6upY7TaaMQ0u/X5kzgUsWkmo8B8JHoASw9+JPJB1SEjd+OTUOOSMDAAAAAF435qyJ4Mi6DFUETDifoJx7dy7SbsEdjw/bH/QphvARKAHsvvwbklJVMw8sLykAAAAAWO8Yc1tFYCQRwZFNOFOxy2RwyHkmm7yHf0FJwCFv0d6rgUAJYNkH44/rKs6DIFhyM6eSGh/zsgIAAADAuDJRsXuEM0fKcyIp/ZhzC9Z9L8fifBK4Y/hx+4OEYqgGAiWAGx2BmopVKaz4uZmFpORjtj8DAAAAqN44si6ppyJAwsI7u+PSqaQ+C/nWcl/HIlACd7zzMenfK4NACeBOZ2DbdK72KI0be2I6pRysBQAAACD0cWNDRYCEhXbuYZfJ3e/xvqRHlAQccPpx+4M6xVAdBEoAx/x/4z9LJXUpiZu/wCQl32l/OKMoAAAAAAQ2TlzuHmGs6IeFpIGk9DvtD+cUx43u9b4IlMANB99pf5hSDNVBoARws2PQk/QRJXGrzmj/O+0PBxQFAAAAAM/HheweCcOxpMF32h9mFMW17vu+CJTAvsV32h9uUwzVQqAEcLdzkKhYgUKu2dt1RJPvtD8kFRcAAAAA38aCNRXBkYTxYFDOVCzsSymKK+//WJxRAvuefKf9YY9iqBYCJYDbHYS6pIzO8a07oQmrdgAAAAB4Mv6LVQRI7lMaQSMt1+vbAYES2PYW7bN6CJQAjvvTYjXRVGy1vq3H325/2KcYAAAAADg43lum1+pL2qFEKmcoafBtztp8uU38gpKARcffbn/YoBiqh0AJ4E9HIRUri27rVFLj26wGAAAAAODOGK9nLjII4ERS/9tkRFi2j7kIHMKed7/d/nBKMVQPgRLAr87CQNIDSuJWFqbjyUHvAAAAAGyN6Woqdo90KQ1c4MyMW9OKt5OUNgJbbfDb7Q9rFEM1ESgB/OswJJIOKYlbO5aUfJuD3gEAAACUN46LxfkjuL4zmXNMqjh2/dPxnzUkfcZtAAtI315hBEoAPzsNHPJ+NwsVqbgyigIAAADABsdusYodJHuUBm45dh2oOMfkvGJtZy7Sb6F8b5G2vboIlAD+dhpq4pD3u3qiYlszu0sAAAAArHO8lqjYQcJ4DeuwMOP/flUmcf90/Gd9SY+oepSIQ9wrjkAJ4LH/f/Sd/8fenW7Hdd13wv7Ry9+FvgKVr0ClK1DxY5w4At1Ox44JokCKk0iRIDWlPSwWl6fWYBFkJFMSLbEgMv32m3YsMN1Jf1ThCgRcgYEraOIK1B9OQYQoDhiqgDpnP89aXPScnL1PnbP3+e393w5537v1JNMfHj25oikAAIA9ztG6qXaQWAnPuCwm6X149ORaw39LU0nWopIG++fIh0dPOsS9YIISaMYAohcrLfbq6odHT/Y0AwAAsIs5WTcCEvZX4wOTM3dvzSe5pqvZB+sfHj3Z0gxlE5RAswbmC7HaYi+EJQAAwE7nYb0ISDg4y6kCk0FDf2ODOOOH8fM9CEEJNMnZf77VTlW31CB9975386fN3sIMAADsee7VjYCEybKcpHfzp80KTM7+861WkpVYFMp4+RaEoAQaOGCfShWWWHGxy8HlzZ+e7GgGAADgEfOtbgQkTPicNg0LTIaLQr/UtYzrN+M7EImgBJo8gF9IclFL7Mqlmz89uaAZAACA4fxqOlWpYwEJddGowGQYUt7WrYzB3M2fnuxrBgQl0OzBfDfOLdmNjSRt2y4BAKD4OVUn1Q4SO/apq8YEJsPf41J842B0NpK0bv705H1NgaAEGu7cXeeW7HYw+cFRWy8BAKDQeVQnAhIaNsdN0vug5oe+D79x9JM8p0sZgcUPjp7sagYSQQmUMsh3bsnuHPng6MklzQAAAMXMnVqpApJZrUFDNSUw6SW5ojvZo8N1/y0wOoISKGvQ79ySndlI0vrgqC2YAADQ8LnSVKqyxQISSlH7wESwyR6tf3D0ZEszsElQAoU5f9e5JTt07/2jJ6c1AwAANHJ+NJVkfvjHHIkSLSfpvV/jwGT4O+4O/yjJxXZdff/oyZ5mYJOgBMqcDKjpuTOH37cVEwAAmjYv6sYiMthU+8Bk+LueStJO0hn+S+0kU7p3JJpWzv177x89uaZb2SQogXInBVOpwpIXtcZTrSdpv68EFwAANGEu1BnOhZ7VGvAtjQhMGPlzs5vkdoMuafX9oyfbepatvqMJoEzvHz15f1hS6pLWeKpnU9U9BQAAaur83Vut83dvDZJ8ESEJPM4LSb44f/fWYBgqQtK8byILupSH2VECbK6oWoot50+jBBcAANRvvuOgdti9xVQ7TNY0RbHP0G6atZskSf6TqiE8TFACbJ08DOLckidZf//oyZZmAACA2sxzenFQO4yCwKTMZ+hUkpU0axfevWGFFfgGpbeAJF+X4monua41HuvZ4UQLAACYYOfv3uqcv3trLcmVCElgFGaT/OX83Vv983dvtTRHMebTvFKFS7qVR7GjBPiWC3dvTac63NCE4tGev3H05IpmAACAiZvLtIZzmRe0BozVYpLeDTtMmv48XUmzvg1tJGndUHaLR7CjBPiWG0dPLiVpJ1nVGo/U1wQAADA5Lty9NXWh2v39lwhJYD/MJvnLhbu3eheq8kw0z0Kat4B2SUjC4whKgEcargrppFolwjc9d+HurXnNAAAAB2+4I34lVZktYH9dSbImMGnkc/XFBl6asls8ltJbwFNdvPtxN81cSbAXG0na14+eWtMUAABwIPOUVpTZgkmbJy8kWbh+9JRV+/V9tk4lWUvzvgFtXD96SpjHY9lRAjzV9aOn+ql2lyjF9cAzUYILAAD23cW7H09dvPtxL8pswSTOk68kWbt492NVGOqrn2YulLWbhCcSlADbcv3oqZUoxfWwFwz+AABg/1y8+7EyWzD5nkly7eLdj9eGFSqozzN2Ps0suZVY7MpTKL0F7Nglpbi22kjSumZbMQAAjHMO0ooyW1BX60l616pqFUzuc7ad5Mum3oPXjp5q6WWexI4SYMeuKcW1lRJcAAAwRpeqMlsrEZJAXT2b5Palux+vXbLDZFKfs1Npdmmqvl7maew/dDntAAAgAElEQVQoAfb6Ml1IclFL5Mi1o6fUuwQAgNHNNTqpdrI/pzUaZTXJ/VTh15N25neStFJ9ZKdZllPtMBloiol53g7S7DD6e9eOnlrT0zyJoAQYxQt1Os097Gu7lOACAIDRzC+mkvRiQVYTLCcZpApF1q5VZ1/u5n7oJGkP/7azqFn3h8Dk4J+5/SSzDb7Ee9eOnprW0zyNoAQYictVzeCllL3a6/p7R0853B0AAHY/r+ikWoRlF0H9bKQKRQZJBu/tIhTZwX0ynSo0mXavNMJykt57ApODeObOJ7nW8Ms88p4KIGyDoAQY9Uu2l+RKwU1w2OAOAAB2PI+YShWQvKg1amU1VTCydFDzoMvVAdSdJN0o01Z3y0m67ymRtF+/nW6S2w2/zPX3HOLONglKgHG8bDupdpeUWIprPUn7PSW4AABgu/MHpXzrZXk431uatA/aw0oH0xGa1N1iqh0ma5pibL+VbpofkiTJpfeOnlrQ42yHoAQY10u35BVhV987eqrnLgAAgKfOG7op42Nd3d3Lg3Dkfk3urVaS+SjPVWcCE8/dvdhI0rKQle0SlADjfgHPpzqIsbTVYc+PsyYvAAA0YK7QjZBkkq2mWvy2VPcP1cOqB91UoYmdS/UjMPHc3Q3nyLIjghJgP17E7eEAu6Stz6vvHT3V1vsAAPDIOUI3QpJJtJ5q58hCEz9KDysfTKfaaaI0V/0ITPZ2//eTzBZ0yd9zr7ATghJg37x296OFJBcLuuSr7x493dPzAADwjXlBN0KSSbOYZOndo6eXCroP23lQmssuk/rdr713j55e0xTbutenkiykrJBk8d2jp7t6n50QlAD7/YLupJyD3jeStA3eAADg6/lAN0KSSbGe6uNp/92jp+8XfE/aZVJfApOn39+tVN9gSru3v+e+YKcEJcBBDUT7KeOg9+V3j57u6HUAAMwDhCQTYjFVODLQFN+6RzupzjKZ1Rq1u6cFJt++n6dTfXspbceU3STsiqAEOMiXdimluC69e/T0gh4HAKDgsX83QpKDtJ7qg2nfx+Rt3a+tVIHJfJTlqhOBSb5enNpLWaXPt7KbhF0RlAAH6vW7H62k+VtAN5K03il4OzsAAEWP+bsRkhyU5ST9d46e7muKPd2/vSTPao3aWEzSe6fAj+WvV7ui+gXfr4vv2E3CLglKgIN+ibeTfFnApd575+jpaT0OAEBh4/1uhCQHYTFVQDLQFCO7lzupApMXtEatfgdFBCav20WSDM+JfcduEnZJUAJMwgu9lBJcR945enpJjwMAUMg4vxshyX7aSLWSfMGHwrHe161UH6SdY1Ifi8PfxUqDn7ULUSbu6jtHT/fc7uyWoAQ4cG9UKx9W0vytoRtJWm8rwQUAQPPH+J0kX2iJfbF5/siCuca+3uOtOMekbpaT9N5uyE6rN5SF28r3FvZMUAKYSO2v628fPT2vxwEAaPDYvp1kEB+Px2091UffvqY40Pt9KlVY0o0P1nWxmipY7Nf0nutGQPKwOc9C9kpQAkzSy76UElyH31YrGACAZo7phSTjt5zqI6+yvpN3/3fjA3adbKQqWdV/e8LL1Q0DuW6qUM799dAz8e2jpzuagb0SlAAT483qxb9WwKRqPUn7LVtCAQBo1nheSDJey0l6b1l0VYffQjfVB+3ntEZt3EvSf2vCAsg37340nWQ6zsR5kuffauj5M+wvQQkwaQPK6SSfF3CpV99yyBgAAM0ZxwtJxkdAUt/fRSfVDpMXtEZtbCRZGv4Z7PcCx+EC0k6qcGTaM/Wprr+lvDkjIigBJnEwuZTkxQIu1aoHAACaMH5vJVmJD3qjJiBpzm+kE4FJnX+Hg+EzbuWtEZfo2hKMtId/u0e2byNJS7UORkVQAkyc/1pOCa7V3x093dbjAADUfOw+iBJDo7ScpPc7AUkTfy+dVCW5XtQatbWRYWiS5H6qbxdrw3/v/u8eWgz5X6vddlPDfzqVKhDZ/LsdAfNeHPmds5oYIUEJMKkDyPkk1wq41Eu/O3p6QY8DAFDDMbuQZLQEJOX8dlqpdpg4dwJ2597vjp6e1gyMkqAEmOTB4yDN33a6kaT9uxFv3wUAgDGP1YUkoyMgKfd31IrABHZqI0nrd0puMWLf0QTABOsOX4BN9kySvq4GAKAuhCQjs5zk8O+Onu4IScr0u6On13539HQ3yfeSLGoR2JaukIRxsKMEmPRJWC/JlQIude53R0/39TgAADUYoy/FGQt7sZpkXjjCI35brdhhAk9y/XdHT89rBsZBUALUYbC4kuavVrN1FACAOozN+/ERd7fWU5XY6msKnvI7a0VgAg9bTdLx3YRxUXoLqINuAdeoBBcAABNNSLJrG6l2kLeEJGyHklzwyOeokluMlR0lQC387E4xJbiO/Hbm9JIeBwBgwsbj/QhJdmojyUKShd/O+LjHnn5/rdhhQtnmfjsjaGa8BCVAXQaGU0lWkjzb8EtdT9I2kQIAYILG4t0kt7XEjlxP0jOuZ8S/xVYEJpRn8bczp7uagXETlAB1GhR2knxRwqTqtzMOJwMAYCLG4N0ISXbiXpL5386cXtMUjPF32YrAhDKs/nbmdFszsB8EJUCt/PzOhwtJLhZwqYd/M3NmoMcBADjAsXc3QpLtWk0ybwzPPv9GW6nOunxBa9BAG0lav5k5Y2ce+0JQAtRtIDiVZC3V4eeNnmj9ZuaMVRMAABzUuLuTMnZz79V6kt5vZs70NQUH/HvtRWBCc2wk6fxm5syKpmC/CEqAOg4Cp5N8XsClXv3NzJmeHgcAYJ/H2+0kgzR/cdJefH1Qu9XOTNBvtxOBCc0wJ4BmvwlKgLoOAJeSvFjApT5vBQUAAPs4zhaSPN29VGW21jQFE/o77kRgQn1d+s3MmQXNwH77riYA6uhQ0k0ZJbgWknT0OAAA4/aLOx+2DglJnmQ1yfyvnUPChBueldP5hcCE+ln8tZCEA2JHCVDnidx8kmsFXOolAwUAAMY8tp5KFZI8pzW+ZSNJz5icGv++u6kCk2e1BhNs8dczZ7qagYMiKAHqPuAbpPmrYzaStH9taz8AAOMZUwtJHm8x1S4S55DQhN96NwITJtO9X8+cmdYMHCSlt4BaG5bgWkmzywM8k6oEl0EDAAAj9cs7H04dEpI8ymqS+V8ps0WD/Lo6HLv/S4EJk/e87WoGDpodJUATJne9JFcKuNQjv5o5s6THAQAY4Vi6n2RWS3xtI0nvV8psUcbvfz5VYOJcIg7KapLOr+zaYwJ8RxMAdfermTO94cu16fq/rMoiNG1w3nIXAwAcyDisHyHJVveStIQkFDSXXkjSSnI1VUgI+0lIwkRRegtoim6SLxt+jZsluLpN67tf3vmwk2rl3sCtDAAclOGilG6SftM/3PzyzocLEZJsWk/SNRalRMNnXW/4TJgf/rHDhHFbTjItJGGSKL0FNGmy10sZJbgON2kSN/wgsZKqPu5yBCYAwMGMSTZL0DS+7NLwfILbej1Jcn3Y5z7WwYP52Xwhc2sOxuKvZs50NQOTRlACNG1At/nBvcnWk7SbNJn75Z0Pp5N8vuVfWk2y8KvqsEEAgHGOQ7p5cKjxvV/NnJku4HqFJJU540147LOiNXw22nnGKAlJmFiCEqBpg7lOki8KuNSrw7NZmtR3gyQvPPQvr6da4WcCCwCMY9zY2zL+aNxilILHytshJIHtPTdaEZgwGpecAcUkE5QAjXOlqq16sYBLff7qzJmVBvVbO48/Z2Yj1fksC1eVRQAA9j7mWMi3F2g0amz1mOsexNkDSTJ3VUgCO32GtCIwwXOXBhOUAE0cwE0lWStgErh6deZMu2F913/KwHszMOlfnTmz5m4HAHYwzmjl8R/5Ll1t8CpXIck3+FgHe3+ePCpshsfN4TtNXohAcwhKgKYO3h4+86KpGjWp32HItZikJzABAJ4yvmjlyaugl6/OnOk0+PpLOcdvO65fnTkzrxlgJM+WTr5ZvhAetppk2pyduhCUAI3Vu3NzKcmLDb/MjSTt3szZtQb1Wy/JlR38V5aT9HozZwfuegBgy5hiKsn88M8zTxhLtXozZ+83uA0GSZ5zR2SxN3O2qxlg5M+ZTgQmPOKZm2S+qe9XmklQAjR5wNZKtXqu6SUGlnszZzsN67u17HzV42qShd7M2b67HwCKHgNuJyDZdLjJiy16d26uREiSCElgP543nQhMqBYgzJuXU0eCEqDpg7X5JNcKuNQjvZmzSw0bZH+xy//6epJ+qtDE6hUAKGfct5OAJEmu9mbO9hrcHv04dDkRksBBzOV6EZiUaDVJtzdz1nkk1JKgBGi8q3duDgoYpG0kaV1pUDAwgn7bSLKUpHelQaXJAIBvjRl2GpAkyeqVmbPtBrdJP0KSJFm8IiSBg3oOTac69N35SGW4Ppx7W6xIbX1XEwAF6Cb5S8Ov8ZlUuyim9ds32mQ2yezVOzfvJVm44hwTAGiMXQYkSbWYYrrB7TIfIUmS3BOSwMG5UlU8WLp652Y31Q4TgUkzrSfpmmvTBHaUAKVMpHvZ2QHhdXW4SQOUq3duLiS5OML/ydVUgUnfrwIAajs+2G1AsunIlQaVLH2obbpJbrtLspqkY2UzTNzzqReBSZPYRUKjCEqAkgZmJRxmuZ6k3ZSByvBDyFp29xHkSTZSbQPvK8sFALUaF+wlIEmS61dmzs43tH2mk3zuThGSwIQ/q7oRmNSdXSQ0kqAEKMav9nZAeJ1c/2WDPgD8avwrIxeT9H9pkAcAkzoWGEVAkiSrv2zouSS/unOznWSQ0S8uqZvVJJ1fCkmgLvO8bhz6XjdXkyx4ztJEghKgtMHYqEs5TarnfzlzdqVB/bYfu4FWhwO+vl8KAEzE+39UAUlS7SbtNGl8tKWdhCQPxnJCEqjfM6yTaoeJwGSyLSfp/lJFBhpMUAKUOOFeSfO3+TZqxeQ+7wbaSNJPFZoYBALA/r/3W6nCkW5G9/F/romLIYZj20GaX152O+O3trEb1H7O14vAZNKsJplXgYESCEqA4vy6nBJcV38xc7bXoH5bSvLiPv+fvZek/4uGHvgKABP2rm+l+kg2O+L/6cVfzJztNrC9hCSVjSSdXzRwtxAUPF/vjuFdwM6sJ+n9QsUFCiIoAUodfB3ER/eDmDS2f9GQlXXDjyd/OcBB4kKq0EQ5BwAY7Tu+nWoHyTg+iq0Px0P3G9huJYxntzPeFZJAM98NrYwnPOfp700BCUUSlAClDrqmkqyl+bWcl38xc7bToH7rJblywP9vLKYKTAZ+SQCwp/d6J+Mvs/J8Ez+i//rOzX58PBSSQDlz91GdV8XjCUgonqAEKHnA1U1yu4BLnWvKYOfXk3XGzHqqjztLdpkAwI7HYPMZf8moS7+YObvQwPbr5eAXjhjjAgf1/uil+WeO7qflVAsBPU8pnqAEKH2gNUjzD4vbSNJqysf8CQy4NpIsJVmwohEAHvv+nkpVc34++/OB694vZs5ON7AdJ20cdFCEJFD2O6UT55jslUoJ8BBBCVD6AKuVaodC07fwNupjwQQHXKupzjKxywQAHoy15lN90Nqv8VYjzyX59Z2b00k+d1cJSYBvvGO6wz92mWzv/ejsTXgMQQlgcHXn5nySawVc6uGmrBYZriD6YoL/X9zcZWKFDgCljq/GeUB7MWOeh9pzEPX5G1lODRjZHLGbZNqz8pFzUxUQ4CkEJQBJfvPZzZWMv072QVtP0v75sWasHPnNZ7U5xPTrVTtNaXsAeML7uZvqQ9VB7fy8+vNjZ3sNa9NWytgB/TSLPz92tutXBmzjuTmdKjApNTTZDEeWfn7s7JI7ArZHUAJQDaTaSb4s4FKv//zY2fmG9NlUkrWaDXzvpQpMDFYBaNI4ar/PH3mc5Z8fO9tpYNsO0vwFPU8jJAF2+xztpApMOg1/lq4O3xf9nx+zcwR2Q1AC8GAA1UtypYBLfb4pA6ca99l6htuff37s7JpfHwA1fQ+3kvQyGSt2N5K0mrZ7s5Bdz08jJAFG9UydGr6z2ql/cLKaarfhINXOEdULYI8EJQBDv71zc2o40Gj6IXCrP5s5225Qv63VvM+Wk/STLP3MgXoA1OPd283Bltd6lCM/m2nWjs3f3qlNmdGxjluTdIyRgDF+A9gMTdrDP5M4t1xPVU1hkGE44rkIoycoAfjmQKmTyT4kfFSu/mymGfW7f3vn5nSSzxtwKV8fAP8zB8ADMHnv26lUpbW6mbyPSNd/NtOM0qJb2rsfIYmQBDjI7wKt4Z92ks1AZdy7J5eHfw+S3E8Viqx4DsL+EJQAlDkx3UjS/tlMM8o+/fbOzUEma1XrXn1dmqspfQRAbd+xnVThyKSOjRq1U3bY5t0ktwu/9YQkwKQ+o1upApTkQZiyU5shSJLc/9mMM0VgEnxXEwB803e+ynwmo9b2OD2TqtxTp0F99mWD+ufZJBeTXPxvn91cTbKQZOkf1Z0FYB/8twc13HvfmezylhvD/z+b1Pbd7whJNpJ0jXuASTRcyLamJaB57CgBePQktSnlnJ5m7h+Pne03pM8WUoULTXYvSf8fjzWrBjsAE/MubSe1WjBypEnvxGH7D9LsxTpPs5Gk84/HrK4GAPaXoATg8ZPVpSQvFjAZbTVhxd5w9etayvi48PV5Jv94zHkmAOz5/TmdKiB5rkb/ry/+47Gz3Qb1QytVGRYhiZAEADgAghKAx3jrsz+UMmG99+axl6cb0mfzSa4VdqtunmfSf/PYyz4sALDdd2Yn1dkjdSw3upqk8+axl+83pC+mUu0kea7w23LuzWMv9/06AYCDICgBePLEtZQP74ffPPbyoCF9tpbJrqc+TusZnmfy5rGX1/yCAXjoHTmVKhyZr/G7ciNVSLLSoH5ZiZBESAIAHChBCcDTJ6+DJC80/DLXk7SbsDJzuEL2C3duVpP0IzQBMJb57A/TqQKSJpQUvfTmsZcXGtQ3/SSzhd+ijepTAKCeBCUAT5/AtpN8WcClXn/z2MvzDemzEs6X2YnN0KTflDIlAGxr/NId/mlKGdHGlAsd9tFCkouF36qLbx57uesXCwAcNEEJwPYmsr0kVwq41OebUMpieL7MX9y5j3Qv1ZkmS0ITgMaNVzZLa3XTvFJOjdn9OuyrbpLbhd+yQhIAYGIISgC2P6FdS/PPvlh989jL7Yb0Vy9lhFt7ITQBaMY7r5vqUPYm76Z8vinnkigTmiRZfvPYyx2/XgBgUghKAExqH9aIOtHDVbVraU65kXG7l2QQZ5oA1Glc0k0VkDT9XdeYMyyGJdEGhY9PVpN0LNIAACaJoARgB94uo5b0RpL2Gw34WP62sha79fVB8G8ITQAm6b22ee7IdJq/y3XT8hsN2XnwtkUcm2OMzhtCEgBgwghKAExwH6VJHyVW0rw67ftpMzQZvNGQkicANXuPtVIFI/MpJxzZtJGk1YSP6sMx5KDwMclGqpDEeAIAmDiCEoCdT3Snk3xewKUeeePYy0sN6K9O1AEflfVUZ5r0feQAGOu7q5UqHOmm7A/rh9849vKgIX26lGafIfM0QhIAYKIJSgB24Z0yJrsbSVqvN2AV5zuf/aGfZNadO/L7YynJ0usNCNQAJuBd1YpwZKurrx97udeQvjUOSQ6/3pDQCwBopu9qAoBdmU/SSbNLcD2TZCHVB5u666WMw273+/6YTTL7zmd/SKrD4DeDE3XHAbZBOPJYqw0KSboRkswJSQCASWdHCcDuJ77zSa4VcKmNWAH4zmd/6CW54s7dF6t5EJoosQHwzfdRK8KRJ9lI0n792MtrDejrUsq1Psnc68de7rutAYBJJygB2NsEeJDkhYZf5nqqDxb3a95XU0lWUt5BuJNw/wxSBScDu02AQscL7VThyHSEI09zpAklHYd9PkjZu1kXXz/2ctctDQDUgaAEYA/e/eyDdpIvC7jUq68dO9drQH9Z2Xnw7mUYnLx27Nya5gAaPEbo5EE4IqTfnuuvHTs334C+n0qylsJDkteOneu6pQGAuhCUAOx9MtxLGSWdnn/t2LmVBvTXIM3fBVQX6xnuNEkyeO3YObtNgDq/X6ZSnV+2GY44F2tnVl87dq7dkPtgkLJ3DjWiLwGAsjjMHWCPXjt2rjfcqdD0CfFCqg9AdTefMnYB1cGzSS4O/+Tdzz5YzjA4aUIoBzTfu5990EoVinSSvKhFdm0j1ZktTdBP4SFJQ8aLAEBh7CgBGIHfV+U1vijgUi+9euzcQgP6q59k1p070TayZbfJq8p0AZP1zt8MR5w3Mhpzrx471ze+aMS7u/WqHaIAQA0JSgBGNzleyHBlfMMnwO26f7T+vdrhdbSaYWiSKjjxEQbYr3dGKw9KanW8O0Zu8dUGnGXx+88+6Ca5XXA/biTpvGpHKABQU4ISgNFNkEv5+H7v1WPnphvQX72UcbZMU61muOPk1WPnBpoDGPE7ohO7RvbDeqoFGPcbcL98UXhfPi8kAQDqTFACMELvVWeVfF7ApR65fOzcUgP6ay3VORnU33KGu00uC06Anb8P2qlCkU6cNbKfnr9c84/rw3tnkLJ3Gs1dbkDpNACgbIISgNFPmJfS/I8sG0lal2u+AvQ9K0CbTHACPOn538qDYKQToflBuHS55ueevVftJl4p/P4RkgAAjSAoARj9pLk1nDQ3fWXh9cvHzs03oL8GSV5w5zbe18FJkpXLzjiB0t7NU/nmOSOCkYN173LNy3gO76lByi7Ntni5AefLAAAkghKAcU2e55NcK+BSD9d9tf4w2PqLu7Y4Ww+HX7l87NyaJoFGvYdbSbaW03LOyORYT9JuwK7UfpLZgvtRSAIANIqgBGBcE+jFInYqrF6ePdduQF8tJLnori3aeoahSZLB5VkH0kLNnuOtKKVVF4cvz9Z8kcXiB70kVwruw9UkncuzdmcCAM0hKAEY3yS6neTLAi716uXZc72a99VUkrWUfRAr37ZZrmszPPFBCCbrHdsZ/mlHMGLMsH/3XjfJ7YL7UEgCADSSoARgvJPpXspYcfi9y7P1Ll3kwwfbsJ5haJJkpe4roqFGz+fN80U2wxHnStXT8uXZc52a34ulLIJ5nI1UIYldlwBA40xkUHKtmgxtlnJpJ5na8m9v/fe2Whv+edy/tnZpVv1x4ECeaWtp/krX5Us1//gx7KuVqGPPzqymCk9WkqxcEp7AKJ7FneF4fzMYsVuk/jaStC7VeBfCtaq820rK3X26kaRzSUgCADTUgQYlw8Hm1knQVPbnA9Xy8O/Blr/vG/QBY3rWdZJ8UcClzl2aPdfXVyA8gR08d9tb5gPt2C3SVEcuzZ5bqvF9OjWcMz6nDwEAmmlfg5Jr36wl3MlkrsZZTbULZesHjjW3CrDH518Jh4XXfrXosK+WkrzormWM44vBcHyhvjulvQs7SVoRipTm+qXZc/PGBrVW+8UwAABPM/agZKEKR7pJplPvbfPLeRCeDOaFJ8DOnoWlHBZ+b3723HTN+6qV5C/uWvbBxpaxxUqStXm7T2jOO29zgVRr+I+VNSzT6vzsuXbN7+cSFrs8yfX5mgddAADbMZagZDg5mk8VkDS1pvDmx41BquBk4HYCnvJsnE7yeQGXerjuz8SFxQ96Sa64azkg66mC1cHwbwEKk/y87KQKQ1p5cOD6M1qG4XypXecFZguLH3ST3C64DxfnZ8913coAQAlGGpQMV+H2kswW2p6rGQYnqcITJTWAh5+TJZRuWE/1YeR+jftpKlUY7gBhJu23tZYtAUqSFeMN9um52Mk3A5GWZyRPcWS+xmdaLDi3bDVJxzsGACjFSIISAckTB5eDJEtWggJbnpcraf5q26vzs+d6Ne+rbspeRUq9LGdLeJLkvrEHu3jutZNMpQpCNstn2SHCbtR6J8LwtzAo+N4XkgAAxdlTUHJ98f2pJAsRkGzXveGAe3Bx9vyK5oAyXV98fz7JtQIu9fm6P+uuL74/iMOGqb/lJPczDFCGf69dnD2/pmmKfAd18iAE2fy7FbtDGJ3VJJ2Ls+fv1/Q3MjWcs5V6rs7GsP/MVwGAouw6KBl+6OvFCrPdWh8OwJdSBSdW60BBCvkAv3xx9nyn5v3USdllNyhjPLKWbwcpuTh7fqB5avfMejgASardIYnQl/1R+4/shS+SEJIAAMXacVAynIAtmWyN3OZukyUrPKH5ri++307yZQGXeuni7PmFmvdVP3ZOUrbVVAHK1yFKHoQq931Q27dnUWf4D1vDP8mDEKQVO0Lw3vfO37u5i7Pn+25jAKBEOwpKblQTtKXYRTJuq8N2Xrrg4wM01o3F93tJrjT8MjeStC/UOAC+YYEA7OT3vjluuf+Yf5wkKxcK30l7Y/H9Vh6EHcmDwCN5sCNk8x8bd1MX9y7Mnp+u8e+ym7LPJrt0oeaLWwAA9mLbQYmB44FZz7A814XZ80uaA5pj+AF+Jc1fBVzrDydb+quVZD7JdKzchlHa3LGy6eFgZdPKQ/+5b/37ow5gHhFoPOxx/37noX8+lXLPO6CcOUu7riHoDaU2Fy/Mnu+6jQGAkm0rKLmx+P5Ckoua68Bt5MFOE6EJNEBBE/MjTXpu3Vh8fzpJN8mL7mIAyPN13Ql/oyqHOki5u7casaAFAGCvnhqU3FCndaIHtXkQnDgMHmqqkOdsrVeaPqHvplIFJt1YLQ5AmWpbsmn4Hh8U/A5fTdIxlwQAeEpQUkj9/KYQmkBNDSfpa2n+SsbrF2bPzze4H9t5EJo4UwCAEixfmD3fqfG7e5ByzyDbSNIydwQAqDw2KHEmSa0JTaB+E/XpJJ8XcKm1Lc2xi/7sRmkuAJqr1h/aCy8vvZFqJ8mK2xgAoPLIoOSf+sXXaW2Sr0OTV7pCE5hk/9QvYlXj6ivd8+2C+nQq1eHv81GaC4BmOfxK9/ygpu/nbspeFHjkla4zLwEAtvpWUDL8qDOIDzpNJDSByZ60t5KspPkh9dVXuud7hfZvd/jnWU7eUHkAACAASURBVHc8AN7lB/I+bif5suC+m3ule77vFgYA+KZHBSW9OJekBPeS9K0kgombvJfwDN5I0n6le36t4H52ngkAdVXb3aEFLUp5nMVXuue7bmEAgG/7RlAyHDj+RbMUZSMPdpkITWAyJvEraf6uvuVXuvU9/HXE/T2dqjzXdIQmAEz+3KGWix1UTsi9V7rnp93CAACP9o2g5P3FIurj8+SJTz9J/7yD/eDAvL9YTEmII+dnBbQP9X03VWDiEHgAvLtH+45dKvj9upqkc35W+WUAgMf5Oih5f/H9TpIvNAlD63kQmqxpDtj3yfxCkosNv8yNJC2T9kf2/+Yh8EITACbBapKF87P1PNvi/cWiy0sbbwEAbMPWoKSfZFaT8JiJUT9VaGKADfszoZ9KVUO76Yd+Xz8/e35ejz/1XphOMp9yy4UAsP8asdt8uFvzdsF92FEtAADg6Q599dVX+aCq1/p/NQfbcC/J0rluPVeTQZ18UJ1d8XkBl3r4XPf8QI9v655opQpNuhGaADC+8X7/XAPOL/yg/3471bkkpZ4BduSccygBALZlMyiZT3JNc7ADm4fAL5zrWqEEY5zgl1BPe/Vc93xbb+/43mhFaALAiN7FSRZSLYhqxA7y4WLAEnbnPs6cxW0AANu3GZSsxEcWdu/r80zOdZ1nAmOY5K+l+Sshr57rnu/p8V3fJ60ITQAwht/6bix5jrt4rnu+6xYHANi+Qx/cvqHsFqO0PJxwLb3cfcV5JjACf+j/Uwm7/jaStF/uvrKmx/d8vzgIHoDHWU+1K7z/cveVxu4K/0P/n/op9/zN5Ze7r3Tc6gAAO3Pog9s3SqmBz/7a2DIJG2gO2POEf5DkBRN7dnjfCE0A2ByXL73cfaXx51X8of9P3ZR7ePtqko4FawAAO3fog9s3ekmuaArG6Ott/VaLw64n/e0kXxZwqUdK+IhzQPfQVJJOHgQnz2gVgMYqKhzZ8q7rJPmi4D63OxcAYJcOfXD7RgkHBTM5lOaC3U/+e2l+sL2RpOX5sC/303QeBCfPahGARrxDiwtHtrzXWqkOby91IcDzTS6nBgAwbof+cPvGIM0v58LkTuT6Z5Xmgm272f+ntTT/o/b1s91X5vX2vt5X7TzYaeIweID6jamXzha8I/NmtWtyUPA7bO5s95W+nwMAwO4d+sPtG/ej/AYHaz3JwnCCt6Y54IkfAjopo6TEYSHqgd1jrTzYaWLHKcDkEY58+93VT7mHt189232l5y4AANibQ3+4feMrzcAEuTec9PU1BRT9MWD9bPeVlt6eiPttc6dJJ0p0ARwU4cjj31O9lHvm5uLZ7itddwEAwN4JSpjkyWA/VWkutXbhmx8EppKspfm7Aa2QnLx7r50qMOlGiS6AcVvPg1K1xsOPfi9NJ/m80MtfTdI561w3AICREJRQl0lAfzhJNBGAsj4MfE9Jvom9B6fyYKfJdJTxBBjluHcgHHnqe6id6lySEt8/G0la5kYAAKMjKKFuFqPkAGx+IBgkeaHhl7l8tvtKR2/X4n7cPBC+U8B9CTBK91LtHBlYHLDtd07Jh7dvpNpJIkgDABihQzdvXxeUUEebpQgWznQvmFBSpA/7N1pJVtL8lZRzZ7oX+nq8VvfmVB7sNOnE2SYAD49jB0mWznQvWPyzu/fMIOWG8kfcNwAAo3fo5u3rJQ8yaYblVCUKls50L9h+TlE+7N/opfkHmG4kafl91/o+beVBaNKJMl1AmePVpSSDM90LdgLs7Z2ykORioZd/6Uz3woK7AABg9AQlNMnGcALaP9O9MNAclOLD/o2VNL/0xOKZ7oWu3m7MPatMF9B0X+8aSRWOCPtH8/7oJrld6OUbCwEAjNGhm7ev99L81ciUOTntpwpN1jQHTfZh/0YnyRcFXOphIWij7+HN4OQ5LQLU1L1U4YhdI+N5V5R8ePvqme6FtrsAAGB8Dn14+/p0ks81BQ32dWmu01bz0VAflVGGYvW0jwQl3Mub55ts/hGcABP7XsowGDntzIj9eDespMwzr9aTtM1jAADG69CHt69PJfm/moICfF2a67RV6TRMQR8Qrp7uXujp8eLu7U4EJ8DB2yynNYgFOPv9LhikzFKNG0k6p+1QAgAYu0NfffVVPiqjvj08PNHtpwpN1jQHTfBR/0YJOwQ3Uq2q9Lst9z7fDE7accYJMP7x4iAPdo149xzMc7/kw9uP2K0EALA/Dn311Vf5+PaN+STXNAeFWk2ykGTp1JyVgdTbx7dvLCV5seGXuXxq7kJHb7Plvu/kwY6TdsqsXw/s3TeCkVNzgpEJeL53U+7h7ZdOzV1YcBcAAOyPzaBE+S2o3EvSPzVn5Rb19PHtG61UJbia/qH4iN8pT/gdbO422fz7Wa0CPIJgZPKf5YOUGX4vnpq70HUXAADsn0NfffXV5kC0n2RWk0CSLeeZnJpzngn1UsguwY0kLbvA2OZvQrkuINly+HqSFcHIxD+3Sz28ffXU3IW2uwAAYH99HZTc6t9oJ/lSk8C3rGcYmpx0kCI1cauMs6eun+xemNfb7PI3snXXSTvOaoOm2Uj1oX2QZHCya+FLzZ7Rg5QZaq8naZ/sWggCALDfvg5KCh+Qwk4mLwtJlk460JMJVlD4fdjHL0b0m5nKgx0nm+GJkl1QH6t5EIysWNxS6+dxqYe3byTpuHcBAA7Gw0FJK8lfNAtse0Lej9CECVXIh4bVk13lKRjbb0h4ApNpPd8MRQaapDHP3W7KPbx97mT3Qt9dAABwML4RlAwHp6Wu4IG9EJowcYYfeUuo7331ZPdCT4+zj7+rreFJK8p2wThthiJbgxFliZr5fC358HZjGQCAA/btoKTsg/NgFB6EJg4J5YDdun1jOsnnDb/MjSRtvzcO+LfWyYPgpB2lTGG3Y6i1bA1F5oQihTxDS56DLp6cu9B1FwAAHKxvBSVbJvtfaB4YyYR/KVVoot4wB+LW7RtLSV5s+GXeOzl3YVpvM2G/vVYelOyy+wQe2DxoffPP2sk55bMKf14OUmbAvJqkIxAEADh4jwxKhoPVXpIrmghGZj1VaDI4OXdhSXOwX4arNNfS/FIWR/y2qMlvcuvOEwEKTbc8fAetpdolsmYHIA89E0s+vN2OWACACfHYoCRJ/nj7+iBKR8C4JkZLqT4YLL00d9EqMsbqj7evzye51vDLXE/S9nuixr/TrQFKa/jHOIy6+FYg8tLcxTXNwlOee92Ue3j78y/NXbTjHABgQjwtKHFeCeyPr0t0mTAxLoWE39dfmrs4r7dp2G938wD5Vh4EKVMRonAw45X7GQYhwz8rAmp2+Wwr+fD2uZfmLvbdBQAAk+OJQYkBLByIjeFvbinJwGpMRmX4PP+ygEu1QpOSftcPhyhb/1jowm4spwpDVrb8bXcI43h2DVJm2UGLOgAAJtBTg5Ik+eT29U4c7g4HZX04kRwkGZzwoYI9+OT29V6af/7U6om5i229DcknVUA6lW+HKFNxLkqplod/D7b+fWLu4kDTsI/PpqUkL5b4+zsxd7HjDgAAmDzbCkqGg9luyq0fC5NEcMKufVJOScVLJ+YuLuhx2NYzYTNYfDhUSZT3qtv4YHNMMBj+vTb8c/+EnXZMznOnl+Yv2niU1SSdE0rVAQBMpG0HJcNBbTfCEpg0m6W6VlIFJwNNwlOe5Z00f5fgRpKWjxEwsufG1kCllQdByma4svmvK/c1WlvDj7Ut/3izLJadINTtWTKd5PNCx+sdgSUAwOTaUVAyHNx2IyyBSbea6iPKSpIVH1F4xLO8hJIX907MXZzW23Agz5itwUryzUDlUf+8yaXAlh/652t5EHh86597Z9Pg50JrODYt8ezLIyfmLi65CwAAJteOg5Ik+VRYMg6bH7anC508MH7r2RKeJLl/3MeYYn1afcRcK+B5c9h9DrV+Vj0cqGz1cBizH570PFk7rhwmPGncMUiZZyNdOq4cKADAxNtVUDIc7HYjLBm11VRBSXv4t9CE/bBZ1mOzjMdg+K+vHFe2qFEe8cGxm2S2gPu77V4GgAMdg/QLGHM8yuLxuYtddwAAwOTbdVAyHPB2IywZtY0k88fnLvaHbbwZmAhNOCirGdZBzzdX0g4e+s81Llh5ykrm7ejs4r+z0/+bbc+Gp7p6fO5iTzMAwIGMp+aTXCt0DN2xWAMAoB72FJQkye1PhSVjci9Jd+74g4H17U+FJjTO8h7/+604OJjt+d7ccSVxAGA/3f70ejvJlwVe+kaStrEHAEB97DkoGQ6Ap5P04+P9qK2nCksGj2lzoQnA9izPHb/Y0QwAsD9uf1rMeWiP8vzc8Ysr7gIAgPoYSVAyHAi3U5Xi8dF+9K7PHb84/4QJyGZg8qKmAnisubnjVVlDAGC8bn96fSVlHt5uvAEAUEMjC0qSpH97oZ1kKUrhjMNqkm53bn7lCe2/GZp0k7ygyQC+YSNJqzs3r1Y4AIxR//bCQpKLBV76YnduvusOAACon5EGJcNB8VSqnSXPad6R20jS687NL2yjH1p5EJroC4DK9e7c/LxmAIDx6N9e6KbMMyxXu3PzbXcAAEA9jTwoGQ6Op1LtLLGrYTzupdpdcn+b/dFOFZhMx24fgMPdufmBZgCAkc8DSy3HbNcqAEDNjSUo+Xqg/OlCP8msZh7bYHy6e3xnH/v6ny44BB4o3Wr3uBWfADDiuV/JlQWe7x6fd3g7AECNfWec/+Pd4/PdJFc181g8k+SL/qcLCzvsk6Vhv7SSzKXanQJQkuf6ny4ovwUAo9VPoYe3C0kAAOpvrDtKvh4xf1psndr9Uh30vssBev9T55kAxdlI0u4en1/TFACw5/nefJJrBV769e5xZ58BADTBvgQlw8FzqfVq90t10Pvx+YUR9FN3+EdfAU12r3t8flozAMCe5g+dJF8UeOnL3ePzHXcAAEAz7FtQkiSL1Uf4fuxaGKd7Sbqzx/d+kOBidZ5JN8mLmhVoqMOzxx3sDgC7nC9MJVlLeQus1pO0RzHnAgBgMuxrULJlMD2IsGScNlKFJUsj7LNulOYCmseHDgDY/TxhpcD5wUaSzqxzSQAAGmXfg5LhgHoqyUKSWV0wVteT9Eb5AXBRaS6gea7OHp/vaQYA2NG8YCHJxQIvfW72+HzfHQAA0CwHEpRs+qzcwfV+Wk3SPTaGFU+fKc0FNMf3jjnYHQC2Ow/oJrld4KVfP+bwdgCARjrQoKTwQfZ+u3Rsjwe9P6EPW0mmk8wneVZTAzW0fMyBrACwnbF/O1Up5dJ2lxsrAAA02IEHJcPB9nSqQ96Vchrz4D7J9LEx1uIfTpzmUwUn+hOokyPHRnS2EwA00Wflnje5nqR9zJlmAACNNRFBSZLc+eRaqSuT9ttGku7MiUtLY+7PqVRhSTfJC5odqMnzsTVz4pKPIADw6DH+Usoru7uRpDNz4pLD2wEAGmxigpLhwLvUFUoH4XqS3n58ELzzybVWHhwArzQXMNHPxpkTl9QeB4Bvj+nnk1wr8NLnZk5c6rsDAACabaKCkuEAfCpVGS4HhI/faqrdJSv72L/TqXaazGp+YEI9b9UoAHxjDN9O8mWBl24BBQBAISYuKNkyGO/Hx/T9cnXmxKXePvfvZmmu+dhBBEyW5ZkTlzqaAQC+HrevpbwSyaszJy613QEAAGWY2KAkSe58Wuz27oOwnKQ7c/zS2gH0czsPSnM5owaYBJdmjl9a0AwAlO7Op9cGKe/MwercsuPOLQMAKMVEByXDgXk3yW1dtW8Tgu7M8fEe9P6U/t48AF7pNeCgn4c+kABQtDufXusluVLgpT8/c1wZTgCAkkx8UDIcoHeSLMVug/2ymGT+ID8Q3vn02lQe7DJRmgs4kGfhzPFLXc0AQImGC5g+L/DS52aOO7wdAKA0tQhKkq8PEBxEWLJf1pNMT8KBxsO+70ZpLmD/HZ45cWmgGQAoyZ1PrrWSrBQ49l6cOWGRBABAiWoTlAwH7O0k/dhhsJ/2/aD3p9wDSnMB+8lBrgAU584n11YKnHN55wMAFKxWQclw0D6VameJsGQfJw2pdpesTdh9MJ1k3r0AjNmlmRMOdgegDHc+udZPMlvYZW8kaU/SfAcAgP1Vu6AkSe4KSw5q8jB/9MTk1eu9W5UGmE8VnDyrq4AxPP9aR0842B2AZrv7ybVuktsFXvrho0ptAgAUrZZByZaBfD/lrXY6aPeSdCf1g+HdT651UpXmmo7zTIARPvuOnrg0rRkAaKq75Z4JeemonaMAAMWrdVAyHND3IyzZb+upwpLBhN8bzjMBRslqUwAaqeAd+xZCAACQJPlO3S/g6IlL3SSLunJfPZvki7ufXOtN+L2xNJz4/Kckc6l2wwDsVl8TANBQCynw8PZUi6oAAKD+O0o2/fMn1+aTXNOlBzPB+OmJSys1uU+mhhOibpxxA+zc1Z+euNTTDAA0xT+XeS7JRpJOXeYwAACMX2OCkoIH+ZMy0ej9tGa1ff+5OgR+szyX0ATY7vOu/dMTl9Y0BQANmD+1k3xZ4KUf+emJS0vuAAAANjUqKBkO9rsRlhyUe6l2l9yv4X3TitAE2Oaz7qfqmQNQ/3nTVJKVVGV1S3L9pycuzbsDAADYqnFBSZL890/e66aqs/uMLt53G0mm/+HE5UGN759WhCbAkx2u83MOAP77J+8tJXmxsMte/ocTlzt6HwCAhzUyKBkO/NtJBhGWHJTrSXr/cOLy/ZrfR61UoUmnwIkk8Hjr/3DickszAFDTMW6J5zuuJ2nXfX4CAMB4NDYoGU4AhCUHazVJ9x9OXF5pyP00lSo02QxO3FdQtqv/cOJyTzMAUMM5UonnkjzflHkJAACj1+igJEn+P2HJJLj0kxOXFxp4b20NTZ7VzVCcjSTtn5y4vKYpAKjJ+LXUc0nmfnLict8dAADA4zQ+KBlOCIQlB285yfRPGrrVfXiPdeJcEyjNvZ+cuOxgdwDqMmYt8VySxZ+cuNzV+wAAPEkRQclwUiAsOXgbSbo/OXF5qeH32maJrk7sNoESHP6Jg90BmPwxaonnkqwm6fzEuSQAADxFMUHJcHIwlSosseL/YC0mmS9lwrJlt0knDoSHJlr/iYPdAZj88Whp55IokQkAwLYVFZQkyf/4o7BkQqwnmf7xS+UdqPg//vheJw+CkxfcCtAIV3/8koPdAZjY+U+J55Ic+fFLzd7JDgDA6BQXlGyZLAwiLJkExX9cFJxAI2wkaf/4JatWAZi4sWaJ55JYwAAAwI4UGZQMJwzCksmxnKTrA+PX9+bWUl3tOOME6uLej19ysDsAEzWuLPFckuUfv3S5o/cBANiJYoOS4cRBWDI5NpLM//ily31N8a37tJUqMNkMUNpJntEyMJEO//glB7sDMBFjyFLPJWn9+CWHtwMAsDNFByXDCYSwZLLcS7W7xOTmyfdtK98MT1qx8wQmwfqPX3KwOwATMccp8VyS50s8AxEAgL0rPijZMpEYRFgyKdZThSUDTbHj+3gzPGlt+cd2n8D+uvTjly4vaAYADnBcWOK5JN6/AADsmqBk6P//4++FJZPn6t+/9GpPM4zk/u4k2QxSWlv+2IXCKC1v4z+zNrwPm/ys3UjS+vuXXrUzDoCDGPeVeC7J4t+/9GpX7wMAsFuCkm9OKoQlk2c1SffvX3rVFvrx3fetVKHJZpCSVOW8MvzX/B4O/jewkw/ug23+5+6nKsmxHSuj/Og/vOf+0vB+88EGgIMY17WHY4GSdhSvJulYoAAAwF4ISr49uRCWTJ6NJL2/f+lVW+kP/vfRecS/3Nnmf31rELNfBhP2v7liEv/1vdRLcqXhl3n47196daC3ATCPGes8oWNRFQAAeyUoeYR/EZZMqntJuv/Fh2ZoynO26YfMrv6Xl15t620A9und2k8yW9hlz/2Xl17t630AAPbqO5rg24Yf4juptnEzOV5MsvYvf/z9tKaARjxn5xt+mc/9yx9/39XbAIzb8H1TWkiyKCQBAGBU7Ch58oTDzpLJdT1Jz+4SqP1zdpDkhQZf4kaSlmcVAGN8l7ZS7dIs6lwSuzYBABglO0qewM6SiXYxyeBfqgMrgfrqpgoTmuqZJD3dDMAYLaWskGQjiR3mAACMlB0l2/A/b9lZMuGu/t3JV3uaAWr7jO2l+Qe7f+/vTr66prcBGPE7dCHVAqKSHPm7k68u6X0AAEZJULL9SYiwZLItJ+n6EAm1fcaupdkHuy//3clXO3oagBG+OztJvijssq//3clX5/U+AACjpvTWNv3dSWW4JtwLSVb+5y0HvUNNdZv+jPJ8AmBUhou4SttVsSwkAQBgXAQlO/B3J1+9f+hQOocOZfXQocSfifvzzKFD+fxPf/z90p/++PspdyzU6vk6OHQo9xr+jFrQ0wCMwqFDWRqOfUsZ528cOuRcEgAAxkdQskM/csB7HbyYZOVPf/x9R1NArcyn2Qe7P/unP/6+p5sB2Is//fH386l2U5dkejgPAwCAsRCU7IKwpBaeTfKFj5JQq2frWtL4XRfzdrwBsFt/+uPv20muFXbZV3/00qsDvQ8AwDg5zH0vE5Vb7zrgvR5Wk3R/dPK1FU0BtXi2rqXZB7sv/ujka109DcAu5h4rDX9HPmz5Rydf6+h9AADGzY6SPfjRydfsLKmH55IM/nTrXYc/Qj10G359s3+69W5bNwOwQwspKyTZSJxLAgDA/hCU7JGwpDaeSXLtT7feXRquxgMm97k6SHKv4ZfpYHcAtu1Pt96dTjJb2GV3hnMtAAAYO0HJCAhLauXFJGvDySYwuZp+sPsLnkMAbMefbr3bStIv7LIvKZsLAMB+EpSMyI9Ovnb/UNI5lKweSuLPRP955lDy+b/eenfhX+0ugUl9pq4dShYa/iyyqwSApzqU9Ifj11LG6vd+dPI170gAAPaVoGSE/vODnSUbWqMWLiYZ/KuzAmBSn6m9JOsNvsRn//XWuz09DcDjDN8TLxR0yetp/lllAABMIEHJiAlLaue5JF/6WAkTq9vw65u3sw2ARxku5rlS2GVP/2fnkgAAcAAOffXVV1phDP5cTWwGqQ4Rpx6Wk3R/ePK1NU0BE/U8XUp1vlBTLf7w5GtdPQ3Alnff1HAu8VxBl33ph0puAQBwQOwoGZMfVocPdmJnSZ28kGTlzw5YhknT9IPdZ/9cHdQLAJt6KSskuSckAQDgIAlKxkhYUkvPJPn8z7feXfqzcjgwKc/StTT/4PO+ngYgSf58691OqrP0SuFcEgAADpzSW/sx2flYGa46T9p+eOq1gaaAiXiWriV5tsGXeNjzBqD4d91UkrXC5g3P//DUayt6HwCAg2RHyT4YDvyVc6qfZ5N88eeP31UGACZDt+HX51kDQD9lhSRXhSQAAEwCO0r20Z8/freb5LaWqKXVVLtLTOTgYJ+jg1TnCTXV3A9PvdbX0wDmCgVY/uGp1zp6HgCASSAoMQFi+zZSHawpLIGD02r4M3Q9SfuHp167r6sBipojtIZjzFJ2k2wkaXnfAQAwKb6rCfbXD0+91v/843cTYUkdPZPkmmYAxujZJPOpQlkACnGovJJb00eEJAAATBBnlByAI1VZlTktAcAjzH9eHeYLQAE+//jd+TS7rOTDrh459dpAzwMAMEkEJQdkGJZc1xIAPOSZONgdoAiff/xuO2XtWF4+cuq1np4HAGDSOKPkgC19/E4/yayWAOAh35s+9fqaZgBo9FxgJclzhVzuRpK2dxsAAJPIjpIDNn3q9W6SRS0BwEPsKgFosKWP3+mlnJAkSbpCEgAAJpUdJZMzUerHzhIAvunw9KnXB5oBoHFj/3aSLwu65OvTp16f1/MAAEyq72qCyTB96vXu0kfvtFPWqjIAnqyXpKMZABrmq/QLutrV6dNCEgAAJpvSW5Olk2RVMwAw9MLSR+90NQNAcyx9VFTJrY0k3mMAAEw8QckEmT79+v0ISwD4pp4mAGiG4Q7yKwVd8vz06ddX9DwAAJNOUDJhtoQl61oDgCTPLn30jpIlAM3QL+haF6dPv97X5QAA1IHD3CfUvWq12SDJM1oDoHgbSVovVmE6APUc3/dSzm6S9SRt7y0AAOrCjpIJ9WK1Rb2T6uMYAGV7JoldJQA1da+8klvTQhIAAOpEUDLBhCUAbDF/76N3WpoBoJb6BV3r1RedSwIAQM0ovVUD//bR290kt7UEQPEW//b0G13NAFCrsXwv5ewmWf7b02909DoAAHVjR0kN/O3pN/pJ5rQEQPFm/+2jt1uaAaAe/u2jt0squbWRZFqvAwBQR4KSmhCWADDU1wQAtbFQ0LV2//b0G84lAQCglgQlNTIMSxa1BEDRXvi3j97uaAaAyfZvH709n+SFQi73+t+efmNJrwMAUFeCkpoZ1qYXlgCUracJACbXsExiKc/qVe8lAADqTlBSQ8Ow5J6WACjWC//20dtdzQAwsRaSPFPItSq5BQBA7X1XE9TToaSbZJDkOa0BUKRenFcCMHH+10dvTx9KXizkci/94PQbK3odAIC6O/TVV19phfpOwqYiLAEo2dwPqvOrAJic8flaythNsvyD02909DoAAE2g9FaN/aDa4t5JsqE1AIq0MPwoB8Bk6KWMkGQj1Q53AABoBEFJzQlLAIr2TJJ5zQBw8P7XR293klws5HK7Pzj9xppeBwCgKZTeasrE7MO326nKcD2jNQCKspGk9YMzDtIFOODx+ErKKIl77wdn3pjW4wAANIkdJQ3xgzNvrMSqYoASPZOq1AsAB+R/ffj2fMoISdaj5BYAAA1kR0nzJmndJLe1BEBxvveDM8qgABzA+LukA9wP/+DMGwO9DgBA03xXEzTLD8680f/fVRmui1oDoCi9WOULsO8OJQspIyS5/jdCEgAAmjqut6Okmf73h2/3k8xqCYCiPP83VSlGAPZnzN1J8kUBl7r6N2feaOtxAACayhklDfU3Z97oJrmnJQCKsqAJADx3x6CrqwEAysZP+wAAIABJREFUaDKltxrsUDWhGaSMgyUBSF749w/f7vy10igAY/fvH749f6iMcfbVv7ZbEQCAhrOjpMH++swb95N0kqxqDYBi9DQBwHj9e3WAewnP2+W/PvOG9woAAI0nKGm4YVjSTbKhNQCK8MK/f/h2VzMAjFUvzT/AfSNKbgEAUAhBSQGGW+U7EZYAlKKnCQDG498/fLud5GIJ75K/PvPGmh4HAKAEh7766iutUIj/uPlWN8ltLQFQhLnvn32zrxkARj6mHiR5oeGXufz9s2929DYAAKWwo6Qgww9mc1oCoAi9/7j51pRmABid/7j5VifND0mU3AIAoDiCksIMw5JFLQHQeM8mmdcMACPVL+Aae98/++aargYAoCRKbxXqPz58q59kVksANNpGktb3z7x5X1MA7Hn83E3zy9guf/+MklsAAJTHjpJCff/Mm90kq1oCoNGeiV0lAHv2Hx++NZVkoeGXqeQWAADFEpSUrRNhCUDTzf/Hh2+1NAPA3p6lqcLnJut9/4ySWwAAlEnprcL9n5tvtZMMCpj4AZRs8a/OvtnVDAC7Gi9PJVlr+Hh5+a/OKrkFAEC57Cgp3F+dfXMl1c6SDa0B0Fiz/+emXSUAu9T03SRKbgEAUDxBCZthiRr2AM3W0wQAOzMMma80/f3wV2eV3AIAoGyCEv4fe/cSJtlV3Yn+n+478KzSM6MGMoQbJITlCoExmIczCty4ParU7M4qaohAqiwJqd6VkfUuSaXKAiP3TFGzO1PW6LaxTUW2AbtbNso0Tdtud19ldmPTjJw57FHewQkhVake+YiIPHHO7/d98QF+AGedfU6ufdbeaydJ/vDrx7pJjooEQGUd6rdbBGDrOhW/vqU//PqxBbcZAIC6Uyjhl/qTpJsiAVBZPoYBbFF/N8mhCl+illsAANCnUMId+of93hIJgEqa/n//+GpLGAC2pFPx61vQcgsAAAoKJdxLO8mKMABUUkcIAB6sBrtJVv7w68f8PQAAgD6FEj7gD79+bH0iaU0kGxNJ/Pz8/Pwq9Zv+D3aVADzQRNKp+N+CtrsMAADvUSjhnv7d14+tJ2ml6F0MQLU4qwTgPv7DH1+dTDJT4Uu88e++fmzZnQYAgPdMbG5uigIPmijOJHlTJHiIW/HhlWrqJJmu6LUd/ndfP9Z1iwE+kP92ksxV9PLWkjT7i6IAAIA+hRIe6k9ev9pO8oZI8BBLSdp/8IxDQanU+6+Z5O2KXt7aHzxzrOEuA9zx3p9MsppkX0Uv8ek/eObYojsNAAB30nqLh/qDZ451k9wUCR5iOsnyn7x+dUYoqND7b7nC77+pfiEcgPfMpLpFkluKJAAAcG8KJWzJHzxzrJ1ixwA8yL4kb/7J61cX+ysyoQo6rg3AO3/MbSSZdXsBAODeFErYjpkkK8LAFhxMsbukJRSMu347uRsVvbypP3n9qg9nAEn6u2KnKnp5C9qjAgDA/TmjhG353h9faSRZTnVbEjB4N5J0vvb14w4NZZzffVXuWb+RpOEZBbzrr/RStBKtmpWvff140x0GAID7s6OEbfna14+vJmmJBNtwJEnve398xQSdcX73rSdZqOjl7Yt2LEDN9RcDTVf08rzjAQDgIRRK2Lavff34cpLDIsE27E/y9vf++EpHKBhjCyl2X1TRbH/XDEBdVbWYcOtrXz/ec3sBAODBFErYka99/Xg3m5nPZuLnt43f3Pdev7L8vdevNDxFjOF7bz2b6VT02dyXTSuOgRrbTLuC7/YN73YAANgahRJ27GvPHO8kuSkSbNP+JMvfe/2KiTvj+N5bSLJW0cub/d7rdpUA9fO916/MpJpnUC187Znjq+4wAAA8nEIJuzWbZEUY2KZ9Sa5/7/UrPR9mGUOdCj+XHbcXqKF2Ba9prb+oCQAA2IKJzc1NUWBXvvf65ckkq6nmSjyGbyNJ+2vPnFgUCsbovbeaZKqil/fo1545seouAzXKY/+lgpf2tNwKAAC2zo4Sdu1rz5xYT9JKdQ85Zrj2JXnze69fXux/rIBx0K7wtXXcXqBGZip4TUuKJAAAsD0KJQzE1545sZw4LJJdOZhk+XuvX24JBWPwzuslWaro5R363uuXG+4yUBNVzF87bisAAGyPQgkD87VnTnSTzIsEuzCV5Pb3Xr+8YHcJY6Dj2gDGVz/X2F+xy7rZL+YDAADboFDCQH3tmROdieTmRBI/v138jkwkvT99/XLTU0WJ33e9iWSpos/goT+1qwSouIlkpoLv7447CwAA26dQwjDMJlkRBnZpf5K3//T1yyb8lP19V1WePaDqqnY+yc1/+8yJVbcVAAC2T6GEgfu3DndfiYPtB2nuT1+/vGx1OyV93y0nuVnRyztkVxdQca2KXU/HLQUAgJ1RKGEo/u0zJ9YnNtOa2MzGxGZSs9/+ic3MTmxmqYbXPsyYLv/Zdy/Peroom4nNdCr87C24w0AV/dl3L7cmNrOvQu9ru0kAAGAXFEoYmt//xonlVLstzYMspGjn4HD7wdmX5Pqfffdy78++66B3SvWuW011d5VM/9l3L7fcZaCCqvZu67ilAACwcxObm5uiwFD92XcvLyQ5UsNLX/n9b5xo/tl3LzeTdFOcucFgbCRZFgZKZLLCz/jS73/jRMstBiqWn/aSTFfkcm7+/jdOtN1VAADYOYUSRuLPv3t5McnBGl76ja9+48Tsnxc7IDqpZ8EIGH8HvvqNEz1hACqUm1ZpEvToV7+h7RYAAOyG1luMSjvFIed1c+TPv3t55qvfOLH+1W+cmE1yIMma4QCMmY4QAFXx58Vu36q4qUgCAAC7p1DCSHz1GyfWUxRLNmp4+d13J+T9FdnNJLeMCmCMTP+5s0qA6qjS+2zB7QQAgN1TKGFkvloc7j5Tw0vfl6JYMtmPw/pXv3FiJsnTqWfhCBhPHSEAKqJRketY6efXAADALimUMFL9HRVHa3jp+3PXir+vfuPEYordJUtGBjAG7CoBqqIqrbfsJgEAgAFRKGHkvvqNEwtJbtbw0g/9+Xcvt++KxepXv3GilXoWj4Dx0xECoAIaFbiGjSSLbiUAAAyGQgl7ZTb1PNz9jXsdINovHj1V05gA48OuEqAKpipwDYv9MwABAIABmNjc3BQF9sT3/+jSZJLVFGd41MlakuZXvnly/T5xWUhyxAgBSmrpK9882RIGYEzzz0aSdypwKU9/5Zsn7SgBAIABsaOEPdMvFLRqeOlTSboPiMtskgMpCioAZTP9/T+61BYGYEw1KpJHK5IAAMAAKZSw15O85SSHa3jpB7//R5dmHxCXXoqDRm8ZJUAJdYQAYM8sCQEAAAyWQgl77ivfPNlNPQ93v/79P7rUfEBc1r/yzZMzSZ5OcWAnQFlM2VUCsGca/Ra2AADAgCiUUApf+ebJdup5kPniwya6/dYKjVg9CJRLRwgA9sQD27gCAADbp1BCmbRSv50TW5ro9neXtJIcjd0lQEneX3aVAOyZg9//o0tdYQAAgMFQKKE0vvLNk+sTSWsiSc1+B28/4LySu2K00I/RSg3j5OfnV75fx18vYJxU7B186LZiCQAADIRCCaVyoL6Hu1+//YDzSu6O0YFvnmwmmTdigD02dduuEoC9dMh7GAAAdk+hhNI5UN/D3Rdvb+NgzgPfPNlJciDJmlED7KGOEADsqTcUSwAAYHcUSiilA/U83H3bB3Me+ObJXpJmkhtGDbBX7y4f6AD2nGIJAADswsTm5qYoUEq971yaTLKaZF/NLv1o69mTCzuI10yKQss+owcYsbXWsycbwgCMSY5Z5QnQ4dazJ7vuMgAAbI8dJZRW69mT60laNbz0673vbO28krvitZikkeSW0QOM2FTvO1YyA5TAG73vXOoIAwAAbI9CCaXWevbkcpKjNbz0xf6Omu3Ga7317MmZJIeTbBhBwAh1hAAYE0sVv7653ncudd1mAADYOoUSSq/fhqpuh7tv+7ySu2LWTXF2yZIRBIzqvWVXCTAmlmtwjYcUSwAAYOsUShgXs6nf4e4He9+5NLvT/+fWsydXW8+ebCWZN3yAEekIATAGlmtynYolAACwRQ5zZ2z0vnOp0Z/Y1u2w8qf6Lch2E7tmih0q+40kYMgcJAyMQ075To0ueSnJTP/8PwAA4B4UShivWd53Ls4kebNml72WpDn97Kn1AcRvIckRIwkY5jtr+tlTDWEASp5TrqZodVoXK0lag8gnAQCgirTeYqxMP3tqMfVrJTWVZGFA8ZtNciBF8QVgKO+spe9cbAsDUHKLNbve/Ul6S9+52HDrAQDggxRKGDvTz57qJLlVs8s+NKgPj9PPnuqlOOj9ltEEDElHCICS69bwmvcnWV76zsWm2w8AAHdSKGFctVO/XRELg5rYTj97an362VMzSZ5OsmE4AQNmVwlQatPPnlpOPXfY7kuxs6RlFAAAwHsUShjXye16NjOTzWxkM6nJb18201369sXJAcZxMZtpZDNLNYqjn5/faH4df62AUtvMQk3fz/uymdtL31bQBgCAdymUMLamnzu1nGS2Zpe9PwNuaTP93Kn16edOtZIcjd0lwOBM+QgHlFy35rnPG0vfvtgxDAAAQKGEMTf93Klukps1u+wjS9++ODOEWC6kOLtkxcgCBqQtBECJ88j11O9Q97vNLX37YtdoAACg7iY2NzdFgbH3H799cTnFbou62EjS/L3nTq0OKZ6dJHNGFjAAB37vuVM9YQBKmkM2krwjEllKMvN7RfEIAABqx44SqmIm9WqdsC9Fu4ih+L3nTnWSPBW7S4Dd6wgBUFb9RSc3RCLTSXr9whEAANSOQglVmuS26zah/Y9D7Cv9e8UZMK34eADs/l3VEgagxDpxTltS7M5e/o/fvtgUCgAA6kbrLSrlL759oZP6tYw68OXnTveGHNdWih0sU0YZsANLX37udEsYgBLnkLNJrotEkqJoNPvl5053hQIAgLpQKKGKE91eivYBdbGWpPnl506vDzmukymKJQeNMmAHhl7UBZBDDtTRLz93ekEYAACoA623qKK6nVcylSGeV/KuLz93ev3Lz52eSfJ0tKcAtq8jBEDJteU4d7j+F9++0BUGAADqwI4SKqnfKup2zS778KhaJPR3lyzGqktge+wqAcqeQ7aTvCESd1hKMjPs3csAALCX7Cihkvof4o7W7LIX/uLbFxojiu96/7yBo7HyEti6jhAAJc8hu0luisQdppP0/uLbFxzyDgBAZSmUUOWJ7kKSWzW65H0pdnmMOsbNFCsNAR5mur/jD6DMOWQ7yYpI3GF/imKJdzgAAJWkUELVtVMcdl6bSexffPtCZ5T/gV9+7vRqf3fJvOEGbPG9DFB2rZrlkFuxL8ntfnsyAACoFGeUUHk/uHGhmeTtml32gS8dGf05AP1Yd1OsOgS4n0e/dOT0qjAAY5BD9lIUCLjTzS8dOd0WBgAAqkKhhLpMdGeTXK/RJa8laX7pyN4cuvmDGxcWkhwx8oD78IENGJccspXktkjc01KSmb3KNwEAYJC03qIWvnSkdueVTKXY2bFX8Z5NciBaVgD3dugHNy40hAEYgxyyl+SwSNzTdJJef+cNAACMNYUSamMiaU8kaxPFP6/D7+APb+xdD+kvHTndm0iaE8mNGsXcz89v67+Ov0zAOPjSkdPdieSw9/Y9f/snkt4Pb1yYMVIAABhnWm9RKz+s33klG0maX9zjswD6k+du9PgG7vToF51VAoxPHqm16IMd/WKxixsAAMaOHSXUyhePnF5OcrRGl7wvyWIJ4r6YpJF6tT8DHm5WCIAxyiNnk9wUifu6/sMbF7rCAADAOLKjhFr64Y0Li0kO1uiS57945HSnJLFvJ1mI3SVAseut8UUHAQPjlUd2kxwSiftaSdLybgcAYJwolFDXCe5kkuUUh57XxVP9HTVliH8jRSuuaaNxKFaS+DhRPY2KvrNKU8gF2EYu041iyYNspCiWLAsFAADjQKGEOk9w63ZeyVqK80rWS3QPZlMc6Gx3yWBtJGn3W55RnXdWI8k7FR2vdpUA4/he7kax5GEOf/HI6a4wAABQds4oobZqeF7JVIqiRJnuwUKSVoodEAzOviRv/vDGhYX+7imq8c5aTTV74++Ls0qA8Xwvt+PMkod544c3LjjgHQCA0rOjhNr70cL5up1X8vQXZs8slvA+dJLMGZEDt5ak/YXZMz2hqMT7qpFq7ipZ+8LsmYY7DIzpu7kbO0seZinJzBdmz9g9CABAKdlRAkk7xcfkuuj+aOF86XYZfGH2TCfJU7G7ZNCmktz+0cL5hTLed7b9nKymmquXp360cL7tDgNj+m5ux86Sh5lOsvyjhfNNoQAAoIwUSjC5LVa2zdTokvelOEi9jPdiOUUrrhtG5sAdSfGBoiUUY6/jugBKl8O0o1jyMFNJegrjAACUkdZb0FfD1k9HvzB7ZqHE96OVoqAzZXQO3M0ks9pfjPX7qptqtnk5/IXZM113GPB+rrz5/m5iAAAoBTtKoK8/WVuq0SV3+ucdlPV+9JI0Y3fJMBxKsvqjhfMzQjG+z29Fr8uh7sC455PtJPMi8VBzP1o4v6gtKAAAZaFQAneaSbJRk2stbQuud31h9sz6F2bPzCZ5ukb3ZZT3/00fKcZThc8q2a89HFCBd3QnyWGReKiDKVpxObcEAIA9p1ACd05s1yeSmYkkNflN/2XRcqzs92VxImlMJLdqdG9G9Ts4kaz+pd0lY2ci6VR0THbcXaACOWV3Ijksz3job/9E0pOHAACw599ZnFECH/SXC+cXUhx+XRdP/W5xkPo43JuZFDth9hmpA3crSft3nV0yTu+qbqrZC//A7xbt9wDG/T3dTvKGSGzJ/O86twQAgD1iRwncw+8W7Z5WanTJ3TG6N4tJGqnXeTKjcjB2l3h2y6Ht1gIVySm7SZ6KFqJbMfeXC+cX/1JLUAAA9oAdJXAff1kcdL6c+uxcGLtVfH+5cH42RZseu0sGz+6S8XkOekmmK3hpj/5ucRYLQBXe1c0kPTnLlqz0c5BloQAAYFQUSuAB/ur6uZkkb9bokg98/ujZ3pjdo0aKVfXTRuzAbSRpf/7o2UWhKPUz0Epyu4KXdvPzR8+23WGgQu/rZpLFJFOisaUcZPbzR892hQIAgFFQKIGHT2q7qeYZAPeylqT5+aNn18fwPs0muW7EDsWtFAUTu0vKO/57qWax8NeMO6Bi7+vJFDtL9ovGltz4/NGzs8IAAMCwOaMEHm42RQGhDqZStLIaO58/enYhRQ/wFUN24A4mWf2r6+faQlFanYpel49jQKX0i78t+cqWHfmr6+d6/QITAAAMjR0lsAX9Vglv1+iSx64F1133q5NkzsgdiqUUu0tWhaJ0476X6u0q2UjSsKsEqOh7u5v67FrerbUkM58/eta5JQAADIVCCWx9Mlun1k5j24LrffermeLsEq0tBm8jSae/i4fyjPmqnql0WI96oMLv7m4US7aTfzi3BNjOO7aRpNH/l5NJmu/7X6/2f0mScV4oCMBgKJTA9hKtXupzaHglekL/1fVzC0mOGL0wttY+f/RsQxiACueX7SRviMSW3fz80bNtYQDe9x5tpCiCNFO0N2ykaCu9XRtJlt//s5MNoD4USmAb/lPRH3k1yb6aXPLTnzt6drEC962VYnfJlFEMY+nw56wgBqqdY7ajWLIdK0lan9OaEer83pxJURRpZbhdBDaSLCbpJVn03gGoLoUS2FlC9mZNLncjSaMKyWC/yNWJ3SUwjpY+d/RsSxiAiueYzRQf4vaJxpbz1JnPaZcDdXtPziaZ2cN35a0k3SosKATgTgolsLMErU7tnG597ujZmQrdu1bsLoFxdMDHMKAGOWYzxcplecrWHf2cc9Og6u/GdooCSZnOn9xIspBkwS4TgGpQKIGdJWqTKVb81eWg8KertGKmf/8W4vBUGCeVKtoCyDMH6maSWR8roXLvw3aKrgBlLh6/25rLOwhgzCmUwE6Tttfmm0nersnlFi24np9br9g9nEmxu0SLCxgPj37u+blVYQBqkGda1LF9K0nan3t+zsHLMP7vwHbKXyC515y52GFSsXkzQF38ihDAzvQnYUdrcrn7UhQUqnYPF5M0UvSZBcqvIwRATfLM9c89P9dOsVOCrdmfpNdfCAOMof/02nzjP70230vyRsavBeG+JHNJlr2HAMaTHSWw+2Sul2S6Jpf7dL+4UMX7aHcJlF8ld7cBPCRHaaf4aMjW3fjc83OzwgBj9a7rpCg0VMWtFLvc5K0AY0KhBHbpPxetEVZTjw/sG0kav1PRZK9/L7tJDhrZUFrzv/P8XEcYgJrlmxZ0bN9Skpnf8ZESyv5+a6Q446OK5zJtJGn/TkUXGwJUjdZbsEv9yVe7JpdbyRZc77+Xv/P83EySw/2kFiifthAANcw3F5O0kqyJxpZNJ1n+z8W5gkAJ9YvAy6lmkeTd+fOb//m1+QV3G6D87CiBwSV53dTnwM2nq74qpr+yqZv6tFWDcXL4d56f6woDUMN8czJJL9X9qOjvBtTnfTab5HqNLtkuN4CSUyiBAXmrmLguZ/wOnduJjSSNz9YgyXurSOA70eoCymTls8/PWSEM1DnnXEh9FugMys0ks5/1kRLK8B7r1vQdtpKk5T0EUE5ab8GA9JOdmZpcbqVbcN11XxeSNFOsAALKYf9br823hAGoa8752efn2knmRWNbDiXpvaUVF+ypGhdJkmI34LL3EEA5KZTAYCeuyzWatB58q+gpW4f7uvrZ5+daSY7G2SVQFm0hAGqed3ZSnKvG1u1PUSyZEQoYvZoXSd41FUVbgFLSeguGkwBW+UC696tNC6733dtGnF0CZfHoZ5+fWxUGoOZ5ZzPFuSXahG7Pjc8+PzcrDDCyd1U3iiTvt5akqQ0XQHnYUQLDsJmZbGYjm0nFf/uymYU63dpf7i7ZzNEa3F8/v7L/2v7gAHX32efnlrOZZjaz4u/Ctn5H3ro233vr2vykUQTD9da1+W42c8h7547fVDbjHQRQIgolMIwJ6wtzqykOAK+DQ29dq99ZAZ99YW4hyVMpDuQD9oaVwADv5Z6tJLdEY1umk6y+dU0LHBiWt67Nt2Mnyf3sT7IoDADloPUWDDcp7KUeLZqKbcMv1HPb8FvX5jtJ5ox42BOHP/vCXFcYAH6ZlywkOSIS23a0vxAGGNz7qJXktkg81I3PvqAVIMBes6MEhmsm9Tj8eyr12UHzAZ99Ya4Tu0tgr5hUAtyZl8zGIe87cf2ta/OL2uDAYPSfJbsltubIW9fmZ4QBYG8plMBwJ6rrSW166B+pYwuu993r5c++MNdMMm/kw0jtr/O7B+A+eUk3xSKODdHYloNJelpxwUAsJtknDFvWfevafEMYAPaOQgkMf6K6mPr0i+7WfRWe3SWwJ9pCAPCBnGQ5SVNOsm37UxRL/G2BHXrr2vxs6tGCepD2JekKA8DecUYJjMBfX+tMJllO0aKq6uZ/+4VOx11P/vpapxNnl8CoPPrbL3RWhQHgnnnoQhymvBM3f/uFTlsYYFvvnEZ/7ms3yc4c/u0XOl1hABg9O0pgBH77hU6dWnDN/fW1jnYFxX3vxO4SGJW2EADcOw/tf+zXHnT7Dv31tc5y/8MvsDULUSTZVfz6BW4ARkyhBEY3Se0luVGTy+2647+878u//ULH2SUwfA51B3hwTtJJcci7c0u2Z3+S5b++1nHQMjzEX1/rtFKc9cPO7ZPXAuwNhRIYrU6StTpMKPttp+izuwSGP6n862vaowA8JB/pJmnVJB8d6N+YJG/Kb2FL8112b85ONoDRc0YJjNjfFKtsbtfkch/9jDMD7jUGOnF2CQzD0mde6LSEAeChuchkkl6K3RJs829NkpnPFK11gXrOc0fh5meckQQwUnaUwIh9RgsuY8DuEhiW6b+x+g5gK7nI+meK1qA3RWP7f2uSrPY/CgPv6QjBQB2S1wKMlkIJ7M3kdDb1+Eg+/TfXOvqr3nsMLH/G2SVgkg6wt/lIO8W5JWzPviS35blQ6BcOp0Vi4LxjAEZI6y3Yq2Ty1U4zyds1uNSNJI3PfEt7goeMhW60vwDvHIC9y0V6KQoAbM+tJG1/d6j5O6Sb5JBIyGsBxpkdJbBHPvOtznLqsZtgX7TgeuhY+My37C6BAb5zZoQBYNt5aTPagu7EwSTL/WIT1M7fvNqZjCKJvBagAhRKYG8npZ2aTEgP/s2rHQne1saDs0tg97QpANh+HrKapBXnluzEVJK3/+ZVBy9TS8a9+AJUgtZbsMd+XJ8WXGtJmp+2bXir46KTZE4kYMee+nSxQhqA7echs0mui8SO3EwyK+elRu+L5WghPGyPfrooZgMwRHaUwB77dH1acE3FIcvbGRed2F0Cu2FXCcDO85CFJAdS9Mdnew4l6f1YKy5q4MevdhpRJBkF3RkARkChBMoxGe2kHh/Ej/z41U7LHd/yuFj+tLNLYMcTyh8XPbMB2Fke0otzS3Zqf4piSVsoqDhzO3EGqAyFEiiPukykFtzq7bG7BHbE4ZcAu89BVuPckt38HXrjx692ukJBhcm1RuOgEAAMnzNKoERqdC7FfP/jPzsbI7P9yTfwYEuf/pZdbAADykGcW7JzK0lmnDFABd8L6+YlI3Ogv9MPgCGxowRKpEYtuGb7/WzZ2RhpJlkSDXioae8agIHlIM4t2bn9SZZ//GrH6nsqo59jKZKMjnOPAIZMoQTKp12Da9yXpOtW78ynv9VZ7a+SPxofK+BhHOoOMLgcpBfnluwm/33zx692tKGlKny4H62WEAAM17/q6H4DpfKhL7T+989/eHuiBolQ4+c/6q186IsH/t5d3/FY+auf//D2/5Pi/JKGiMA9ffJDXzxwRRgABpZ/rPfzjw/Fh9Kd+PzPf9R7+uc/6v2HD33xwLpwMK5+/sPb/3d8vB+l//OhLx7498IAMDx2lEAJffrF+U7qsVKv++PmyqnSAAAgAElEQVRX5ibd8V2NldVPvzjfit0lcD/7fvzKnFYnAIPNP9Y//eJ8u59/sH1FKy5/nxhvLSEY+XsDgCFSKIHyatfgGvcl6bjVu/fpF+cXUqzqvCUaUMv3KcBe5R/OLdl5Hvzmj1+ZkwsDW/LjV+YaogAwPBObm5uiACX19itnO0nmanCpB5568VzPHR/YuJlJcQaMwxXhPb/21IvntDgBGE7u0UiyGCued2opyYy/U4zZc+9jknkzQKXYUQIl9tSL5zqpRwsuh1oOdtwspjizxO4SeE9bCACGlnuspmjDc1M0dmQ6yerbr5xtCQUAwN5QKIHya9fgGvf3d88wIE+9eG79qRfPzSR5OsmaiIBCCcAIco92ksOisSP7ktyWEwMP0BICgOHRegvGwPIrZxeSHKn4ZW4kaTaLFYkMdvxMpjgL5ohoUHOPescAjCT3aCbpRRvQnVpKMtPUiotyP+Nvi8TIzTeLrhMADIEdJTAeOqn+roB90YJrKJovnltvvnhuNsVhq3aXUGezQgAwktxjOUUb0BXR2JHpJKvLWnFRXpNCAEDVKJTAeEw211OPtjEHl4uDyBnOOOolaSaZFw1qyvsFYIT5a/PFc80kN0RjR/Ylub2sFRcAwEgolMD4TDZ7NZloLvRbRTGccbTe3679VKzypH6m+q0iABhd7jGb4tySDdHYkbnlV8725McAAMP1fwkBjJHNdFKsiJ6q8FVOpWiP03HDh6ffEqO5/PLZTj/eeoiXw80kqyX779RIcqhCMW5HCy6AUecd3eWXzy4nWax4HjssRSuul8/ONF861xMOSjAvdX4OAJXjMHcYM8svn51J8mYNLvXR5ksOXR7RmGok6fYn4ey9m0k6ZRr/yy+fXU11PmytNV861zDMAPbk78lkP+c4KBo7Nt98yWHOlOJ59jFp9I42XzrnXE+AIdF6C8ZM86Vzi0lu1eBSu+72yMbUavOlc61oi1EWh5K8s/zy2W6/iOV5HKyp5ZcdjguwRznHevOlczNxXtpuzC2/fLbXLzoB9bIsBADDo1AC46md6n/Qnu7vnmFEmi+d66Zos3RLNErh3YLJYgk+7Hcr+A4FYO9yjk6SA7FAY8d5copWXC2hYA95fgGoFIUSGM/J5Xrq8aGva7Xc6MdWf6XngSRrIlIKB5Pc7q8ebe3RuFhNtQpoirAAe59z9JI0k6yIxo7s6+cHHaFgj9jdMHqrQgAwPAolML6Ty8UkSzWYAJr87c346qX4eKE1RnlMp/ggsrr88tn2Hvznd6v0bll++WzTkALY83xjNUkrxflc7IxWXOyVVSHYk3cmAEPiMHcYYyvF+QXLKQoKVfbU/pfOWbG0d+OsmeIj+X7RKJW1/n1Z2F/sMhvFWFhNdQ51v7H/pXOzhhFAafKNdpI3RGLHNpLM7C8Wu8AontlOkjmRGJml/cW5kgAMiR0lMMb2FytKOjW41AV3e0/H2fL+l841kxyNXsRlMtWfnK6uvHx2YWU0B793KxQ/7bcAypVvdJM8Fa0/d2pfktsrWnExOj0hGKlVIQAYLoUSGP9J5UKq39t5emVvWg3xwbHWjMPey2ZfkiNJ3ll5+Wx3ZbjnmHQrFLepFe23AMqWayz3c40l0dixuZWXz/ZWtOJi+Oz4F2+ASlEogWpo1+AaOyZ8e2//S+dW9zvsvcwOpVhNujyM4uJ+h7oDMPxcY73fXsY5aTs3nWLHaUsoGOazmuov2CuTnhAADNe/6nQ6ogBj7te/eOB//+IH359IcRhmVU0m+T+//qWvSBDLMeZWf/GD73eT/J+Kj7uxvUVJZn7xw9tHf/HD27/6ix/eXv31L31lIOeY/OIH3//VVKfA8Gu//qWv/HvDBaCUuUbvFz/4/kqSP0zyqyKybb+apP2LH96ekD8zLL/4wfcfT/J5kRi6jf3HzjtbD2DIHOYOFbFy9cxkiu24UxW/1Ef3Hzu/6o6Xauw1UrRkmhaNUruVpLv/2PnFAdzz9RQtv7xTABhFnrGYZL9o7NhSkpn9x86vCwUDfj5nkrwpEsPP4/cfO28nNMCQab0FFdGf+LRrcKldd7t0Y291/7HzrSSH47D3MjuY5M2Vq2dWV66eme1/eNqpxQrFpWVoAJQ+z2gmuSkaO1a04rp6xt88Bv18LorCSIgzwAgolEC1EtXeRHJrIkmFf9N/W6xconzjrzuRNCaSGxUfg+P+m5pIrk8k7/zt1TOLO3meJpKFCsXDRyOA8cgz2hPJ4Ylkw9/yHf32TSS3//bqmY7RxCDVYP5Zhp9CCcAo/qZpvQXV8rdFC67VVKctzr2s/dax8w13u9TjsJlkIdpxjc0zlWICtvBbW2xD9bdXz6ymGq3+Nn7r2PlJQwBgrHKMxVS/3ewwLSWZ+S2tuBjMM9mT8w/Vrd/SdgtgJOwogYrpT3g6Fb/MKavhSj8Ol3/rvXZcayJS/mcqyZEUu0yW//bqmdl+0fVBuhW59n39j24AjEmOkaSZ4uwtdmY6yerfasXFLvXnZIokw9UVAoDRsKMEKuon1V/Zs5Gk+aRDmMdhLE4mmU0yJxpj51aKVbuLT9616vQnxRkn71TkOo8+eez8gtsNMHY5xmyS6yKxK/NPHjvfEQZ28Pw1k7wtEkO19qROCgAjY0cJVNdsxa9vX6q/c6YSnjx2fr0/AX80Vn+Om4NJ3kjyLz+5embxJ1fPtPuFr/SLlCsVuc6WWw0wljnGQpIDKRbQsDNzP7l6pveTh+8khV/qj5euSAydGAOMkB0lUO0EtpPqr+I/8OSx8z13e6zGZSvF+SX7RWNsrfQnbs0khypwPRtPOqcEYJxzi8kUOyC1ANrF38IkM/JqtvjMLaRo28pwn8nGk84SAhgZhRKo/qRxOdU+7HLlyWPnnS8wnuOznaJgsk80KIGnniz63gMwvrmFj7e7pxUXD3vOWklui4RnEaBqFEqg6onslVoksoefPH6+626P5fh0fgneIwAMMreYSbHr0UKMnVtK0n7yuLMAuWfuvur5GrpiN8lxu0kARskZJVBxTx4/30v1z4VY6CftjN/4XH/y+C/PL7kpIuyhlhAAVCK3WEzRGnJFNHZsOslyv+gE79eNIslI5reKJACjp1AC9TCbah9yuS/VP7y+0p48fn71yePn2ykOZF0SEfaAFn4A1cormrEIY7f59Zs/uXJmQShIkp9cOdNOclAkhm6tv5AMgBHTegvqk9jOJrle8ct8VIuAyozXmRTnl0yJBqPy5PHzE6IAULmcoh1nou3WSpIZeXatn6NGirMvPUfDd6DfFQKAEbOjBGriyePnF1L9FgRWvFVnvC4+efx8I8l8qr0binJ9BLCrBKB6OUU3RXtFrbh2bn+04qq7bhRJRuGGIgnA3lEogXqpenuqg/3D66mI/rbzRoqCCQxbQwgAKplPLKcolmjFtXNacdVUvzPBtEgM3VqSjjAA7B2tt6Bm/suV090khyp8iSu/efyCVeHVHLuN/uThkGgwJPO/efyCCSpAtfOJOrSjHXq+naT9m8cvLAtF5Z+XZpK3RWIknvJMAewtO0qgfqp+sPv+/3LldNttrp7fPH5h9TePX2jHge8Mz6QQAFQ+n1hI8lSK1dvsMN9O0pNz10JXCEbiqCIJwN6zowRqqD+peaPCl7iRpPGbxy+su9uVHset/uTNge8MytJvHr/QEgaAWuQRk/084qBo7MrNJLPy7ko+IwtJjojE8J+h/mIwAPaYQgnU1E+vnO6l2r1m5z+lhU5dxnI7RUsuBRN2a+lTCiUAdcsjtOLavZUk7U9ZEV+l56KV5LZIyD0B6kTrLaivqh/sPvvT4kwLKu5Txy90kzRTHPi+ISIAwDbyiIUUbT3lEDu3P0nvp1pxVcJP39ttxXCtJJkRBoDyUCiB+k4Kl5PcqPAl7kuxy4B6jOf1/g6iRhRM2LmGEADUMo/o9f8GOANtd7n3Gz+9cnqx/6Gd8dWNndrDtpKk9Skt6wBKRestqLH+JGa1P7Gpqqe0Aajl2G6kKJQdEg2241PHL0yIAkCtc4hOkjmR2JW1JDNy8LEc/zNJ3hSJoVIkASgphRKoezJ8ufIHuy996oS+rzUe340omLANnzqhUAIgfzjdSrKYai8mGoWjnzpxYUEYxipvXjbuh+pWkvanTiiSAJSRQgmQn16u/MHuBz514kLPna71GG+lKJhMiwYPsPKpExeawgDATy+fnkxRLJE77I4Pw+aEFG5+6sSFtjAAlJczSoCk+ge7d93ievvUiQu9/s6iA9F/nPvzEQeAd3OH9X7uMC8au3IwyXJ/0Qol9dPLp2ejSDIsG0kOK5IAlJ8dJUCS5L9eOtVNtdsTHX7i5MWuO01/vLdihwkftPTEyYstYQDgrrxhJsXCGy2Jdmf+iZMXO8JQuvHdTPK2SAzFSpL2EycvOq8HYAwolADvJshVP9h9LUnziZMXrRjn/eO+naJgMiUaJLn1xMmLM8IAwD1yhkaKVlz7RWNXlpLMyMlLNbaXjeuhUBgEGDNabwFJkv5kpcqJ3FSq32KM7Y/77hMnLzaSHE5RTKPerPYD4H45w+oTJy82k9wQjV2ZTrLa393LHvuvl04tRJFk0JaSPKVIAjB+7CgB7k6Wq7yiaCNJwwo2HjD+27HDpM6OPnHy4oIwAPCQfEErrsG48cTJixYy7d04biW5LRIDs5ako90zwPiyowS4W5UnK/tS7V0z7JIdJrVnRwkAW8kXFpM0U5w/wM4d+a+XTi3325oxQv22y12RGIi1FOdhNhRJAMabHSXAvRLnxSQHK3yJjz5x8uKqO80WnoV27DCpjSdOXpwQBQC2mSssJDkiEruykeLA60WhMN8bI0tJuoojANWhUALcK3FupFhZXdV2AjefOHmx7U6zjWeiHQWTqlvp954HgO3mCVpxDcaNFK2LtMkd/nh9UyR2ZC3JYpIFC+9q8aw0U+webCRp9f/HzS2869eSrCZZT/FdZTnJsjED5adQAtwvKegkmavwJT71xMmL2uyw3eeiHQWTqtInHYDd5AiNFB9QHYy9OyspdpfI04czTidTfMBV1Nu6pSS9JIvGZeWfj2aKgshMkukh/EdsvDuWkvQUTqB8FEqAByXRy6nuB+GlJ05ebLnT7PD5aEfBpGqe1vIDgAHkCFpx7d5GklktjYYyPnsZzgfgMlrJ9gqXG/3572re2wHQM2oq/0w0k7RTFEem9mCMdlMU4VbdDdh7CiXAg5KGdpI3KnyJByS/DOAZmY3Vo+Nu44mTFyeFAYAB5QdacQ3GrRS7S7TiGsy4nE1yvSaXu5ak+e7Y6e/4atzn/3bZGDOPK8n7bsH3CdhbCiXAA/3dxUqvOlr65Cm7ShjIc9JKscNkWjTG0s1PnnJuEQADzQ0a0YprENaSzHzylJZHuxyPzRQtf+pSvDvwyVM+OPOB52AyRXFktsTPwlqSzidPXey6YzB6vyIEwEN0Knxt0/0P3LArnzx1sdcvuh1I0ceY8bIgBAAMODdY/eSpi80UB5Szc1NJ3v67i6ecI7Y73dSnSDKvSMLd/u7iqU6KtmpzJX8WppK88XcXT63+3cVTM+4cjJYdJcBWkopukkMVvby1T5662HCXGfAz00hRZDwkGqW30v+QBQDDygu04hqMW0nanzylTdI2x18nxcdheR11HP+t/vt3XM+WXEoya1cdjIZCCfBQf1989F2u8OTu8OO2tjK8Z6eT4nBAH0c8/wDUOyfQimv3NpLMPG7HwFbHXSvJ7RqNjdbjPihTjP3JFAWSgxW5pPnHT13suLMwXAolwFYTjU6quxJp7XG7Shh+ol72frh15NkHYNQ5wUKSIyKxaz4abi3/XM74rqTfrqOPn7qonSr5++ru4ltJ0lYMhOFxRgmwVQspDharoqm/v3iq7RYzLI+furj++KmLncdPXZxMcrjCz9K40e8cgFHnBLNJnk6x+p2dm/v7i6eW+zt1uP/8rS5FkiVFEpJfFqPfTDUXp+1P0vPtAobHjhJgO0lHO8kbFb08K8sZ9fPUStGWa1o09mxC3RIGAPYoD2hEK65B2EixwnpRKO4YXzMpPhbXZQw0Hnd2Td3H/GT/nVqXudXNx09dbLvzMFgKJcD2EpALJ5crPKE7/PjpS113mRE/U404x2QvJtTNx09fWhUKAPY4D9CKazBuJOk8fvrSujF1cjLJao3yyqcfP31JoazeY76ZotVW3QrPS0lmvPdgcLTeAraryq1qOv2JBYzM46cvrT5++lI7SSPJ0WjLNZJnXZEEgJLkAVpxDcaRJL3+B9O6W0x9iiQ3FUnqrf/M91LP3XnT/feebxgwIAolwHYnc70ktyp6eVNxZgF792ytP3760sLjpy81UnwwuSUqQ3Hr8dOX9LAGoEw5wGKSZoqDetm5on//hZPtugbg7y+cnE19Wg+tmbvV2/uKJHXelf/ue0+xBAZA6y1g2/7h4slGkncqenkbSRqPnbJ9ldI8a7NJ2tGWaxBWkrQ83wCU+G+/VlyDcStJu05/8//hYu0+Gh947NSlnqFe23elIol5DgycHSXAtj126tJqij7AVbQvViZRomftsVOXZh87dWkyyeEUfWjZmY3U7IMJAGP5t18rrsE4mGS5/zG1Lrqpz0fjeUWS+uovJutFkeT99ifp/cNFO0tgNxRKgJ3qVHgCNyvBoGweO3Wp+9ipS60kj6YoVPqAsnUbKVZYLQsFAGPwN//dVlwWSOzOVJK3/+HiyU7VL7R/jXU5o2HlsVOXOoZ3PfXn6XU6h2c79ifRYhh2QestYOdJyoWTnSRzFb28+cdOS8Ap/TM4k6It10HRuK+iSHJakQQA+XaNLSWZeex09XaW/sOFk60kt2t0L5+S19X6ndhLfc7h2SnfMmCHFEqA3SQpk0mWU6zWqprirJLT2vQwNs9iu//bLyK/tJKkbTINwJj/nW/FCupB5fczj52+1DMfG1tHHzt9yYr5+r4LO1E43qqnHzt9aVEYYHu03gJ2rF9E6FT08pxVwlg9i4+dvrTw2OlLzbzXmmut5mFZip0kAFTj73wvSSNacQ0iv7/9DxdOVulDeyf1KZIsKZLUV79grEiydd1+IRXYBjtKgEEkLauxqwTK+Gw2U+wymanRJDqx3RyA6v5t78THwkFYSbG7ZHWMx8JMkjdrcr82kjTH+X6xq7Fet51Tg7L02OlLLWGArVMoAXbtv52vdF/c+U+c8cGVSjyndSiarCRpf+KMXSQAVD731opr9zaSzH7izKXuGI6BySSrNRoDT3/ijDZCNX7nLSQ5IhI7cngc33GwVxRKgEElL71U81C1jU+cuWTLKlV7XpspCiYzqcaZJhtJOp84ox0DALX5Wz6ZoljiUOPdu5Vitfo4adXo3m8kkePV12QUSXb7/DQ+cUaXDNgKhRJgUJO1Vqq7q8QqDKr87E6mKJi0+v84TisT3504L0j+Aajp3/HZJNdFAoD7uPGJM5ecvwpboFACDHKitpjkYAUvbe0TZy413GFq8hw3UxRN3v2VsXCylqQbBRIAePdv92L07wfg3h79xBln/MDDKJQAg5ykNZK8U9HLs6uEuj7X7y+cNLN3H2E2UnwEWtSjGgA+8Pd6MsUigoOiAcBdbn7izKW2MMCDKZQAg56kdZMcquCl2VUC+eWHmHeLJ43+b1g9speS9JL0PnHmUk/0AeChf6e14gLgXuwqgYdQKAEG6h/PnWikwrtKPn72ctddhns+++8WUN79x7zvXz/Met47RLWXZPXjZy9L4gFgZ3+TteIC4G43P372clsY4P4USoBhTM4Wkhyp4KWtffzs5YY7DABAyfPxySQLqeZObwB25tc+fvayMx7hPn5FCIAh6KQ4T6Bqpv7x3IkZtxcAgDL7+NnL6/2Vw4crmpcDsH1tIYD7UygBhjIxSzYXks1U8DfrDgMAMCZ5eTfZbCWbKxXNzf38/Pz8fM+AgVAoAYZlIdVcvTb9j+eOt9xeAADGwcfPXllO0kpyQzQAam3qH88dbwoD3JtCCTCsCdl6imJJFXXcYQAAxik3//jZK7NJno5WXAB11hYCuDeFEmCYqryrpOH2AgAwTj5+9spikmaSFdEAqKWWEMC9KZQAw5yI2VUCAADlytFXP372SjNacQHU0X4LP+HeFEqAYavqrpJDkgsAAMZVvxXXgWjFBVA3LSGAD1IoAYY9AVtPMlvRy5t1hwEAGONcvZekkWRJNABqw4HucA8Tm5ubogAM3X+fP76aZKpil7WRpPFv5q6su8MAAIx5vt5JMicSAJW39G/mrrSEAe5kRwkwKp0KXtO+JG23FgCAcfdv5q50UrTiWhMNgEqbFgL4IIUSYFQTr25FJ13abwEAUJWcvZeiJcst0QCorv8+f1z7LbiL1lvAyPyPzvF2kjcqeGmHf6NzpesOAwBQodx9Nsl1kQCopAO/0bnSEwZ4jx0lwMj0iwlV3FXSdncBAKhY7r6Q5KkkK6IBUDl2lMBdFEqAUetU8Jqm/0fneMutBQCgSn6jc2U5SSvJTdEAqJRJIYA7KZQAo55sdZNsVPDS2u4uAAAVzN/Xf6NzpZ3kcEXzeAAAhRJgD0xkIRNJxX6H/sf88YabCwBAFf1G50o3E2lmIisVzOX9/Pz86vbTegvuolAC7IWF2FUCAABj5Tfmrqz+xtyVZpIbogEw1rTegrsolAB7McFaT1EsqZpZdxcAgBrk87NJno5WXABARUxsbm6KAjBy/1/n2GSS1ST7KnZpS0kWk/Q+1rm67E4DAFDxnH4xybRoAIyVpY91rraEAd6jUALs5cSqk2Suwpe4lqT37u9jnaur7joAAPJ6APaYQgncRaEE2MsJVVV3ldzP+wsnix/rXF03CgAAqEhu30rSTTIlGgCld+Njnavah8P7KJQAez2h6iY5VNPLX8mdO04UTgAAGOfcfjJFseSgaACU2vzHOlc7wgDvUSgB9noy1Ujyjkgkea9wsvixztWecAAAMKY5/mySTuqzcxxg3CiUwF0USoAyTKS6qe+ukgdZynu7TXrCAQDAGOX4zRS7S/aLBkDpPP2xztVFYYD3KJQAZZhENWJXyVbcynuFk2XhAACg5Hn+ZIqdJUdEA6BUDliQCXdSKAHKMYmaO7YYvYy3YyPvP99kXuEEAIDS5vozKXaXaMUFUAIfm786IQpwJ4USoCyTp1aS2yKxY2u5s3CyKiQAAJQo328kWYxWXAB7be1j81cbwgB3UigByjR56iWZFonBJD5ROAEAoHw5fyfJnEgA7JlbH5u/OiMMcCeFEqA03pk71k7yhkgMxUreVzh5dP7qupAAALBHeX8rxe4SrbgARm/+0fmrHWGAOymUAGWbNK0mmRKJoftl4eTR+auLwgEAwIjz/skU55Y4pxBgtA48Ou8gd7ibQglQtgnTbJLrIjFyS3mvcCJhAgBA/g9QPRuPzl+dFAb4IIUSoFRWi5Vlq7ENf68tpWiH0GvMX10WDgAAhjgHaKbYXeKgd4DhutmYv9oWBvgghRKgjBOlhSRHRKI0NvK+800UTgAAGMIcYDLJQpJDogEwNIcb81e7wgAfpFAClHGS1EjyjkiU1kb6u01SFE5WhQQAgAHNBWZS7C6xwxxg8HP5RmP+6rpQwAcplABlnSB1YzXZuFjLnTtOVoUEAIBdzAUaKRbmaMUFMDjabsEDKJQA5ZwcnX2pleS2SIyllby/cHLuZatVAADYyZygk2ROJAAG4kDj3Ms9YYB7UygByjwxWo5VZFXwy8JJ49zLi8IBAMA25gStFLtLtOIC2MW8vHHu5aYwwP0plABlnhS1k7whEpWzlPcKJz3hAADgIfOCyRTnlhwUDYAdOdw493JXGOD+FEqAUls789J6rB6ruqX0D4efOv/ysnAAAHCfucFsko75AcD2Xp9T519uCAM8mEIJUPbJ0EKSIyJRGxt53/kmCicAANw1P2im2F2iRS/A1hyeOm83CTyMQglQ9olQI8k7IlFb7xZO3t1xsiokAAC1nyNMpthZYkEVwENemXaTwNYolADjMBFajH7E9IdD7txxsiokD3x2Wv1/2uj/7qfX/8dVMQUAxijXmUmxu0QrLoB7OzB13tmgsBUKJcC4TIDeFAnuNTzS322SonCyXtNnZDJJM0mr/2skmdrFv+VKkuX+Tws0AKDMeVAjRbFkWjQG4sbU+ZdnhYESPeOru5zb1NmtqfMvzwgDbI1CCSA5okpWcueOk/UKPxONJDP937A/DGzkvYLUYl0LUgBAqXOjTpI5kRhYTt22WIaSPNutJLdFYkdzuIa5G2ydQglg4kOVLeW9okmvAs/BZJJ2/7eXB5jeTFEwWTTEAIAS5UqtFLtLLLDavY0knanzLy8IBSV4thfiTKLtetp8DbZHoQQYj8To9IuNONSd3Xu3cLI4deGV5TEb/50kh8r2Xy3JQpLu1IVXrFQCAMqQN02mKJY443AwbiVpy/UowbO9nL1dLDZObk5deKUtDLA9CiXAOCVGDnVnkDby/jZdJSyclLhAcq9YLiRZMIkGAEqSR7X7+YmD3geT681MXXilJxTs4TPd7M/dPNMPtpKkZV4G26dQAoxTYuRQd4Y9AeylfxbH1IVXVvdwrE/2J/aHxjCGnakLr2jRAACUYf7QTLG7xCr0wbgxdeEVB73jm0C552OtceqeAGWiUAKMlf955sX1WEHCiPLwvG/HyUfPj6Zw8j/PvDibYhfJOI/zlSSzHz1v1SEAUIo5hPMNBpvntT963odY9ux5bid5QyTu6SnPJuycQglgkgNbs5b+bpMUhZP1AY/tRooVj9MVitmNj5636hAAKMU8otXP5Sy62r2NJJ2PnreLmD17nrsZv933w3b4o+df6QoD7JxCCTBuCVEzydsiQQms5M4dJ+u7GNftVLeHtlWHAEBZ5hKTKYol06IxELf6eZ6zENiL57kbxZJ3KZLAACiUAOOXEJ1+cTn6DFM+S8fGZ98AACAASURBVHm3aLLFgy7/5/ieRbJdG0lmP3pB8g4AlGI+MZvkukgMLM+b+aiD3tmbZ7kbxZLD5lkwGAolgIkNDMcDCyf9Ikkv9Sr63fioA0ABgHLMKRz0PuA8L0nnoxfsLmHkz3Kd23MrksAAKZQA45gITSb5F5FgjGzkfW26+v+zxSRTNYzFzY9eeKVtSAAAJZlX1GF376gULVcvaLnKyJ/ldup1wPtGkpZnDQZLoQQYS//r1LcWkxwUCRhLt5K0P3LxVSsOAYAyzC1mUuwucdD7YBz9yMVXHfTOqJ/jVorFaFV/jleSzHzk4qur7joM1q8IATCmFoUAxtbBJL3/depbk0IBAOy1j1x8dTFJM0XrVHbv+v869S25HqN+jntJGhV/jm8kaSmSwHDYUQKMpX7Srf0WjLebH7n4alsYAIASzTM6SeZEYiA2UuwitsgNz7FnCUpPoQQY5+RH+y0Yf4olAEDZ5hnN1Pc8uWG4kaSj7Sojfo4bKVrqTY/7fCnJrOcHhk+hBBjnxKedeh3YBlWljzUAULa5xmSKj6wWZg3GSooV8Q6fZtTPcjtJJ+NX+FxKUWDsuYswGgolwLgnPetx6CJUwQGTAACghPONdpIFc46BsUCGvXqWO0lmx+BZXkuxg0SbLRgxhRJg3JMd7begGjaSNGwpBwBKOOdopGjFtV80BmIpxe6SVaFgD57ndsq5w8QOEthjCiXAeCc5J7XfgipNmj9y6dWWMAAAJZ17dOKg90EpDqe+ZNU8e/Y8t5K0kxza4+egm2ThI5cUDmGvKZQA457cTCb5F5GAyjj6kUvaMQAApZ1/tFJ82HTQ+2AUB1VfsquYPXumJ5PMJGn1/3HYrbnWUuxQ6ykUQrkolABVSGy034Lq2EjStKIKACjx/MNB74O1lmTmI5cc9E4pnu9miqJJs//bbcu9pSTL/V/PPAfKS6EEGHs/O/HCbJLrIgGVcevDl6/NCAMAMAbzkE4c9D4o8x++fK0jDJTwWW8mmUzS6P8eZDnJepLVD1++tip6MD4USoAqJC2NJO+IBFTKgQ9fvtYTBgCg5HORZordJQ56H4ylJG0fmAEYtV8RAmDc9ZPoFZGASukIAQAwBnOR5Q9fvtZMckM0BmI6yfLPTrzQFgoARkmhBKiKnhBAtSbJPzvxQksYAIBx8OHL12aTHEhx3hq7sy/JGz878cLiz068MCkcAIyC1ltAJfzs5AutJLdFAipl6cOXrrWEAQAYo3mJg94Hay1JO8nqhy9pxwXA8CiUAFWalHihQfUc+PAlZ5UAAGM3N3HQ+2BZQAPAUGm9BVQqeRYCqJy2EAAA4+bDl64tJGnFWYqDMv2zky8s/+zkC02hAGAY7CgBKuOfTrzQSTInElA5v/avL19bFwYAYEznKQtJjojEQGwk6fzry9cWhAKAQbKjBKiSnhBAJc0IAQAwrv61g94HaV+S6/904oXFf3LQOwADpFACVGkC0hMFqKS2EAAAFZirNJLcEo2BOJhk9Z9OvGBBDQADofUWUCn/fOKFXpJpkYDK+bVHtN8CAKoxZ5lNcl0kBuZGko5cEYDdsKMEqJplIYBKsloQAKiER4rzNZ6Kg94H5UiS3j+fcNA7ADunUAJUzWoNr3ktyeEUK6lMtqiqlhAAAFXxyOVry/385oZoDMT+JG//84kXOkIBwE5ovQVUyj+feKGV5HYNL/3mI5evtfsxmEyx+r7V/00ZGVTA2iOXrzWEAQCo4BxmJkk3xUHl7N5SkvYjl6+tCgUAW6VQAlRrknG8toWSJLn5yJWiWHJXTBp5r2jSisIJ4+vRR66Y8AIAlZzHTCZZjPMWB2UjSfuRK9cWhQKArVAoAao2wWilvoWS5D7Fkrti1MidO06sXGNcHHjkyrWeMAAAFZ7POOh9sG6lKJg46B2AB1IoAao2sWil3oWSJDn6yJVrC9uIWTN37jhROKGs5h+5cq0jDABAxec0zRStuPaLxkCspSiW9IQCgPtRKAGqNak49nwrCiVJcviRq691dxHDd3+2/lMmNx+5+lpbGACAGsxrJpN0khwRjYGZf+Tqax1hAOBeFEqAqk0oOknmRCLJLoold8W0laJoMhOr2thbS49cfa0lDABAjeY3DnofrJUk7UeuvrYsFAC8368IAUBlvfHPx55v7vbf5JGrr/Ueufpa55GrrzWT/FqSp5Pc6E8yYJQaQgAA1MkjV19b7OdAt0RjIPYn6f3zsednhQKA97OjBKiUn9tRcreNJK0PDWnF1M+LlgCtvHc4/JSQM0wfuvrahCgAADWd68ymaMdld8lg3ErS/tDV1xz0DoBCCVC5yUMnCiV3G2qx5K74N3LnwfAKJwyUQgkAUPP5joPeBz9Xan+o2LkD/39795bd1nWlC/hXRr2TgexYfhLTAjEtENwC0y0Q1ADAVNWpqkdBj7GdCAIaIKgFplrgzRaEbEHIp6pzKkGRLdB52JuWfJFFisDGvnzfGBhyLlUSJpaYNfHvuRbQY4ISoGuNwzSCkl9znmS/7qelquDkatpkGE+/cUuCEgCA5L/+819ncdH7Or1IMjVdAtBfghKgaw3DNIKS9zlNOVlyscXPZz8/nTgRnHAjghIAgB/31sMkR/bUa3Oe5OBzF70D9JKgBOhYs/BkGkHJb6nCkucXDfm8hnkbmjz08fAhn//5uaAEAODtfno35VFcX6rG2jz7/M/Pp8oA0C+CEqBrjcI0gpIPef35n58fNPTzG+bt5fDOXeYXBCUAAL+6j3bR+3odJxl9/ufnZ0oB0A+/UwKA3vnyv/7zybKJf7DP//y8+PzPz6ef//n5fpLfJ/kq5XnBpz42AAB47z56lvKBI/vm9XiY5OS//vPJSCkA+sFECdAp//0fT1xqeH2v7n3zfNSiz3Y3b6dNhknu+wj75943JkoAAPREtXqdZHTvm+cuegfoMEEJ0LWmoIi7Lm7i2b1v2nn+7n//x5O9/PRieMFJDwhKAACutVcexkXv63SZMiw5UgqAbhKUAF1rCIoISm7q8b1vni878Nnv5e20yVBT2Emn9755vq8MAADX2h+76H0zjpMUSY7uffP8RDkAukFQAnStGSgiKPkYnQhLfrYW9vPTiRPBSQea0nvfPB8qAwDAjfbFoyQz++GNuEwVmiQp7n3j8neAthKUAF1rAooISj7WF/e+eV50eG3s5+3EiTXSTi/uffP8UBkAAG68F95L+WX+A9XYqPOqzkXK4MS9JgAtISgButYAFPEl+Me6TDLsy/h4dW7z1cuaaYcn9755PlMGAICP3gNPkzxVido4pgugJQQlQLc2/v9+WMSX3rdRhiXfzk56tm5289Njujxp10xf3Pt2VigDAMCt9r7DlHeX3FeN2nutIlfBybezMyUBaA5BCdC1TX8RQck6NvB7976dXfR4Hb0bnBxoIpvh3rezO6oAALC2/e4yLnrfpvO8e79Jj/svgCYQlABd2/AXEZSsw2nKyRKb9XJd7eWnEyeCky2syXvfzvaVAQBgrfvcUVz03qQe7Co0KZQDoF6CEqBrG/0igpJ1btSFJb++zvbydtpkqLGsxYt7385c5A4AsJm97VIf1SjvHtNV9O1oZIBtEJQAnfJ///3wIr60Xqfjz76dDZXhN9fcMskjldi4Lz7zZB0AwCb3tdO46L2pro7pKpIcfeZhNoC1E5QAXdvc+6G2fq8++3Y2Uob3rrlRkpcqsVGXn30721UGAICN7233k/xNJRrvNG9Dk0I5AG5PUAJ0bWPvh9pmCEvev+Z2k/yvSlh/AAAd2d8uY2K6bV6nmjj5zDFdAB9FUAJ0a1P/fwQlG/Tis+/cEfGedaeZ3KyvPvtudqQMAAC17G33kvxdJVrrMtWl8EmKz76bnSkJwIcJSoCuber9UNusx599N1sqwy/W3UGS71ViI84/+262pwwAALXub5fxIFBXXB3TVXj4COD9BCVA1zb0fqhtnrDk19feWZL7KrF2zz77bjZVBgCAWve2ezFV0lXHqSZOPvvOMV0AVwQlQKf8P0FJXb76g6eRfr72DpM8V4m1+/0fvptdKAMAQO3722VMlXTdZapL4ZMUf3BMF9BjghKga5t5P9Tq21AP/+AJpHfX3m6SsyQ7qrE2r/7wnUvcAQC2tL/dT/I3leiV87xzv4kHloA+EZQAXdvM+6FWH2HJL9ffNMlTlVibP3qqDQBgq/vbIslDleit41QTJ/o+oOsEJUDXNvJ+qNXrMsm+L7N/XH+mStbHNAkAwPb3t8MkP6gEcUwX0HGCEqAz/scmfltOkww/NZZ9tQ5HSV6qxK2bsD1rCgCgEfvbIqZK+KXzvBOc2LsDbScoAbq0gR9GULItwpKfrsWTJA9U4qM9+fS72UwZAAD0WbSqJ7wKTQrlANpGUALYwLO2jfGn3832lcFatI4AADq3vy1iqoTruzqmq0hy9KljuoAWEJQA3dm8/9vXw/hyetteffqXFyNlSP7n376eJflaJW7sT5/+5YWLIgEA9Fp0x9UxXUWSo0//8sJJBEDjCEoAm3fWTVjydk06gutmnn36lxdTZQAAaOTetoipEtbjNG9Dk0I5gCYQlABd2rgPIyhpCmFJuSb3qwZgx5L4oONP//JiqAwAAPoteud11TcVpsuBbRGUAN3ZuP+rjXvDPP70ry+W1uXXoyQvLYffdJ5k/9O/GsEHAGj43raIqRI23xsUV69P//riTEmAOghKgC5t2ocRlDSNsKRcm+4reb/LJMNP/+rJMQAAPRf8wtUxXcWnf31xpBzApghKAJt2Nk1YUq7PZZJHlsMvfKXhAQBo1b62iKkStuc4yVHK4MTDVsDaCEqALm3YD5J8rxKNY2JAU/k+QjQAgPbtaYfxgBrN6TWP4piuq7+bu0n2q9dukmH1H+0mefCe/7Pj6tez6nWS5Ez/Th8JSoDO+Me/fj1N8lQlGruBHX7S883WP8qNa/Ebm9Q+efyJkAQAoK372iIeAKJ5fjymK0nxScfvQKz6y4OUgcgwyf01/xbH79SysLzoOkEJ0KVNwjSCkiYTlrzdzC6TfNnjMghJAADavacdxlQJzXf1Rf9RV/rQqp8cVa86H8C7mt45+sTRyXSUoATo0mZ9GkFJ052mDEsurNde3llymWRkYw0A0In9bBFTJbSrFylSHdX1ScuO6arCycM044G7y5QP/80+6flxZ3SLoATozkb9yWQaQUkblGHJ87mwpF9r9jzJwSfP5866BQDoxl52GFMltLs/+fF+k6b2p/94MhklmWb9x2qty6sky0+ezwtLirYTlABd2qhPIyhpC2HJ23V7kPJpnJ0Ov83jlCHJhaUPANCpvWwRUyV0p0ctp00a8KV/CwKSn3ud5PCT5/MzS4m2EpQAXdqkTyMoaZPXnzyfHyhD8o8nk72UYUkXm8xnnzyfT33KAACd3McOY6qE7rk6pqtIclTnl///eDLZTzJrcW/4IsnUQ3K0kaAE6Ix/Ckra6NXd5/ORMvy4hg9TPjXUhemS0ySju47aAgDo+h62iKkSuu0879xvcncDIcA/n0x2q17w6w7U67LqBd1NSasISoAubdCnEZS0kbDkp+t4L+UTRF+29C1cJpndNUUCANCX/eswpkrol9NUwcndNRzT9c9yiuQo7Tlm67pepwxMTJfQCoISoEsb9GkEJW315O7z+UwZftFwzpI8aNEf+1WSQxthAIDe7V2LmCqhv16nOqrrphP11akCzztcm/MkB04aoA0EJUCXNudHae9T+CSP7z6fL5XhF+t6lGTU8MbzVZLpXRf3AQD0dc96kOR7lYAfj+kqUk6cXLzn78xuynsq+/Idhn6fxhOUAN3ZnB96iqkTm6eZzdN71vcwZWDyqEENwDLJ8u5MQAIAYL86OUv3jg6C27o6pqu4Oyvv7Pjn4WS3+vce9KwWL+7O5oeWBE0lKAG6tDEvIijpgj/dnRnL/Y11vpsyMBltYWN9mfLs3KOrTT4AAFT71FGSlyoBv+k4yV76Gyq+ujtzRynNJCgBurQxL9LuoOQyyVn691TJr9VhKCy51prfSzJMclD9urOB3+YXT0ABAMB79qdnMVUC/DZhCY0kKAG6syn/elyk3UHJccovvM+ymS+826QMS14shCU3+zuwl2T/nddu9et11tN5tfZO3vn15O6LhYvZAQC47n50FFMlwIe9uvtiMVIGmkRQAnRpU16k5UHJ3ReL4T+/Hu+nfIK/72HJeZJ9X9Sv/e/JsPrHs7svFmcqAgDAmvebZzFVAnyYsIRG+Z0SADRLNUUxTDlV0Wf3kxT//Hq8a1WsdX0V1etMNQAA2ICpEgDX8OifX4/9vKAxBCVAZ9zpwOvK3ReLkzvJwZ2OvK9bvB7cSYqVsAQAAFrh7ovF8k5yrpfx8vK6xuvpqjyyD7ZOUALQUIMXiyLJY5XIgyQuEQcAgPaYKgFwTbNVeQQ5bJWgBKDBBi8WywhLkuTh6uvxUhkAAKA1fcy5SgDXsJNEv8/WCUqA7niTh3mTtPr1vibjTZ61/r3d/vVoNRGWAABAS/qzqR7Gy8vrmq8Hq8l45gcn2yQoAWiBwXwxTfJKJfJoNXHZGwAAtKCHWcZUCXB9X68m46EysC2CEoD2NBqjCEuS5Olq4rI3AABogakSADdgqoStEZQANMfJh/4LVVjyWqnyUlgCAADNZqoEuKEHq8n4UBnYBkEJQHNcXPO/N0pyqlx5aSwXAAAab9rR93WZ5Ek8yAZr/5mxmox3lYG6CUoAWmYwX1wkGUZYkiRHq8l4XxkAAKCx/csy3Zwq2UlyMZgvDgbzxZ0kXyR5pk+DtfzdMlVC7QQlAO1sNq7Ckr6Pse8kKYQlAADQaNOuv6/BfFEM5ovpYL7YT/L7JF+lvGPS0WNwc4emSqiboASgpaqw5CDlyHefXYUlNlEAANDM3mWZbgYG93/t7sTBfHExmC+OBvPFaDBf7CX5Y94e03VpRcC1+nxTJdRKUALQ7objJOVkibBEWAIAAE027ev7GswXZ4P5YlYd07Wbt8d0HVsW8F4jJaBOd968eaMKQOtVX5D/b8vfxrPBfDH9yPe/n+RvVkJOkwyraRsAAKBZfdtZkvsdfGuPq6mZj+1lh9XroKP1gY/11WC+OFIG6mCiBOiKXt9RUU2WPLYM8iBJoQwAANBIU+/rF73c1TFdh+8c0/U4jumCxFQJNTJRAnTCajIeJvmh5W/joydK3qnDKMlLKyKvBvOFDRUAADSvdzuLqZKb1Gs/5aTJMMlDK4ge+r1TI6iDiRKADqk25k9UIo9Wk/FSGQAAoHGm3teNeryTwXwxHcwXw8F8cSfJV0lepDx2GPrgQAmog6AEoDmKNW2kZ0leKWcerSbjmTIAAEBzVA93dfFIqfvVhP+m63d1TNd+3h7T9SqO6aK7BCXUQlAC0M3mYxRhSZJ8XUezAgAA3EhXH2g6rLnvOxvMF8vBfDEazBe7Sf6U8oSBY0uMDvlSCaiDoASgo4QlP3opLAEAgEaZpZsTEA+q+zO31QOeDOaLmWO66Jpt/r2iPwQlAN12aFOcpAxLjOsCAEADVBczd3WqZNqgOr97TNfv8/aYrnOrkJYZKgGbJigB6H4DMoywJEmWq8l4XxkAAKARujpV8rCJT78P5ouLd47p2svbY7peW4q0gF6ejROUAHScsORHO0kKYQkAADSmTzFVsr36Xx3TdVAd0/VFHNNFc+nj2ThBCeB/NPvThIzSzSe2buIqLNmzKgAAYOtMlTSnZyx+dkzXV3FMF81xXwnYNEEJ0BW7SvDBje9JyskSYUlytJqMrRkAANhuj2KqpKGfS3W/ydUxXX/M22O6Lq1ctsGF7myaoASgX42IsKT0IOVkibAEAAC2y1RJ8/vIs3eO6dpNeUzXszimC+gQQQlAc1zUtMk9SXKo3MISAADYNlMlrfzMisF8Mf3ZMV0v4pguNmuoBGySoASgOZvNkxp/r2WSx6qeBx1uygAAoC1MlbS3j706puvwnWO6HscxXUDLCEoAekpY8qNHq8l4qQwAALC13sRUSXc+y7PBfLF855iuP6U8puvYSgeaTFAC0O+GZJlyRLrvhCUAALBdpkq62XOeVMd0DeOYLqDBBCUAPTeYLw6TvFKJPFpNxiNlAACArfQlpkp68Bm/55iuV3FMF7BlghIAMpgvRhGWJMlLYQkAAGyNqZJ+9aFXx3SN3jmm60kc0wVsgaAEgKtN6ijJqUoISwAAYEs9iamSfn/+J4P5YjaYL4aD+eJO3h7TpU8FNk5QAnTFUAnWVkeb0GS2moz3lQEAAOrfi8dUCUneOaZrPz89psv9JsDaCUoAeHcjehFhSZLsJCmEJQAAsJWexFQJP18X7x7TtZe3x3S9Vh1gHQQlAPxaY3IQl+kJSwAAYDtMlfChvvXqmK6D6piuL+KYrq67UAI2SVAC0AyN2swN5ouzlJMlwpJkuZqMdy1RAACorR8xVcJN10zxzjFdv49jurroRAnYJEEJQDM07smIwXxxEmFJkjxIOVkiLAEAgPqYKuFje9mLnx3T9ce8PabrUoVay0QJGyUoAeC3NpgnSUYqISwBAICaexFTJaxrLZ29c0zXbspjup7FMV1t+xxNlLBRghIAPrQZOUo5ttx3D5IslQEAAGrT1aDEVMl2e9xiMF9M3zmm66s4pqvphFpsnKAEgOtsJJcRliTJl6vJeKkMAABQSx9ykfIL7C6a+oSbscYG88XRz47pehzHdDWNaRI2TlACwHU3kMuU48l990hYAgAAtZl29H09XE3Gez7exvW9Z9X9JlfHdP2p6oOPVWerBCVsnKAE6Ap3R9SzaZymu0903cSj1WR8qAwAALDxHuQspkrY3vo7qY7pGubtMV0v4piuuhVKwKbdefPmjSoArbeajNv+w+y42ni1pd7LJI+svDyuJm0AAIDN9R97Sf7e0bf3xyoMon3r8iDJ9yqxcZfVdA9slIkSAG5sMF+MYvQ4SV6uJuORMgAAwEb7j7OYKqF56/JIFWqhztRCUALAxzpIcqoMebmajPeVAQAANmra0ff1yF0lrfZaCTZOUEItBCUAzVC07Q88mC8ukgwjLEmSQlgCAAAb7T/OYqqE5vEl/mZdmtyhLoISAG7TrFyFJZc9L8VOhCUAALBp046+L1Ml7e2Jl/rhjRKSUBtBCQC33RgKS0pXYYlL5gAAYDO9x1lMldA8vszfnJkSUBdBCQDraFhOIixJhCUAALBp046+L1Ml1iQ/dVp91wC1EJQAsBbVBuZAJfIgwhIAANhU33EWUyU0b00eq8TamSahVoISANa5QSySPFaJPIjxawAA2JRpR9+XqRJrktJ5df8L1EZQArSeC7SbpdrMCEuSh6vJ2MYOAADW33OcxVQJzVqTRUyV+HtAqwlKgC5wxFHzNonLJE9UIo+EJQAAsBHTDvcQez5ea7LHTk2TsA2CEgA2YjBfzNLdp7xu2ujYMAMAwHr7jbOYKqFZa7LQA6/FoRKwDYISgGa46OhGcWSjmCR5upqMR8oAAABrNe3o+zJV0l6HSS6V4aO9rgInqJ2gBKAZTrr6xqqw5LWPOC+FJQAAsNZe4yymSmjWmrzw2X20yyR6ZrZGUAJAHUZJTpUhL1eT8VAZAABgbaYdfV+mSlqqOobaxe43N6qCJtgKQQkAdWwUL5IMIyxJkqPVZLyvDAAAsJZe4yymSmiegziC6yZeDeaLI2VgmwQlANTVwFyFJec9L8VOkkJYAgAAazPt6PsyVdLu/nekEtdyGhe40wCCEgDq3ix6suZtWKLpAQCA2/cZZzFVQvPW5VGSZyrxmy7jyC0aQlACQN2bxZOUkyXCkvIYrl2rAgAAbm3a0fdlqqTd/e803Q3x1uGg+o4Atk5QAnTBUAlat1k88bklSR6knCwRlgAAwO16jLN09wLtqU+41WtzFPd1/prHg/miUAaa4l+UAIAtbRZPVpPx4yQve16Kq7Dk6kzW3SQ/v7/krHolyVnVBAIAAD81TfJDB9/Xo9VkfOh4olYbJimq/o8yJFkqA01y582bN6oAtNpqMp4medryt/FFX5+kWE3GowhLPsZ5yvCkqF4nGicAAPSH4yLJww6+tWfVMU60d23uRliSCEloKEdvATRDb8/krDZIjy2BG7tfNYBPUz4197+ryfhkNRlPV5PxvvIAANBT046+r0NH9ra+971IOVly3OMyCEloLBMlQOt1YaJkMF/c8TmOl0keWdFrc55kmWTpqC4AAHrWWxQxVYL+t0kuk4wG88WRT5+mMlECQCNUF9y9Uom1uZ8yQPz7ajI+Wk3GQyUBAKAnph19X6ZKutX/PunJ2z1NMhSS0HSCEgCatlkUlqzfl0l+WE3GhcAEAIAe9BVFunm80U6SQ59wZ9bpLMmfUp4G0FWvU4YkJz5xmk5QAkDTHKZ84oT1exiBCQAA/TDtar9kqqQ7qgBhP2Wg0CWXKe8jOajuZoHGE5QA0LSN4tUFd8KSzbkKTJaaLAAAOtpXFDFVQkt64MF8cZDkq3RjuuR1kn2XttM2ghKgC3zR28GNYoQldXiU5Gw1GR8oBQAAHTTt6PsyVdLNPvgo5XTJs5a+hfMkX1RTJGc+UdpGUAJ0wb4SdHKTeJFklHJkl83ZSfK96RIAADrYUxQxVULL+uDBfDFN8se05/7O85THbO1Vf+eglQQlADR5k3iScrJEWLJ5j5IUq8lY8AgAQJdMO/q+TJV0uxc+G8wXo7wNTJrYE78bkCx9arTdnTdv3qgC0GqrybhIeedCmzdBd3ySv/kZ7ycpUj45xWZdJjnwJBAAAHrGxjtNcpTkJEnh0uxOr+HdlCcujJI82PIf51WSpZ6RrhGUADa923c8mC+GPskPfs4HSb5Xido89lQQAAAd6SWGSX7owVs9TfmA2bKazqeb63kvZWBykHpCk8tqXR0lORLI0VWCEqALm4QigpK+fNajJC9VojbCk9W7dgAAD+xJREFUEgAA9I3tdJ5kmTI0ObMCOruud1MeVz1MeX/rwzWtnZO8nVQqVJo+EJQANrzbJyi52ec9irCkTsISAAC60EcM04+pkl/jqKR+rfW9JHspg5Ore2ze/ecrJ0kufvbPJyZG6CtBCdCFTUARQUnfPvNZkq9VojbCEgAA9I7td5xkKjAB+KXfKQEAbTOYLw5TPhVFPV5WkzwAANBm056//4dJflhNxkU1dQBARVACQCsN5otRhCV1mq0m431lAACgxT1EkXKqou8eJvn7ajKeVndcAPSeoAToAl/e9rfRGSU5VYla7CQ50kgBANByUyX40dMkJx6IAhCUAN2wowS9NoywpC73kxwpAwAAbWWq5Ff3+H9bTcZTpQD6TFACQNsbnYsIS+r0cDUZHyoDAAAtNlWCX3ha3V1ighzoJUEJwPZdKMHtVGHJQZJL1ajFc+P5AAC0uH8okpyrxC88jKO4gJ4SlABs34kSrKXZOUs5WSIsqcdMCQAAaLGpEvyq+0kKYQnQN4ISADpjMF+cRFhSl4eryXikDAAAtLR3WMZUyfvspAxLhkoB9IWgBICuNTwnKY/hYvNmzjAGAKDFpkrwXjtJfhCWAH0hKAGgc6ozhx+rRC3Nk4vdAQBoa9+wjKmSDzlyDBfQB4ISALrc9AhLNu/QVAkAAC02VYLfdHUMl7AE6DRBCQCdVYUlz1Ri442TqRIAANrcM5gq+fCe/8gDUkCXCUqAVnNeKtdofKZJXqnERglKAABos5kSfND9JEfKAHSVoASAzhvMF6MISzZpZzUZj5QBAIC2qaYkpipxLQ9Xk7FaAZ0kKAGgF6qw5FQlNsZUCQAAbXSU8mgpruepkx2ALhKUAGzfiRJsXvWk2J5KbMyD1WSsvgAAtKlHOEzyUCVubOm+EqBrBCUA23ehBLU4iCfF6qgxAAA0niO3buV+TJQDHSMoAaAvfIm/eSMlAACgJWbxINVtPDVRDnSJoASAvhgqwcY5fgsAgMar7th4pBK3tlQCoCsEJQD0pRHytFg9hkoAAEDDTZVgLR662B3oCkEJAH1g867WAABw9RCVC9zXZ6oEQBcISoC221UCrmGoBGoNAADxxf66mSoBOkFQArTdvhJgnTTK/dVkLMAEAKBxVpPxfkyTbMKhEgBtJygBoOvN0F7cT1I3wRQAAE3kC/3N+LLquwBaS1ACQNfZsNdPUAIAQKNUU8+PVGJjRkoAtJmgBGDLBvNFoQob5Uv7+jl6CwCApjlQgo0aKQHQZoISALrOl/b1E04BANA0gpLNul/dAQPQSoISALpuTwlqJ5wCAKAxqmO3vlSJjRspAdBWghIAum5PCQAAoNdMk9RjqARAWwlKAAAAAOiyoRLU4sFqMt5TBqCNBCUAwLppjgAAaJKhEtTGPSVAKwlKAJswYN3uKwEAAE1QTTjYn9ZnqARAGwlKgLZzaTQ0z6kSAADQEHtKUCsPMwKtJCgBANbtQgkAAGiIoRLUSlACtJKgBGC7LpUAAABgY/aUoFY7q8nYyQ9A6whKALbrRAnUGAAA2Jg9JaidqRKgdQQlAHSdY6Dqd6YEAAA0xJ4SAPAhghIAuk5QUr8zJQAAoCHuK0HthkoAtI2gBICuc/RW/c6UAAAAAGgLQQkAXScoqd+ZEgAAAABtISgBoNMG88VFkkuVqLXmhSoAAAAAbfEvSgC00Woy3k0yS/JQNbiGIsmXylCLUyUAAAAA2sRECdA6q8n4IOXRPo868Hb2VpPxnk914xy/VZ9CCQAAAIA2EZQArbGajHdXk/FRku+T7HTkbd1PcrKajA99wht1pAS1KZQAAAAAaBNBCdAKq8l4P+UUSRePT9pJ8nw1GR9VR4qxZoP54iTuKalLoQQAAABAmwhKgMZbTcajJH9Ld6ZI3ufLJEUVCrF+pko273gwX1woAwAA9NqZEgBtIygBGm01GS+TvOzRW34QYcmmCErUGACA/jlWgtqdKQHQNoISoLGqkORRD9/6TsqwZGQVrM9gvjiK47c2bakEAADQe6bMgdYRlACN1OOQ5MpOkpfCkrUz8bA5rx27BQBAAxVKUK/qjkiAVhGUAI0jJPkJYcl6zZRgY5ZKAABAA50pQa1OlQBoI0EJ0ChCkl81c2fJelRPNjmjeP3Oq6PNAACgac6UQL0BPkRQAjTGajKeRkjya67uLBGWrMdUCdQUAIB+GMwXhSrUSr2BVhKUAI2wmowPkjxViffaSbJcTca7SrGWRslUyfqcD+aLpTIAANBg9v/1cT8J0EqCEmDrqkmJpUp80AN1WpupEqglAAC9UShBLS5N8ABtJSgBmmCZcmKCD/tyNRkfKsPtmCpZG9MkAAC0gfv06lEoAdBWghJgq6p7SR6oxI1MV5PxnjLcmsDp9kZKAABA0w3mi5MklyqxcQIpoLUEJcDWVEduuZfk5nbiCK51NUvPVOKjvTZWDwBAi/gSX40B3ktQAmzTUgk+2kNHcK3FLMm5MtzYZUyTAACg/+St14P54kIZgLYSlABbsZqMR3Hk1m1NV5PxrjJ8vGojf6ASNzbSBAEA0LK9fxEPSW3SUgmANhOUALWrvtyfqcSt7cQ9G+tomE6SPFGJa3sxmC+M1AMA0Eb60M041yMAbScoAbbhMOWX/NzeUxe7395gvpglea0SH3Q6mC+EcwAAtNUyLnXfVF0BWk1QAtSqmibxRet6TZVgLUZJTpXhvS6TDJUBAIC2qo6PNVWy/j5BTYHWE5QAdRvFNMm6HbirZG1N00E8Yfa+5mfoXhIAADpgZs+/3nrqE4AuEJQAdTNNsn47KQMobmkwX5ylnJrQOL11FZKcKAUAAB3Y85sqWW+voJZAJwhKgNqsJuODJPdVYiMEUOtrnE4iLHm38RGSAADQNaZK1mNqmgToCkEJUKeREmzM/dVkPFSG9RCWJBGSAADQ3f3+RTxsdlung/nCNAnQGYISoBbVHRpfqsRGjZRgrc3TVVjSxwvehSQAAHR9v79McqwSH03QBHSKoASoy4ESqHELm6c+hiWnSfaFJAAA9MAojuD6GC8G80WhDECXCEqAuvgSf/N2HL+1foP54mIwX+wnedGDt/sq5STJmU8eAIAe7PXPkkxV4kZO1QzoIkEJUJehEtRCILW5JuowyVfp5hNnl0keD+aLkcsYAQDo2T5/luS1Sly7b9AzAJ0kKAE2bjUZ7yfZUYlaDJVgo03UUZK9jjVSxymP2lr6hAEA6KlR+nk34U0dOqIX6CpBCVCHoRLU5oESbFZ1FNdByumS8xa/laspEkdtAQDQ+z1+3FfyIS88XAV0maAEqMO+EtTHPSW1NVNH1dp+1sKG6lmSPY0OAAD8uL8/SfmQn7Dkl15VRxEDdJagBKiDoES9u9pMXQzmi2nK47iaHphcprys/Y+D+WLqXGEAAPjF/v4kiUDgp44H88VIGYCuE5QAdXAcVL32lKD2hurdwORJmnUk13neTpCMHLMFAAC/ubdfJnmsEknKe1sOlAHogztv3rxRBWBjVpPxXpK/q0StjgfzxVAZtr72hynPOT5IslPzb3+Z5CjJUXVEGAAAcLP9/CjJbAt7+aZ4lfLydpPoQC8ISoBNby6HSX5QiVqdDuYLx2817+/BQcozjzc1YXWapEhSCEcAAGAt+/j9ao/dt7DkleO2gL4RlACb3lgeJPleJeo1mC/uqEJj/07sprxHZpjyqK696l9ft/m6THKS5KL6tUhy4kkvAADYyP59P8ky/TlS+slgvpj55IG+EZQAm95UTpM8VYl6CUpa/Xdm+J7/SBgCAADb2aPvpgxLvuzw27xMcjCYLwqfONBH/6IEANAcGhMAAGjcHv0iycFqMj5MMk33juI6ThmSeDAL6K3fKQEAAAAA/LbqSKr9lMFCF1ymPGprKCQB+k5QAgAAAADXMJgvzgbzxTDJ45RBQ1u9SrLnPhKAkqAEAAAAAG5gMF8sk+wleZZ2BSbHSb4YzBcjUyQAb7mjBAAAAABuqAoapqvJeJbksHo19f6S4yRTdyIC/DpBCQAAAAB8pJ8FJqOUgcn9BvzRLpMcJZkN5osTnxTA+wlKgE0zygsAAEDnVYHJLMlsNRnvpwxNDlJ/aPI6ZUBy5HgtgOsRlACb5qmV+l0qAQAAwPZUExyHSQ6r0OQgyTDJww38dudJipThSCEcAbg5QQlA9winAAAAGqIKTX7s06rgZD/lZfD7SXarXz90v8lpylMbTqpfiyQnghGA27vz5s0bVQA2ajUZ+0FTr9eD+eJAGQAAAADgw36nBEANHAVVLxMlAAAAAHBNghKgDr64V28AAAAAaCRBCVCHQglqJSgBAAAAgGsSlAB18MV9fc4H88WZMgAAAADA9QhKgDoUSlAboRQAAAAA3ICgBNi4wXxxkeRUJWpxpAQAAAAAcH2CEqAuvsCvR6EEAAAAAHB9ghKgLoKSzTt1PwkAAAAA3IygBKjFYL44SXKuEhu1VAIAAAAAuBlBCVCnmRJs1FIJAAAAAOBmBCVAnRy/tTmvBvPFhTIAAAAAwM0ISoDaVPdnvFKJjVgqAQAAAADcnKAEqNtSCdbudDBfFMoAAAAAADcnKAFqVX2hf6wSa+XuFwAAAAD4SIISYBumSrA2p4P5YqkMAAAAAPBxBCVA7aqpktcqsRaHSgAAAAAAH09QAmyLL/hv79jdJAAAAABwO4ISYCsG88VZkmcq8dEuk4yUAQAAAABuR1ACbM1gvpgmOVWJjzKrwiYAAAAA4BYEJcC2jZTgxo6rkAkAAAAAuCVBCbBVg/niJI7guglHbgEAAADAGt158+aNKgBbt5qMiyQPVeKDvhrMF0fKAAAAAADrYaIEaIqDuK/kQ54JSQAAAABgvUyUAI2xmoz3kxRJdlTjF14N5ouRMgAAAADAeglKgEYRlvyq08F8sa8MAAAAALB+jt4CGqW63H2Y8tJyyuPIhsoAAAAAAJshKAEaR1jyo9Mkw8F8cWFVAAAAAMBmCEqARhKW5HWEJAAAAACwce4oARqturNkmeRBj962i9sBAAAAoCaCEqDxVpPxbpKjJA978HYfD+aLpU8dAAAAAOohKAFaYzUZT5M87ejbO09yUB05BgAAAADUxB0lQGsM5otpkj+lDBW65EWSfSEJAAAAANTPRAnQOtVRXIdp/3TJeZLRYL4ofKoAAAAAsB2CEqC1VpPxXsqL3tt2d8llklk1IQMAAAAAbJGgBGi91WQ8TDJN8wOTyySzlCHJhU8OAAAAALZPUAJ0RhWYHCb5smF/NAEJAAAAADSUoATonOpIrlH1ur/FP8rrJEeD+WLpUwEAAACAZhKUAJ22moz3UwYmwyQPavgtXyc5ShmQmB4BAAAAgIYTlAC9UU2a7KcMTfar184t/l+eJzmpXsVgvihUGQAAAADaRVAC9NpqMt5NGZgkZYDyWy5ShiIXg/niRPUAAAAAoP3+P5rbYeRga75fAAAAAElFTkSuQmCC"

const logoGold = "iVBORw0KGgoAAAANSUhEUgAABkoAAAhPCAYAAACXR9fmAAAACXBIWXMAAC4jAAAuIwF4pT92AAAgAElEQVR42uzd23Ic53kv/D9ULmyOiHUFnHUFHB8gXza2OU6tLCfLsAnKspVYUnF4BYSuQKMrEHQFHNTy58Qrjjn8AjmJ7YoG3js4MHAFBq5gEUcSccLvoBsCKXGDzUxPd8/vV4WSbEuy5ulu8n3m38/7Ljx58iQA8+pkZ61X/mnvqf+697m/7LD8SZJHSfaTHC6u7x2qIAAAAAA024KgBJgXJztr3RQhSC9JN8n1Cfxjd1MEJ/tJRovre49UGgAAAACaQ1ACtNrJztpGktOfaxX8Xx4kGScZLq7v7bsCAAAAAFBvghKgdcrJkc1UF468yEGSYYrQxKQJAAAAANSQoARojZOdtX6SfpKbNfzX204ycK4JAAAAANSLoARovDIgGWQyZ45Mm8AEAAAAAGpEUAI01snOWi/JVpIbDfzX/zBFYGJLLgAAAACYIUEJ0DgnO2urKQKSOw3/KMdJNhfX94auKgAAAADMhqAEaJSTnbWNFAekX2vRx9pNsmG6BAAAAACqJygBGqGcIhkkudfSj3icpL+4vjdytQEAAACgOoISoPZOdtY6SUZp5lkkF/X+4vrewFUHAAAAgGoISoBaO9lZ6yYZp11bbb3KdoqzS2zFBQAAAABT9poSAHV1srPWz/yFJElxSP243G4MAAAAAJgiEyVALZUhyf05L8NBkp7JEgAAAACYHhMlQO0IST5zIyZLAAAAAGCqTJQAtXKys7aR5IFKPMNkCQAAAABMiYkSoDbKg9uHKvEFN5KMlAEAAAAAJk9QAtRCub3UOPN3cPt53TzZWRsqAwAAAABMlqAEqItxhCSvcqc8vwUAAAAAmBBBCTBzJztrWym2l+LVtsotygAAAACACRCUADN1srPWS3JPJc7tWpzjAgAAAAATIygBZqY8l2SoEhd242RnbaAMAAAAAHB1ghJglgZJrivDpbxnCy4AAAAAuDpBCTAT5Zf8tty6mi0lAAAAAICrEZQAs+JL/qu7ebKztqEMAAAAAHB5ghKgcuUB7jdVYiIETgAAAABwBYISYBYGSjAx10921vrKAAAAAACXIygBKmWaZCoGSgAAAAAAlyMoAaq2qQQTd91ZJQAAAABwOYISoDInO2udJLdUYir6SgAAAAAAFycoAapkmmR6bpVBFAAAAABwAYISoEq2h1JfAAAAAKgVQQlQiZOdtW6S6yoxVX0lAAAAAICLEZQAVekrwdTdsP0WAAAAAFyMoASoSk8JKmH7LQAAAAC4AEEJMHXllMMNlahETwkAAAAA4PwEJUAVukpQmZ4SAAAAAMD5CUqAKvSUoDLXnFMCAAAAAOcnKAGqYKJEvQEAAACglr6kBEAFfHFffb1HygAAANA8Jztrvaf+4/7i+t4jVQGYLkEJMO0F3mqSaypRKcEUAABAfXvkbootqjtP/Vx/yd/z9H/cTfIoyX75c7i4vrevsgBXIygBps2X9tVbVQIAAIB6ONlZ20gRjPSS3LjiP+5m+cdbT/3zj5OMy5/R4vreoaoDXMzCkydPVAGY5oKwl+RjlajU8eL6nrAEAABgdr3wRpLTn6p3WThIMozQBODcTJQA02aipHq2OgMAAKjYyc5aJ0m//Lk+w3+VG0k+SPLByc7awyRbi+t7Y1cI4MUEJcC0mWwAAACgtcqAZJDkTg3/9W4luXWys3aUZLC4vjd0xQC+6DUlAAAAAICLOdlZWz3ZWRsm+VPqGZI87XqS+yc7a4flFtkAPEVQAgAAAAAXcLKzNkhymPoHJJ93PcnHJztr43ISBoAISgAAAADgXE521ronO2v7Sd5Ls8+HvJnkT2XgAzD3BCUAAAAA8AplqPDHFIelt8V7Jztr+6ZLgHknKAEAAACAFyjPIhmnmCJpoxtJ9k921jZcbWBefUkJAKAWzVcnSecVf9nh4vreoWoBAEBl6/RuknGavc3WeVxL8uBkZ+3DxfW9TVcemDeCEmDa9pUAvtBoPf3TSXGg4nn//iQ5Lp+tz34W1/c8awAAMNm1+0aSYdofkjzt3snO2mqSzcX1vUfuAmBeLDx58kQVgGkuLHtJPlaJSu0uru/1lKE2z8Bqko0kvfKP02qyjlO86TZKMjZ5AgAAV1rH95Pcn+MSHCTpCUuAeSEoAaa9uOwk+ZNKVEpQUp/GaiPJrVndBynefhtpbgAA4MJr+fsqISwB5oegBKhikekXmmq9v7i+N1CGmdzrnSSbSfqpz3j+cYopk4EpEwAAeOWavh8hydOEJcBceE0JgIoWVlTnUAkqb6Y6JztrwxTTU/dSrz2MryW5k+RPJztrw/KMFAAA4Ivr+o0IST7vRopJdYBWE5QAVXDIdLUOlaCyRmr1qYDkTgP+le8k+WMZmHRcQQAA+Gxt341A4EVulX0PQGsJSoAqCEoqtLi+N1aFShqpzRSh1J0G/uufTpgMXEkAAKzt11ZTbFd7TTVe3EOU25IBtJKgBKjCWAkqs6sEU2+iuic7a/tJPmhBI/Xeyc7aoe24AACYc6Mk15Xhle7rHYC2EpQAU7e4vref4kBppm+sBNNTTpGMU+zT2xbXU2zHNXCFAQCYwzX+IMlNlTi3UTmBA9AqghKgssWUEqhzg5un1ZOdtVHaMUXyIu+d7KyNNT0AAMzROr+b5D2VuJDrSQbKALSNoASoii/wp++onN5hss1TJ8UUya05+Lg3k+wbpwcAYE4MleBS7p3srPWUAWgTQQlQicX1vVFsvzVtwqgJKwOD/bRrq61XuZ5kfLKztuEOAACgxWv9zTlb50/aUAmANhGUAFXyRb6FapMap26KSZJrc/jxryV5cLKz1ncnAADQwrX+amwfdVXXnXMItImgBKjSUAmmxrZbk22c5jkkedp9YQkAAC00sNafiE1nHAJtISgBKrO4vjdOcqQSU1voMwFCki8QlgAA0Kb1fifJPZWYiGtJNpUBaANBCVC1gRJM3HFsazappklI8nz3HfAOAICelOcwVQK0gqAEqNTi+t4wpkombWtxfe+RMlxNubgfRUjyImNhCQAALVjz31GJiTJVArSCoASYhYESTMxxki1lmIhxkuvK8NIGaOhtMQAAGswX+uoK8FyCEqBypkomyjTJBJzsrG0luaESr3QjgjkAAJqrrwRTcc25hkDTCUqAWRkowZUdxZfWV3ays9aLwxwv4o4mCACABq77N2KCfJo2lABoMkEJMBPlVMmuSlzJpmmSKzdLq0mGKnFhWyc7ax1lAACgQXyRP123bNMLNJmgBJilvhJc2u7i+t5IGa5sEG+VXca1CJgAAGgWQYkaA7yQoASYmcX1vcMk76vEhR1HyHRltty6spvl9gUAANCEtf81lZg6/QHQWIISYKYW1/cGsQXXRfXLkImrGSjBlTkjBwCAJvAFfjVuKQHQVIISoC6L1mNlOJdtW25dXXkY+U2VuLLrJztrA2UAAKDmekpQWa+l1kAjCUqAmSsPJPeGz6sdLK7v9ZVhIgZKMDGbDm0EAKDmbihBZXpKADSRoASohcX1vXGSuyrxQscWnJNRTpM4wH1yriXZVAYAAGq6/tdHVaurBEATCUqA2lhc3xsm+VAlvuA4Sa+cvOHqfKk/eX0lAACgpnxxr94AryQoAWplcX1vM8m2SnzmNCTZV4qrK98mM3Y/edfLSR0AAKibjhJU2xsoAdBEghKgdspzOIQlQpJp6CuB2gIAMFdMOFTsZGdNzYHGEZQAtSQsEZJMYbG+mmRDJabm5snOWkcZAABg7q0qAdA0ghKgtsqw5N05/OhHEZJMw0aKg8eZbo0BAKBObipB5TpKADSNoASotcX1va0kt1NMWMyDgyRdIclU+BJ/+vpKAAAAc6+jBEDTCEqA2ltc3xsl6aUIEdrsw8X1ve7i+t4jV30qekowdTfKLc4AAAAAGkNQAjRCOWHRS/JhCz/ecZLbi+t7m670dJzsrPVi262qmNwBAAAAGkVQAjTG4vreozJM+HqKczza4ChJp5yaYXp6SqDWAAAAAM8jKAEaZ3F9b5ykm+T9NP/skkNbbVWipwSV6SoBAAAA0CSCEqCRyumSQRKHnnMevryvzg0lAAAAAJpEUAJAq53srHXifJKqa95TBQAAAKApBCUAtF1HCdQcAAAA4EUEJQC0nW23qtdRAgAAauJICSo3VgKgaQQlALTdqhJUrqMEAADUxKESAPAqghIA2q6jBGoOAMDcOlSCyu0rAdA0ghKA2bIt1PR1lAAAAObWoRJU6nhxfe+RMgBNIygBmK1rSgAAADA1YyWolGkSoJEEJQDApDkXBgCAuvDFfbXGSgA0kaAEaLpDJYDauaEEAADUQbkN1JFKVEYwBTSSoARoukMlgNo5UAIAAGpkrARqDfAyghIAYNIc3ggAQJ2MlKASBw5yB5pKUAIAAABAm42VQJ0BXkZQAkDb2SMXAADmWDnl8FAlpm6oBEBTCUoAaDuj39U7VAIAAGrG9lvTdbS4vuclNaCxBCUAtJ2gpHqHSgAAQM2Mkhwrw9RsKQHQZIISgBk72VnrqcJUeaupeodKAABAnZTbb5kqmR61BRpNUAJA2wlKqneoBAAA1NBACaZie3F9Tw8ANJqgBIBWK98cM2Jfbc3HqgAAQA3XqYdJdlVi4oZKADSdoARoOtMCnMdYCSpzoAQAANTYQAkmateLUkAbCEqApnNQN+chUFNrAAA4nX42VTI5AyUA2kBQAsA8cLBgdcZKAABAzW0qwUQ8NE0CtIWgBIDWW1zf249zSqoilAIAoAn9wbZKXMlxBE5AiwhKAJgXvsCfvoPF9T3b4QEA0ASb8TLVVWwtru8dKgPQFoISAOaFoGT6hkoAAEATlC/49FXiUg4W1/cGygC0iaAEYPY6SlBJIzSKN8amTRgFAEDTeoSHKnFhfSUA2kZQAjB7HSWYvpOdtdUktoWanl2j9wAANFA/yZEynNu75RkvAK0iKAFgXoyTXFeGqRkqAQAATVNuwbWlEufycHF9T62AVhKUANB6JztrwyQ3VGJqjhbX94bKAABAQ20qwSsdxJZbQIsJSoBGW1zfG6sCL1OGJHdUYqqGSgAAQEP7hX5Mnr/KcZKNcvoGoJUEJQC0uenZipCkiqbJ+D0AAE01UIJXrvd7ziME2k5QAkArlW+G3VOJqdvyZhkAAA3uGUyTvNhpSOLwdqD1BCUAtLXhua8SU3e0uL43UAYAABrKWvbFhCTAXBGUANAqJztrGxGSVMWhlwAANLVv6Mc0yYsISYC5IygBoE3NTjcOFq/K7uL63kgZAABoqIESPNdBko6QBJg3ghKA2esqwdWVIck4yTXVmLrjJH1lAACgob1DP6ZJnmc7xSSJMwiBufMlJQCYuVUluHKj04mQpEqbi+t7h8oAAEBDDZTgGcdJBovre1tKAcwrQQkAjXays7aaZBQhSVW2F9f3hsoAAEBD+4d+TJM87SBJ31ZbwLwTlABtcGShO7dNzmqKSZIbqlFZE+UAdwAAmmygBElMkQA8wxklQBscKsH8EZLMpJHq268YAIAG9xD9eMkuKc4i6QhJAM6YKAGgqbYiJKlSzzg+AAANN5jzz7+dYork0K0A8CxBCQCNc7KzNkxyRyUqc1dIAgBAw3uIfuZzmuQ4xZmOApL5udd7STrlT5L0XvKXH+Zsl45xkkd6P+aVoASApi36hhGSVOmuw9sBAGiB/px93oMUU/gj2+e2uj/upghCekm6uXgYePOpP3+v/GcmyW6S/RThydg9xDwQlADQpEVgP0KSKglJAABoQx/Ry7NfCLfVborpkZHpkVbfz90Uwd9GpjcldbP8uVf+f7q3aD1BCQBNWQz2k9xXiUqcHtw+UgoAAFpg0NLPtZuzN/7HLnOr++FOinCkn9lsIXcanHxwsrP2MEVgMnRlaJOFJ0+eqALQ9AXDOA1/O2hxfW/BlXzpNe5HSFKV4zi4HQCA9vQSvSQft3Td3rElUuvv326SzdRzZ4WjJMMkW+5D2uA1JQCgAQvDLZWoxG7ZbAlJAABoi0FLP5cvp9vdB3fKl0L/mPpuP309xbkmhyc7a4OTnbVVV44mE5QAUOfFYTfFKPk11Zi69xfX93qaLQAAWtRP9NLOs0mO42Wytt6zqyc7a8Mkf2rQvXstZ4FJ31WkqQQlQBt4+72dC0QhSTWOknx5cX1voBQAALRMW9e4pkna2QNvJjlMfSdIXuVakvsnO2vjsp+HRnGYO9AGFojtWyCuJhlFSDJt7wtIAABoaU/Ri2kSmnGvdlKc9dGW+/Vmkj+e7Ky9u7i+516lMUyUAFC3ReJqikmS66oxNdtJ/ruQBACAFmvrWtc0Sbv6340Uu2S0MdT7oJwucXYJjSAoAaBOi8TTkOSGakzFwxTbbPUX1/cOlQMAgJb2Fb2YJqH+9+kgyYO0eyeFmynOLrEVF7Vn6y0A6mQYIck0mqlRkoFwBACAOTFo6ecyTdIC5QuCW2nuWSQXdS3FVlx3F9f3hu4A6kpQAkBdFovDJLdUYmIOysX3SDMFAMAc9RW9mCahvvfnPO+icP9kZy3CEupKUAJQj8VSZ57f9i9DkjvuhCs3TuMU0yNj0yMAAMypQUs/l2mS5ve9tpouwpLu4vrepjuCuhGUANRDJ8nhnC4WNyMkuajjFAf+ffazuL63rywAAMwz0yTU+N4Ukpy5V06WCEuoFUEJALNcLPaTfKAS2U6ymeRVB9wdmhQBAIAXGrT0c5kmaXbfKyT5onsnO2v7tuGiTgQlAMxqsdhPcl8lsru4vtcv/3ysHAAAcKn+ohfTJNTTMEKS53FmCbXymhIALTBWgsY1Md0ISZLiwPUNZQAAgCsbtPRzmSZpdu+7leSWSrz4/i6/H4CZE5QAUPVCsRvhVlKEJD1NDwAAXLnH6MU0CfW7LzeS3FOJl7qWZFRuTwYzJSgBoMqF4mlIcm3OS3EcIQkAAEzKoKWfyzRJc3vfToott3i162pFHQhKAKhqoXh6gJ2QREgCAACT6jN6MU1C/Yz0vhdy62RnbVMZmCVBCQBVNC9CkrNmp7e4vrfvrgAAgIkYtPRzjbxc1dj+dxCHt1/qWS4ncWAmBCUATHuReBqSWCgKSQAAYJK9Ri/tnCZJ2hsAtf2e7CQxGXE512ILLmZIUAJQD90Wf7ZRhCRJcldIAgAAE9XWL6S3F9f3Dl3eRtqKnRSu4ubJztqGMjALX1ICoPGetOJTrLbx0pz869ow7X3D6yLuLn5rb6gMAAAwsV6jk+RWSz/ewBVu5D3Za/E9WaWtFC9cQqVMlAAwrUXiMMkdlci7QhIAAJi4QUs/1/bit0yTuCfn2vWTf13rKwNVE5QAbWARWTMn/7o2iJDktMnZUgYAAJhov9Fpcb8xcIUbeU/2YjcFzwGNJigBGs/bNrVbIPaTvKcS2V781l5fGQAAYOIGLe4h9LfuSUyVMAOCEgAmplzI3FeJPBSSAADAVHqOTkyTUK97shvTJJ4HGk9QAsCkFoe9CEmS5CBJXxkAAGAqBi39XKZJmmtTCabievk9A1TiS0oAtMOCEszQyb/+WTdZGKlEDpL0Fr/1X4+UAgAAJt53dJIF0yTU6Z5cTRY2VGJq+knGykAVTJQAcNWFYbdcuFyb81IcRUgCAADTNGjp59pe/NZ/Hbq8jbShF55ufYswCqZPUALApRVvdAlJkhwn2RCSAADAVHsP0yTUjWmS6bqWpKcMVEFQAlAPjfuNv3yrYxQhyXGKSZJ9tzEAAEzNoKWfyzRJQ5U98S2VmDphFJUQlABw2QXhOMmNOS+FkAQAAKbff3RimoT66SlBJQQlVMJh7gBcxjhCkiTZFJIAAMDUDVr6uUyTNMzJv/5ZL0VAsqEnrsy1k3/9s67em2kTlABtcWCRUtnCcKjWSZK7i9/6r6EyAADAVPuPTkyTMLv7r5siGOnFNluz1EsiKGGqBCVASyw4RLuSReL/M0wW7qhE7i5+6w9DZQAAgKn3eoOWfrDtxW/94dD1rV3Pu5piWqRX/CxcV5Va6CXZUgamSVACwHkXjFtp75tcF21ohsoAAABT70E6MU3C9O+zXs7CEbsn1FNHCZg2QQkA51k49pPcU4lsL37rD31lAACASgxa3Fccurwz629Pt9PaSHJTRRpBgMXUCUoAeNUisp/kvkoISQAAoMI+pBPTJEzuXurlLBy5piqNvI7dxW/9wTklTI2gBICXLUT6EZIkyUGSTWUAAIDKDFr6uUyTVNPLPnXOiGmEllhVAqZJUAJQD50aLiy7cVhaUoQkvcVv/eGRUgAAQCW9SCemSbh4/3oajthOq526ScbKwLQISgDq4XoNF5njGEkWkgAAQPUGLf1cD02TTKxn7eRsK62e3nUumChhqgQlQDs8UYKJLTj/PyFJ6ThJf/HbQhIAAKiwH+mkvdMkJvYvf1+s5tlzRq6rCjBJghIAPr/4HEZIcpykt/htB8UBAEDFBi39XLuL3/7D2OW9UH/ay1k4YjstYKoEJUBbjC2crrwIXS3rOO8H3QlJAABgdj3JRks/3sAVfuX17+RsK61evMAHVEhQArTEghJcaUH656vJwjhCkiTpL37790ISAACovq/bTDu/HN9d/Pbvx67v8/rQp88ZWbCdFjAzghIAkmKvXCFJcnfx278fKQMAAFSr/NJ8s6Ufb+AKf3adezkLR/SgQG0ISgAsVIdp72GJF3F38du/HyoDAADMhGmSdvab3ZxtpdWL7bSAmhKUAO3wRAkutWh9KCQpfbh4S0gCAAAz6ktMk7TrWj59zojttIBGEJQAzG8z0o+QJEm2F2/9flMZAABgZto7TXKr/dMkJw//vJezcMR2WkAjCUoA6rO47C7equYQ8TIkua/q2V689fu+MgAAwMz6INMkDexdczYxcstdTEXGSsA0CUoA6mO1okVtP0KSJDkQkgAAwMyZJqm5k4d/3slZMLIR54wALSQoAZgj5Zs/QpLkoFzkAwAAs+tPTJPU99o8fc6I7bSYuXnYxo7ZEpQAbXGoBK9c6HZjVDUpQ5LFW79/pBQAADBTpknq1S/2UkyM3HRrUjNHSsC0CUqAtjhUglcuescxIn2cZENIAgAAM+9RTJPMtv6dnAUjPb0iNbevBEyboARoiQUleOEC+C9Wk4WRhW+Ok/QWb/3u0F0BAAAz7+FaPE3yu3E9+8KnzxlZuO4epEEEJUydoASgxcrF8DjJvC+CT0MSiysAAKhHn2KaZPp17uZsYsR2WjTZWAmYNkEJQLubj3EcvJckG0ISAACoDdMk0+kBO7GdFu1zXMcpLdpHUAK0whMleF5NhhGSJMndJYsqAACohcemSSZdy17OghHbadFG+nkqISgBaGfzMUxySyVyd+nW74bKAAAAtdHaaZIqXtB6/PAvejkLR7wYxzwYKQFVEJQA1EcvE3hTogxJ7ihn3heSAABAfZgmuVTNOjmbGOnFdlrMH0EJlRCUALSr8diMkCRJtpdu/W6gDAAAUCumSV7d063m2WDEdlrMs4dLt373SBmogqAEoCUeP/yLfpIPVCLbS7d+11cGAACoVb9imuTFtenlLByxnRacGSoBVRGUAG2xP+dNRz/JfbdBdoUkAABQS22dJjm46DTJ44d/0c3ZxIizJeH5jpZu/c62W1RGUAK0wtKt3z16/PAv5vKzl28fCUmSgxRvYQEAAPXqWdo8TbJ1js/fyVkw0ovttGAizxZMkqAEaJGFOWw4/rKbLHjDoghJeku3fmvvUgAAqF+v1tZpkqOlW78dvqBXe+qckQXbacHFHMe2W1RMUALQUEVIknFLG44LNScRkgAAQJ21/mySsj/rpZhyv+mSw5Vs6fGpmqAEoIEeP/zL1QhJkuItkw0LKAAAqG3v0m9p33Jcfr5hinDkmqsNE3u2bLtF5QQlQHs8mZNGYyQkeWrx1Fva+O2+mx8AAGrbpw1a+smuxVmRMA2bSxtehqR6rykBQG10XvUXPBWS2ONWSAIAALX2ePSX/Ti4HDi/3aWN55/7A9MmKAGoj845/ppRhCRJcldIAgAAtTdQAuACNpWAWRGUADTE49FfDuNQwKQISYbKAAAAte5f+jFNApzf+16IZJYEJQDNaDKGSe6oRN4VkgAAQCMMlAA4p4Oljd/6NYOZEpQAbbLbxg/1ePSXgwhJkmR7aeO3W8oAAAC172H6MU0CnM9xkg1lYNYEJQD1bzDeU4lsL238tq8MAADQCAMlAM5pY2njt4fKwKx9SQmA9lho1ad5PPqrfrJw33XNw6WN3/SVAQAAGtPHmCYBzuPu0sZvxspAHZgoAahnc7GRREiSHCTpKwMAADTGQAmAc9he2vjNUBmoCxMlADXzePRX3SQWC0VI0lva+M0jpbjyPbWapPuC//nR0sZv9lUJAIAJrDv7cTYJ8Grbdo6gbgQlQHs8aUFj8eCvuknGSa7N+dUsQpLbQpIL3j+9FIFIN0mn/OO1c/x9T9f9UXkPHiYZL93+zaHKAgBwzp5soAjAK2wv3RaSUD8LT548UQWgFR4/+KtxkpsN/gjH5R/nPSQ5ThGSmHJ49T3fTbKRpDfFe/84RXAySjISXgEA8IK1aT+2D4ZXOSj/eGNOP7+QhNoSlABtWpiP0+ygBCHJee7zbopzWzYym20NdlNsDSc0AQDg6XXqYWy7BZ93lLMXz8ZLt3/z6PGDv1ot/7t5C0veXbr9my23BHUlKAFatDD/yjiCkiYrQ5JfC0mef3/3k2zWaDF9XC72B0u3f33oCgEAzP1a1TQJnE3kj5OMXtYrPX7wlWGSO3NSk/7S7V+P3B7UmaAEaNPifF4WGW11d+n2r4fK8Nymc5B6v523myIwGbtiAABzuWY9jGkS5tduzoKR/Qs+O/0kW2nvFtwHKUISL0RSe4ISoE2L80GS91SikYQkz18wDxrWcO6Wi+BDVxAAYK7WraZJmCdHKbfSSjJeuv3rR1d8hroptjdu21ZcH6Z4oc6WzTTCl5QAgBkTkglrpR0AACAASURBVHxxkbyVZm4jdzPJnx4/+IoFMQDA/BgoAS13up1Wec7IZF8MK6ctui16+fMoxQt0Y7cOTWKiBGgNEyWNtL10+9d9ZUgeP/jKatlk3mvJR7I4BgBo/xq2H9MktNNuzoKR/QqfqU6K6ZImvjh3nOKlvy0vzdFEJkoAmBUhydliuI2j1teTfGy6BACg1QZKQEsc5GwrrZkdOl5Oq/QeP/hKr3y+mhKYbJd936FbiaYyUQK0homSRhGSnN23/bT78L7TpmPDohkAoHXrWNMkNNVxnj1n5LCmz1kv9Q5MBCS0hokSAKp2kGRTGZLHD74yTHJnDj7qjST7jx98ZcNWXAAArTFQAhrmYc6Ckf0m/AuX/VOv3IVgM8lGZv+S3VGKl/2Gdg6gTUyUAK1hoqQRDpL05n0xVZ5HMkoz9529qrtLt3899CgAADR6PdtL8rFK0ID+c5xk1JYXtspecqP8uVXh//VR2cMOmxIywUWZKAGgykWqkKRY2I7TrvNILuL+4wdfibAEAKDRBkpADR2VvdY4RTjSut6z/EzD8iePH3xlI0kvSTeTfRHv+KlajoUjzAMTJUBrPH7w1UFMlNTVcZLu0u1fHc75PTrvIcnT7i7d/tVQGQAAGrem7cU0CfXpM8f57Mv8X+17Pr/aTdJJEZysln881Ulyvfzz3c/9reMkj5LsJ9lfuv0rW2oxdwQlQJsWBBtJHqhELRevvXlftApJnktYAgDQvHXtOPO5hSz1cJDyEPal278aKwcwKbbeAtrEGw/1IyQ5M4qQ5PPuP37w1QhLAACaoZwmEZJQpdPttE7DEX0/MBWCEgCmqS8kSR4/+OpQQ/lC9x8/+Oqht8EAABphoARM2dPbaY3mfftmoDqCEgCm5e7S7V+N5r0Ijx98dTPJHbfDS40eP/hqVxMEAFDrdW0vXv5hOnZzds7IWDmAWRCUADANzp7IZwfpfeB2eKVrKUbpu0oBAFBbAyVgQo7K9f84ttMCakJQAsCkfSgk+ezw9pHb4dxuPH7w1a2l27/aVAoAgNqtbXsxTcLlnW6ndXrOyKGSAHUjKAHa44kS1MD20uu+6C7vx0GS6wpxIfce/+Sro6XXjdsDANRwbQsXcbqd1mjpdedWAvUnKAFgUraXXv9VXxmSxz/5ai/JPZW4lGGSjjIAANRqbWuahFc5yOlWWq87qxJoHkEJABNZFAtJnjFUgku7/vgnXx0svf6rgVIAANSCdRnPc5ynzxl53XZaQLMJSoAWWVCC2ThI0lOGwuOffG2QLNhy62o2H//ka8Ol13+p2QIAmO3atpcsmCbh1G5Ozxl5/Ze20wJaZeHJE5v6A61ayPtFrVoHSXpLr//ykVIkj3/ytdUkh0muqcaVbS+9/su+MgAAzHR9O45tt+a93xsnGS29/suxcgBtZqIEgMs6jpDk8zYjJJmUO49/8rWBqRIAgNkopkmEJHPmKOVWWinCEb0eMDcEJQBchpDki43kaoqghMkZJOkrAwDAzNZitN/DfHbOiO20gPklKAHgok5DEovoZ5kmmTxTJQAAM2CapNUOcnbOyFg5AAqCEgAuakNI8lx9JZhaXQfKAABQKeuv9jjdTus0HLErAMBzCEoAuIi73jr6osc/+dpGkusqMRWbGnUAgErXtr2YJmmy4zx7zsihkgC8mqAEaJcnSjBFd5e+88uhMjz3vusrwtRce/wvX9tY+s4vR0oBAFDJ2nagCI1ztp3Wd7zYBnAZghIAzuN9IcnzPf6Xr60muaUSU7VRNn4AAEx3bduLaZImOCrXx+MU4YjttACuSFACwKtsL33nlwNleKENJVBjAICme/wvX9tM8oFK1NLpdlqnUyOHSgIwWYISoGUWjuKsiEnaXvrObl8ZXnrP+RJ/+q49/pebG0vf2TVVAgAwYY//5eZqklGyYJKkXnZzes7Id3b3lQNgugQlQNscRlAyKQ+FJC9sJntJTn80lNXoxfZbAACTXtduJBkmuaYaM3eQs0PYx0vf2bWdFkCFBCUAvGiR3leGzxrIbortn3oRjMxKTwkAACa2vl1NMkhyTzVm5jjPnDOye6gkALMjKAHg8w6S9Ob5DaYyGOk99eMNu9m7oQQAABNb645iEn8WdvPZOSO20wKoE0EJAE87yhyGJI//5WYnRSByOjUiGKnndeotfWd3rBIAAJdeTw2SvKcSlflsOy3n7QHUm6AEgFPHSTbmISR5Khg5/fE2XTN0y0YTAICLr3+HsY3stB3l7JyRkXNGAJpDUAJAUoQkvbaOf5d7MPdyNjEiGGmmjhIAAFx4LezA9ul6mLOpEdtpATSUoARolSdP1OCSestvtGdR/+mPPwtGTn+cb9EOXSUAALjQmngryR3VmKjT7bRGy2/YFhagLQQlANxtQ0jy6Y9v9nI2NSIYaadVJQAAONfa2IHtk3WcZDNFOGI7LYAWEpQAzLe7y2/sDhva/PVyNjFir+X5IAADAHj1OnkQB7ZP0m6SDQEJQLsJSoCWWdiPL83P693lN8bD5jR8vW6e2U5rwR7LAABwtl7uJBklC14umYzjJIPlN8ZbSgHQfoISoG285XM+23Vf8JeN3unh6704fBIAAF60du6nOI/EmnkyDpL0l98YO5wdYE4ISgDmz/byG+N+DZu7Tp49gN1+ygAA8PI19GqSYZJbqjEx7y+/MR4oA8B8EZQAzJfahCRlU9fL2dSIYAQAAM6/nu6lCEmsoyfjKMUUyVgpAOaPoARgfhwk2ZxhI3cajJz+2DsZAAAut7YexIHtk/QwRUhiK2eAOSUoAZgPB0l6VS/8y7fceimmRgQjAABwtfV1J8nI2npijlMEJCOlAJhvghKA9qssJHkqGOkluan0AAAwsbV2Pw5sn6TdFCHJoVIAICgBWmZBCZ5VviH18VRCkk9//PVuntlOa0HTBgAAk11zlwe2LziwfXLeXX7j4y1lAOCUoASgvY6T9Jbf+Hh/gk1aJ2eHr/fibTaqdaQEAMA8+fTHX+/Fge2TdJDiRbJ9pQDgaYISgHaaSEhSBiO9p340aMzSoRIAAPPi0x9/fRAHtk/Sh0kG05q2B6DZBCVA24w1E0mSzcuEJOVY/9MTI4IR6uRQCQCAtitfVnJg++QcJ9lYfuPjsVIA8CKCEoD2ubv8xsfDczZhq3l2YkQzRp0dKgEA0Gaf/vjr/TiwfZIeZopnNgLQHoISgHZ5ZUhS7nN8OjUiGKFJxkoAALTR2YHtcWD7ZByn2GbLge0AnIugBKA9tp8XkpTByOnPTWWiwRy6CQC0jgPbJ+4gxVZbh0oBwHkJSgDaYXv5jY/7ZaPVzVkw4o002uLIlgkAQNs4sH3i3l9+4+OBMgBwUYISoG16c/iZD5Lsf/rjr4/Kz28/Y9porAQAQFs4sH3ijlKcRWLNCMClCEqAtunO4We+keQDl56WGykBANAGDmyfuO0km6aPAbgKQQnQLk8WuooArTRWAgCgyT79578uD2xfsD3uZBwn6S9/9z+9UAPAlb2mBEDLGg8HIEL7PFz+7n96QxAAaHKv0kuyH2cITspukq6QBIBJMVECtElPCaCVNMAAQGN9+s9/PYgD2yfp3eXv/ueWMgAwSYISoE16SgCtcxxBCQDQQJ/+81934sD2STpIsdXWvlIAMGm23gLapKcE0Doj224BAE3z6T//dT/FVltCksnYTdITkgAwLSZKgLY0IquaEGilgRIAAA3rS4ZxFsmkHCfpJ9n38gwA0yQoAdpiQwmgdXaXv/ufh8oAADRBeWD7MMl11ZiIhym22hKQADB1ghKgLXpKAK0zUAIAoAkc2D5Rx0kGDmwHoEqCEqAtekoArbK7/N3/HCsDAFBn5YHtwyQ3VWMiHNgOwEwISoA2NCfdGG+HttlUAgCg5n3IRoqQ5JpqTMSHy9/9T2tA6vacrybpJjn946lO+ZMk48/9beMk8eIXNIugBGi+J685nwTaZXv5e7/wFiEAUEuf/p//sZpkK3ntjmpMxFGS/vL3fjFWCmrwfPdS7FjRS9JNXjtPEPr5ibL3yn/W6f29nyI8GetzoL4Wnjx5ogpA0xcy+0luqAS0wnGSzvL3fuHQTgCgjr1HN8koJtonpTiw3dqP2T3TnSQbKYKRWxX1O6MUwcnIvQ/1ISgB2rCo+ZNKQGvcXv7eL0bKAADUsPcYxIHtk3KcZHP5e78YKgUzep77KQKSWzN+DkZJhiaqYPYEJUDTFzebST5QCWiFh8vf+4Wt9ACAuvUcqym+zHRg+2QcJNlY/t4vDpWCGTzLm+VP3c4WOkoyEB7C7AhKgKYvdMYaFmiFoyRdo+cAQM36DQe2T9b7y9/7xUAZqPg5rnNA8ry+SGACMyAoAZq+2Pm/KgGt8GUHGwIANes1BknuqcZEOLCdWT3Lm+WzfM0zA7zMl5QAaDBb9EA73BWSAAB1UR7YPkxyQzUmYjvFeSQmh6nyOe4l2Wrwc3w9ycef/p//8bB8fg5dVZiu15QAaLC+EkDjfWisHACoi/Lt8z9GSDIJx0luL3/vF30hCRU/x1tJPm7Jc3wryX55+DwwRbbeApq68Okk+ZNKQKNtL3/vFxb8AEAd+gsHtk/Wboptgw6Vggqf47ZPgz0snyvBI0yBrbeAZnqyYNstaLbt5Td/3lcGAGDWPv3R3/SShVEc2D4p7y+/+fOBMlDxc7yRLAxb/hwX0yU/+puN5Td/butimDBbbwFN1VcCGux4zj+/kAQAqIVPf/Q3p1v0CEmu7ijJl4UkzOA53kzyYE6e4+tJxkUwBEySrbeAJi6COrHtFs1rGscptnMYl//dOPO597WQBACoQ0/hwPYJr/GSbC6/+XNbAlH1szxMcmdOP/7d5Td/PnQXwGTYegtook0loOZOg5FxkvHymz8/fM6Cvlc257cs5AEAqvPpj/6mn2Qrpkgm4ThJf/nNn4+Ughk8y8PMb0iSJPc//dHfRI8Fk2GiBGjiYugwxbgp1KlBHJc/o+cFIy+5n7eS3JuD+mwsv/nzsVsFAJhhH7Ga+XtRZZqKA9svsPaFCT7Pw8x3SPI0L6TBBAhKgKYthnop9hCGWXo6GBlf9SC9cn/ZYdr5VuNuipDENgwAwKz7iGG8cDUpDmxnls/zMEKSzxOWwBUJSgALIjif3ZwFI+Mp3Ntte8PxOMlg+c2fb7l1AIAZ9xCDJO+pxEQcpXgJZl8p8DzXzm3b4MHlCUqAJi2IVpMcxl7CVOMg5eHrVW4ZVU6XbKXZbzvahgEAqEP/0EnxIspN1ZgIB7Yz62e6n+S+SrzQcZKeIBMuR1ACWBRB4SDPbqf1aIb3+mqSzfKnScHgUdk8e4sJAJh179DmrU2r5sB26vBMd8tezTP96p6sK9CEixOUAE1aGO0nuaESTHABOc7Z1MijGt7zqymmS+40oJYDe+ICANZPrWNSmLo81/txxtB5PVx+8+cbygAXIygBGrIw+p/dJH9UCa7gNBgZJxkvv/mzwwbd/3WdMNlNMlx+82dDtxcAUJOeYRgvV03K+8tv/mygDNTg2R5G+HlR7y6/+TPnRcIFCEoACyPa6jjPTIw0Jxh5xbPQT7KR2R36fpziC4jh8ps/s/ctAFCXNdJmkg9UYiLKA9ut9ajFs72R5IFKXKpv67alD4YqCEqAJiyMHOLOeReC45xNjOzPwXOxUf70pvx8nJ7fMlp+82djtxoAULM10SgObJ/kum+QxPkG1MUwtty6rN3lN3/WUwY4H0EJ0ITmpx+HuPOChV/OvsDfn/PnpJsiMOkm6Vzhy4KjFMHkOMU+wOPlN3+mUQYA6rj+6aUISbxQBfB8t5ff/NlIGeDVBCVAExogh7hz6jQYGZtsOPfz03vqP3aTrD71n/dz9rbgobFsAKBBa5ytJPdUAuCljpbf/FlHGeDVBCVA3Rsgh7jPt9Mtn8Yx2QAAoD/40f/spJgi8SIVwPncXX7zZ0NlgJf7khIANbepBHPlqGx8xxGMAADwlHJL3q3YagvgIgYpznoBXsJECVDfRuifvrGa5P+qRKsd5emJkb//j0MlAQDgOX3BVpI7qgFwKXeX//4/hsoAL2aiBKizvhK0znHKw9cjGAEA4BU+/advdMu143XVALi0QUyVwEuZKAHq3BQdaoga7zQYGacIRvaVBACAc/YDgyTvqQTARHx9+e//Y6wM8HwmSoC6NkUbEZI01W7KqRHBCAAAl+gFVlNMkdxUDYCJ6Ze9OvAcJkqAujZHY41RY5wGI2NvpwAAcMU+YCPF9jAObAeYvP+2/Pf/8UgZ4ItMlAB1bI46EZLU2UGe3U7LIgsAgEn0AVtJ7qkEwNSchtHA5whKgDoaKEGtCEYAAJia8sD2YZIbqgEwVYISeAFBCVC3Jmk1yR2VmKmjPBuMHCoJAABTWv/3k2zFVlsAVegpATyfoASom00lqNxxisMyxxGMAABQgfIFqWGSW6oBUJlrn/7TN3rOF4UvEpQAdSMomb7jPDsxsq8kAABUpdxqa5TkumoAVK5Xfh8APEVQAtTGJ//4jX6M3E/LbtmMjlf+QTACAMDM1vyDJO+pBMDM9JQAvkhQAtTJQAkmZjflxMjKPxipBQBgtj75x2+spnhx56ZqAMxUVwngixaePHmiCkAdGqeNJA9U4tIOchaMjJQDAIAarfV7KUIS0+MA9fDfVv7hPx4pA5wxUQLUhbNJLuazYCRFOGKBAwBA7Xzyj9/YSnJPJQBqpRvnlMAzBCVAHZqnXozgv8pRng1GDpUEAIAar/E7KaZIbqgGQO2sKgE8S1AC1IFpki86LhvLcQQjAAA0yCf/+I1+kq3YagugrropvnMASoISYNZNVCfJLZXIcZ6dGNlXEgAAGra2X00RkNxRDQCgSQQlwKwN5viz76acGhGMAADQZJ/84zdO306+rhoAtWfrLfgcQQkwy2aqk/l622w3ZxMjY3cAAAAtWddvJvlAJQAao6sE8CxBCTBLg5Z/voMUwchIMAIAQNuUW20NYytdAKDhBCXAbJqqH/7tarLQxmmS7Zxup/X9f3/kSgMA0NL1fC9ZGMWB7QBACwhKgFnZbOFnOlr5/r/3XVoAANrskx/+7SDJeyoBALSFoASYRWO1mnYGJUNXFwCAFq/jO+Wa96ZqADSaHTDgc15TAmAGNtPOEf0tlxYAgDb65Id/u5FkP0ISgDbYVwJ4lqAEqLrBaus0ybYzSQAAaOkafivJgziPBABoKVtvAVVr6zTJwKUFAKBNPvnh33ZTbLV1QzUAWsWLnvA5JkqAKhuttk6T7K58/98PXWEAAFq0du8nGUdIAtBGtt6CzzFRAlTJ2SQAAFBj5ctNW0nuqAZAax0qATxr4cmTJ6oAVNVwHaZ9QcnRyvf/veMKAwDQgjV7N8koyXXVAGivle//+4IqwLNsvQVUxdkkAABQU5/88G83k/wxQhKAtttVAvgiW28BFTRdf7eaLLTxbJLjle//29AVBgCg2Wv1DJOFW6oBMBecTwLPYaIEqIKzSQAAoGY++eHf9VJ8YSYkAZgfYyWALxKUANNuvlZTBCVtcxxBCQAAzV2nD5J8HFttAcybsRLAF9l6C5i2tk6TjFa+/2+PXF4AAJqkfJFplOSmagDMnQPfZcDzmSgBpt2Ebbb04w1cYQAAGrY+7yU5jJAEYF4NlQCeT1ACTFNbp0m2V77/b4cuLwAATfHJD/9uK8VWW9dUA2BujZQAns/WW8C0GrE2T5M4mwQAgKasyzspvhi7oRoAc+3AS5/wYiZKgGnZSjvfVttd+f6/7bu8AADU3Sc//LuNJPsRkgDgpU94KRMlwDQask6SOy39eANXGACAmq/HV8t16z3VACDJcWy7BS8lKAGmYdDSz7W78v1/G7u8AADU1Sc//LtuisN6TZEAcGq08v1/e6QM8GKCEmCyjdn/+786yUJbp0mMqcKLn/1ektUk3fK/6j31P3eSXH/B37r71J+PkzxKsUXI/spbP7WQB4CL/X7cTxbaugUuAJc3UAJ4uYUnT56oAjDJ5myU5FYLP9rRyls/7bjCeMb/VzdFGPL0z7S+jDlKEZ6Mk4wEJwDwwt+fV1O81HNHNQD4nO2Vt37aVwZ4OUEJMMkGrZfk45Z+vLsrb/106CozZ8/0aorJkF6KQOTmjP+VHqbYV1doAgBnv1/baguAl/nvK2/99FAZ4OUEJcAkm7RxZv9F6jSYJmFenuGng5Fe6vuFy+lBhAMLfgDm/PfuzRTbqdhqC4DneX/lrZ8OlAFeTVACTKpJ68U0CTTx2e0m2UgRjDQx6NyOwASA+fv9ezXFFMkt1biyhynOR2uSpq7bLuM4zoqcd+8pwaUdJemaxofzEZQAk2rW9tPOcX/TJLTxed3IWThyvSUf6/0kW5oAAObg9/FuisnK66pxJccpXrbYauA9sJoi3JmXe+DdJl4nJna/DyIsuazbK2/9dKQMcD6CEmACC5dv9pPcb+nHu7vy1kdDV5mGP6OnW2qdBiRt3Z7jKEl/5a2Pxq46AC39PX0zyQcqcWUH5Zphv8H3Qi/tnej/vOMk3ZW3Pjp0685tLzOOc5gu6uHKWx9tKAOcn6AEmMTC5TDtfJvpaOWtjzquMA1+Nk+DkTtz9tE/TDJYeesj0yUAtOX3dFttWSc8777YSnJvTq7bwcpbH3XdvnP7a2A3yR9V4tzKLbf0Q3ARghLgqguWQdo7BmuahCY+k6fhSJsnR87VTCfZ8OYhAC34vd1WW5NxnGKKZNSy+6OtWyA/z/srb300cCvP7a+FJurO7+um7OHiBCXAVRYqq0kO084vY02T0KRnsZuknyIc8SXKmeMkvSZvqwHA3P8eP4i9+SehtS9QzOGb9l+2tpvrXxOHmb9p+Yt6d+Wtj5zpA5cgKAEuv0j5QcunSd42TUKtn7/VFMHIZuzX+zJFWPK2hhqAxv0+P0pyUzWu7P2Vt9s9hfDJD+bqTftiS6G3bSk0x782jvU/L7S98vZHfWWAyxGUAJddoHSS/Kmti++Vt02TUNtnr5diesSbVOcnLAGgab/XjzLfW2hO6vf/jZW352P7mU9+8M1x5idY+3Dl7Y823eJz+2vkapL9mKT/vN2Vtz/qKQNc3mtKAFzSwGeD6pqBT37wzc1PfvDNwyQfR0hyUdeSjD/5wTcdAApA3X/PH5S/1wtJruZhks68hCSlfopwaB7cKwNF5lA5TbQxR/f7eRyUNQGuwEQJcJkGrlc2cG1kmoS6PWv9CEYm5TjFlya2agCgbr/n22prct5deXs+9+f/5Aff7Ce5b13HnNzv3RTbcM17sHyQYnreswBXZKIEuIyBzwZTW/CvfvKDb/ZNj0zFtbKZAoA6/d7fS3IYIclVHSX58ryGJElSnrH4cI7WdUO3/fwqt9Xtlc/+vBKSwASZKAEu2shtJHnQ1ubKNAkzfLY6KQ5m78dbUdPW+kNdAWjM7/+DJO+pxJVtJ9n0ZeFn00mHc7SevFsGRMz3PT/O/B3w7uB2mDBBCXDBRcj6Ydp7aNrdlbd3LLKp+pnqpQhIbqlGpb688vaOw90BmNXv/7bamozjJJvW8M9dX348R/dAd+XtnUNXfu5/TR3OUU/1/srbOwNXHibL1lvARRYfm2lvSHKkwaLi56lfBo8fR0gyC553AGa1BujFVluTUG45Yw3/eStv74yTfDgnH9cWXGTl7Z1HK2/vbCR5v+Uf9TjJbSEJTIeJEuC8DV3bR7hNk1DVc7RZ/they3MPwPytBQax1dYkfLjy9s6mMrxy3TnO/GxH5A17Tu/9XorwrG0vee4m6ZuegukRlADnXWxsJbnX0o93sPL2TtdVZorPTyfJIA5mr5ujlbd3OsoAQAVrAVttTcZxii8KR0pxrvuum+SPc/SRba3K07/mDtKO7zCOkwxW3t7ZcmVhugQlwKsXGf/7m50kf2rxR/z6yjsfjV1ppvDs9FIczi4gqa+7K+84ABSAqa8HRjFNelXF29TvfHSoFBe6/waZnymmYju2dz565Mrz1K+/W2nuZNXDJJt+3YNqCEqA8ywuRmnvGQq7K+981HOVmcKCfBBvjTbB0co7H3WUAYAprQkGsdXWJLy/8s5HA2W49H04nqN16Ycr73xkWzY+/wz0y/6sKdtx7SYZeKETqiUoAV61oOilOGy6rUyTMM8LcPw6AMB01gS22pqM4yQbfp++8v3YSbKf+Zlqsrajqf2agARmSFACvGohsZ/2HgBomoR5WXDzctsr73zUVwYAJrQu6MVWW5PwMMVWW7ZRmtx69f6cfNzjJJ2Vdz56VIZEnVf89fvus7l7HjZSbJF8qyb36yjJ1so7HzljB2ZIUAK8bPGwmeSDFn9EbxpxledjNclGBCStaKZX3vloVRkAmMD6YBBbbU3CuyvvfOTg4snfn23eUnkSDpI8SjJOMYEzFqC0/pnolD1dP9W/IPr/s3d363Wd1f2wf+JiB8mS9T+CqEdg5Qi8st/WonyUtDheyhcNJXgZAmxmee9fCI0MFFraxksxlDQhRCK821k6gkhHgHQEr2U7eTf1bswp7CR2rI+1luaaz31fl660tLTM8UxNPc8cc4yxmSpBsuE+g2aQKAEetWFYTLKb9n4J5wtyTvO70at/fCnaHl/+0uX/Z0MYADjF/kCrrdPbS9Vqy1fVznhNuic3UiVN7BXb/fuxlKTzwM+oP4bbSZWEG0YSDhpJogR4xCbhr9eSXG3xJf7Vly7/addKc4zfCQmSdrvxpct/MvgTgJPsETrRamsU1pP0vnT5T14ejv9+/UAkTuSwRdLgS5f/NBSO1v+uLKVq29ZJsphkuf4fXXzMPXKY6B2mqlDadr/AdJAoAR61Ifhzmw9hX7r8p66V5oi/DxIkZdj50uU/LQsDAMfcJ/Sj1dZp7adKkAyEYmL3bds/ipuEvVQteDck9wDaQaIEeNjGeZj2tg2oB/vZzPLY3wMJkvL8H88GAI6xT9Bq6/R2knS/PtDOkAAAIABJREFUdPlPWm1N/v4dZvIzGdp6vlxLsmYfCTDdviAEwKc2zSstP/DZwPLYg2P9dehuqi9EJUnKoaIEgKPsFTr1PkGS5HRuJOlIkkxefR7qisRInK/PDLv/362/1sYVYIqpKAE+4eNbf72b0Q8ta4r9JEuzEiU8/N5XQcK12ct/WhMGAD5nv9CPVluj2JN3Zy//yWBs93Mb7dX391AoAKaLRAlQ0kbZS1Aedt9LkHDo+uzlP/WFAYBH7Be02jq9nSQrs5f/tCsUjbm3t6MF1zjcSNL3kR7A9NB6CzjcIC+lelHcVnuSJDzkvu9Giy3u6wgBAA/ZL3Si1dYo3Ji9/KdlSZLGWUlV5cNoXU2y/fGtv9baFWBKSJQAh9bS7hfFfUvMoY9v/XW3bjN3MxIkAMCj9wz9JB/YL5zKfpKnZi//yfyGBqoTV85K4/FEkg8/NrsEYCpovQUcfiX3QYsvcWv28p86Vpq6gqSf9s7hwbMCgNHsGbTaGtHf1lSttrQfav49v5HkkkiMzXqSnt8FgOb6ohAASQYtv76+JS7+4Nep73MJEj7PohAAULfK2bBvODWzv6ZLN1WLOdVT43ElyfLHt/66I1kC0EwqSqD4g+Df9NPuAe6bs5ffX7HSxd7fnVSJMl+DciSzl9+fEQWAovcOvSSvi8Sp7CdZmb38/lAopu7+X0nynkiM1U6Szuzl9yVLABpGogTK3ggvpv1fDf3V7OX3d612cff2cqq5OxIkHItECUDR++JBtB46rc0kXS+Bp/p3YS3VIHLGR7IEoIG03oKytX2A+w1JkuIOdkupKkiuiAYnPLQCUN7+Qaut0bg2e/n9NWGYev0kK34fxupCkuHHt/5GsgSgQVSUQKkHwjf/ppN2D3DfT7I0+4yNZyH382J9qPP1G6exNfvM+x1hAChqD9FNclMkTmUvycrsM+9vC0Vrfi+Wk3woEmNXVZY4swI0wheEAIo1aPn1rdlwFnGIW/z4zb/pp2ohJ0kCABxnDzGIJMlpbSZZliRpl3o9r4vE2F1I1eUBgAaQKIEyD4b9tLuUem/2mff7Vrr193E3yXaSV9PuFnIAwGj3EMtJhtGq87SuzT7z/oqPk9qpPk9pSzp+V+rzOQBnTKIEyjsYLiXptfwye1a61fdw5+M3/2Y31RegeiczSkMhAGj9PqJbP+8viMaJ7SR5cvYZ80gKsJKqpTHj9WrdGhuAMyRRAuVp+wD3rdln3t+wzO1TJ0iGqWbrSJAAAMfdSwxSfWihEvXk1lPNVNBqqwCzz7y/m2oOIOO3Uc9dBOCMfFEIoKjDYSfJpZZfpo18++7bpXpdtcdg3IZCANDavcRGVJGcxn6S3uwz7w+Eoiyzz7y/Vsg58qydTzVHdEUoAM6GihIoS9sPNuuzz7w/tMzt8MCg9j9HkoTJ0GMdoH37iZVUM80kSU5uJ1UVyUAoitWNFlyTcKl+ZgFwBmYODg5EAYo4JP5tP9XQ67baT7I8+8wfd612K+7XXqoqEq0xmJjZZ/44IwoArdpPrCW5KhKnsp6kN/vMH31M4PdpJcl7IjF2e/W51u8cwIRpvQVlbGqX0u4kSZKsSZK05gC2FjNImLwtIQBozX5iMQa2n1bdauuPA6EgSWaf+ePGx2/+7Y1IPo7bE0kOPxoDYIK03oIytP2Aszf7zB9tJKfYx2/+7fLHb/7tMNVXapIknAVDaQHasafoJNmNJMlp7KT6on0gFHxKP1XFA+PVqxO+AEyQihJo+2Fx/W9Xklxs+0bSSk/t/bkUg9ppBokSgOnfV/TT/irqcbsxe+WP9tY81Owzf7z98frfdpN8IBpjdT5VlX1XKAAmx4wSaPdhcTHVF3VtnvOwNXvljx2rPZX3Zq/+MYeEJnhy9sofJUsApndfMUhySTRObD9Jd/bKHzeEgiP8zvUjKTkJ/2f2ilklAJOi9Ra0Wz/tfwnti7fpO1h1U329/2okSabRfpLNJKtJbrTlmiRJAKZ2X7Fc7yskSU6uarUlScIRzV75Y7++b3DWBWgNrbegvYfGTto/aG/dy82puyf7aX8ruDbaT7KRZOPBlygfr/9tW37/hpYYYCr3Ft0kN0XiVLTa4qS69R7Kh0/jY6g7wARJlEBrzay1/AL34wubqfDx+qXFJGvJjDkk0/c7VidHNjcesq7LyUxbBuUOLTeAvUWBf+e7D/sbD0cxe+WP2x+vX+oneV00xub8x+uXurNXNgdCATB+EiXQzsNjP8mFll9mf/bKpn6t03EvmkMyXTZTJUcedyDrtuiah5YdYGr2Fsup5pFcEI0T20myMntlc1coOI3ZK5trH69fWomK8XFaqZ95AIyZRAm07/C4lPZXWuzMXtlcs9qNvg879Yb+CdGYjt+per0Gx0hArrTk2vdmr2xq4QcwHfuLwxeGPsA4uRuzVzZVZTNKPl4br0sfr19a9JEgwPhJlED7lHB4dLhrqDpRtxYDVafBYWutteMmCupEWFuSYEO3AsBU7DHW0v75e+P+u6/VFqP+vVy0758IVSUAEyBRAu3aqJZQ9rw5e2VzaLUbef/1o83WNNhKVTlymsNWt0Xx8DwBaPb+YjFVYl9rn5PTaotx6QjBREiUAEyARAm06xDZ9s2TAe7NvPc6qapI9Apv9u/OiapHHvGsWWlRbHxZC9DsPcZGfIRxGlptMU4rQjARHSEAGD+JEmiLg/QLOESuzXZ9CdcUHw8uLaZKkFwRjcbaS9JPsjHbHVFf44OstOhZszOyuAAw6n1GL8nrInFi+0lWZrsqsRnrGbQjCBNx/uPBpeXZrrl6AOMkUQLtOEh20v6ezXuz3c2+1W7MPddNlSTxhWczbaZKLA7H8H+726I4DdwqAI3bYxxWSZt7cHJbqZIkPgZg3L+rT4jExHSSSJQAjJFECbTDoIBr7FrmRhyIllMlSPQJb57D9lr9cVVefTy4tNSytdd2C6B5+4xBtPM8jes+LmJCloVAvAHaRKIEpv9A2U/7v+TZ1DbgzO+zxVTzYV4VjcbZS5W8Gkzgy9E29Tjf08oPoFF7jW5Uq56GVltMWkcIJkqiBGDMJEpgqg+UK8vJTNtfXBvgfvb3WSeZGURpfdPsJFmb7W4MJvf/cqbbovipJgFozl5jLZm5KhInVrfa2tBqiwma8eJ+slTaAYyZRAlMt7USrnG2u7FrqSfv48GKHuHNtJWkP9vdGE74fmjTEPfEfBKApuw1hvEC8DSuz3Y3+sLAGVgUgok/M5ecjQHGR6IEpneT1Ev750TsOfid2f3VjfYXTbOeKkFyVoejbsueLYZhApztXqOTqrrPXuNk6lZbk/1wAh6gomTylpLsCgPAeEiUwFQeLC8tJekXcKldq30m99YghrU3SZ0gObt5GvV90abKIm23AM52v9FL8rpInNhOks4EZpPB5ziQ5ASgVSRKYDoN0v6v7wxwn7CPB5f6May9KfZTVfSsNeQlSLeFz1AAJr/XWKz/vl0RjRO7MdvdNL8PyrScql0hAGMgUQLTd8BcSfu/9jfAfbL3VCfVSwv9wZtx7zcpQXKo26IY7812N7XdApj8fmM5VaLafuPke4TubHdTVSRN+X1m8syFARgjiRKYrg3p4XDttls7yzZDhd1P/SRXRaMR9h/4/e59PGhMp6ulJE+0KM5eMAFMfs+xkjIqosdlJ8mK/TEN4oU9AK0jUQLTpYQD5s5sd7NvqcerriIZpF0vwKfd+UhaTeo5CsDk9hz9aO15GlptAQBMgEQJTM8hcyXtGqb8KA6C472PDquSLokGBdJ2C2Cye46NtL9l7LhotQUAMEESJTA9B81BAZe6boD7WO8jbS8o3ZoQAExkz7GcKkmicvVktNqi6W4LAQBtI1ECU2Gmn/a/3DbAfUw+HqwsJVlLZlSRUDpf5QKMf9/RTWbW4sOMk7ox292wJ6bRZrub2x8PVgRi8iSoAMZIogSaf9jspIy5Bf3Z7oaN3+jvn16qge1eVlC6rdnuxq4wAIx137EW87ZOqm61tSGpDzyKFrIAYyRRAs0+bJbScmtrtruhJc5o752l+t7RFxwqAyEAGOuedZjkgmicSN1qS0IfAOCsSJRAkx2knzJ6O2svMEIf31zp1zFVRQL3+UIXYDz7juVUSRL7jpO5Mbuq1RZTeVbdio+yJm1XCADGR6IEmnvo7KSM1gXXZ1c3lBCP5p5ZTvXVvK854ZPWZ1e19gMYw96jm+SmSJzIfpLe7OrGQCiYUvZWEza7quoMYJy+IATQyENnKS239pJouTWae6af5MNIksDDDIQAYOR7j0EkSU5qJ0lHkoQp52O3yT83ABgjFSXQTP2U0XKr6yvv01FFAo+1N7u6MRQGgJHtPcwjOZ31VJUk9sBMO4kS8QZoFYkSaN7hs5MyWm5tenl56nuln+RVkYDPNRACgJHtPcwjOTmttmgbL+7FG6BVtN6CZh0+S2m5tZ+ka8VPfJ90Pr65shtJEjiKgRAAjGT/0U3V5lOS5Pi02qJ16nkZeyIxMUMhABgvFSXQKDP9lNFyqz+7+p52A8f08c0vLybpJzNXRQOOZGt29b1dYQA49R5kkMxcEYkTqVtt2fvSyvPrMIlnw/jtz66+p6IEYMwkSqA5B9BOymi5tTW7+p4B7ie7PwYpI5EGozIQAoBT7T/MIzmda/a9tNwwEiWTijMAYyZRAs05hA4KudyeFT/2vdFPGUk0GKX92dX3BsIAcOI9iHkkJ7eXZMUX4BRgI8lNYZhInAEYMzNKoBn6KaNS4LoD49HVVSTbkSSBkxgIAcCJ9yDdmEdyUptJlu15KUHdUm5HJMZOogRgAlSUwBn76I1iWm7tzT37Xt+KH+meUEUCp6fVCcDJ9iGDaKVzUtfmntVqi7IcHGQtqkrGaXPuWTOOACZBogTO9iBaUsutrhU/0j3RiVkkcFpbc88a4g5wgn3pMOaRnMR+kpW5Z98bCgUF0n5r/PEFYAK03oKz1U8ZL8RvODh+vo/e+PLiR298eS3JB5EkgdMaCAHAsfYhy6nafUqSHN9WkiV7XUpVVzusi8RY7M89a+YewKSoKIGzO5B2UkZrpf1UCSE+/14YRIIEHCgBJr8P6aZqV2geyfFd11oWkvoZomXfeOIKwISoKIGzOZAW1XJLT9VH3weqSGDkBkIAcOS9yOFsAUmS49lP8mVJEqjMPfvedqrqKkZLogRgglSUwNnop4wX45tzz76np+pDqCIBB0qAM9yHHH60c0k0jm0n1TySXaGAz5xxPxCGkVn3wSHAZEmUwMQPpn+3ksyU0nKrZ8U/s/6L1SGiiHsAJm1z7tk/7AoDwOfuRZaTmUHMIzmJG3PP/sH+Fh5i7tn3hh+98XdbSS6KhrM0wDTSegsmezAtqeVW3wvLz6x/J9WgVEkSGI+BEAA8di8yjCTJce0nWZUkgcefAYVgJNbmnv2DahKACZMogckapIwe0Ftzz/5B+5vaR2/83eJHb/ydWSQwXntzz/5Bqz+AR+9HevVexDyS49lJ0pl79g8DoYDPN/fsH4ZJ1kXidHvaaCULcCYkSmByh9OVlNMHumvF/7LunagigUlwoAR49H5kkOR1kTi29VRJkm2hgCPrparC4oTxU00CcDZmDg4ORAHGfTj9779bTLKbMr7guz733B/61vxwFokECUzI/5l7zqES4CH7kWG02jqJa3PPqZCGEz57VpK8JxLHtjn33B9WhAHgbKgogcnYSBlJkh1JkuSj/1ZFAhO2LkkC8Jn9yHK9H5EkOZ69JE9KksDJzT33h40kmyJxLPvRmQHgTH1RCGDsh9RekouFXG638LVWRQJnw8ssgE/uSbr1s9E8kuPZSrIi+Q4jOxtux4zGo/LsAThjWm/BWA+pX1mqN4eFtNx6t1/wWneSDBwEYOK25p57tyMMAH/Zk/STvCoS9rLQgOfRcpIPRcLzB2AaqCiB8Sqo5VaZG7uP/vsrqkjgbA2EAOAve5K1JFdE41j2k6zMPffuUChgtOaee3f7o//+ymqSm6LxSOuSJADNYEYJjO+w2k85PaF7ha5xJ2aRwFnam3vu3YEwAPadXzkc2i5Jcjw7SZYlSWB86r3adZF45DOoJwwAzaCiBMZzWF1OOS0PbpR2uFRFAo0xEALAvvMry6mSJOaRHM/63HPvdoUBxm/uuXf7dVtqydz7dpJ05p5711wSgIZQUQKjP6wuppyXd3upEgYlrW8nqkigKQxxB0rfd65EkuS49pOsSpLAZNW/c+sikUSSBKCRJEpg9Popp+VWt6TNXd1O7YMY2A5NsO5wCZTso//+Si/Je5EkOY69VC8nB0IBkydZkkSSBKCxZg4ODkQBRndg7aR6kV6CG3PPvdsrZF2XU1UJXXCXQ2M8Offcu9vCABS65xxEC5vj2kxhH/lAg59haymzQl+SBKDBJEpgdJu9xSS7KeOrvr1Ugy9vF7Cu/ZQzbwamxdbcc+92hAEodL85jI83juv63HPv9oUBGvU86ya5WdAlryfpSZIANJdh7jA6g5TT+qD1X+OpIoFGM5sEKI69yYnsJ1mZe+7doVBAs8w99+7go//+ynbKmLN0be65d+1fARrOjBIYzcG1l+RSIZd7o+2HzbqK5MN4EQFNtDf33LsbwgAUttdcjkqS49pJVQE9FApoprqN6lKSrbbuW1O1i5UkAZgCKkrg9AfXpVQD3Euw1+Zr9aUmTIW+EACF7TW7Kas9zSis10OjgYarOxV06o8P+2lPdcmNJH2ttgCmh4oSOL2NaLk19eqN+TCSJNBk+/UzF6AIdZWrJMnx/k6sSpLA9KmrLpaTbE75pewleWruuXfNIwGYMoa5w+kPr6UM+r4x99y7vRau4VKqKpKL7mhoPMN4gZL2mYMkV0TiyPZSzSPZFgqY+udfJ9VMumn6iG0/VQWJNlsAU0qiBE63efugoIPnctu+iGlheTe03V/NPffurjAALd9jLkaV63FtpsWVz1Dw87Bbn9eeaPB/zP1USZ01zyCA6SZRAic/wG43fMM2Sk+1aRCmKhKYSvrNAyXsMZdStRiUJDk61YbQ/mdjJ0kvyaUG/cc6nN+5IUEC0A6GucPJDFJOkuRGy5Ik3VRf/KgigemijQHQah/991eWU1WS2KMczX6qKhKzq6Dl6vPosE4md+ufsziPH87LG7TpjAxARUUJHP8Q2005QzVb03KrrgIapFlfIQFHszX33LsdYQBavL9cqfcpkiRHs5NqHsmuUECxz83lJJ0kKxlvp4C9VMmRocQsQLtJlMBxNmP/9ZWlVC23SjnEPjX3/PR/KfPRf3n5AJ5FAI3dp3RTzkc4o7CepDf3vFY3wCeepZ1UiZOl+uckyZOdJLdTVfdtJxl61gCUQ6IEjrf52k45PaNvzD3/bm/K10sVCUy/vbnn310SBqCle8t+kldF4siuzT3/rlaMwHGes8tJFh/zv7YtIQKAGSVwvINsKUmSnVSD6aZ5vTqpSqRVkYxe1RP8eaXnDbvnu2nnF8l9qwu09Lk9SHJFJI6891hRXQgc19zz726LAgBHoaIEjnSQ/WonyQcFXfKTc8//fntK12ox1YvVq+7csbiRpD/3/O99cdW8e383ZzPUcpz25p7//ZLVBVr2vFbxejw7STr2HgAAjJOKEjjaYbakL+evT3GSpJPqxcMT7tyR20vSnXv+90OhaOS9v9LS+35gdYEW7iuHKadK+bTW557/fVcYAAAYN4kSeLxBymnftDP3/O/70/YfWhXJ2Kkiab5eC69pP4k+9EBrfPRfX11K9fGNJMnRrM49//uBMAAAMAkSJfD5B9peymqL0J3CNVpOlczy0mH0VJFMx+9AJ8nFFl7amuQc0KJn9XKqShKz0x5vP1WrLXMFAACYmC8IAXzugfb1gi752rQdSD/6r6/2k3wYSZJxuJFkWZJkKvRbel0DSwu0aE85jCTJUewkWZIkAQBg0lSUwMMPtIdDNkuxNff879emaH1UkYyPKpLpelZ10s5qkvW553+/a4WBljynNyJJctRnf1cYAAA4CypK4OHWUs5L+P1MUcutuh2aKpLxuB5VJNOm77oAGrtn6Sb5IJIkR7EqSQIAwFlSUQKfPtT+51dXklwp6JL7cy80/8vtj/7zq0upqkguuktHbidJd+4FbS6m7FnVaenvw+Y0PJMAHvOM7ia5KRKPVc0jsQcBAOCMSZTAJw+1Symr5dbm3AvNb7n10X9+tZfqC3NfZI7e9bkXft8XhqnU1nVbs7TAlO8nu5EkOYqdVEmS20IBAMBZkyiBTyqph3TjW2599J9fXazXRBXJ6KkimWIf/edXl1v6e7E194LWb8BUP597SV4Xicdan3tBqy0AAJpDogT+crD92loyU9Lci+7cC+/cbvB6rCQzg6giGYfrcy+80xeGaTbTa+mFuS+Bad5LDpKZKyLxWKtzL7wzEAYAAJpk5uDgQBRwsP3Pr60kea+gS16fe+GdbkPXYjFV+7NL7syRq6tI3lFFMt3Pq6Ukf27hpe3NvfDOkhUGpvTZPEhZM+5Oop5HYh8CAEDzqCjBwfb+i/lS7CXpNXQtOimr/dkkqSJpj77rAmjU/mUQSZLHqeeRvGMeCQAAjSRRAuW9mG9cy606WdVPctXtOHKqSFqkriZp48u4PW1YgCl9Lg8iSfI4ja1kBgCAQxIllH647aesQeHX5154Z9iwNeikquh5wh05lvXuC0Or9F0XQGP2MINIkjzOtbkX3lkTBgAAms6MEko+3HaSfFDQJe/MvfDOcsPWYC2qSMay1lFF0sZn1lLaOZtkf+6FdxatMDBlz+RBJEk+99meZKVpH+gAAMCjqCihzMPtr7+2mKrlVkmH1W6D4r+cqorkgrtxLG4nWfvo118TiXZZaul1+dIYmLZ95CCSJJ9nJ8nK3Ivv7AoFAADTQqKEUpU2l6Q/92Izqgs++vXX+kledQuO1UUhYErsR6IEmCKSJI+1maQ796Kh7QAATBeJEko84PZT1ovkrbkXz7439Ee//tpSqioSL/GBQ2tepgFTtIfsRpLk81yfe9FsNAAAptMXhIDCDridlFXNsJ9kpQFx7yXZjiQJ8Mnnk2oSYFr2kN0kN0Xikc/zVUkSAACmmYoSSjrgljaXJDnj1gcPxFyCBPg01STAtOwhu5EkeZT9JJ2mtHgFAICTUlFCSUqbS3Jj7sV3ziwx9NGvv7aSZDeSJMDDDYQAaLqPfv215ah+e5SdJEuSJAAAtIGKEko55PZT1gv7nST9M4r1YqoXoJfcecAjrM+9+M6uMAAN3z8uJxmmrA9tjvwcT9JTGQgAQFtIlFDCIbeTsuaSJGfUcquOdWmVO8Dx9YUAaPj+8fDDD3uazzK0HQCA1pEooYRDbmlzSa5NugVCHed+kqvuOuAxVJMA02AjyQVh+IT9VFUkA6EAAKBtJEpou2HK+hJwa+7FdybaR7tuS7GR5Am3G3AEfSEAmuyjX39tLWasfZqh7QAAtJpECS0+5H59LZkp6UvA/SQrE45xP5l51d0GHNH63Itv7woD0OD940oyo0L2k3aSdOZefNs8EgAAWkuihBYfcotrA9Wd1AH2o19/fTlV324tKYDj6AsB0OD941K9v+G+emi7JAkAAO0mUYJDbjvcmHvx7Y0JxbeX6mWn4abAcWyqJgEabmB/85n9ZU8YAAAogUQJrfLRr79+OLy9pEPuTibwlfYDCSg9u4GTWBMCoMF7yK49zieszr349kAYAAAohUQJbbOWstpB7WcCLbfqVmaD+MoSOJmtuRffHgoD0ET1hzaSuff3lp25F982tB0AgKJIlNCmQ243yZXCLrs/zoNs/eJgkOSSOww4zbNKCIAG68XHIEmyl2RFkgQAgBLNHBwciAJTrx4uPizskLs59+LbK2OMaSfltTEDRm9r7sW3O8IANHQPuZhk134nO6kqSQxtBwCgSCpKaMsBt7QX+ntJumOMZz/JVXcXMAJ9IQAaTDVJsp6kJ0kCAEDJJEpog0GSJwq75rHMJakrczYKjCcwHmaTAI1VfxzSKzwM63Mvvt11NwAAULovCAFTfsDtpbz5GdfH8eLxo19/vZ/kw0iSAKPTFwKgwbopu5pkVZIEAAAqKkqYWvf+4+udJK8Xdtlb5771dn/EcVxOVZVzwV0FjPh5NRQGoKkODoqtJtlP0jv3rbcH7gIAAKhIlDCV7v3HX+aSlHao7Y44jr1UX3wb2A6MWl8IgAbvJZdTZhXtfpLOuW+9ve0uAACA+yRKmFbDlPdyv3vuW2/vjujlwFKqKpKLbiVgDFSTAI3fVxV4zZIkAADwCGaUMHXu/cfXBymvTdSNc996e2NE8VtJsh1JEmB8+kIANNxKYde7k2RJkgQAAB5u5uDgQBSYGvf+4+vdJDdLO9ie+9bbyyOI3WKqKpJL7iRgjLbOfevtjjAADd5PLiX5c0l7yVSVJLetPgAAPJyKEqbpULucZK2wyx7JXJJ68P1uJEmA8esLAdBwnYKudSuSJAAA8FhmlDAVHhjeXtpckt5pWiTUcesnueouAibAbBJgGiwXcp3r5771dtdyAwDA40mUMC02kjxR2DWvn/vW24OT/pvrCpxBypvnApydvhAAU6CERIkkCQAAHIPWWzTevf/4ej/lDR7fSdI7Zcw+jCQJMDmqSYBp0fZEiSQJAAAck4oSGu3ef3x9JcmrhV32fpLuSXpJ18NJNyJBAkxeXwiAKdHmVq6SJAAAcAISJTTWvX//++VkZlDgpffO/dP/bp8gXr1kpp/y5rgAZ2/r3D/971AYgCnYX3aSmbZe3vq5f/rfrlUGAIDjkyihqYfYxVTzNUp76b9+7p/+d3CCWG2kvPZkQHP0hQDgzPeQXWEAAICTMaOEphqkvPZRx55Lcu/f/34lyW4kSYCzo5oE4GxJkgAAwCmpKKFx7v373/eTXCrssqu5JP/0v7ePGKPFJGtJrrhjgDPWFwKAMyN+Gx1GAAAgAElEQVRJAgAAIyBRQqPUFRKvFnjpR55LUvXWziDJE+4Y4IypJgE4O5IkAAAwIlpv0RjV8PYMCj3kDo4Yo36SDyJJAjRDXwgAzsSOJAkAAIyOihIaoeDh7UeaS/JAEumCuwVoCNUkAGe3f+wIAwAAjI6KEppikPKSAEeaS3Lv3/++l+TDSJIAzdIXAoAzcfuoc+0AAICjUVHCmSt0eHvymLkk9/7975dSJZAuukuAhlFNAnB27A0BAGDEVJRwpgoe3v65c0nquGw7CAMN1RcCYErttmgPDQAAjIiKEs7ugPerbywnM4MCL/2Rc0nu/eob9ayWmUvuEKChts699NZQGIBpdO6f/nf33q++0YZLWUmyYUUBAGA0VJRwJu4nBIob3r6fZOXcS2/dfkhMOqmqSCRJgCbrCwHQgv3YtFNRAgAAIyRRwlnZSJnDybvnXnpr99P/4r1ffWMtyQdJnnBrAA2mmgRog+0WXMP5e7/6RtdSAgDAaGi9xcTVSYESZ2/cOPfSWxufisVyqsqaC+4MYAr0hQBogbbMgevW+0gAAOCUVJQwUfWXb1cLvPSdcy+91ftULPpJPowkCTAdVJMAbbHbkuu4WH90AwAAnJKKEiamPsitFXjp+0k6D8RhKdXXfxfdFcAU6QsB0BLbLbqWXqrKEgAA4BRmDg4ORIGxq4e376a84e1J8tThV9h1Rc1aoXEAptfWuZfe6ggD0KK9aZsOQX/1sBl4AADA0akoYVKGKTM5cP3cS28N60TRIMkltwIwhXpCALTMVtpT3dvznAYAgNORKGHs7v3qG4OUOYdj89xLb/Xv/eobnSQbUUUySntpT39x2mGxxc+59XMvvbVtiYGWGaY9iZLuvV99o3/upbduW1YAADgZiRLG6t6vvtFLcqXAS99L0rv3q2+spczh9eN0I4mXATTtWTdIexMlfSsMtNAwyastuZbzqSpKPK8BAOCEzChhbO796hsrSd4r8NL3c78FwgV3wkjj2j330lsbQkHDnnVLSf7c0stbP/fSW12rDLT0+d2mg9B+kiUfkgAAwMl8QQgY08FzOdVMjhLdTnIzkiSjtFkf/iVJaKI2P+v6lhdo+f6iLc57ZgMAwMlJlDByDwwuL3UmxxPugpHZT7J67qW3VnwhSUOfd520p8f9p62fe+mtXasMtFjbPsC4Wlc5AgAAxyRRwrgOnaopOK2tJMvnXnprIBQ0WN+1AUytoWc3AACQmFHCiNUDja+IBKd07dxLb60JAw1/3nWSfNDSyzObBCjlWb6d9n3g8+S5l97atroAAHB0KkoY5UGzG0kSTmenPtxLkjAN2nqf7scXyUA5Bv4+AQAAEiWMRP1l9U2R4BSun3vprWVfQDIlz7xu2tticM1sEqAgGy28pov13hwAADiiLwoBp3Xvl08vJzMbIsEJ7SXpnvv274ZCwdQ4mOm39Mr240tkoCDnXnpr994vn95McqlllzZIsmSFAQDgaFSUcCr3fvn0Yn0QOy8anMCNJMuSJEzZc6+b5ImWXt7auW//7rZVBgrTxg9+nrj3y6d7lhYAAI7GMHdO5d4vnx4muSgSHNN+qioSlUhM2zNvMclu2pkc3k+yJFECFPp8v93CZ7vnOgAAHJGKEk5zoBxEkoTj26wP7ZIkTKNe2ltBp5oEKNmghdd0PtopAgDAkUiUcCJ1Kf8VkeAY9pOsnvv271a8jGVKn3uLqRIlbf399DINKFlbn4FX7v3y6Y7lBQCAzydRwrHd++XTK0leFwmOYSvVLJKBUDDF2lxN0pPABEp27tu/2633K20kEQ4AAI8hUcKx3Pvl08tpZ2sCxuf6uW//rlO/gIBpffYtJXm1pZe3J4kJkLR4j3vBYHcAAPh8EiUcWd12Zpj2flHNaO0kefLct3/XFwpaoO/aANqtThrvtfVZX+/lAQCAh5Ao4UgkSTimG+e+/bvlc9/+3bZQ0ILn31LaO5NJNQnAJ7W1TdX5qAoHAIBHkijhOIfGC8LAY+wleerct3+nvQNtMmjxtfUtL8Bnnvn7Lb22Swa7AwDAw0mU8Fj3/u3ptRzkSg4SP34+52c9B1k+9+3fDf3W0KLnXycHudjS39kd1SQAn3Tu27+7nYOstXi/5rkPAAAPMXNwcCAKPNK9f3u6m+SmSPAYN5JsCAMt1E9ysaXX9tS5f5bYBHjI/ncpyZ9bfInXz/2zGXIAAPAgiRI+75DYSfKBSAC0zta5f/5dRxgAHrkPHqS986mS5Mlz/2yWHAAAHNJ6i0cdDpejQgCgrfpCAFD0c3LNEgMAwH0SJXzGvX97ejFVkuS8aAC0zpaWWwCf79w//243yXqLL/HivX97umelAQCgIlHCJ9RJkmGSJ0QDoJW8GAM4mn7br6+exwIAAMWTKOHT1pJcEAaAVlrXkx7gaAqoKjmfZGClAQBAooQH3Pu3p9fS7qGVAKXrCwGA5+YDLt77t6e7lhkAgNJJlJAkqQ9IV0UCoLXW66+jATiiAqpKkmStbr8LAADFkigh9/7t6ZUkN0UCoLX2o5oE4KR69XO0rbTgAgCgeDMHBweiULB7v/iH5VTD28+LBkBrXT/3nf/pCwPAiffM/SSvtvwyv3zuO/+zYbUBACiRipKyD3xLkSQBaLv9JGvCAHAqa2l3VUmSDO794h+04AIAoEgSJYWqD0EbkSQBaLu1c9/5n9vCAHBy9XO03/LL1IILAIBiSZSUa5jkgjAAtJpqEoAROfed/1lLstfyy7x07xf/sGK1AQAojURJge794h8GkSQBKEFPNQnAaJ+rBVyjFlwAABRHoqQw937xD2tJrogEQOvtnfvO/wyEAWB06mHnWy2/TC24AAAojkRJQe794h+6Sa6KBEAR+kIA4Pl6QpfqswMAABRh5uDgQBQKUPcafk8kAIqwc+47/7MsDABj21sP0v4q7f0ky+e+8z+7VhwAgLZTUVLGQW45yucBStITAoCxP2f3W36NWnABAFAMFSUtd/fn/7icZFgfdABov635l3/bEQaAse+z+0leLeBSr82//Ns1Kw4AQJupKGn34W0x1VdgkiQA5egLAcD4zb/8236SvRL+rtQfXwEAQGtJlLRUnSQZJrkgGgDFWJ9/+bdDYQCYmG4B16gFFwAArSdR0l6DSJIAlKYvBACTUyenNwu41At1qzEAAGgliZIWuvvzfxwkuSQSAEVZn3/5t7vCADBxJQx2T5JXteACAKCtJEpapv7S64pIABRlP9WLOgAmrE5SlzLsfKNu8QsAAK0iUdIid3/+j90kr4oEQHHW5l/+7W1hADgbBQ12fyLaPAIA0EJfFIJ2uPuLb3YzM3NTJACKs59yvmQGaK6ZmW6SDwq40qt3f/HN4fx3frNh0QEAaAsVJS1w9xffXI6XZACl6s9/5zeqSQDO2Px3fjNMsl7I5Q7u/uKbWnABANAaEiVTrk6SDJOcFw2A4uzNf+c3EuUAzVHKYPfzSQaWGwCAtpg5ODgQhSlVD1LcjSQJQKlW51/+7UAYABq1R+8mKaUl7rX5l38rYQ8AwNSTKJneA9hiqkqSC6IBUKSd+Zd/uywMAI3cqw+TXCzgUveTdOZf/u22VQcAYJppvTWdBy9JEgB6QgDQWN1owQUAAFNDomQ6DSJJAlCyrfmXfzsUBoBmmn/5t7tJSmlJdeHuz/9R+y0AAKaaRMmUufvzfxwkuSQSAEVTTQLQcPMv/7afZKeQy7169+f/2LHqAABMK4mSKVInSa6IBEDR1vWCB5ga3YKudaNuEQwAAFNHomRK3P35P/YiSQJA0hcCgOlQJ7avF3K55pUAADC1Zg4ODkSh4e7+/JvdJDdFAqB4N+Zf/o22WwDTt5/fTjkzBq/Nv/wbM0sAAJgqKkqaf6jqRpIEgGQ/qkkAplVJSe7X7/78m8uWHACAaSJR0mD1AUOSBIAkWZt/+Te3hQFg+sy//JthkhsFXfLg7s+/aV4JAABT44tC0Ex3f/bN5SRDkQAgyV4SbUwAptlB+klWkjxRwNVeSFUFqV0kAABTQUVJAz2QJDkvGgAk6c9/VzUJwDSrn+Pdgi756t2ffXPFygMAMA0Mc2+Yuz/75mKS3UiSAFDZm//ub5aEAaA1+/21JFcLudz9JMvz3/3NrpUHAKDJVJQ069C0GJUkAHxSVwgAWqWfqqViCc4n2bDkAAA0nURJQzyQJLkgGgDUtua/+5uhMAC0R4EtuC7c/dk3+1YeAIAmkyhpAEkSAB7BEFyAFqqT4NcLuuRX7/7smx0rDwBAU0mUNMMgkiQAfNL6/Hd/sy0MAO00/93f9JPsFHTJG/UHYgAA0DhfFIKzdfdnlwfJzCWRAOBT+kIA0HYz3SQfFnKxh/NKOtYdAICmUVFyhqokSa6IBACfcn3+u7d2hQGg3ea/e2s7ZbXgunj3Z5e1lQQAoHEkSs6IJAkAj7CfZE0YAMow/91b/ZTVguv1uz+7vGzlAQBoEq23zsDdG5f7kSQB4OH681dv3RYGgIIcZCXJdqr2VCXYuHvj8rK/dwAANMXMwcGBKEzQ3RuXu0luisRU2k/SS7IrFHBmlpO83uLr25u/emvJMgMUeU7otfxv3Kdtzl+9tWLlAQBoAomSyR5+upEkmVZbSVZ89QZn/hwdJrnY4kv88vzVWxtWGsDfuUJcm796S7tJAADOnETJ5A493UiSTKP9VG1wHODAc3Tctuav3upYaYCi/9YtpqpePl/QZT85f/XWttUHAOAsGeY+mQNPN5Ik02gnSUeSBBrxHF1M+wec9600QNnq6uVuYZe9Uf+dBwCAMyNRMmZ3b1xeiSTJNLoxf/XWsq/boDF6affXtevzV28NLTMAdQvG9YIu+YkkAysPAMBZkigZo7s3Li/b9E+dvSRPzV+91RMKaMyzdCnJqy2/zL6VBuABvXpfWopL9TB7AAA4ExIlY3L3xjPLycwwmTmfzMTPVPxsJjPLvuqGppkZtPzZc33+6q1d6wzAoaoF18xKYXvx16szFAAATJ5EyRjUG/xhyhrCOM32k6zOX31zZf7qm7eFAxr1PF1JcrHlzx9zkAD4jPmrb24nuV7YZW/cvfGMeSUAAEycRMmISZJMna0ky/NX3xwIBTTueVrEAHcJWgAeZf7qm/0kOwVdsnklAACciS8KwejcXbssSTJdrs/3bvWFARrq4KCX6oVJW+3N926pJgHgcX8PV5JsF3TGuHR37XLP30gAACZJRcmISJJMlZ0kT0qSQKOfqUtp/wD3rpUG4HHme7d2Uw13L8nr9fkKAAAmQqJkBCRJpsqNJJ353q1toYBGG7T8+rbme7eGlhmAo5jv3Rok2Szssjfurl02rwQAgInQeuuU6s37IJIkTbefpDvfu7UhFND452rbB7gnqkkAONnfju20uy3lgw7nlaxYegAAxk1FySnUSZJhkgui0WibSZYkSWBqnqtt70l+o26jAgBHNt+7dTvlJQ0u3V273LP6AACMm0TJCUmSTIX9JNfme7dW6oMl0HxtH+C+n6RvmQE4ibp97PXCLtu8EgAAxm7m4OBAFI5JkmQq7KRqtWUWCUzPs3UpyZ9bfpnX5nu31qw2AKf8mzlM+9tUPmgvybKPnwAAGBczSo59KHlmMZkZRpKkya7P997sCwNMm5lByy9wZ773piQJAKP4m9lNNa+klDmJTyTZSNKx9gAAjIPWW8dQJUlUkjTYXpKnJElgKp+vJQxw12MdgJGY7725m2q4e0ku3l17xj4fAICx0HrriCRJGm8zSXe+96ZyfJjO5+t22j2bZHO+9+aK1QZgxH9D15JcLeyyn5rvvTm0+gAAjJKKkqMdQCRJmms/yZfne2+uSJLA1Oqn/QPcVZMAMK6/oTuFXfNGfT4DAICRkSh5DEmSRttKsjzfe3NDKGBqn7HLaf+XsGt1ixQAGKn6Q6FuqqR8Kc6nmlcCAAAjI1HyOSRJGu36fO/NjpePMPXaPtx8r4BrBOAMzffe3E55lYsX67ZjAAAwEmaUPMLdtSuSJM20k6Q731vfFgqY+udsN8nNll/ml+d76756BWASf1c3klwq7LL9nQUAYCRUlDz8kCFJ0kw3knQkSaA1z9m2fwm65eUNABPUTVXJWJLB3bUrS5YeAIDTUlHyKZIkjbSfqorEC8ez+71YSvLgIfTT/32O+D9rqt3657SGJ/j33C4x+Xd37cpa2j+b5EmJXQAm/Pd1OcmHhV32TqqPqW67AwAAOCmJkk8eLCRJmmcryYqDz9ju+aVUSY3FJMv1v9yp/7mU5AlRauwLgaP+Tuzm6Emg7SP+390+ze9kIS9xbsz31ntuVQDOYH/XS/J6YZe9Pt9b71p9AABOSqLk/oFCkqRZ9pP053vrhjSe/t5eTpUI6eR+QmQpkiCM39Yj/vW233/7SZYkeAE4w/1fifNKVud76wOrDwDASUiURJKkgQxsP9l9vJz7SZBOqqSIexomz4saAJpwvtlOWR/G7Mc8QwAATqj4RIkkSeNoV3O0+7aTKily+OP+hWbYmu+td4QBgIbsFz8o7LL3kiyr6gQA4Li+WPTh4fVnJEmadajpzl97cygUn7lPO5EUgWkh0QtAI8z31od3X3/mepJXC7rsJ5IMkqy4AwAAOI5iK0ruvv7MUpKNeOncBJupkiTFf/lVJ+869c9ykotuD5ga6/PX3uwKAwAN218OC9xTXp+/9mbf6gMAcFRFJkruvv7McqpKkvNugTO1n6Q3f+3NQcEH16XcT4x0YsA6TPPzbEnCF4AG7jcXk+wWePZ5SrU6AABHVVyi5O7rVyRJmmEnycr8tfXdwu6/xVStADqRGIE2uTZ/bX1NGABo6B60k/LmlewnWS7tvAEAwMkUlSiRJGmM6/PX1vsF3XcPJka0eoP22Zm/tr4sDAA0fE/aT1nzSvyNBgDgyIpJlEiSNMJeqiqS7QLutU6qyhEzRqD9npq/tj4UBgCmYJ86LHB/uj5/bb1r9QEA+DxFJEokSZpxQEnSm7+2frul99hK7rfU0k4LCnq2efkCwBTtWUudV7I6f2194A4AAOBRWp8okSQ5c/tJuvPX1jdadl8t5X7VyCXLDMU+35bamgAGoLXno07KnFfSaXtlOwAAJ9fqRMnd1690k9y0zGdmK1WSZLcl99NhS61uzBoBDHAHYHr3tf2UN69kL9Vwdx84AADwGa1NlEiSnLlWvECskyPdVJUjWmoBhwyHBWDa97kbKa8yenP+2vqK1QcA4NO+2MpN/79KkpyhnSTd+e9Nb1n73X+VHAEeqycEAEy1g3STbBe2371091+v9Oe/t953AwAA8KDWVZRIkpypG0n689+bvnJ2yRHgGNbnv2eAOwCtODstJ/mwwEt/av5760N3AAAAh1qVKLn7r1fWkly1rBNXDWz/3nQNbJccAU74vFuaxoQwADxiT9xL8nqBf8+X57/XjlmKAACcXmsSJXf/9cogyRVLOnGbqZIkt6fkPpEcAU7j2vz3DHAHoF3u/muR80p2knR8/AAAQNKSGSWSJGdiP1WbrbUpuD+WUiVGepEcAU5uS5IEgJbqprx5JReSrNXXDgBA4aa6ouTuv15ZTDJIeV8/nbXGD2yv741u/XPBkgEj8GSTn3sAcMr983KSYZLzhV366vz31gfuAACAsk1toqR+ET6Ml+CTdmP+e+u9Bt8X3VTVI5JnQDHPPgAY4V76ZoGX7mMIAIDCTWWi5M5PJUnOwH6SlYXvrw8beD90cn/uyHlLBYzh+be08H09zAFovzs/LbKtsb/1AACFm7oZJXd+emU5yUbMmpikzSTdJh0c7vz0ylKqmSOGsgPj1vPiBICS/u4lWU5ZH6WdT/Uh3rLlBwAo01RVlNRJkmFUDUzKfqoXhIOGrP9i7g9lV00ETMLWwvfXO8IAQEkKPnfdWPi+VpsAACWamkRJ3V5pI5Ikk7KTqtXWbgPWfiVVguSKZQEm7MmF7+tZDkB56j34ewVe+mpTPhQDAGBypiJRcuenxQ4VPCvXF76/3j/jNV9ONXekG8kx4Gz4qhSAot356ZW1JFcLu+z9JB0fSgAAlKXxiZI7P73SS/K6pZqIvVSzSIZntNZaawFNeh4um00CQOnu/PTKdoF7c/sAAIDCNHqY+52fdgfJjHZLk1EPbB/cPoN1rltrWWugMXpn8TwEgOaZ6STZTVlV3k+kavvcsf4AAIXseptYUXLnp93FJIMklyzR2O2nSpBsTHiNl1JVjqzUBxGAptha+P6gIwwA8Je9eyfJBwVe+o2F7w+04QQAKEDjEiV1kmQYrZcmYStVkmR3gmu7kmruyEXhBxrqryb1XASAaXHnp91+klcLvPQvT/qjMgAAJq9RiZI7P+0upypxVmEwftcXvj/oT2hdO6mSIysxmB3wbASAqXTnp92NlFf1Xw93HxjuDgDQYo2ZUXLntW4nVZLEi/Tx2kuysvDKeDf6d17rLuX+YHaJL2Bano9rwgAAj3CQbpLtwvb355MM7rzW7Sy8Yn4ZAEBbNaKi5M5r3W6Sm5Zj7NaT9Ma5wa/XciXmywDT56mFVwZDYQCAz93vLyf5sMBL31x4ZbDiDgAAaKczT5Tcea3YXreTVA1sf2U8vXXrw1K3/lERBEwjLz8A4Oj7/27K/NDt+sIrWnQCALTRmSZK7rzWHSS5YhnGqhrY/spoBxPfea27mPvJkQvCDEyx/STLo35OAkCbFXyW+/K4PkADAODsnEmipH7JPowX7OM28i+e7rzWXUmVHNFaC2iLawuvDMwmAQBnuqOohru/Yrg7AECbTDxRUg/53ogkyTjtpKoi2R7hmvWitRbQwuflwiuDZWEAgBOfE7YLPCPspEqWGO4OANASX5zwRno51VdHXraPz40k/dNu2rXWAgrREwIAOJmFVwa79byS9wq79AtJBknMNwMAaImJVZTUG+i1SJKMy0gGtmutBRRkfeGVQVcYAODUZ71+klcLvPQbC68MfHQBANACE0mU3Hmt20vyunCPzVaSlZNWkdSVPt1orQWUYz/JkpYZADCyM98wycUCL3114ZXBwB0AADDdxp4oufNad5DkilCPzYmGENf9hFdStZ15QhiBwnipAQCjPfctpppXUtrZwnB3AIAWGFuipN4oD6KF07gce2B7vSYr9Y91AUq1tfDKoCMMADDyM2CpMyn3kiyrVAUAmF5fGNMGebHeIHsZPx43coyvlu681l2pK3t2k9y0LkDh9BIHgDGozycl/p19IsmGOwAAYHqNvKKk/opoI9o5jcORB7abOwLwUNcXXhn0hQEAxqfg9suGuwMATKmRJkruvLZaaqn1JNQD22/e/pz4L+V+ckSiCuCT6rYYN7XFAIAxu/Pa6naSCwVe+urCKzcH7gAAgOkyskTJnddWV1LNJJEkGa39JP2FV26uPSLuS6lmjnQLPYgAHNWXF165qS0GAExAfU7ZLvB8WA93v2m4OwDAFBlJouTOa6vdVLMvGK16YPsnN9l3Xls9HMrei+QIwFFsLrxyc0UYAGBy7ry22knyQYGXvp9kSRUrAMD0+OIINr/dSJKMw42FV272HojzYXJkJYaxMz12kjTpgLgYycUS7ccAdwCYuIVXbg7vvLZ6LcnrhV36+VQtqZfdBQAA0+FUFSV3XlvtFbjpHbf9VLNIhpIjNMBhouN2qtYJSbJb//zlAFxiYOqZTIsn+Lcu1T/HcZz/X5JBn3XtUe0LgcY+Yxfz6BeMJ3mOPqhT//M0f7+284gPAUr9uwiP+Z3eKPQ8s77wys2uOwAAoPlOnCi589rqIMkVIRypzVRfPXciOcJk7Kd62bNb/xy++NnWKqD97ry22k/yassvc2fhlZu+5oTJPls+neT4dLL30//9UpIn2v4syicTKw9+gJD4CIEyngvDGO4OAEBDnShRcucnkiRjOkDvRnKE8ThMiBwmRbaTbC/8QDKkVHd+srqUMgasPrXwAy8cYQTPjE79Xz6YBFnK/cqOpbQ/2XGWe8TDv9cPVrIcPttuL/zA0Gim4jmyXN+35wu8fPsRAICGO3aiRJIEGu8wKTLM/YTIrrDwqWf5MMnFll/mjYUf3DSbBD7/WXBY3bGU+0mPTv3PpUh+TJuHtcwc1v/0gQRNeOasJHmv0P35sj05AEBzHStRcucnq2tJrgobNMpO7idFhg5gHOFZXsJLiv0kS14KUvjv+mH1x4NVIJ36nxdFqFh7ud/q6xM/9hBM6NlU6plyJ0nH3gQAoJmOnCi585PVbpKbQgZnbitVYmSohJ/jql+c7qb9bS9WF36gHzhF/E4fJkI69b90+E+JEE7qMJHyl7llqdp72XMwymfXsNDn1ObCD26uuAMAAJrnSIkSSRI4UxIjjEwhX3FuLfzgZsdq06Lf2weTIYfVIUvRFovJO2zvuVv/DGNGCid7ri3W91KJz7HrCz+42XcXAAA0y2MTJfXh/EOhgok5bKU1XPjBzQ3hYFTqYcwfFHCpf6V9DFP4+/lgAmQp95MiF0SHKdq/3K73MLupWnkNhYXHnDOHKXO4u8pXAICG+dxEyZ2frC6l+tLnvFDB2OzXh8SNmDHCGN35yep22v/S1VeaNP338DAhcpgUOfyv7bVoq8NWXsP6XLGrAoUHnondlNm5YD/VvBK/CwAADfHIREl9kB/Gl4wwDnupEiMbvrZkEu78ZLWf5NW2/14t/ODmktWmQb93nXyyQkRCBO7byf02XsMk24ZcF/usHCS5UuCl7ydZct8DADTD5yVKSuhjD5N+ITBIlRzZFQ4mpa4O/HMBl/qUxCNn+Du2lPvJkKX40ARO4nAGyrD+57Y9UzHP0RKqXh96Plj4wc1ldwAAwNl7aKLkzk9WV5K8Jzxwapu5XzniazHOxJ2frA6TXGz5Za4v/OBm12ozgd+npdxvl9WJKhEYN8mTMp6ti6mqi0p8ntrDAAA0wGcSJXd+XPQmFUbhfnLkh5IjnK07Py6i93fVusLvG5vKKM8AACAASURBVKP//TlMiBz+XBQVaMxz/8HkydDfgNY8cz8s9PKvLfzw5pq7AADg7DwsUTJImT1i4TQkR2icghLfXi4wit+XpagUgWm2lweSJws/1IpxSp/F3ZQ53D1Jvrzww5sb7gIAgLPxiUTJnR+vdpJ8ICxwJJIjNFohie+thR/e7Fhtjvm7sZhPJkQ6kRSBVv6NyCeTJ7tCYv/SYPtJOgs/vLntLgAAmLxPJ0qG0VYCPo/kCFOhoMT3k14ocITfh09Xihi0DmXaS5U0GaZKnPj70dzndrHD3VMlS5wzAAAm7Iv3N6PPdpIZSRJ4+IFlkGSw8MM3HFqYEjODAi7y+sIP3/CSi8+o9jQPVovMqBYBkuSJVJUKV+pnxX7uJ06G/qY0ah/TSZlzMy+k+iir4x4AAJjwDvSwouTOj5/dSHJJSCBJ9cXhIFVyZFc4mCZ3fvxsP8mrBfyOLktecufHzy6meqHUiYHrwOlInDTr+V7ycPf1hR++0XUXAABMzszBwUHu/PjZpSR/Fg4cjv+SHHEwZioV9Dx/auGHbwyteLH3eCfaaAGT2RsOI3Fyls/8bsod7r668MM3Bu4CAIDJOEyU9JK8LhwUajNVcmRDKJh2d3787DDt/6J+c+GHb6xY7WLu6aXcT4x0UrXOATgLDyZONlQdT+zvwCBlDndPfBgCADAxh4mSUoflUa6dJGv1IVfrHlqhkK8u95Ms+b1t9X28FIkRYDocDoffSFVx4m/T+P42lHpe3U/SUc0EADB+M/v/srqY5P8VCgo5zG4kWfMFIG1Tz2nYTfuHnl5b+OEba1a8dfduJ8lKJEaA6baT+0mToXDY54zwvupIxAEAjNcXc5COMNBy60k2Fn6ktRYtdpBB2v/yYGvhR5IkbXDnX549TIp0oqIVaI8L9c+rd/7l2cM2XVXi5Ec+0jmNhR++cfvOvzzbSZnD3S/U95FzOwDAGM3s/9/VfpJXhYKWud9a60e+vqLd6hcHHxRwqU8u/EjriSm9R5dzv2LkoogAhe5Nh/XedCgcJ/570k25w93XF370RtddAAAwHjP7/3d1GC8taIf7rbV8tUch7vzLs4tJttP+dkXXF370Rt+KT819uZRPttM6LyoAf7Ff71mH8VHPSf7GDFLucPfVhR+9MXAXAACMnkQJbaC1FsW68y/P9tP+qsC9JMteJDX+XuzkfmJEOy2Ao9tJMqj3s7vCcaS/OSWfYZ9SlQQAMHoz+/939UAYmOID5cDLU0pVtzMqoVe3FwLNvP+Wcj8xcklEAEbisEJai67P/xtUSkXtw+wn6WhHCgAwWhIlTNuhYJAqOeJggJcEZXxNubnwozdWrHZj7rlOVI0ATHLve5g0UTn92b9Jy6nal5XY3lG1LQDAiEmUMA026wPiQCjgLy8Hevn/2bv37DiqQ33Yr7Pyt7vlCdCMwM0IaEaAGIHbvyQkAYNFThLM1W3u5HznWL6AbQzH7REgj4DWCJBGgDQBJDEBf39UCQnjiy7d6ro8z1q9THJWDq5dtav23u++JFcbfpk7SXoGAeb6nHVTBCPOGgGY/zdxkr3gxLcxrT/cff302//X9xQAAEyHoISq2kyyHHs1w+MGBXoptpto+qD1W6ff/r9ld/zEn69+ilBkGKtGAKrqQYQmu9+t5SQXW3r590+//X9D1QEA4PgEJVTJ7vYCY3syw1MHBFbS/DMhVk+//X8Dd/vEnqndFSOLaed+7wB11vrQpCVtoycxsQQAYApO7Xxxfju20mC+VlOcPWIbAXj2QMBiku9bcKkvOItops9RN3vByKJ2AEBjtDI0Kb9rk7R3JeR52xQDABzPqZ3Pz0/S/MOAqZ7NshO3fPqSrbXgQIMAX/y/boott5o+4//K6Uv/N3LHZ/L87AYjLysRgMbbC00uNT80+eWLVh/uvpNkcPqSSSYAAEd1aufz821epszJu1921lYUBRx6AKANe3BvJum3YUDnhJ6ZXopgZBjnjQC02YMk46a3wX/5ojUrbx9nJ0lPGwoA4GhO7Xx+fpTksqJghtazezC7hjscteM/SPJDCy71pdOXnFF0zGelF+EIAI+3eyZgYycu/fLF/1tKcrXF/a6BPhcAwOGd2mnP4Bsna29rrbe/21AccMxO/5d/WkvzB70fnH77u0V3+0jPRz/FmSPDCEcAOFx7fXz67e8atWXTL1/+aZzkXEvvq/YUAMARnHr48GF++fJPDxUFU1JsrfX2d7bWgul19kdp/sq/YruIt78zA/Lgz0U/RTCymOafWwPAbG1mdwV4AyY5/fLln9p+uPu1029/t+SxBgA4uN2gxDklHMf6vo6VQU6Ybke/l+IA96YfTPrW6be/W3bHD/Q8LEU4AsDsrCYZ171tX4YlG2nn4e5Jcv7029+NPc4AAAezG5QMk9xTHBzCZtmBGttaC2bayZ8kebHhl7l6+u3vBu72E5+BXpw5AsDJ2z3PZHz67e8mNf2G9pP82OJ7+FJd7x0AwEnbDUq6SbYUBwfsLC03bR9jqGjnfph2hNgveKf87t73IhwBoDo2UwQmI+2p2vXfBtpZAADPdurhw4e7Dchx2nvgHU/3oOwYOXcETq5T35btIq7UcdBlhvd8McXWWsIRAKqolts5/fLln5aTXGzpPdtM0rdFMgDA0+0PSnpJflIklBqxNzHUVUvC69Z33PeFI4txVhgA1bdTfrs3avjNbfO5nOspVpbo1wEAPMEfd//h9NvfbfzyxZ/ux6qSNlvPbjhyybkjMLeO/Bd/GrTkXTw8famdHfZfvvjTbjiymPYeMgtA/XRSbMXbr93f/GGGSSZp56rNs0mWU2zpCQDAY/y6oiRJfvniT70kazFo0yab2T2k8ZK9a2HefvniT93yPfxcwy/1welL3y227N72UwxQDH1nAai5a6cvfbdU02/xpMXf4VreNwCAk/CboKRsPI6SXFY0jSYcgep24NvwDt5J0mvDapJyAsLuuSPPecIBaJBXTl+q3xmG5crdH1p8386fvlS/c2YAAGbtd0FJ2Xhci4Nkm2YnRTiyUscODbRBOcvxxxZc6lunL3233OD7uHvuyDDJi55sABrcv+jXccveX7740zDJvRbfu5dOX/pu4hEGANjzpKCkF1twNaXzIhyB+nTaJ2n+wPrq6UvfDRp6/wYpwhHnjgDQFrX9rv/yxZ/Gae/5nDtJBnYXAADY89igpGw4DtLuJcl1bvQKR6B+nfWlJFdbcKnP13Hm6VPuWy97547YWguANrpy+tJ3o5p+x9u8k8JmihVB2x5hAICnBCVlw3GYdi9JrgvhCNRYi1bx1XYg5ZH7ZWstAPitWm7lVH7T19LeyQ7rKVaWCEsAgNZ7alBSNh6HEZZU0e6B7BPhCNTbL1/8aSXJy01/Z52+9F2v5vepn+JQdltrwfSsJ9k/QLdR/vbbTjGQ+TjbJ7V1TLna+kke93/rJ+nu+8+9WHlGc+0k6dVxwL38vk9a/G2/f/rSd0OPMADQds8MSsrG4zDCkirYDUfG9pOFZvjliz8tJvm+BZda20NDyxU/kxjghGdZLf98NNjYX/c3mrT93jHfLfuDlG6KYGXXYN9/f1ZpURMPTl/6blF7rJaunb703ZJHGABoswMFJfsaj+OYRXvS1styXzGwAM1Sbvew0YL3aq1nKrZkxQ88yU72Qo9J+edG9lZ9rNmy5cTeRb0Uq1KSvSBl978TqFAVb52+9N1yTetYW86Le5Lzpy99N/YIAwBtdeCgJEl2Pv9zP8WgvY7YbD1Iua1W551vNxQHNNPO539eTnKx6ZeZpNd559vtmt6jQZIfPK002O4qkEn551qKFSEb2iC1/bYMyn/cXbGy/08TnjgJL3Te+XatpvVnnORci+/dK513vrWtMwDQSocKSsrGYzfJKM0f3DtJmykGKFY0TKEdWjQAX+sO987nf16LyQHUv42xkb0AZC3JduedbyeKprXfn93gZFD+V4NYkcL03zv9Gk+SaPO3fyfJoK5BFwDAcRw6KNnXgBykWF1iz/ajWU+xamRFQxRa2AttRyd8tfPOt4Ma36NhnM9FPewPQ37904oQjvDe66XYyqv/yJ/a+xzWg8473y7WtB50y/doW5/7Wq8GBgA4qiMHJfsakUvlz1L+p9tdNTJJEY5oeEJbe5+f/3mU5HILOtn9ug7Ult+3Dd82KmY1e+eD7IYhJltwUu/FQfa28NoNUKxC4WnOd975dlzT571f9tva2g5YT7GyRJ8VAGiNYwUl+xqS3STLafd+rr8rluwFIxMDGUD5vuwl+akFl3ql8863oxrfpzacH0N17Q9EJrE6hGq/L/cHJ4NYgcJv+0ODGp9Xspjk+zZ/i+q8MhgA4LCmEpTsa0y2eYWJYAQ4yHtykuTFhl/meuedb/s1vke9tCPMogJ1JXurQ9aSrAlEaMi3bv/Kk90Q5UUl09r33KDG55UsJbna4vt3v/POt0OPMQDQBlMNSh5pVA6TDBvcKVpPMagxSTGwIRgBdLYLL9X5oOiWhFmcvNXsO0PEYeq09Du4Pzzpe9e2xrXOO98u1fi5HafdOyfUepUwAMBBzSwo2dew7CVZLH917Qztn/E5MbgBHOFd2JYzL+o+GDJI8oMnluM8RtmbSLERkyngWe9d4Uk7vNJ559uVGj+nk5Y/m7U9bwYA4KBmHpQ80sDspti7ePdXtQMgN/PbLTA2hCLAlN5/K0lebvhlbqY4wH27xvdpI/bW53BW97UbJrbOgqm8iwfZC04G3svNuK1lG2Gjps9kN0UAfrbF9/AlfWMAoMlONCh5Rkeot+/PWXaGVss/15Js7/6p0QfM8D3XlsNA6z5btO37kPNstt2E+byfdydb7QYnVp3U9B1a8zPM+uX7v9PWqpjivBnfPgCgkeYelDyxFfbZr4dAJsn+fz6oyb5/3ui8a4YnMLd32VqaPxv2Qefdbxdrfp820t7BDx7zWJRtiWKlyLsmVEDF3tu7ocmg7CdYdVIP1zrv1niLzs9av0XnTpJe5936rh4GAHiSygYlAI3oTX725+UkF1vQae7XOZDe+az1B7VSrBaZZC8Y2VAkUKv3eC+/3eJXcFJdL9U5fN757M/DJPda/r0cCEsAgKYRlADMriM9SDtmHb7Veffb5Rrfp36SHz2xrbOaIhiZJFkz4AON+wb3Ijip7O1JzVcltGQizFO/oZ13vx14lAGAJhGUAMyuE72W5h/6WfuO8s5nf57EfveNr47ZC0UmnXftrw4t/Cb3IjjRfpjuM7WS5OUW38P7nXe/HXqUAYCmEJQAzKbzPEpyuQWX+kKdB513PvvzYpLvPbHNq4IRjABPf//3sheaLMYZVfNwpfPut6MaP0Pd8jtztsX3sNZnzgAA7CcoAZh+x7mX5KcWXGoTBjjWYlZxI6pdBCPA8b4Ju4fDL8Yqw5NU9wkX3SQbaXfQdr7z7rdjjzIAUHeCEoDpd5onaf4gy2aKA9zrvL/4KO1Y9dNUDyIYAWb3jVjM3oqTs0pEe+Ipz0q//B61OSx5pfPutyseZwCgzgQlANPtLA+T3GvBpb7UeffbSY3vUy/FahJbrdTHr4ev1/nZA2r7zRikWG0y8O2Yugedd79d1P6rdzVJMjBxAQCoM0EJwPQ6yW3ZfqH2h3fufPbncZJzntpK20yykr1wZFuRABX5hgxShCaLsX3jtLzVeffb5Zo/F0tJrra5akRYAgDUmKAEYHod5JUkL7egE9yr+RYZgyQ/eGIr+WxNUoYjnXe/3VAkQA2+Kb3shSbONjmeF+o+yG4iRtZThCUmNwAAtSMoAZhGx/jTvwzSjsH3Vzrv3V2p+b2axGBWVaxnNxh57+5EcQA1/750s7c912Js0XWUb8Kg897d7Zo/B21vZzTiPgIA7fNHRQBw7A5xN8m4BZe62oCQZBghyVxvQfZWjawYRAGapHynjXfbBDuf/mV/aGKLrmc7m2Q5ybDm17FYfuvOtvg+jstyAACoDStKAI5p59O/LCe52PTLTNLvvHd3o8b3qS1nyFTNespwxKoRoMVthX6KAEBo8mznO+/dHdf8fveSrLW8zXG/897doccZAKgLQQnA8TrC/SQ/tuBSr3Teuzuq+b0aJbnsqT0RD7IXjmwoDoDftR0GKYKTs0rk90WUmk/O2HefJ2l3WHKt897dJY80AFAHghKA43WC19L8QY71znt3+zW/T70kP3liZ1fEKbfTSnHeiC21AA7+fVqM0KRxbY/y/g6T3Gv5vaz9CiEAoB0EJQBH7/yO0o4VCi903ru7VvN7tZLkZU/tVG2mCEbGdX8+ACryrepFaLJfI1Yj7Hz6l6UkV1t+L4UlAEDlCUoAjtbp7aUdKxRqP0ix8+lfBkl+8NROxXqKA1ptqQUw+3aG0CR5pfPe3ZUG3M9xknNtfqSTDEysAACqTFACcLQO7yTJiw2/zM0Ue4Rv1/xebcTBucfhvBGA+X7H2nwQfCPOK2lR2/FZ91JYAgBUlqAE4PAd3bZsofBS5727E/eqlR6kPHPEeSMAlfqu7YYmw7TnkPDVznt3Bw24d90UEw/avEJoJ0lP2wIAqCJBCcDhO7kbaf7gxIPOe3cX3atWEY4A1Os7t5hilcliC751Vzrv3R014J71kqy1vG2ynmJlibYGAFApghKAw3Vw23AoeCNm++18+pflJBc9tU8lHAGof9ukm73ApMltlNqvdC3vVz/FyhJhibYHAFAhghKAg3dsF5N834JLfavz3t3lmt+rXpKfPLWPJRwBaG5bpZciMFlK884zacy2TTuf/mWY5F7LH9f7nffuDtVaAKAqBCUAB+vQdlNsldD0Q1Sbsg/4JO0+MPVRwhGA9rVd+ikCkyZtzVX7rUH33Z9hhCXCEgCgMgQlAAfrzLZlG6fnO+/d3aj5vWrLyp9nEY4AsPttHKY5W3PVfuXrvvsyTnKu5Y/ntc57d5fUUgBg3gQlAM/uxA6S/NCCS23KQakbaf7KnydZTzJOMhaOAPCYb2QvybD81flb+ULnvbtrDbknbTj/7lnOd967O1ZDAYB5EpQAPLsDu5bkbMMvc73z3t1+A+7VKMnllj2iu+HISt1XAwFwot/M3QPg67iiYTNJvyHnlXRTHO5+tuWPpLAEAJgrQQnA0zqvn7Rm4P2lzvt3JzW/V90kG2nOPuxPs5liW61x5/1mzKgFYK7fz2HqdwD8g877DTmv5JPWnIXX+PYoAFBfghKAJ3dae0l+asGlXuu8X/+9oXc++cs4zd7neyd74chEDQVgBt/SQYrQpC7f0/Od95uxCmHnk7/0U6ws6bT5EUwyMAkEAJgHQQnAkzuskyQvNvwyi60r3q/31hXlwE5Tz5F5kGSlKQNBANTiu1qXVSaNGlgvw5If2/74RVgCAMyBoATg8R3VpSRXW3Cpr3Tev7vSgPs1SbNCrb1zR9537ggAc/3GLqYITap64Ph6ioH17YaU9zDJvZY/do2YyAMA1IugBOD3HdS2nHXRiL29GzSgsJMiHHHuCABV/N72srfKpGptpEZsI7qvrNsyYedpGhWAAY37JvaTdMv/2Ct/B7Wd4lyqJIltlaE6BCUAv2/0rKS6syandplJeg3YcqsJh58+SBGOrKh9ANTk+ztMEZicrdBf65UmfUtbcPbaQQhLgHm9g3eDkEH55+5/nuV3bzPFhM3d31qSDZPo4OQISgB+2yBaTPJ9Cy71rc77d5cbcL9GSS7X8K++mWQ5RUCi8w9AXb/D/RSBSRUG9HdSbNe00aDybcPknWdZ7bx/d6C2ATN81w5SBCG7v7MV/GuupwhO1pKsWYUCsyEoAdhrILVly61GdDjLLUDWanS/dpKsJFk2KwiABrahljL/bbnWO+/f7TesXCep5qDdSbrfef/uUE0DpvReHaQIRAap9zmXq2V/eGJ3ApgOQQnAXqNpOcnFFlzq802YbVmjWZbrKVaPrFg9AkAL2lPDzHdbrqadV9KEbUanQVgCHPU92k+ymPoHI8+ymmJi3sTEPDgaQQlAfl1u+0MLLvVK5/27I/dr9n/FFAezLzdpCxAAOOS3einzmdTwUpO2JSkH+SZp/qrnZ2lUCAbM9L25mL1wpI1B82aK0GQsNIGDE5QAJNn5+NWNFjSg1jsffNNvyP1aSzW3oVhNMu588M1YrQKAZOfjV3tJRikGrE5qoH8nSa/zwTfbDSpHYUnhvHYW8JT35LD83jynRH61G5osdz74ZkNxwJMJSgANqo9fHaWeB4If1kudD76ZNOB+DZPcq9JfKburRzQ8AeBJ3++TPsdktfPBN4OGlWHV2kDzIiwB9n9bFjPfLR/rZG9b6AZNJoBpEZQAbW9Y9ZP82IJLvdb54JulBtyvbpKNVGM2pdUjAHC07/kwxSqTWc/4vdL54JtRA8tOWCIsAf34Ihw5ydWKjSrCFKtMRib7wR5BCdD2BtYkzT7QLSmW2vabMGNk5+NXl5NcnHODchyrRwBgGt/13VnAs2yLvdD54Ju1hpXbOMm5tj8+SQZNu7fAM99/wxTba72oNKZmNUVgMlEUtJ2gBGhzI2spydUWXOornQ++WWnA/eol+WlO/3pLlAFgdt/4QYoVJrMY+GrMhJFHymwcYYmwBNrxjeimCEeW4uyRmfd5rdajzQQlQFsbW70ka2n+Mt0HnQ++WWzIPZvk5GcO3U+xvdZErQGAE2mfjTL9AKAx7aFHymst9uQXlkCzvwnDnNzZVhQ2U6wwGSsK2kZQArS10TVJ85fr7iTpNWTLrUGSH06wYThOMZvG6hEAOPnvfi/TD0ze6nzwzXLDyqmbZBJhyU6KVUMbag/4BjDVfvHQpEHaRFACtLHhtZjk+xZcamMGBHY+fnUjs19mvZoiHFlRSwCgEt//XqY7m7iJ55V0k2zEbOv1FCtLTHKB+r7PBuU7X0BSLc4woTUEJUDbGl9t6Uyudj74ZtCQezbLs2R2kqyUDb8NNQQAKtt+W8rxA5NGDqbvfPxqP8XKEmGJsATq+A4bZHbnVDE99/WbaTpBCdC2Rtg47Zih8nwTGjAzDLY2UxzOPtaZBoBatQuOG5jc73zwzbCBZdNP8qOnRFgCNXpvDSIgqd1tS7ELw0hR0ESCEqA9X/SPTvSci3m60vmwGQ2XnY+mHmwV22t9aHstAKhx++C4gcn5zofNO6R256NXh0nueULKsORDYQlUuF8+ioCk7u/Zpc6HtuOiWQQlQJs61GuZ/TkXc2+wdD78pt+QezbNmZH3UwQka2oDADSqfXeUwKQ4/PvD5m0fIiz51YPOh98sKgao1PtpEAFJ01xLMhJM0xR/UARAS4zS/JAk5UBBUxz3IPqdJFeSLHQ+/GYoJAGAZul8+M12uYq2V37zdw76P01xRlkTy2ScYuCq7V4uVyYDc7bz0auDnY9enaTY3UFI0iwXk6yVIRjUnhUlQBsaZm3Zs/la58NvlhpyzxaTfH/E//lmilktOscA0K4232FXmDSm7fSYshinHefyPcv9zofNO5MGavIeGsQKkjZpzBbgtJegBGhDA20tydmGX+Zmii0kthtwv466TdpqioBk4qkHgFa3/Q4TmLzS1LPLdj56dSXJy54IYQmc8LtnEAFJW60nWWzi1pa0g6AEaHojbZTkcgsutTGd/CPcM+ePAACPa1PsBiZPa1c0+bySbpJJmj9h6EDtRWEJzPydM4iAhOK7OmzqJASaTVACNLmh1kvyUwsutTGHVZb3bC3Pnv25k2ScIiDZ8LQDAM9oX4zy5K2oVjsffjNo6LULS/bYFgZm854ZREDC7zV2e0uaS1ACNLnBNmlBY20nSa8JW26V92ycp++nvZPikPflplwzAHBi7YxenhyYNHYQ/RATUdrgvHPs4ETeqZAU22Mv6rtTF4ISoKmNtqUkV3X2anXPBkl+eML/2QHtAMC02hz9FBMvHp1Q81JTzzorr3kSYUmj2s8wp/dJLwISDm4zRVhiq2wqT1ACNLHh1k2y0YKOYKO2iXjCCqD1FKtHdGYBgGm3PQb57XYxjVqp+5jrFZbsEZbA4d8hvQhIOOLjE+eWUAOCEqB5X+Arr64kebkFDY1+53IzzufYufLqMMm9ff/VapJR53IzZ3UCAJVrh4ySPJfkQedyM85+O2Cbq83Ody4LS+AA741uilV4AhK8d2k0QQnQtEbcYpLvW3CpVzqXm7GPdtnw3kgxu/FBkmUBCQAwhzbJUorAZNS5/M1yg69zGGHJLoN28PR+2lL5sxKNabnWueyQd6pJUAI0rSG30YJG3Hrn8jf9Bt23UZJeikGJDU8yADDn9uRSiokb2w2+zlGSy+54kgZNQIIpvwcFJMzK/c7lb4aKgaoRlABNatAtJ7nYgkt9oXO5OQeh7Vx5tdvkgQgAgIq2wcaxlc6uzSRDq5pp+TtBQMJJEpZQOYISoCmNukGSH1pwqZapAgAwrTb0OMKS/e4nWTKJhxa+C4bZO6sJTuydKyyhSgQlQBMadd0kay1o1G2mOMBdxw0AgGm1pSdJXlQSe0WSIiwZKwpaUP+HEZAwX8ISKuMPigBogKWWNOyGQhIAAKZsMcm6YvhVJ8m9nSuvTnauvNpXHDTRzpVXhztXXt1Ici9CEubrXLm6EebOihKg7g28fpIfW3CpZlkAADCrNnU3ySTJWaXxO9eSjExYoiF1fZBkWV2ngox5MHdWlAB1N25DezbFqhkAAJi6MgQYlO1Ofutiko1yiyKoZ4fyyquDcpu9HyIkoZqsLGHurCgB6tzYGyW53IJLfaVz+ZsVdxwAgBm3r/spVpZ0lMZjraY4v2RNUVCTOj1IcQaJc4ioi2udy9+YKMpcCEqAWtoe/bWX4gD3pnfiVrujOwN3HACAE2pnC0ue7X6Spe7oju24qGo9HkRAQn2d747ujBUDJ83WW0BdjVvQedtJMnSrAQA4Kd3RnbUU23DxZOeSbGyP/jpSFFTJ9uivve3RX1dSbLElR6cPRwAAIABJREFUJKGu7m2P/rqoGDhpVpQAdWz8LSW52oJLfas7urPsjgMAMIc29zDJPSXxTJspVpfYKpd51tdeihUk55QGDbGTZFCG93AiBCVA3RqA3SQbseUWAADMuu09jLDkwO33JKPu6M5EUXCCdbQXAQnNtZmkb5tDToqtt4C6Gacd+yU7vAwAgLkq94g/ryQO5MUkP2yP/jouB69hZsottsZJfoqQhOZ6LsWZWXAirCgB6tQYXEzyfQsu9Up3dGfkjgMAUJF2+HKSi0ricG36JMtmQjPlutiLFSS0z7Xu6I7JpMycoASoS4OwLVtubXZHd3ruOAAAFWuPj2Nw9rB2UmzH5dxBjlv/ehGQ0G7ny1WOMDO23gLqYpR2bLk1dKsBAKia7ujOMMl9JXEonSRXt0d/3SjPe4FDscUW/GrZtobMmhUlQB0ah4MkP7TgUi0nBQCg6m3zcQzYHtV6kiUHvnOAetaLFSTwu3dod3SnrxiYFUEJUPUGYjfJWopDvJpsM0nfHsYAANSgfT5JclZpHNlqii25JoqCR+pXLwISeBoTTJkZQQlQ9YbiKMnlFlzqK93RnRV3HACAGrTRhSXTITBht071IiCBg3rJe5NZEJQAVW4s9pP82IJLfdAd3Vl0xwEAqFFbXVgyPfdTBCYbiqJ19agXAQkclh05mAmHuQNVNm7BNe7EAe4AANRMOUA1SHHuBsdzLslP26O/jh1W3A4OaYdjeS5FwAhTZUUJUNWG4yjt2HLrre7ozrI7DgBATdvtvRRnCnaUxtRYYdLs+jKKcKTuVpNsl+++pFhddxD9JN19f76oKI/FFlxMlaAE0NmaY+OqO7ozcMcBAKh5+72fYqBQWDJdApNm9XFHEZDU0Xr5fltLstYd3Vmbwftz9zeI7QwPwxZcTJWgBKhiI3KS5s+s2Ck/6Do9AAA0oQ0vLJkdgUl968UgRUBi5UC9+uqTJCtJVk56EL48/2mx/L3sdjzTle7ozkgxMA2CEqBqDcmlJFd9zAEAoHZteWHJbN1PMrbVTC3qwiACkrpZTXFO6kpVVigITQ7shWmv9KGdBCVAlRqT3SQbLehYrXdHd/ruOAAADWzTC0tmbzXFCpOJoqjc8z9MshTbJ9XFTopwZLnqK7bK7dt2ny/v10feibY1ZxoEJUCVPvwraccsCbMdAABocrt+Mcn3SmLmVlOsMBkrirk/88MUK0ieUxq1sFner5U6nm/heXus896FHJegBNCZOlm23AIAoA3t+2GSe0riRGymWGEyVhQn+ox3U8zuN8O/PhoVLgpMfvcedLA7xyIoAeb/cb/cmi23ig/3FR9uAABa0c4fRlhyknaSLCdZ1ueY6XPdSzE4vRgBSV0U29VdaeZ2dduX/zqKwC5JrnSvmJjK0QlKgCp81JeTXGzBpb7U1IYZAAA8oa0/jLDkpO0kWUkxMLyhOKb2LA9SnBFxTmnUxv0k4zb0w8sJqOO0+9D3nSQ9QTFHJSgBqtDY/KEFl3qte+XOkjsOAEAL2/zDCEvmZTXFCpMVRXGs53eY5EWlURv309KgsBxjGae923EZe+HIBCXAPD/g3SRrLfiAm9UAAEDb2/7DCEvmaTPFtlxj/ZID91WXUgQkzn+oj9YGJI95fsdp7+qS562m4ygEJcA8P97jtGPZ8itmcAEAoP0vLKmA3W25lrtX7qwpjt89o/0UAYnttepFQPLkd+5y2nd2yf3ulTtDTwCHJSgB5vGx7pWN87MtuNwH3St3Ft11AABIti//dSnJVSVRCespBlFX2r7KxPZatSUgefaz3U+xuuRsyy7dqhIOTVACzKMB2pYZDbbcAgCA3/cJxjFjv2r9ltatMikn8O1ur9XxGNSKgORwz3q3rONtCgKtKuHQBCXACX2Y/9bGPTLf6l65vezuAwDA7/oH4whLqmj3LJOV7pXbGw199oaxeqSuyoCkmc+m9+7ULXSv3DZxlQMTlAAn8TEepAhJ2nQI3mr3yu2Buw8AAE/sJ4wjLKmyBylmoa/UfbBx+/Lf+inCkWGsHqkjAcn06sIoyeWWXO6V7pXbI3edgxKUAD7C07eTpK8RBwAAz+wvjCMsqYPahSbbl//WS7KYYnut59zC2j53S/rWU68bwyT3WnCp5XboVpVwMIISYDYf3g9bdWD7o650P7oz8hQAAMCB+g5LSUYx078u9kKTj6p1HuP2h3/tZi8cOetW1dZqklH3ozsTRTGzujJMO8KS892P7ozdcQ5CUALM4oO7mGKrrTZ2dNa7H93pewoAAOBQfYheirMxXlYatbKaIjSZdD+az0Hw5bOzWP6cO1L/50lAcnJ1Z5jmhyWb3Y/u9NxtDkJQAkzzI9stOzdtXjr/wrw6CAAA0IA+RZsnXdXdZpLJ7q/70Z2NGT4ngxTByCBWjjSBgGR+79xxmj+G85Jni4MQlADT+rj2yw5NmxupttwCAIDj9y1MwGqGnRShyVr558ZRw5MyGBkk6Zd/CtKaYTPJ0CD23N+544a/bx90P7qz6E7zLIISYBofVXsKFw28ftX26AUAgBr3MwYpJmM5iLtZVpNspwhQ8sg/J0UQkhShSC9WjDS1/zxydkSl3rdrDa9rz89ylRvN8EdFABzjQ9otOy72ES5mwQhJAABgSspZ5r3tD/86SnJZiTTG7jki+pHtIyCprkGSjTR3AuxiipWK8ERWlABHUm61tRKzu5LkWvejO0uKAQAAZtb/6KWYpOWwbqgfAUk93rP9JD829Rl0qDvPIigBjvDx/NtSkqtKIkmx726v+9Ftq0kAAGD2fZFhilnBzqiAevSXl5Ms6zPX5h3b5PGeF7of3V5zl3kSQQlwmA+mrbZ+75XuR7dXFAMAAJxov2SU5KLSgEoSkNT7HTtJM1fv3e9+dHvoDvMkghLgoB9KW2393oPuR7cXFQMAAMytj7Ic23FBVQhImvFu7SVZS/NW7u10P7rddYd5EkEJ8OyP5Ae22npCA7DX/VjjDwAA5txfGcZ2XDBv95Ms6SM35r3a1HGgV7of2xWExxOUAE/7MNpq68ne6n58e1kxAABAZfouo9iOC07a/SSj7se3NxRF496rkzRvxd797se23+LxBCXAkz6I/RQhyVml8Tur3Y9vDxQDAABUsh9jOy6YPQFJ89+nvSQ/Neyydrof236LxxOUAI/7GA5j6foTP6pJ+hqDAABQ6T7NYtmnccYiTJeApF3v0lGSyw27LNtv8Vh/UATAIx/BcZJ7EZI8iQYhAABUXPfj2yvdj2/3klxJMdkJOJ7VJC91P7491CduleUGvkOHbiuPY0UJkOTXJZUrsdXW06x3P77dVwwAAFC7vs4oyTmlAYe2mmLC4ERRtPYdOkwxobZJFrof3952d9nPihJgd1n6WoQkzzJUBAAAUC/dj29vlIf3vpBi0Bd4tt0VJAMhSevfoeMkmw27rEV3lkcJSqDlyv0mv4+ttp7lSvfj22uKAQAA6qn78e217se3B0leSfMG/WBaBCQ8zqhh1zN0S3mUrbegpbY/+Fs3yTjJy0rjmTbL/Y0BAIDm9ImWUgz+mTQGttji2e/MjSTPNeiSnnfeDvtZUQLt/Lj1U2y1JSQ5mKEiAACAZul+fHs5SS8OfKfdNmMFCQez3LDrsf0Wv2FFCbTM9vt/G5YfN7OmDuZa95PbS4oBAAAa3U/qxYHvtMtmklH3k9tjRcEB35PdJBtpznjSZvcTu4ewR1AC7fqoLSe5qCQO1XDsdz+5va0oAACgFX2mXoqJZVbf0+R+roCEo74jmzau9EL3E+fRUhCUQDs+ZN0kK0leVBqH8lL3E0uPAQCghX2oQYoVJvpQNIWAhGm8G3tJfmrQJd3vfnJ76M6SCEqgBR+xv/dThCTPKY1DedD95Jb9KgEAoN39qUEEJtRbGZDcGre0/jJ94zRnjGmn+8mtrltKIiiBpjcKhnEeyZE+lEl63U9u2XILAADY7VuNYgIa9dGqgGT7/b93UxzOvZikr65yCOfbGCTye4ISaG4jwXkkR/dK95NbK4oBAAB4pJ81jMCEaltNMm5RQDJIMkxyzq3niOwoQhJBCTSxkeA8Eh9IAABgtv2uYQQmVMtqihUkk5bUwV6KLaCMfTANz3c/ubWhGNrtD4oAGtVQ6CdZ01A4sp0kS4oBAAB4mu4nt8bdT271kpxPscURzMtqkpe6n9watCgkWUpxoLixD6ZlqAiwogSa01BYTDGbwnkkR/dW95Nby4oBAAA4ZH9sGCtMOFmtWkFS1rNuinGPl91+pmyzDL9pMUEJNKOxMEpyWUkc2U7ZwBSSAAAAx+mbDSMwYbbupziDZNKyutVNMkly1iPAjDivtuUEJVDnhsJ7f+smWY5Dy45jNcmw++ntDUUBAABMqa82TLGtr0FdpuV+klEb+67l2MdEfWLWdaz76e2hYmgvQQloKLTZle6nt0eKAQAAmFG/bZBihYmzFDiKnSQraWlAsq8eTdQhTshC99Pb24qhnQQlUM9GQj9FSOI8kqNZT7GKZE1RAAAAJ9CHG6RYYeJsBQ5iJ8XuEcttH7Tdfu9vo9hqnJPzVvfT27ZlbylBCdSukfD3YdlgEpIczbUko+6nt8wQAAAATro/10uxwsT2yTzOZvl8rOizJtvv/b2f5EePBSdZB7ufOtS9rQQlUK9GwihmUhzVTpJh91MHcwEAAHPv23VTrDBZiklwFGdnjruf3horit/Uk0lsucXJe8XYUTsJSqA+DYRxzDo6qgcpQhKrSAAAgKr19YYpVhE8pzRa2Vdd7n56a6IoflcvBkl+UBLMo152P721qBjaR1AC1W8cOLT96HZSbLNlf0kAAKDqfb9BnGPSln5qeUD7rQ3F8cT6MInVJMzP8+pn+whKoNoNg37ZgDKz6PDKA9tvObAdAACoUz+wlyIwGca2XE2ymeK80bHdDg5UB35SEszRle6nt0aKoV0EJVDdhsEgRUiiYXx417qf3lpSDAAAQI37hN0kiylCEzsM1Ndqiu21nHlw8Gd/KclVJcEc7XQ/vdVVDO0iKIFqNgqGSe4picN/yOLAdgAAoHl9xH6KwGQxJtPVpW9qe62jP++T2HaL+Tvf/fTWWDG0h6AEqtYgePfvy0kuKolDW02y2P3MEmYAAKCx/UWrTKptM8koyYq+6bGec4OVVMFq97NbA8XQHoISqFZjYJzknJI4tCvdz+wdCQAAtKr/2E9xjskwVpnM2/0k4+5ntyaKYirP9Y9Kgop4ofuZs2/b4o+KACrREOgmmcSMoMPaTLGKxEcLAABolbIftJRkafvdvy+mCExeVjInZj3JOEVAYvXIFB9tRUCFLJXvVlrAihKYs+13/95LsXepkORwHiQZapACAAD82r+0Ndds7Z49smzC3syeYQe5UzXPdz9z1lAbWFEC820A9FOsJLFM+nAN01H3s1vLigIAAGBPOZFsnGRcTsrbXWkiNDmeBynOHRkritk/xoqAihmmOHuIhhOUwJyUS6PHEZIcxnqKVSRm7gAAADxFOQN6Ocmy0OTI/c9xbK0FbbcUQUkr2HoL5mDrnb8Pk9xTElTUZpKNFKudVhY+F0wBAECD+qO9FKHJIM40edRuOLKy8Lmtdub0fA5jvITqOb/wuRVlTScogZP/6I+SXFYS1MhO2VlY1lkAAIBG9U+7KQKTxfLXxh0PhCPVeiYHSX5QElTM5sLnt3qKodkEJXCyH/xxknNKghq7n2SkAwEAAI3ss/azF5y82OBLfZC9FfT6NtV6BntJflISVNBLC5/fmiiG5hKUwMl86LspZqhY1kwT7KQIS5YVBQAANLovO0gRnAxS7+BkM8lKksnC57dW3NnKP3fbcZ4r1bO68PmtgWJoLkEJzP4D300xU8WBeTTNgyTDhc8dbAgAAC3p3+6uOOmXv6r2czfLfvgkRTiy4e7V6jlbiYmmVJNVJQ0mKIHZftyFJDTdepKBsAQAAFrb7x2kCE162QtQTnI1wE6StbLvvZYiGNE/qfczNYwD3amm+wuf3xoqhmYSlMDsPuz9sqFmuShNJywBAAAe7RMPknRTBCdJsRIl5X932MmEu2FIyn72dvmfN6wWaeSz002ypSSoqOe9d5pJUAIz+ai/JiShbcqw5GthCQAAcNg+9P5AJQuffz1RKq1/JsZJzikJKuj+wudfDxVD8whKYPof88UUB7cLSdBYAAAAgEPaeue1XpKflAQVtWCiaPP8QRHAVD/kwyTfR0hCO50rg0IAAAA4soXPv95Icl9JUFFLiqB5rCiBKdm65LAxSLKZpL/whfNKAAAAOLqtS3/vJtmIyahUz06SnrGPZrGiBKbz8V6KkASS5LmYWQEAAMAxlYPQdi2gijox9tE4ghI4pq1Lfx8nuaok4FdDRQAAAMBxLXxxa5LkipKggpbKVU80hKAEjqEMSc4pCfiN58qt6AAAAOBYFr64NYrzSqgeq0oaxhklcERbl14bR0gCT/Jg4YuvLZEGAABgKozDUEHlWSVfO6ukAawogcN/mLtbl15b8XGGp3pZEQAAADAtC198PUxyXklQIVaVNIgVJXAIW5de6yaZJDmrNOCZXlr44uuJYgAAAGBati691k8yjrEZqsGqkoawogQO/iEWksDh9BUBAAAA07TwxddrC1983U+xumRTiTBnVpU0hKAEDkBIAkfSVQQAAADMwsIXX48Xvvi6lyIwWVUizNFSOXZIjQlK4BmEJHBkVpQAAAAwU2VgMkiykCI0uZYiOLHahJNiVUkDOKMEnmLrbSEJHMPqwpdfDxQDAAAAsGvr7dc2kjzXsMsqzir50lkldWVFCTz5pd2PkAQAAAAApmm5gddkVUnNCUrgMYQkAAAAADAT4xQrMJpmqdydhhoSlMAjti691s+pTHIqnZxK/Pz8jvybeKMAAAAA+y18+fV2TmW5geMgnZxq5GqZVhCUwD5bl35dSdJRGgAAAAAwE+OGXte5rUuv9dze+hGUQElIAlM3UQQAAADAoxa++Hojyf2GXt7IHa4fQQlESAIzavRMlAIAAADwBKOGXte5rUuvDdzeehGU0HpCEpiJB4oAAAAAeBKrSqgSQQmtJiSBmVlRBAAAAMAzjBt6XS9aVVIvghJaS0gCM7MTQQkAAADwDOW23asNvbyxO1wfghJaaevt1/p5mEkeppOHiZ+f31R/ywtffL3tTQMAAAA808OMGjo+8tzW268N3eB6EJTQOltvW0kCM7STZFkxAAAAAAex8GWjV5Usb739Wtddrj5BCa0iJIGZGy18aTUJAAAAcCijhl5XJ8mS21t9px4+fKgUaIWtt18XksBsrS58+dVAMQAAAACHtfX26xtJnmvo5T2/8OVXG+5ydVlRQltetN0UBygJSWA2NpMsKgYAAADgiEYNvrax21ttVpTQeGVIMklyVmnATOwkGSx8+dWaogAAAACOquGrSl5a+PKribtcTVaU0PSXq5AEZktIAgAAAEzLqMHXNnZ7q0tQQmMJSWDm1pP0hSQAAADANCx8+dU4xfbeTfTc1tuvj9zlahKU0EhCEpi5aylWkmwoCgAAAGCKRg2+tqWtt1/vucXV44wSGkdIAjO1mmRkT00AAABgVhp+VsmDhS+/WnSXq+WPioDGefhwOUISmPpHPMnywn++nigKAAAAYKYePhwludfQq3t569+vDYyxVIsVJTTK1r9fGyc5pyTg2DaTrCVZSTJZ+M/XG4oEAAAAOClb/35tLc2dDL2ZpL/wn6+33elqsKKEJr08xxGSPGo9yZJi4BA2hCIAAABABSwl+aGh1/ZceX0jt7karCihEbb+/fo4QpJH3U+ytPCfryTTAAAAANTO1r9fnyR5scGX+MLCf75ac6fnz4oSmvDCHEZI8qj7C//5aqgYAAAAAKixUZq7qiRJxkn6bvP8/UERUGdlSHJPSfyGkAQAAACA2lv4z1eTJKsNvsSzW/9+3bb5FSAoobaEJI91XkgCAAAAQIOMmn59W/9+vec2z5eghFra+vfr/QhJHnV+4T9fjRUDAAAAAE1Rriq53+BL7KTYgos5EpRQO2VIMlESvyEkAQAAAKCpRg2/vhdtwTVfghJqZV9I0lEaSZKdJK8ISQAAAABoqoX/fLWRZq8qSWzBNVd/VATUxda/Xu+mWIYmJCnsJBks/PdXa4oCAAAAgEZ7mKUki2nu2ODuFlwDN/vkWVFCLZQhySTJWaWRREgCAAAAQIss/PdX20mWG36ZL279yxZc8yAooS5WIiTZJSQBAAAAoI2Wk2w2/BpHW/+yBddJE5RQeVv/en2c5EUlkURIAgAAAEBLlatKRg2/zE6KSeOcoFMPHz5UClTW1r9eX05yUUkkSdaTDIUkAAAAAO1SrjDoKYlfraT55xhfWfjvr0Zu9ckQlFDlD8AwyT0lkaQISQZlag4AAABAQ2396/XFFAd692OXlbZ7waTpkyEoocofhO+VRBIhCQAAAECjlStGRkkW0/yVEhzcZpK+ccHZ+6MioIIfhn6SsZJIIiQBAAAAaKx9Ack5pcFjPJfiAPuhopgtK0qo4sdhLZLzREgCAAAA0Fhb/3p9KUVIYhyMZzm/8N9fjRXD7AhKqNLHoZtkkuSs0hCSAAAAADRROQY2TvKy0uCAdlKMFTqvZEYEJVTnI/HP1ydxQFWyG5L8f0ISAAAAgCbZ+qeJwhyZMcMZ+oMioCIfiXGEJF54AAAAAA0lJOGYzqY4r4QZEJRQhY/EUhxYlQhJAAAAAJpsEiEJx3Nu65+vDxXD9AlKmKuyYl9VEkISAAAAgKba+ufryxGSMB3LW/98va8YpssZJczzA9FPkaR3Wl4UQhIAAACAhtr65+uDJD8oCaZoM0nfeOL0WFHCvD4Qu3syCkmEJAAAAABNNlYETNlzSVYUw/QISjhxQpJfCUkAAAAAGqzcdv45JcEMvFhu6cYUCEqYB3syCkkAAAAA2mCkCJihiw53nw5BCSdq65+vj5Kca3kxCEkAAAAAGm7rn68vxmoSZs/h7lMgKOEkPw7DJJdbXgw7EZIAAAAAtMGiIuAEdJJMyuMOOKJTDx8+VArM3NZ/XejHuSRFSPI/N9c8EQAAAADNtvVfF7bjjF5OTrGLzf/cNEH7CKwo4SQ+Cg5vF5IAAAAAtMbWf13oRUjCyTqb4mxojkBQwkmYREgiJAEAAABoD2dGMA/ntv7rgrDkCAQlzNTWf10Yp0gz20pIAgAAANA+ghLm5eLWf10YKobDEZQwM2WFPNfyYhCSAAAAAAAn6Z6w5HAEJcxEeXj7vZYXw3khCQAAAAAwB8vlGC0HIChh6vYd3t5m5xf+5+bY0wAAAAAAzEEnyURYcjCCEmZhknYf3i4kAQAAAADmTVhyQIISpsrh7bkmJAEAAAAAKqKTZFzuAsQTCEqYGoe35/7C/9xc8iQAAAAAtJ5za6mSsylWlghLnuDUw4cPlQLHtvWPC/0kP7a4CO4v/O/NoScBAAAAgK1/XOgl+UlJUDHrSQYL/3tzW1H8lqCEabz4uylS8ufa+oJZ+N+b9vkDAAAA4Fdb/7iwkfaOl1FdwpLHsPUW07DS4pf+epKBRwAAAACAR0wUARVUbMP1D9tw7Sco4Vi2/nFhlOTFll7+ZqSvAAAAADzeWBFQUcKSR9h6iyPb+seFQZIfWlwEm0k2PAm1tJ1iu7iNJJOF/73pPgIAAABTZ/stKs42XCVBCUd9yfdSDDR3lAYNsJliC7lloQkAAAAwLVv/uDBMck9JUGHCkghKOPpLfi3FEi1omvtJRgITAAAAYBqsKqEGNpMsLvzvzbW2FoAzSjjKy305QhKa61ySn7b+cWHZPo0AAADAFAwVARX3XIozS/ptLQArSjiUrX9cWEzyvZKgJVqfpgMAAADHV048vqgkqLidFNtwtW4sTFDCYV7ovTiXhHZ+IJYW/vfmuM4X8fObb/SS9NxOamD7zPUbazOuDwPFXFlrZ67f2FYMtMHPb77RT3Kg1atnrt+YKDGYb5tAPeSk3vlNph7Zyp5aOV/3sbDDEpRw8Jf5W17mtPwDcbW+H4if33xjlOSy20gNrJ65fmMw4/qg8VOTZ6H8c5JkO8VkDUEKdfjm7g6G7b7Ldv/sZTp7k28m2dhXP1LWj20DUPBrPRyU9bB/gvVwkhOY8EHl3//98jnbfQaNoTy9Dq3t/tmWb9jWWxe65fvCs0EdvLVw9eZyWy5WUMJBX+SWB0Ly0sLVm7VsvAlKqBFBCQfpWK+VHcyJASnm+G3dHYQdZG9g7GxF6shGWUd2A8YNd4yG1sNeWf9262Iv1TgsefdbtaYeNvr5G5TP3SDJi0pkKtb3tfFWmnqRwhJq5v7C1ZvDNlyooISDvMCdSwKFnST9has3a9fJEZRQI4ISjvJuniRZKTvVG4qEGb079ocig1RjMPaw9WQSASPNqIe7dbFO9VDQ34xncDHJ7s+25LP3oGzjrTRtVXEZloyTvOw2U4d+epLFhas3G726X1DCs17cvTiXBH7zcVi4enNQwwb9KIISalLHBCUc03rZ6VwRmnDMd0U3xUDYIPULRp5FwEhd6mGvrH+7dbHTsHq4slsXbS1Z6eewn2QpwpF5e5Bk3LSVJltvXVhKMvJsUZN+1nDhanMPeReU8KwX9iSWkMKjardHo6CEGhGUMNXnKXuhiQEoDvJ+6GVvpnCb2sC7AaNZ7lSpHg7Trm1pBP3VexaHKQIS2yNVy2ZZV5ab0r4rJymPkpxze6m4nRQrSyZNvDhBCU97UY9iYBWe9GHo1WnJoaCEGhGUMKv39kqSkcEnHvNO6KYYkB3GYFhisJb51MNe2hmOPKsejgX9c3kehykGrZ9TGpVv3y2nmYGJ1UtU3fmFqzfHTbsoQQlPejkPkvygJOCJrixcvTmqUWN/FEEJ9SAoYdYelB3qiaJot3Kf+WHsDf7Ud3KKgdqxomBG9XCYYkBQPXz6d2vc5IOtK/Y8jiIgqZuU5U0vAAAgAElEQVTGBSbJr+cFD1Kcx9SP4ITqadwh74ISHvcy7qY4l0TjAJ5sc+HqzV6NGv2jCEqoB0EJJ/aspVhhMlEU7VGuHllKEZBo6x7cTva2OdlQHByzHvbKOrgUA3+H6n+kYdsNVeiZHJRl67tQ/2/VknCfWSnHSyex8nG/BynOLWnEd0lQwuMq/krM6IGDeGXh6s1azOwSlFAjghJO/JkrO9XOZWiwcmB2FHt/T6tDbFUWR6mHgxQBiXp4fPdjO8lpPJPdFAGJ8Q9tOziQrbcu9FOEJYL+PetJBk0IS/7gXvJIhR9qJMCBDRQBQO29mOTHn998Y1wOmNAgP7/5xuDnN9+YJPkpBmen5eUkP/z85huTcuAbDloPf1APp+Zckp/Uw2M9l4tJNmL8o8ltu5GiYNoWrt5cS7FlJHvOJlkrQ6Ras6KEX20tXeil2HJLKgoHs76wfLMWHwIrSqgRK0qYp50UM3SXFUW9lQOHoxSDJcz4vR3b2KEeqof1eS6tImlf3RhafcW0bS1dWEpyVUn8ri81WFi+WdvVXFaUsN9KhCRwGPalBGiWTpKr5QzdvuKon5/ffKO3b+a6wdmT8WKsMOG39XCgHs61Hvp+PfnZ7KeYHCokaVfdWCtXEMHULCzfXE6xDSK/7UtNtpYu1La+CUpIkmwtXRjFoC8cpe4YEABoZqf6x5/ffGNJUdTDz2++0f35zTfGKbbYMjA7v3qzO1DbUxytrIe9n998YyUCkip8v8bq4e+ez2GKcwUc2N4+nSTf24qLaVtYvjlMsWqJR+rb1tKFYR3/8oISsrV0oR9b8gAAPGp3dYmzSyqsHPjYiLMPquLFFGcnLKs7ramD3bIe/hQz9aviXIpZ9CP18NfvxL3YQaPtLpeTKmCaFlMcZs5v3atjWCIoabmtpQvdFFtuAUdjAACg2V5MsmFLoeopt/fZSDHhx+BX9Vws647tTppdDxdTbGVk4l31dMr7stbmb1g5MO75ZNe5n998Y02AyLQsLN/cThGW7CiN37m3tXRhXKe/sKCEUSw9heOwBzBA83VSbCk0UhTzt2+brR+0Y2tRd763HVcj6+HueUDfq4eV91z5DVtp2+Bw+a2w2pBHnU1ixTBTs7B8cyPJIMKSxzlXp7BEUNJiW0tvDJJTF5NT8fPzO/Jv4m0C0BqXy33fdaznpJy9vhEDX3Wze5iuc3+aUQ+XUqwicQ5JvbycFq3yKoM83wqeRFjCVC0s31xLTi0ZI3vs79zWUj22vROUtNTW0hvdJGMlAQBwKOd0rE9euYpkJcXsddts1VMne+f+9BRHbevhJMlV9bDW9fD7pq8uKVeSCPJ4FmEJU7WwfGOc5LySeHwfqg5hiaCkvUaxRBqmYVsRALSyY73285tv2H7xBJR766/FIdFNsbu6xNkl9aqHu6u5DD43w+7qkkEDn9VxrCThcG06YQlTU4YlV5TEY1U+LBGUtFCx5VYuKgmYykdwTSkAtNJzZcdaWDJD5bkwziJpnt1Z7bayq0c9XI7VXE2thz+U97dJz6qQhMM6GzuuMEULyzdGSe4riceqdFhy6uHDh25Ri2xdvNBNMSNPZxOOb3Xh2s1BTToNoySX3TLqUK/OXL8xmHF90PhhmnaSDM5cF5xPuZ52k6zE7PU2WE8yVIcqWQ97ZT08qzSa3/5Ksnjm+o3tGj+vwyT33EqO4dqZ6zecpcXUbF28MI7w9knuL1y7OazaX8qKkvYZRUgC0zJRBACt14mVJVNVlqWDottjd9sTW3FVqx4OynooJGmHF1NsxdWv6fPaj5CE47tYBm4wFWUQsKokHutcGSRViqCkRbYuXhjEllswTSuKAIAIS6amHKCYxMSeNtah78sVsMy/Hi6l2PLOVlvtq4c/1m2guFyBOHH7mJJl7TmmbDHF6ll+r3JhiaCkJcott8ZKAqZmfeHaTVtEALBLWHJM5d7y92Jwts0ulwcxM796OE5yVUm02r2a1cMV3w2m3J5zfhZTs3Dt5naSQYQlT1KpsERQ0h5LMTMPpmlZEQDwmM71ROf68MpBOSufSZJzP7/5xpp6dOJ1sPvzm2+sxV7q7NXDlarXw3L1k20ambazKbath6kQljz7m1OVsERQ0gJbFy/04xBnmKbNhWs3x4oBgMcQlhyCwVmeYPfckp6iOJl6mGLrIueRsN/LVf6ele+HkdvEjFwsz2qCqRCWPNO5rYsXlub9lxCUtMDDh6fGDx+eip+f39R+Q28WAJ7ibGx5epBBLoOzPKserdnObub1sB+HtvP0eljVsGQcW24x42fMxBemaeHaze2HD08NHj48tW5c7bG/q/M+J0tQ0vyG75JGL0zVtTPXb0wUAwDP8LKDqZ/aRhWScBDO/pltPeyX9dAWzTxN5ULLciDNllvM2nMptrGHqTlz/YaVJU937+c331ic17/81MOHD92C5jZ8eylmB5llAdOxnmRQftjq9j4Y5YS34Dtz/cYpjwwVrQ8n3fi5cub6jZGSf+o96Sfplr9++eulGYPor5y5fmPFXf7d/V5JewZn15NspxiQzr4/c5DJF/vqR8q60d33Z1sGCnfKNtiaGjTVejhpUV/x0Xq4Vv7nJNk4c/3GxgHrYPeRethr0busEvWwDNo3avLs7pTP2mTfM7dWx/7kFO7boPzHQVl3BjV6/zz/tHcEHONdNolJQ5X63ghKml3pVlLsKwpM50Xdr2sDSVACv6kPgpJ6dSD6SRbLDnUdOxK1/n7M4J42fXB2PXsDYmsn0cErJ0ftBoyDNDc8EZaoh1Wuh4MUoUm/xt+rWnzT5tGvOUIZjZOs2IngQO+iYdnOq3Lg+ODM9RuL7hgz6utMIiypzPdGUNLcyraY5HslATrm8+pQCEqocH0QlNT33vXKzvSwZh2K1TPXbwzcv0Z2BncHZCdJJlWZJVwO2g7K+tKk8haWHP/ZaGJIslsPKzMwXb7vBvt+jXrvnbl+oz/Hct2o6PO7mmR85vqNsTfNke7tYoptrqoa9r8k+EL7eC7f9xPd1UVQ0txKthZ7zcK0XsyLdZ8JLCiB39QHQUkz7mO/7FCfq8lfudXPQcM6gevZmy28UZOyXyx/TVhtLiw53ntzkmaEJA+yF47UoR72Us+g/0munbl+Y2kO5Tiu4Hd/M8nQIPrU7vEgySjVC0xMekE7uQV1T1DSzAo2SrWXokKdOmDDJuwhKyiB39QHQUnzOhZL5a/qg38vtHFwtyGdv80U4ci4zpMnynsxTP0Ha21pd7R7X/fJdLUKKZ9yL3opQpOlmt+PE/2mVXA1yU6S0ZnrN5a9YWZyv4dJlivWtrOqhFk/9+PUZxLYSbp/5vqN4Un8iwQlzatUvSQ/KQk4ls0kS006fFdQAr+pD4KSZt7XbooZiBcr/Nec23Ylc743a6nvoPyDJMtNHBip4aqs39WnnPB2DDV/P05qXA/vl/VwrYH3ZpAiuKxbPTzxMxsqNiG0EbsO1OTdtZLqrC45scFaWv3cjyMseZzzJ7G14R+Uc+OMFQEc2Wb58u01KSQBaIMz129sl9uAPJ9in/AqOvvzm28stem+lJ29ug3O7iS5luT5M9dvLDZ19uiZ6zfWygGfhSRXyuuuk7MpBv95tpWa1sMrSRbOXL8xbOpqvDPXb0zKevh8jerhZopw56RV5ft5/8z1G1a0nVzbblDWjSo4V05Ohlk+98OyHcpv3Ssn+cyUoKRZHdFBqnvwFVS5oX8/xTLansP3AGrfudgoO9WvpJoDTqNyhmQb2qaj1GtG3O7AbO/M9RtLbRkEKweiRkl6qV9gcrYM43hyPRzXrI+4vx6O2rJiqPx21aUenvjWxOU2TFXYgum8FQVzqR+jJOer8vy7I5zAM79UoWe+SlZm3Y/6ozJujlOnHralk/BC+Wc3ycCd5wi2U+zRvLZw7abtGgCa2cFYKWf9VWnLhqQY6Flueke7HNSq05l5V1Js7bPd4jqznSLIW059zv1Jihm+G7Y4fGw9rNPWajvlu1E9rHY9PD+nVXbDilz72JtlbnVj/PObbyTJvTn/VYYptnqFmT/zWxcvJNU7q2eeniv7doNZ/QucUdIQWxcvLCW52oJLfWvh2k2HpcHhO8qjOKMEduuDM0q8A6ugsQeClsviJzXp1D1IcS7Zhpryu/tYh3N/9nvF1qm/uX+DJD/U5K97LcWh2CYwPb4eLqcagddcgoKKnMMqJKlOnRhm/mGJ7w0nZuvihTq1q0+sf71w7eZM+te23mpGpdntxDTdqpAEADisMqiq2lZcjWy77Tt4teqduc0UYZXDeJ9cb3bP/Xkh1T33Z7+xveN/rYe9sh5Wvn+X5IVyqzshyZPr4bCsh+tz/KvMMyhYnPNtuCYkqVSdGCd5a85/jUV3gpOycO3mWpL+nL8BVXN56+KFwSz+HwtKmmGU5ieLO7EXJABw9I717jLtqoQlL5YzvptmnGJZfJVdKc8lm6gZB6o7a+W5P2+l2ucmdHICe1fXRNXDyp0kb525fmPQ1EPaZ1QP+3Oqh/NeTTHPcYDVMjCmWvVhOcU5o/MiKOFELVy7uVH2Y1aVxl5bp1w4MFWCkprbunihl/oshz9W46h8MQAAHLVjvZZqhSWjJpVveR7CyxX+K66nmL0+UhuOVH+WU8xorHIn/WyKbYpaqzzb4myF/4qrSfrl80T16+FcQ5JyddS8nuedGBCvsqUUq0PnofPzm294NjhRC9dubi9cuznIfEPCKumkmKA1VYKS+mtDA/PBwrWb9n8EAI6tDEt6c+xc79eYVSXluSRVPi/v2pnrN/pmrx+7/mzsW11SVefaOoBVXneVJ9HtriLZUJumUg+vzPhfVYVzOeZZl4e2hKt0PdjOfFcbDdwF5mHh2s1hxdthJ+nl8szuqfmjMq2vcj+2lxt+mZux5RYAMOXOdTmgOMn8t6cZ1b2zve9ckiraSbJom62p16Hln998Y5JiJl8VVy+Mf37zjX6bBuTLejiucJ9uUVA59Xo4+v/Zu9PkNo603fsXnvDng2EDhFdAeAUsr0DwCliM120NFiCo/Zy2ZUlm0YPk7ue4BQGy5hMCV2BwBQJX0OAKDG4Aw9kA3w+VtCiJIwhUDvX/RVTYlrsNICuzKjPvzDvHzUbfPH8XnfLQlcPLbb0fdzms24s2MBg3G9uS1nNUN51gDhivK93hVpXbOxkRtmRy62Z/UVmI2FHieWXIwW+My4+fsIoDAAAsenDtShquNbMbw/c+qYvnkuwpTfEzoMYvtQ3tOPj1lpKOwXGunkuyY9ohQZLltcNFp+LacOjw8sjS53IuiV99EBtW83Ym1uTWzerk1s325NbNqaT/SNpUunibIAmC6fMRKPH3AVWXtBb4z3xcfvyEgS0AAFgKM8EUO/BVvJ2QManDXEz1sy2JFD/Lb0PTSqdb1/JTAM1jzZybEzzzO10cG25VOt066YsyaYeRpMcL+M85EyQxiwhsBP+2Cex5Vf9HsndmQ5SHMjYBkp6kP02fr0jNg2t9vkWl4CJQ4q/QzybZVz52zAAAALsD7L7sT/Ku+7gq0eFUP7crnS655bNtR4mkDdnfofWhxBwGHSzz+1wcN22YeoHs2mHLtMPL3DOXnum2dlu2qU3eSXJWRzMzuXUzURogWaeawfXnwOTWzUv3+QiU+PigajViFQorKhQU8EXKLQAAkAkzmbdr+WvEnk5MuJZya6PS6TLJZacd9eRGOruj8pCCqy23VvfOJH3m2IR73trhF3O0ww0H75mNSeg9dpN4We9HspMGMgq1TCetRmnSagxUKGwGPvfIFc5VVKFw6fcYgRI/JYH/vsflNrmkAQBApuqyO8Eb+1RYJiWKSym3ZpK+YHLW+mSVK2f/HLU2bjbqIZa3+V1XHGuHERPN1tth/4LtcMPRZ6eNQAmBdn/ZqMPVEAty0mrUJA0Vfrp/hGdt0rpcn49AiX8PrFhuHpa5KKTcAgAAmTNpmmKLX2HVs0Pdew59l8PJ2T412Ym25GKwpB3aobvm97QdbIcESfxqhxsOB5htvBN5j/hb5/sW3jvBzc2ZIMlAYc87Imy9SWv+Ph+BEu8cJNKBAr7icpt80gAAwNoge8fiV4h9KKdxsxFLWnXk6zA562Zbci1YsiIptIPdW3JnIot26HY73Dvhf7Lh+C68rFPK7XG2lfcGFvpEUSiFN2ndLEkHPemgGPi8I1fYV1E6mLvPR6DEr4dWrLCjutvl9pMBdxoAAFhkczLV+fRAjq1iZ3LWYQ4GSzZDOdjd/I5N2iEu0A63P/hXTgdJLE0+s5vEfwOK4NJtYJViQAA2J635DnYnUOKXJODfNlN4q7wAAIBnzIGgW5Y+fsWDidyW3Dk4usXkrPPtybVgSSjnD7gyLiRI4kc7nFY63VjSbfNHG5zndCzqMfdwHlEIBTdp3WyJM0kQlrn6fARK/HloxQp7N0lcbj9hmysAAHClY21rYtfZXSWOrWJnos8TR4IlLrjie5oU8/3XHfk6BEn8aottSWVPnp1VC59JXfa/jg8ohYtLU25xVjCCc2XSunnhPh+BEn+E/NDaLbefsM0VAAC4MtCeyt7Kc5fTb7nSH90iSOJdmxpK2qAeB/X9NwiSePt+80HVQtmMqCFB2KcILqwtd3YLA1b7TARKPBD4bpKZPDm4FAAA5G7QaGNXiZNpD8xuEhdWsW9XOt2E6ukfE9zacuCrrPm6q8R8bxeeEQQrERom18Mxyvjzqj4XltlNsk61QaDWLrqrhECJH0IeDLbL7ScjbjEAAHCJWXXbs/HZjk7iutAf3RNn2vnerhJJO9Rnr7/3DsFKBGhEEWBOVc+/f8wtROAu1GchUOI4E/kKdTfJfrn9hE42AABwla30W5FLheDIbpKZpLpHaWNwslj2V297t6vEkd0k+2JSDQBCeycDIbvQrhICJe5LeCADAABkz+Qr37Pw0ZFjReFCfzQmf3ww7WoqN87i8W2c5cL3JVgJAIGYtG5WJa1SEsiBc/ehCJS4/dCK5Gie6gXYKbefDLjLAADAcTZ2ldRc+fGO7CbZrnS6fapiOMwh4Lctfw1vdpWYdmh7XHibw9sBICgRRYCcOPeuEgIlLisoVkEK8JqpQH5pAADgBRsT9EUzMeqC2PLn74tzSYJU6XTbknZzXr/PK7H8+bvmfgGhKlEEyJ2CqoHOOXJxHXedqy9FoMRRk9s3q7K/em9Z2uVHHOAOAADcZ9LM2Ei/VXWkCGwHKWJS/QQtVnr+jC3rDgUljzVuNkqWx4UzkTIZ4SP9EPIoogiQI2tmrv1UBErcFerKuX3ZOxgVAABgHjZ2lVgfvI6bjVhS0eJXeFzpdAdUv3CZc2cSy18jZlx4qoTzgWBB5gFyE5QEAITrzD7nJ5SReya3b5YU7qqdpPzoCasCAQCATwaSNjP+zKoDv9vmBO2+/DtsG3OodLrtcbNRl70zOFqO1zWb40JSbsEWG+fh1Mz7Hn6/UyJKAcAJ6pPbN0unzUuzo8TRGye7q/eW1tEuP3rS4/YCAADPBt0DCx9btfmbx81GTXZTkbRIuZUrNoNyRbN7yjkmgLSS0/sCZC2iCAAgaEWlc+4nIlDCQCFLCbcWAAB4KutDp6uWf29ss6wrnW6fKpcflU53KOmxxa9Qd7RobLbDbXNfABts7SgBAITt1Dl3AiWOmdy+aXv13rLslB89GXCHAQCAp7KetFmx/Htji5+dUN1yKZG9g92vuHaouzkv4Yqlj5+J3SSwyNKOwiuUPAAEb9XMvR+LQIl7WvwuAAAA5+QmDZRJ92MrDew2B7jnk5kYtXkehmu7Smx+nzap7+CAPUvvPyAv2DWIvIpP+hcEStwT4ot5u/zoyYhbCwAAPDbI+gPHzUaUw/5oQlXLtbbs7SqJHSsLWwvNZrIbsAIODXkOAEs1ogiQUyc+6wmUOGRy+2asMA9xZ8ALAADgAZPuZ93Sx29XOl0G7TlmeVfJqivpt8z3sJWOmd0kcIWN94FzafiAJRpQBMip4uT2zWMXhhEocUlBdRWkwK4tdpMAAADf5SgdVGTxsxNqGmR3V4kru/ttfQ92k8Altt67MUWPPCg/ejJUQfsBzkNycZ3nIlDissnfb9o8rI+ONgAAACR7E7TsJoEk67tK4py3Q3aTwKVnwcDSR7fM7kogD/oUARjzvEOghEHpUjva5X8/oaMNAABAn/QsPYoeR8cRlj7XevotM0G7RjsEJEm7Fj6zKHY4gvctELri5O8fp98iUOKOKLDfw24SAAAAj5jD422cl7eXo9RmOAezq2E7p+MydnUB79h6N9waNxs1ih+hK//7yUh2ApKACz7q8xEocUdoO0rYTQIAAOD5YCGrfiNFD4fqRT2n7bBHlYODbKYFok0gL1oUAXKKHSUumvz9ZiQ7q/eWhd0kAAAAAQwWMuo3kh8bH6l0ukNJexY+OrL80218/j67uuDwc2Bm6eNXx80G8xoIXvnfT4aSHlMSyKGVyd9vVo/+AYESN0SB/Z4+u0kAAAD8Yc5FWLXRb+TwaJyiZ+Ezi7ZS7pjzUVYsfDSTwXCZzWD6rXGzEXMLkAOJpH2KATkUHf0HAiUO3pRAHrAAAACgP3oWdpPAxfoR0Q4BZ/Qsf36b80oQOrPYuS57O7gAW97bUf8J5eGEtYB+y76kePL3m9xVv00lDSVNzTZMAAByzaz0DpmNSaD9SqfLBC1OVOl0R+NmY0fSlYw/OpKdXRaRhc/c4xB3OP4cGIybjX3Z2W0lpWnSB+NmIzKpwIAglf/9ZDj5+81Y0h+UBnLkvb4XgRLLzPkkIVmRtMmdDaqOStKu0pVm/fK/nzCQAgDkUTVPg4SMDKhWOIe+7ARK8tIOe1QxeKAnu/MMBEuQC+V/P+lP/n5zQ9IbSgM5UZz8/Wb1cK6T1Fu2FRSpIHFxOX6tqaBHKujPyTc3e5NvggvwAQBwlqqFzxxl+Fk2djizmwTnMbAxaM56F5k5J2iFdggcq+fAdzgMlsTcDoSs/O8nPRX0mQqaMRfGlZMrOqz/BErsiygCeGZd0tvJNzf7k29uVikOAEBOZP7OyyodjqXc6zPSbuEC7WDPwkfXAv88KU1/N6KWwZPnwLYDX6Uo6c242WhzVxCy8m9Phqbvu0tpIAf+6oMRKHHoZgCeuSJpOPnmZkxRAAByIKI/ulADqhQcry9ZtwsbzxiClfBJz6HvcmvcbAw55B0hK//2ZFr+7UkkaUPpecRA8GMhAiUWTb65WVK6IgHwVVHSm8k3N3sUBQAgLx3ojGS5gq9qoTwHVClcgI0J/SjwZwztEF6pdLoDubW6fVXSf8bNRtukzgOCVP7tSa/825Oq0oDJHiWCAP2VgphASb4G3MCyrBMsAQCEypxVkPXilmmGnxVZKNYBNQvnZSZIQx+rVWmHwJkSB7/TLUmjcbORZH22EZAlEzCpSfpM0pbSwOWMkkEIJt/crEnSJxSFVRFFgICsT765qfJvT2KKAgBAn+3Shhl+VjXj3zardLpDqhUuaFdHVvxlIOvg6GrGn7df6XSnVCv4pNLpDsbNxo7SNNAuKUralLQ5bja2JfU5hwuhMueX/NWPM9lyWAieX0nG/bNljoeGBErsYnsmQrM++ebmqPzbk4SiAAAEpG7hM0cZftZKxr+NIAnmrTeZDsTHzUaUxW4WS+ccDKhS8FRL7gVK3hsTS1ofNxsz084G5vk1JDiJEJV/ezLlnZJfJrtMCIGSmqQ+gRL7NwEIzebkm5uD8m9PeFHm3LjZoA44NqhkBTcwt8jCZ44yelbb+G28HzAPG++wUmCfY7s8sZzneE1SO8vPrHS6ka3fW+l0R+Nm47HSlFcuKyoN6Fw5cq8kt85Zsfn+H0iaMj4BvNeX9CaA31GVSL3lxE0AAtSbfHOzZlYWIL/WKAKnsIsRmMO42agr+xQ8ts5kyAqTIvCl3tSUzUHyEe0Ql+zj5a3fnSjd7bni4XfP8xjp6G/fNP0sSdo3z6ShpEHgfSAgKOXfnkwn39zcU/YpRBetKnGYu20rFAECrtstigEAEAAbabf2MvysyMLvG1GtcFGWVh2HvMiAQAl8fh5MGW8GZUXpzptNSW/HzcbBuNkYjJuN1rjZqFI8gPNCOJOpKhEosWby31+XVDgQF1fAV2vy31+zgh0A4K1xs1FSmms8a4PAJ7iYoMW89jL+vFpgn3NoxlkJCOBd0pe0Q0kEa03SI0l/jpuNEUETwGGFg0EAc5grEoESmzifBKErSoopBgCAx2y9x7IMJGTdJ92nWuESQp3cz3pxEcFKhPSe5r0SvhW9C5oMxs1GTJEA7ij/n98HIfyOyX9/XSJQAmCZ2A4NAOA9dnFZDjaynqAdUa3gSduQsjtLgHYIzMHsjKpTErmyJunNkV0mZLEA3LAXwG+oESixh4c58mBl8t9fs3sKAOAds1rRxnly+5VOdxRw0bKSHfhY1gegjihyhMKkc7xNSeTO4S6T0bjZSAiYAPTxF4FAiT1MHiMvIooAAOChxNLnZn0YYtZ9Us5FwGUMKAIAH6p0um1J25RELhWVHgI/IiUXYNUogN9A6i0ASxdRBAAAn1jcTSJlPxFc5I4Dpz4PqgH+rAF3FqGpdLqxwkj9gvn7M2/GzcZw3GxEFAeQuRB2lJB6C8DSVSkCAIBnEkufO6t0uv3Ay3ZA9QJ92XcCDcQAtkQiWJJ3q5LejpuNNum4gEwFsWucQAmALDoqAAB4YdxsJLK3m6TPHQBOFeIZN1VuK7AY5nD3SNKM0si9W5LYXQJkh0AJAAAAEAqzsnvT4lcgUAKcwkyCAsBZz4lIBEuQLnx5axbBAFii8v/5ncPcAQAAgID0LH52HtJuAXDDkCJAyCqd7lAES/DO5rjZGJCKC8BZCJTYUuDiytEFAIDjzGrDNYtfocddAJAFduYgJ/V8qDS1HWeWQKaPNxg3GzWKAliSAOYvCZQAAAAg18ygedPy1+hxJwAAWBUccXMAACAASURBVJwjabgIlkBKz08lWALgRARKACzbPkUAAHCVScMwsPw1ds3KVwAAsECVTnda6XRrkrYpDUgqSvrPuNmIKQoAHyJQAmDZRhQBAMBFR4IkRctfpcfdAJDhs69KKSBvKp1uLOk2JQHjDcESYHEm//vrIM4AIlACYNkGFAEAwFFtpWkYbNqvdLo9bgWADFUpAuRRpdNtS/pMZD1AimAJsDhBpLQjUGIP6RVAXQcAwJJxs9GTtO7AV2lzN4Bzt9sSpQDgMkyqS1Jx4RDBEgB/IVBiz5QiQA7Myv/ze59iAAC4xKEgyUz5S7vFRDcuI8QDeFlUBGTMnFsSS/pC7C5BGizhgHfgcqIQ+mQESgAsE0ESAIBTHAqSSFK70unmbfEMExHwbtC8zP+4pWcAAUsgbX99817aojRyb0CwBMh932JKoMSeEUWAHEgoAgCAC8bNRmncbAzkTpBkJjfSbrGSFgzCTxFoMJPJQOBIG690uomkTyXtUCK5VZTUI8UjkO++BYESS8r/8/uIUkDgdqnnAAAXmBWCA0lrDn2tliMTsFm/q6vUSOR9EA7APZVOd1TpdOuSPpe0S4nk0qrylxIVWJS1AH7DiECJXTOKAAGLKQIAgG3jZqOuNEiy6tDX2q90unkdiFeplbiErFf6ZjVey3pSloATcIJKpzuodLqRpM/Ege95dGXcbCQUA3B+k//9dRTC7yj/z+8ESizj4D6EaovdJAAAm0yqrbakP5SmU3BJ7NB3yfp9XaV24hKynuAPdbxGahngDJVOd2gOfP9U6RkmpKrMj03OKwEuJArgN8wkUm/lbWAKZGGv/D+/JxQDAMCWcbMRKZ3gvOXg19updLqDHPdHV6ihuIRqoL8r6zR8a1Ql4HxMSq6k0ulWlabl2hbZQfKgz3klwLnVA/gNQ4lAiV0FjVSQuLgCuvZVCCKSDADw0LjZqI6bjb6kt3JzQn4mqeXYd5pauE/0FTCvrNv1MLDPee95SXUCLsak5YornW5JaWquLXGeScjvm4RiAE43+cfXVRW0GsB85kiSPuGWWkXqLYRkJqle/tfvU4oCAJAlM+GXSFp3/KsmlU53RH+U9FuYq51HFj52GtjnfNgOR9QsYD6VTnd49B1qnlGRaVtVsXMrBLfGzUbP3GsAx6sH8jtGEoESJ24CEIA9SXH5X7/TgcBRWxQB7xxgmTwKkEjSbqXTbTv4vWxM0JL3G/OoWvjMYHeUKJ3QHVCtgMUwaTUHH/RTSkfeeTXl93yg6pHLtxScbYmsGcAp4kB+x1AiUGJV+V+/Dyf/+JqCgO92xU4SHD9YSCgFAItmJh3qplPuy2rNmauDiEqnOxw3G1l/LIESzCOy8JlZ9W9HFn4b7RBY/jt2qnfBkwEl8ldfLjLP9MiDvtzauNmIK51ujzsHvG/yj68jSauB/JyRRKDEBbtiSyb8NJOUlP/1e5uiAAAseUBdNYPpuqQrHv6E2MGUW0ftK9sVnvR9MY/MJ/bNCvEsPmdEwBJAXhzdfWMWwMRKz3BzdbdJIqnHnQM+HuOE8kMOM+QQKLFvxGARnplJ6ktqsYsEALBoR9JUHF6R/EvTcNR2pdPte9AfXcn4PkdZTUIjmOdC1isW9zP+vKwX0K2Mm42q40FcAIEzu27aktpmp0ki9+bIVsbNRkLGBOCdyT++rsqP9Mfn7YNJIlDigkFAFQth21O6iqJHgAQALiQaNxsMrE4pnyN/H9rikT2lKyR96I+uWbjvA6o/5nhOZCXrc0NGltphj+oFwAVmAUU0bjbqSoMnLi2UaSkN4gBIhdQe/urzESix7iC0w693uafBmJqHxVDSsPyvpyOKBADmsiZ2j+bRTFLdrJT0ZnCQoYgqAsfry9DC561bKNce1QuASyqdbn/cbAyUTsTecuRrFTmr5J3JP25UzTukSp8u12PcUBAocUX5X0+Hk3/cmEkqBvKTkvK/ng64swAAIOcij1La2AiUrI2bjZIngSTYV89BuxjmpFwB4Eymf9AaNxt9pam/XZgzS5Tj4PLkHzcOz5OJFc4B3oB0ZJf7f1EWbt2QAMTcTgAAkHMblU7Xm13DJqAzs/DREVUFZxk3G1XZSb8yzLgd2hgTFsfNBoe6A3C5jzJQembdngNfZ8WkBcuVyT9ulCb/uJEoTRH5SARJEJb9oxl0CJS4oFAYqFBQINf65Nuvq9xUAACQU7c9TcvAana4ykY92be0I8zGRGBMFQPgMvM8juRGsCRXz8zJt1/XVSiMVChsqlAoBjR3ycV1eA2O1nkCJW4YBPZ7Em4pAADIoe1Kp9umP3puBErg6qTUgHYIAO4wqbgi2Q+WXDE7HYM2+fbr0uTbr3uS/lA4RwUAZ/a9CJQ4oPzP34eyk+5gWdYn335d4s4CAIAc2a50unEog4SMFPOYwgLnZyajbKT4sJU6z8bnrpB+C4APHAqWBN13MfN5A0nr1DrkQP/oPxAocfTGBKDFLQUAADnhe5DE1vkIEml/4OaYYpCzz6UdAvClvzI1zyybi42DfWYeCZJwDgnyYK/8z9+nR/+AQIk7gguUsKsEAADkgPdBkiN2LXzmlXGzQZ8RJ7F1PomVHSUmDz/nlADA6c/KoeXn1mqI6bcIkiCHeh/+AYESdwwC+z1FsasEAACE7XFAQRLJ3sKdmKqED5m0bCs5HJfZ+PziuNmgHQLwRqXT7Ut6bPErRAEWa1sESZAvH419CJQ4wmz12QnsZ7GrBAAAhGqj0umGtihkYKvPSHXCMeKctQPbnx9T5QB4JpG9FFxBnVMy+fbrujiTBPmyV/7n76MP/5BAiVMO+tKBArqK0kGb+woAAAIyk/RFpdPthfbDTCqLfQsfvcKh7jjKpDS5Yunj+5bbYV92Jv7WQkwlAyBc5rwSW4stolDKcfLtjZJ00AtsPpKL66zr2LEcgRK39AP8TeuTb2/Q4QYAACHYlxSZiUz6o4vFrhIclVj63B0z8WbbIGflDgBzMQtXbCzyKI6bjVogxdhSmj4fyJNjxzwEShxS/ufTENNv0eEGAAAh2JFUs3XIc4YGlj53bdxsRFQzjJuNkuyl/xg4Ugy2Apbr7CoB4KHE0ud6329Jd5OwWAW5s1v+59PRcf+CQIlrCuqrIAV2rU++u8HAFwAA+Op2pdOtO7LSfKkspv2RWFyDlM0JG1d2i9n8HrRDAL71XXqys6vE/x0lBdVVUDHAeUgurtOu3klNgkCJe0JN5UCHGwAA+GZP0meVTjdvZ67Z6o+yqyTnzG4GW4GS3UqnO3KhHExQ1lamAXaVAPBRz8JnhvCsZDcJ8mZ22liHQIljyr8+nUraDvCnrU2+u8EhnQAAwBePlZ5HMszhb7cZGEqoermWyF6e9J5jZcGuEgBw+xm+5nOBTb67UZK0StVB3p4VZu79WARKeMDnZdANAABwHoe7SFp5SLV1HBMc2rf08WvjZoPFNTlkdjGsW/wKfcfaYU/20uCxqwSAb32XkenD2Xh3+Sqi5iCHTp2bJlDioPKvTwcWB6fLtDL57kbCHQYAAA6aKT2LpJbTXSQf6rk6gAF1bgm2HQ2M9nN6PwBgHgMLn1n1uLxqVBnkzG751+MPcT9EoISBQtZak+9uVLm9AADAIY8lVXN4FomrfdGVcbORcAvyw5xNs5bT+n4am88kdncB8M3AwmeWPC6viCqDnDlzfPEJZeSstqTNAH9X0fw2Ot0AAMC2HUktVw5wdkml0x2Nm40dSVcsfYXWuNnocW/CN242SrIbqNivdLoDR9vhcNxs7MleDvn2uNkY5DUNIaw+F6rKdqX+lN2kQbBxD2tyLHUjgOP7eyaD06kIlDiq/OvT6eTbG9uym6d3Wa5Mvr0Rlf95dgUFAABYohET8afqyV6gpGg+P+I2BK8lacXi57u+k6wt6Y2lz15RuvqyRTVFxmJlu3B0l/eN/8wiDwrivA4oAuRKcp7/Eam33B+c8tsAAACW4xapZU5W6XT7sntuHql/AjduNmqyu4t+5vq4xPKh7ofPyYjaCsATuxQBgA/sl//59Fz9PQIlDjM7LkJ9yK9MvuVgdwAAYF3PpPjA8RLuD5bBgZRbktT3JK1U24F2WKLWAsBHOBAdCGg8Q6DEdQX1VJACvTjYHQAA2HaY4gnH68vuanbuT9iD1lUHvoMPbAdKVjwqKwDIkr9B5AIXVy6uc+8mkQiUOK/869Oe7KY8WPbAt81dBgAAlq2Nm42EYviYWW3f5v5gkUxKtVuWv8a2L2cUmXa4bflrkKoQAMIyogiQAxcaQxAoCfCmeubK5LsbdLgBAIBtm+ThP1FbdneVcH8CYlKp9Rhjefl9e+ZcGQCA/4YUAQK3ZzYgnBuBEj/YTnmw9MH35Lsb5LwFAAC2kYf/GI7sKpGkPueV+M20r77SneU2ebOb5Eg7HMn+rpIiz0kACAaBEoSuddH/wyeUmfvKvz6dTr670Za0GehPPMx52+JuAwACtC+2tp/HmiN9kp4kdrt+rG36ajYnuItKgyWRJwdw4/h6tOrA90g8Lb9E0rrl77DKcxIBYqcU5uVtsKH869PB5LsbM9lfvAAsw27516eDi/6fCJQwOHXFrcl3N3rlX58S0QYAhKZX6XQTiuF042ajJ/sTgJJ0ZdxsxJVOt8ddeafS6U7HzYYLC3dWTb845q5418YTR9q4d7tJjrTD0bjZ2HagHK+Mm412pdNloRtCwURxOLIOevm+cKPvyLsZWLS5xgqk3vJE+denrqQ8WKYedxoAgNxqKd1944I2efiPLxe5kQ523QTW4IlxsxHLnd3xiefFmTjSDm+Z+wosw8jCc4r3vv/vmpIIel0U/SmE6HH516dzvUcIlHjloC0dzKQDBXqtTr67nnCfAQDIH5NKyZVULkUGjifeI1dWkK8zSesHc5/euDJw9nU3yZF2OJI7C+je0A6xJDbaKYES/9m4h17vKElTEx3sBjzPyJW/ayYdJPO2CQIlXj3AnuVhV8nm5LvrVe42AAD5U+l0h5K2HPk6qybVFN6/Rz25s/OHSVrHmRXargRJZvJ/N8khV3Z30Q4REgIl/ossfGYI6eMTqg4C0jLz53MhUEKn2EU9bjMAAPlkznPZdeTr3Bo3GxF35SOxQ9+FSVpHmSDJwKGvlJhdUSE8J13a3SWRrhCLr+M2nh11St57Nvps3r9Xyr8+G0jaofogALvlX5/1LvMfIFDi3wNsqkIhUaGggK+1yZ0bHAwIAEB+1eXOwpC+yXkNw0xguTSgJljiGBNgHMidXPF7lU63HVg77MmdoHJR0oB2iAXLuh+wMm42qhS7t++dkqQ1C8/iYRAFWCjEKhRmgc81coV9zVQoXLofQqDEQ+WHT9tyJ+XBsiSTOzfopAAAkENmtXTsyNcpSupzVz7Sklu7nAmWuDNZFUt6K7cO1G0F3A5dUaQdYsFsTEBTf/1lY0dQMPNy5YdPXTorEJhHu/xwvgPcjyJQ4q8k8N/HIaoAAORYpdPtS3rsyNdZGzcb7HZ9//6MHOyPvhk3G/QfLXLs4PZDjy2l8cmiHbp0rtPRdhjTGrAABErg+r0bhlSA5YdPB5I2qErw0F754dOFjEsIlPj7AOvJna3Wy0IKLgAA8i2RtOfId3lEDv73mVRGrvVH18fNRo90adkbNxttuRck2Vf4C8xczDbwxtQH4DJsTEKvjJsNVtX79/6pyULaLQUWKJH+mmskWAKfzLTAQCmBEv8nD4L/jaTgAgAgn46k4HIlxRMT8B9z6f4cWld6XgJ9yAyMm43SuNnoS7rlYv0M5QD3czwnXXNr3GxwxhMuY2Dpc1ms6Z9WzuroUh0JlsyoWvBAUn74dGFBSwIlfj+8BnLrIM1lIC84AAA5ZlLLJI58nVWlq7fx7v6M5ObinVVJQ3OoOJbErOIdSLri4NcLNuXWMe1wIHdSFR51RWnQkt14y1UKtF6PZGeido13h3fvoXWLz94gmWBJJHd2dgPH2TXneC8MgRL/5WG1w+rkzo2EWw0AQD6ZFE+uLA5ZJy3HsffHxZSwRUlvx80G/cglMOdQDJQGpVyTh5RbH7bDltyc0FpVGizhubmcdtiS9EfAP3Fg6XN71C5v2FrAEnwAofzw6bD88GlN6VlY7C6Ba2aSFt63IFDi/4NrJB1sSQcK/Nqc3LnOSiQAAPIrllspuKrckvfUHR5Eb46bDVJxLYhJtdVTeh5J0dX6GHrKLQ+ek0cVJf3B+UELb4d9SY8C/6m2skusEGT3oh20ZOdsEpt1M3PpIdkHVTP3OMvB/COXH1dcfvh04X09AiVhcPEAv6VMSkzuXKdjDQBADplJT1dWJJMa9Pj7Ezv8FdeUpuJiVfslmHQ0Q1lKc3JOt03Kvjy2w6HczjiwLlLiLaId1iWN5GbKu0UbWPzsTdLGOd0OqrK7czBX/cDyw2fT8sNnSfnhs5KkLyRtKx/zkHDT4/LDZ0tpg4WDgwOKNwCTO9djpau68tAYWuY3VyVVufuY07D88FluVhqaFVGbGQ/WC1QzONoesu78bFU63YSS9/d5xr290P1py81DvY/aVXrI94g7du77WlI6IeX6vd2pdLp17lejJ7eDWVJ6pkqS050/l2mHPTkQIMmynz9uNoayl+JvT1JEPXWyPdisF/uVTrfKXZDMYubDgGJNgZ6ZZFFN+QiKX+i5XH74bGlBbAIlYT2gBrK37TDrwe0adxwLMFO6SqkvqR9y4IRACfBeeyBQwuB4kT7Py4HRF7g/PvRJZ5LatM1z3c9Y6Q72ouNflQnNd/esJHfPjzlqX1Kr0umyQ+/se9pSGqx0oh1mHChpyW6KMQKw7rWHnuwGgx+bc6GApZncuV5XGhwvUhrv9d+ry5y7I/VWWPLyoCZIgkUpKo3Ov5E0mdy53p/cuR5RLADgPJfOwyDn/vH3x/V0DEWlaVVGpOM63rjZiEzQy+WzSI4OnGOCJKkjqfBcP3x3RenZJZwhdHo7HCoNFOR1ssx2IO2KmZiHG22iJ/s75qgPWCqTNegPEST5aIyx7AXOBEoCUn74bKh0CzOAOTvBkt5O7lwfmNRuAAAHmZRJsSNfZ4UB80f35/A8mZkHX/foRG3E3UvzvpuJqLfyZ4FSnNdzSU5ph0O5c67TWdYk/WkOe6cP/q4d9k07XM15XR5J2rH8NdYJljjRLhLZD5Ls877BMuXoaIWLul1++Gyw7A8hUBKYQkFJoaD9QkHi4uKa+1orFPTn9PvrbKcFAHcnTvpKD5J0wRWTGgTv7o/rh0p/aE3S2zwHTI4ESP6U++dbvDdwJnXTie1wIGnDo6+8rpwHTD5oh+Slf6fnQv0kWGK1bfTkxhl1be4GlmX6/fVeoaA3zMl9dG2XHz7LpO0RKAlM6cGzqfKTggtYtkfT76/3p99fJ6UKALipJXdSPCXjZqPGLXmn0un2JN327GsfDZjEebhPJrVPX/4FSCRpu9LpMml1djvc9uxrHw2Y1GiHMMFQF9736+NmY0jKzUzbRsm0DRfaxUzsIsaSTL+/3uP5f6y90oNnmfXJCZQEqPTgWV/pgecALu+KpAHBEgBwz5EUTy4oMng+9h615d8krZQGTN6YM0yS0CbFzMRTbM4+eCs/V67vVDrdmFZ2rnYYe9oO1yX9J9TAZSDtMEuuBEVXJXG+VTZtJJI0dKht9DkLC8tAkORE+5KiLD+QQEm4YvmRFxrwwaoIlgCAk0yKJ1d2LayOmw1Wt398j2L5OUkrpWeYbEqajJuNvu+TteNmo27Sl4yU5r/29eyDPblzTpFP7XDP069/GLicjpuNtu+7TMbNRi2Qdpi1ntyZ4ygqPd+qx+6SpbSRkulPvTXvYVck3B0sGkGSE80k1U3mpMwUDg4OKPpwG1siN3I4AqHYKT145uXKIXPwXabPg0qnW6DKwNH2kHXnZ6vS6TKwWv59Hcidg6e/4MyEY+9RX2GsmJ5J6ksayIPVpWbV8+FVDKD89yRFrOqdqy6UTL0NYWJ+37TDng8HK5uV8YftcMX3wrfVz7cxpjnnO6Etqc1zaSHPqJa5XHtfbbOLEYtkFuL2HRq/uOaz0oNnmb/fCZSE3/CGYoUKsEhbpQfPEg87nZkPKgiUwOH2QKAk3MH1yJGB9UxSlQmTY+/RIMC+6a75XQNzeLbtcq4pTVMQKbxUPgRJaIcnPXMHMgHMSqc7cqwdRgojSGm9n+/Yu/64ethTGjAZCRe5r1WluwRbDreVT7mvWBQTJAmxT7woG6UHz3o2PphASfiNrybpP5QEsFBWItuX7HwmIlACHLYHAiXh3tu6pD8c+Tq7lU434q58dI/yMDDcVZpTfShptMzgiZmMrUmqKp2MDXlVIkES2uF5zUz7Gxy2xWVOcJpJ3sO2GJm/FkOuQzb7+eNmoyXpkQfPq57SXYcj4aR2c7jLyvV31+NKp9virmERCJKcyVqQRCJQkpdG2JZ0i5IAFma39OBZ5FlHNBGBEuCwPRAoCfv+utTvuW0OM8f79yiPA8TDidup+auO/PNZSkonXqU0IHJ4reSo/AiS0A4XVY+mR9re0fZ4HjXTHktH/j6XE122+/njZmPk0TPwaOBuZK48OmwzkWfvMHYJY2EIkpxpu/TgWWzzC3zCPciFRIHkQgUcsTb9/npUevBsQFEAgFsqnW7L5IJ3YQDyaNxsDHzIn5/xPZqae9RTeKmhTlLUuxWzV6gFF0KQZLntcKD8TNgc/k7ywfsvVnrQt0/Pf+qdnxLeP1igngiSnMR6kESS/ov7EL7Sg2dTpbkeASyww0QRAICzYqUrAF3QNyu3cUSl051WOt26pG1KA6cgSLLkdqh0dfcupQHP6u5A0g4lgSXbZWcwFmX6/fWeWCxzEieCJBKBktwoPXjWV0E7KkhcXFwLudamd69XeboAgJMTKEO5s0hkRRKD7JPvVSyCJThh0CyCJFm0wak5T4l2CN/EcmdRBMIzM3UMuLTp3es9FbTOPNqxlzNBEolACR0JAJdRpwgAwE2VTrcnd1abro+bDQbbJ9+rWNIGJYEjtiudbkyQJPN2+JiSgEd1diomsrE8SaXTHVEMuKzp3es9SeuUxLH2Sr+4EySRCJTkSumXZ3QkgMUiUAIAbosl7TvyXdrjZqPKLTmeCWxtiEU9kDbMpD2yb4ctEbSEX3W2L3ZDYfFIuYWFIEhyqj2l6T+dQqAkZ0q/POtLB7vSgbi4uC59cSAfALg9geLSIpGipD535dT71TMDpn1KI5dmkj439QB22+FnImgJf7SUTrgBi3oXsSASlza9e60lHawzb3bstScdRGZBv1MIlORTTMcXWNjLr0opAIC7zIGvW458ndVxs5FwV069X0NJNXG4dN4cHto+oCicaodMPsOH+nq4KII5DiwCZ2Ph0qZ3r8WSHlESJ/f5Sr88d7KdESjJodIvz0eSGKQDi1GlCADAbZVON5E7E++b42Yj4q6cer8OD5fmvIR8ODy0fUhRONUOR5VOtybSGsGP+joUuwBweRu8i3BZJkjyhpI41o4cDpJIBEpyq/TL87ZYqQcAAPIjljurTfvjZqPELTmdOS/hC7FKOFQzmfNIWL3rdDuMxflB8KOuDsQZO5jfY1I/4rKmd6/VJHG+zfG2S788r7scJJEIlDBhQIcXuKwaRQAA7qt0uiO5dV4Jg/Hz3be+0t2bLPAJy2GqLdqBH+2wJ1JxwZ+6ukVJ4IK2zeIMYG4mSDIw/Xx80MZKvzyPffiiBEpyjBRcwGLehxQBAPjBTLq7kkbmyrjZYFB+vvt2mIrrtljkE4KtSqdbI72Jd+3wMBUXk9Bwva4mImUczm/b7JwD5ja9e62kdBEUQZJj2pgvQRKJQEnukYILuLQRRQAAXmnJnVXRybjZYGfiOVU63bY46N1n+5I+N5OY8LcdJpI+E7tL4HY9jUWwBGcjSIJLM0GSgaRVSuMjj30KkkgESiBJhUKsQmGmQkFcXFxzXAAAnyZPpnIsBRfnlVzo/o3YXeKlrUqnWzVnCMD/djg8sruEdghX62ksgiU4GUESLEah0FahsMrc2EfXRumX597tnidQApV+fjZyaMIA8A1pIwDAMyblz21Hvs6qSIU6zz083F2yQ2k4bVfSp+wiCbYdJmKXF9yuo7FD73u4gyAJFmJ673oiaZ2S+MhG6ednPR+/OIESSJJKPz/rM9AELmy/9PMzzigBAA+ZiXZX+j63xs1Gnbty4Xs4qnS6dUmfizRAzvWRJG1UOt2o0umOKI7g22Ek6Qtz3wEX3/cbYvcTUhsESbAI03vXY0mblMR7ZpI+9zVIIhEowftiOg/AhQwoAgCg77MgpOCaU6XTHZg0QEyEuTFA3pJUq3S6PYojV+2wX+l0qyIdF9ysnz1JEXUz9++nL3g3YRGm967XJLUpiY/aWFT6+dnA5x9BoAR/MSvjY0oCOLcBRQAA/jLnlbiyk6Moqc9dudT97EmqiolaWx5LqlY63cS0LeSzHSa0QzhaN4embpIqLn/2lAbw6Wfh0qb3rh8e3l6kNN5vY6Wfn3mfmp5ACd5jUnA9piSAM8183k4IAEiZw6Vd6fusjZuNhLtyqfs5ZaI2c9tKzyFpESAB7RAe1M3I1Evkw+NKp1sjDSQWaCCCJEftKt1JEkQbI1CC4yQivyxwlh5FAABhqHS6LblzxsXmuNmocVcufU+ZqF2umdIA46eVTjdmAgq0Q2vtcEvp+TC4WN1MJH0mzrcK2b6kz00fD1iI6b3rPUmrlMRftks/P4tCOruXQAk+klbwg7p0IC4urhMv8lECQFjqcmcSr895JYvxwUTthlgMtIiJpy2lKbZaBEgwRzu8TTtcSDvcMO0wkcROrvnq5dCcb0UQLzyPlabaGlAUWJTpvWuxdLDOXNhf1+3Sz8/i0O7zJ1R1HKf08/Ph9N61LUmblAbwka3Sz8+ZGACAgFQ63dG42WhJeuPA11lRunOxzp1Z2P2dmjLtjZuNSFJLT7rkFAAAIABJREFU0hVK5tx2JfU4BBcLaIdtSe1xs1FXej4m7fD8dkw75JyFxdbLZNxs9EzdpD76/65qmfNogIWZ3rtWc2SM4IKZpFbp5+dB9gnZUYITlX5+noiDzoAP7ZtONAAgMGYSeMeRr3Nl3GzE3JWl3OdBpdOtS/pUrG4/q89zmF4rIkiCBbfD/pF2uEU7PLUdbpl2WCdIsrT6ODL18XMxB+JrO/ncvKsIkmChpveuHR7ejjRIEoUaJJHYUYKzFBRLGoqDioBD9dJPz9neDgDhOuz7rDjwXdrjZmNAeqPlMOV6uLq9Zu593ZF7b3MA3JfUZ0IWGbbDRFJi2mHLtMM8jz/3TTvsMembeX0cSIrMzsNE0hql4rQ9SW0C+ViqgvpiTvSwvUWhz4cRKMGpSj89H03vX4sl/UFpANoo/fScwQoABKzS6U5NSpj/OPB1ikonyzjcffn3fah0graVw6DJvtKVkgRH4EI7jCXJPIejnLVDgiPu1MWB0oDJYfBunVJxyo7SAMkg9B86vX+tap6FVdMf5Ay7bJXE4e2StC2plYdFw4WDgwNuN87zcG5LukVJIMcel3563vL1y4+bjUQZnzlU6XQLVBs42h6y7vxsmcNWwXNz7ndQpdNtcVes1IOq0onaSGHlrt/Vu+AIk7JwvR3WTBsMqR3OTBs8bIejS5RPJOkt/fyl1sGS0iBeLCZNbTlMgd0Pfaft9P41drnCJV7PhV0UO0pwXonpmNIpQB5tlX56nlAMAJAf5nDXSG6k3bg1bjb6eVg56WA9GMmk55L+mpCMlK7qjORHKoaZ0nRyA0kD6hE8bIdDU4d9b4cDcw1ph97VwanepWqsKp3AjsX8yLLt6V06yOCD+tP71yKR8g1u2Sj9FO55JMchUIJzKf30fGpScA1Ebj7kx0zp9sIeRQEAuZQo41W6p+iPm42qmayBJWZyc3D4z2bCrHbkqsruxNm+pJH5jkOlE7Ij7hxoh5naM+1wSDsMsv6N9C5oUtK73U41McG9iLZz+P7q56XPM71/rSSpp7B2rsJvM0lx6afnuUvJSqAE51b66flwev9aS9IbSgM5sGteDAxqLtaxPRwQDigO8AzRyFw9isNPlU53MG42duXGxEfR1KU6d8apOnLYzt8bSJqJ26NXSe/Ompk33/WepMNJo8PPnZr37pQUWqAdntgOD/P6L7odDs3fH37+KOCAyOxIP5+A/bu6NzX1rn+k3tWO1Luj7wB2n6T2P3h/HbadXI4fp/ev1U3/jgXJcOl5H+X1fF7OKME8D/KeOMwMYXfcEnaRAAAAAACAZTALkR9REnBIroMkEjtKMJ+W0q2lHCqFkOxI6hMgAQAAAAAAy8ICZDhoX1I9z0ESiR0lmP+hXhPnlcBfh1vmBzJpoko/PWcLOQAAAAAAWBpz/i8p7eGSPaU7SXI/L0agBDzc57Nd+ul5TC0AAAAAAADAWab3r0WS3lIScAhBkiMIlOCyD/me8rtdkGAJAAAAAAAATjW9f62k9PB6MrPAFQRJPvBfFAEuqWUaVh6tm101AAAAAAAAwEnaIkgCdxAkOQY7SnBpnFeiDQ4ABwAAAAAAwIfMvNl/KAk4giDJCdhRgksr/fR8qIJaKkg5vd5Mf7hWpyYAAAAAAADgPQUlOZ4z43Lr2lOBIMmJTZUdJViU6Q/X2pJu5fTnzyRFpR+fD6kJAAAAAAAAmP5wrSrpT0oCDmDu8gzsKMHClH58nufzSoqSBtMfrtWoCQAAAAAAAJBEBhK4gCDJORAowYIdRNLBTDpQDq+idDCY/nC1Sj0AAAAAAADIu4M4p3NkXO5cM+mAIMk5ECjBQpV+fDGVFOW4CIqS+tMfrpaoDQAAAAAAAPlk5oZWKQlYVi/9+IIgyTkQKMHCmcZ3O8dFsCppQLAEAAAAAAAgt0jPDts2Sj++GFAM50OgBEtR+vFFW9J2jouAYAkAAAAAAEB+ESiBTbdLP77oUQznR6AEy5Tnw90lEyyhGgAAAAAAAOQOi2dhy7ZZxI4LIFCC5b0N0vNK6pJmOS6G1ekPV3vUBgAAAAAAAABLtlP68UVMMVwcgRIsVenHFyPl+3B3SVonWAIAAAAAAABgifYkxRTDfAiUYOlKP74YqlDYUKGgHF/r081rPWoDAAAAAABADuR7Howr+2umQqFuMvxgDgRKkInS1vOe8n24uyQRLAEAAAAAAACwaFFp6/mIYpgfgRJkprT1PJa0m/NiIFgCAAAAAAAQvhFFgIxslLaeDymGyyFQgowd1KWDfelAOb7Wp5ucWQIAAAAAABCug1HO57+4srkem0w+uKTCwcEBpYBMTTev1iQNJBVzXhTbpa0XMTUCAAAAAAAgPNPNq0y8Ypl2S1svIophMdhRgsyVtl4MJcWUhNanm1cpBwAAAAAAgDDtUARYkpmkOsWwOARKYEVp60Vf0m1KQm8IlgAAAAAAAASpTxFgSaLS1ospxbA4BEpgTWnrRVvSNiVBsAQAAAAAACBABEqwDLdNxh4sEIESWGXO6NilJAiWAAAAAAAAhMSs+GeRMBZp2yw+x4IRKIEL6pL2KAaCJQAAAAAAAIFJKAIsyJ6kFsWwHIWDgwNKAdZNk6tVSUNJRUpDG6XkRY9iAAAAAAAA8N80uZpI2qQkcEmflRJSbi0LO0rghFLyYiQpkjSjNPRmmlwlOgwAAAAAABCAUvIiEdlUcDm3CZIsF4ESuPTSGIrtY4ceTZOrPYoBAAAAAAAgCLFYIIz57JQSziVZNgIlcIpJOXWbkpAkrRMsAQAAAAAA8J9ZIBxTErigfepNNgiUwMUXR1vSNiUhiWAJAAAAAABAEErJi76kDUoCFxCXkhdTimH5CJTA1RdHLGmHkpBEsAQAAAAAACAIJpvKFyINF862VUpeDCiGbBAogcticdDVIYIlAAAAAAAAATA7SyIx74WT7ZWSFwnFkB0CJXD5pTHlpfEegiUAAAAAAAABKCUvhqXkRU3Slthdgo/FFEG2CgcHB5QCnDZNrtYkDSQVKQ1J6fktLfITAgAAAAAA+G+aXC1JSpROjjP/hdvmDGdkiEAJfHlhECx5356kiGAJAAAAAABAGEzApG6uSMyD5dFuKXkRUQzZI1ACn14WdUl/UBJ/IVgCAAAAAAAQKLNwuCqpRmlISgNIqwH/vpmkWil5MeJWZ49ACXx7QcSS3lASfyFYAgAAAAAAgKBNk6tVSX8G/jNJuWURh7nDK6XkRU/SBiXxl1VJA/OyAAAAAAAAAEKUBP77dgmS2EWgBN4xwZJtSuIvq5KGZjsmAAAAAAAAEAyzQHg98J8Zc6ftIlACL5WSF7EIlhxVVLqzhGAJAAAAAAAAQtIL/PdtcS6JfZxRAq9Nk6s9hR9RvoiZpHopeTGgKAAAAAAAAOCzaXI1kvQ24J+4V0pesPDZAewoge9aSg80R6oo6a059B4AAAAAAADwWRL474u5xW5gRwm8N02uliQNlJ7VgXceS5pSDJjTQNKwlLygDgEAAAAAgMzlYDfJ41LyosWddgOBEoTy4CRYAizHntJcoH3yZQIAAAAAgKxMk6sDSWuB/rx9STUWqLqDQAlCeniWJA0lrVAawFLsSGpzBg4AAAAAAFimHOwm+aKUvOhzp91BoARBmW1drSndWVKkNICl2ZbUKm6y6gEAAAAAACzebCvo3SS7xc0XEXfZLRzmjqAUN18MJUWSZpQGsDTrkkazrau81AEAAAAAwELNtq7WFW6QROIAdycRKEFwCJYA2TQ1SW9nW1d5uQMAAAAAgEVqB/zbtoqbnAHrIlJvIVizra9IwwVkY7u4+TKmGAAAAAAAwGXMtr6KJb0J9OftS6oVN1+SytxB7ChBsIqbL9lZAmRj3XRkAAAAAAAALiMO+Le1CJK4i0AJgmaCJS1KAli6N7Otr+oUAwAAAAAAmMds66tIQR/g/rLPXXYXgRIEr7j5sidpg5IAlq432/qqRDEAAAAAAIA5JAH/tpjb6zYCJcgFgiVANk1NUo9iAAAAAAAAFxH4bpLHxc2XI+6y2wiUIDcIlgCZuGI6NwAAAAAAAOeVBPq7Zgp7p0wwCJQgVwiWAHRuAAAAAACAOwLfTZJwgLsfCJQgdwiWAEu3Ntv6qkoxAAAAAACAc0gC/V37xc2XbW6vHwiUIJcIlgBL16IIAAAAAADAaWZbX9UU7m4S5kY8QqAEuUWwBFiqOkUAAAAAAADOEGowYbe4+bLP7fVH4eDggFJArs1+/CqW9IaSABbu0+IPL0cUAwAAAAAA+NDsx6+qkv4M9Od9Xvzh5YC77A92lCD3ij+wswRYkhpFAAAAAAAATpAE+rt2CJL4h0AJIIIlwJIQKAEAAAAAAB+Z/fhVSdJ6oD+Ps0k8RKAEMAiWAAtXpQgAAAAAAMAxQg0mbJOG3E8ESoAjCJYAC1WlCAAAAAAAwFFmN0mogZKEO+wnAiXABwiWAAAAAAAAAEtTl1QM8HdtsZvEXwRKgGMQLAEAAAAAAACWIgnwN80ktbm1/iJQApzABEs+Mw86ABc3oggAAAAAAMCh2Y9f1SWtBPjT2sUfXk65w/4iUAKcovjDy6GkSARLgHmMKAIAAAAAAHBEiGeTsJskAARKgDMQLAHmNqQIAAAAAACAJM1+/KomaS3An8ZukgAQKAHOofjDy6EKilTQTAWJi4vrXBeBEgAAAAAAkCqoFeDcx0wFdpOEgEAJcE7F++wsAS5gv3j/5YhiAAAAAAAAs5++KklaD/CntYv32U0Sgk8oAuD8ivdfDmc/fVWT1Je0SokAJ+pTBAAAAACArJl5m5qkKqXhlFqI1U2cTRIMAiXABRXvvxzNfvoqkjQQwRLgJD2KAAAAAACwbGanQt1cVygRZIjdJAEpHBwcUArA/C/igQiWAB/aLd5/GVEMAAAAAIBlMfMyLXMVKRFkXQUlVQmUhIMzSoA5mQdhJGmP0gDek1AEAAAAAIBlmf30VUvSSNKmCJLADnaTBIYdJcBiXtA9hXkgFXBRO8X7L+sUAwAAAABg0cwukr6kNUoDNqui2E0SHHaUAAtQvP8ylrRNSYCOgmKKAQAAAACw8AFnekj7SARJYF+fIEl4CJQAC0KwBFBMRwEAAAAAsGgmSDIQabbghoQiCA+BEmCBTLBkg5JADt0u3n/ZpxgAAAAAAItEkASO2S7efzmiGMLDGSXAMl7iP/8tlvSGkkBuOgn3XsUUAwAAAIAj4+LI/O3hX2uSSubvL5o6aU/S1FxDpemXRsV7rwaUdPD1qGTuN0ESuOLT4r1XI4ohPARKgOW9zOuSerzMEbjbxXuv2hQDAAAAkNuxb6Q0CFI1f61lPA7eVxo8GUoaEDwJrn4NxJkkcMdO8d6rOsUQJgIlwHJf6GwPRbDVW1JcvPeKdFsAAABAvsa4kd4FRFYd/ap7Ziw+UBo84SxFP+tbLLJ1wC2fE4wNF4ESIJuOZF/SCqWBQGxLajHYAAAAAIIfz0ZKAyOR/F7Vv2fG5ew48afulZTuEmIuBa7YLd57FVEM4SJQAmT3gh/I3dU2wLk6BZISBhYAAABAsGPXwx0jdYWb7mgmEzSR1GcBmLN1sSXpESUBh3xBVo2wESgBsnvJl0xnjNya8MnhlvU2h5UBAAAAQY5TI6WBkbrymTZ6R+92mzDmcadujsRuErhjv3jvVZViCBuBEiD7l31P0jolcWG7FMHSjcwlpcGRIaurAAAAgODGpFWlQZFI0hVK5D17ktpip4ntOhpJektJwCEbxXuvehRD2AiUAHZe+m1JtyiJC9mVVKezCgAAAAAXHoNWlQZHYpES+rwOd5oQNMm+vjJnAqeqpKQqz4HwESgB7L34Y0lvKIkLv5zqnJEBAAAAAGeOOasiOLIo20oDJpxPkE3dHYm0W3DHVvHeq4RiCB+BEsDuy78uqad85oHlJQUAAAAAix1jlpQGRmIRHFmGfaW7TDjDcbl1eEJJwCGf0t7zgUAJYLsT8MvfakrPgyBYcjF7kurFu7ysAAAAAOR+XBkr3T3CmSPZ2ZXUK97l3IIF1+VInE8Cd2wX776KKYZ8IFACuNERqCpdlcKKnwsWnaS4eJftzwAAAAByN46sSWopDZCw8M7uuLQvKWEh30LqdSQCJXDH58W7pH/PCwIlgDudgZLpXK1RGhf22HRKOVgLAAAAQOjjxrrSAAkL7dzDLpPL1/FE0iYlAQfsFe++qlEM+UGgBHCvU9CTtE5JXPwFpnR3yZCiAAAAABDYOPFw9whjRU9umaS20qDJiOK4UF1PRKAEbtgg6JkvBEoANzsGLUmPKIm5OqNJ8e6rNkUBAAAAwPNxIbtHwrAjqU36nnPX+0QESuBAVSzefVWiGPKFQAngbucgVroChVyz83VEY1JxAQAAAPBwLFhVGhyJGQ8GZV/pwr4eRXFq/Y/EGSWw73Hx7qsWxZAvBEoAtzsINUkDOsdzd0JjVu0AAAAA8GT8FykNkFyhNMK+1SIt11ntgEAJbPuU9pk/BEoA9zsJVaWHvLPVej5bxbuvEooBAAAAgIPjvcP0WomkFUokd7aVpuXirM3328SEkoBFO8W7r+oUQ/4QKAH86Sj0xMqiee1JqrMaAAAAAIBDY7yWucgggF2labkGFIU0++VvIxE4hD1fFO++6lMM+UOgBPCrs9CWdIuSmK/4xEHvAAAAAOyO6apKd4+sUxo4BueYpO2kRxuBrTZYvPuqSjHkE4ESwL8OQyzpDSUxNw56BwAAAJD1OC4S54/g/Pb17hyTaQ7bS13SH1QDWED69hwjUAL42WngkPdLFqHSVFwDigIAAADAEsdukdIdJGuUBuYcu7aVnmMyzVnbGYn0W8geh7jnGIESwN9OQ1Uc8n5Zj5Vua2Z3CQAAAIBFjtdipTtIGK9hIVXKjP+TvEzizn75WyJpk1uPDHGIe84RKAH87jhwyPvl7SvdXTKkKAAAAABccowWK91Bwkp4LMu2chAwMfMdI5FJA9nhEPecI1AChNGBSMRKi8siDyUAAACAecdksQiQIFvBB0xmv/ytJekRtxoZ4BB3ECgBAuuYt8Vqi8sgWAIAAADgouOwRARIYM+u0oDJINA2NhBn/GD5mA8CgRIgsA5ETWneUjrp8+PgLgAAAABnjb1iESCBW4IMmJjzWYdiUSiWi7kgECgBAuywl5QGS1hxMWfnsnj3VUQxAAAAADhmvBWLAAkcH9MqsICJWRT6H24tltVmmAeCRKAECLkD35Z0i5KYy+3i3VdtigEAAACAGV/VlaY6JkACXwQVMDFByjfcVizBRvHuqx7FAAIlQNid+VicWzJX0Umqse0SAAAAyP2YKlK6g4Qd+/BVMAET0x77Yo4DC6xWkqrFu6+mFAUIlADBd+y/5NySOTuTxbuvI4oBAAAAyOU4KhIBEgQ2xpWUFO++HnjeNmuSepJWuaVYgO3i3dcxxQCJQAmQl04+55bM54vi3dd9igEAAADIzdipqjRAsk5pIFChBEwSSZvcTlzS5763BSwOgRIgX51+zi25YJFJqhbvvmYLJgAAABD2WKmkNG0xARLkhfcBEwKbuKT94t3XVYoBhwiUAHkbADz4MhbnllzETvH713WKAQAAAAhyfFSS1DIXYyTkURow+d7jgEnajmNzkZIL57VV/P51QjHgEIESIJ+DAXJ6XsznPncaAQAAABw7LorFIjLgkPcBE9OuS5JqkiLzRzVJJW7vQoSWzv3T4vevR9xWHCJQAuR3UFBSGiy5QmmcaV9Srfg9KbgAAACAAMZCkRkLrVAawEeCCJhg4c/NWNKbgH7SXvH71zXuLI76L4oAyKfi96+nJqXUbUrjTCtK854CAAAA8NTswZfV2YMvB5LeiiAJcJI1SW9nD74cmKAiIIU3J9LmluJD7CgBcLiiqi+2nJ+FFFwAAACAf+MdDmoH5retdIfJiKLI7TM0Vli7SSSpTNYQfIhACYCjg4eBOLfkNPvF719XKQYAAADAm3FOIg5qBxaBgEk+n6ElSUOFtQtvx2RYAd5D6i0Akv5KxVWT9JjSONGKGWgBAAAAcNjswZfR7MGXI0mbIkgCLMK6pD9nD77szR58WaU4cqOl8FIV9rmtOA47SgAcN6ioKz3ckAHF8T4rfv96SDEAAAAAzo1lqmYss0ZpAEvFDpN8PE+HCmtuaCapStotHIcdJQA+Uvz+dV9STdIepXGsHkUAAAAAuGP24MuS2f39pwiSAFk43GGSmPRMCE9b4S2g7RMkwUkIlAA4llkVEildJYL3rc4efNmiGAAAAAD7zI74odI0WwCytSlpRMAkyOfqlQB/Gmm3cCJSbwE4+wX58MtYYa4kuFSxSKoV77DNGAAAALA0TqmKNFuAa+PktqR28Q6r9j1+tpYkjRTeHNCseOc1wTyciB0lAM5UvPO6p3R3Cam4jhSLSMEFAAAAZG728MvS7OGXiUizBbg4Tk53mDwkC4PHegpzoSy7SXAqAiUAztfbufN6KFJxfWiNzh8AAACQndlD0mwBHihKejR7+OXIZKiAP8/YlsJMuSWx2BVnIPUWgHlenLFIxfVXcUiqsq0YAAAAWOoYpCrSbAG+2peUmGwVcPc5W5P0n1DrYPHO6yp3GadhRwmACyMV1/vFIVYlAAAAAEtj0mwNRZAE8NWKpDfsMHH6OVtS2KmpetxlnIUdJQAu+zJtS7pFSeiL4p3X5LsEAAAAFjfWiJTuZF+lNIKyJ2mqNPh12s78SFJV6SQ7wrKrdIfJgKJw5nk7UNjB6E+Ld16PuNM4DYESAIt4odYV7mFf5y4GkYILAAAAWMT4oiQpEQuyQrAraaA0KDIyZ1/OUx8iSTXzV3YWhVU/CJjYf+b2JK0H/BN3inde17nTOAuBEgCLerFWlW7TzPNqr8fFO6853B0AAACYf1wRKV2ExS4CD2+f0qDIQNJgnqDIBepJXWnQpE5dCQIBE3vP3JakR4H/TDKA4FwIlABY9Es2kbSZ4yL4nM4dAAAAcOFxRElpgOQKpeGVPaWBkb6tcZA5gDqSFIs0bb7blRSTIimzthNLehP4z+QQd5wbgRIAy3jZRkp3l+QxFde+pBopuAAAAIBzjx9I5euXXTPe67s2oW0yHdRF0MR320p3mIwoiqW1lVjhB0kk6Xbxzus2dxznQaAEwFL8v1//vzyvCNv6X9/93/+fvX/LjuM404btm736yECB+Eeg8ggEjYClEQhstXevZbMoyWrb2rBoyZLPVDz7Prf7Jdi22263SRa0sWzLMsERqDACASMwMIKP4KZP+R9kQoAobgCigKrMuK61uOh9d0ZkZUbkHRHP0F0AAABPnDf0U8bHuqa7mTocWfjF1VsNube6SQZxPFeTrSYZLvzi6pam8Nx9CjtJuk15ZjF9ghLguF/Ag1SFGEtbHfbcwi+ubrgDAADgkXOFfoQks2wz1eK3taZ/qL79/7zSS7XLZDl2LjWRwMRz92lcWfjFVXVkOTBBCXASL+KleoBd0tbnzYVfXF3S+wAA8NA5Qj9Cklm0nWrnyEobP0rXJx8sp9pp4miu5hGYHO3+HyU5V9Alf9O9wmEISoCTfCmvJLlQ0CU7ggsAAL4+L+hHSDJrVlPtHFkr6D5cyt7RXHaZNO9+FZgc/F5fTLKSskKS1YVfXO3rfQ5DUAKc9Au6l3IKve8kWTJ4AwCAL+cD/QhJZsV2qo+no5LP8LfLpNEEJk++v7upvsGUdm/bTcKhCUqAaQ1ERymj0Pv6wi+u9vQ6AADmAa/0IySZBaupwpGxpvjaPdpLVcvknNZo3D0tMPn6/byc6ttLaTum7CbhqQhKgGm+tEs5iuviwi+uruhxAAAKHvv3IySZpu1UH0xHPiYf6H7tpgpMBnEsV5MITPLl4tRhyjr6fD+7SXgqghJg2i/wjbR/C+hOkm7J29kBACh6zN+PkGRa1lOFIyNNcaT7d5jkGa3RGMUGJvWuqFHB96vdJDw1QQkw7Zf4UpIvCrjUmwu/uLqsxwEAKGy834+QZBocrzX5e7mXKjA5ozUa9TsoIjCxiySJOrEckaAEmIUXeilHcJ1d+MXVNT0OAEAh4/x+hCQnaSfVSvIVHwqP9b7upvogrY5Jc6zWv4uNFj9rV+KYuEsLv7g6dLvztAQlwPRf6v/vK4tJNtL+raHVEVzvOYILAIDWj/F7ST7XEidit/7IirnGid7j3ahj0jTrSYYL77Vjp9Xt//eVfhwLt8v3Fo5MUAKYSJ2sKwvvXR3ocQAAWjy2X0oyjo/Hx2071UffkaaY6v2+mCos6ccH66bYTBUsjhp6z/UjIHnQec9CjkpQAszSy76UI7ieb8sKFgAAeGBMLyQ5fuupPvI61nf27v9+fMBukp1UR1aNFt6b7ePq6kCunyqUc3898ExceO9qTzNwVIISYNZe/FsFTKq2kyzZEgoAQMvG80KS49WqY4Na/lvop/qg/azWaIybqQKTtRm7l5aTLEdNnMd5buG9dtaf4WQJSoBZG1AuJ7lRwKVeWnhPkTEAAFozjheSHB8BSXN/F71UO0zOaI3G2EmyVv8Zn/QCx3oBaS9VOLLsmfpEjjdnYgQlwCwOJteSvFDApVr1AABAG8bv3SQb8UFv0gQk7fmN9CIwafLvcFw/4zYmfUTXvmBkqf7bPXJwCrgzUYISYBYHkaUcwbW58N7VJT0OAEDDx+7jOGJokgQk7f299FIdyfWC1misndShSZJbqb5dbNX/3q0HF0PWu+0W63+6mCoQ2f17KQLmozirVhOTJCgBZnUAOUhyuYBLvbjw3tUVPQ4AQAPH7EKSyRKQlPPb6abaYaLuBDydmwvvXV3WDEySoASY5cHjOO3fdrqTqrD7lh4HAKBBY3UhyeQISMr9HXUjMIHDcuQWx+KfNAEww/r1C7DNTicZ6WoAAJpCSDIx60meX3jvak9IUqaF965uLbx3tZ/km0lWtQgcSF9IwnGwowSY8UnYy8Mk7xdrOmphAAAgAElEQVRwqecX3rs20uMAADRgjL4WNRaOYjPJYOG9a2NNwQO/rW7sMIHHubLw3rWBZuA4CEqAJgwWN9L+1Wr11tFrVkUAADDLY/NRfMR9WttJhhZIcYDfWTcCE3jQZpKe7yYcF0dvAU3QL+AaHcEFAMBME5I8tZ1UO8i7QhIOYuG9a1sL713rx5FcsP852heScJzsKAGaMikbpowjuM4uvHdtTY8DADBj4/FRhCSHtZNkJcmKj3sc8ffXjR0mlM1x5Rw7QQnQlIHhYpKNJM+0/FK3kyyZSAEAMENj8X6S61riUK6kOmbLuJ5J/ha7EZhQntV6hxUcK0EJ0KRBYS/J5yVMqhQnAwBgRsbg/QhJDuNmqkLtW5qCY/xddiMwoQybC+9dW9IMnARBCdC0AeFKkgsFXOrzC+9dG+txAACmOPbuR0hyUJupAhJjeE7yN9pNVevyjNaghXaSdO3M46QISoCmDQQXk2ylKn7e6omWVRMAAExx3N1LGbu5j2o71RFbI03BlH+vwwhMaI+dJL2F965taApOiqAEaOIgcDnJjQIu9dLCe9eGehwAgBMeby8lGaf9i5OOQqF2ZvG324vAhHZQvJ0TJygBmjoAXEvyQgGX+pwVFAAAnOA4W0jyZOqQMOu/414EJjTXxYX3rq1oBk6aoARo6sCvlCO41hfeu9bT4wAAnMAYu5tkI0KSR1GHhKb9pnsRmNAsqwvvXetrBqZBUAI0edA3SHK5gEu1mgIAgOMeWy+m2knyrNb4mp1UdUiMyWnq77ufKjB5Rmsww4QkTJWgBGj6gG+c9q+O2UmyZGs/AADHNKYWkjzaaqpdJOqQ0Ibfej8CE2bTzYX3ri1rBqbpnzUB0Gin0k/7jwc4napQpEEDAAATdfuXLy/mlJDkIapjtt51zBbtURfHHt3+pcCEmXve9jUD02ZHCdCGyd0wyfsFXOrZhXevrelxAAAmOJYeJTmnJb5UHbP1rmO2KOL3P0gVmKhLxLRsJuktvGvXHtP3T5oAaLqFd68N65dr241u//LlxRYOzrvuYgCAqYzDRhGS7HczSVdIQkFz6ZUk3SSXUoWEcJKEJMwUQQnQFv0CrnH3CK7W9d3tX748vv3Ll3tuYwBgmm7/8uXF2798edDGxSkPudaVCEl2bSd5fuHda8s+2FGahXev3aoXH3YjMOHkrEdIwoxx9BbQpsneMGUcwfV8m85Krj9EbKQ6H3c91VEHY3c0AHDCY5LdI2haf+xSXZ/gul5Pklyp+9zHOtibnw0KmVszHasL717rawZmjaAEaNuAbveDe5ttJ1lq02Tu9i9fXk5yY9+/tJlkZeHdayN3NgBwzOOQfvaKGt9cePfacgHXKySpnDfehEc+K7r1s9HOMyZJSMLMEpQAbRvM9ZJ8XsClXqq3R7ep78ZJzjzwL2+nWuFnAgsAHMe4cbhv/NG6xSgFj5UPQkgCB3tudCMwYTIuqgHFLBOUAC0cyJ1fSXKhgEt9buHd6xst6relJF884t/eSVWfZWXh3euORQAAjjrmWMnXF2i0amz1iOsep6p7V7rzC+9eH2kGONQzpBuBCZ67tJigBGjjAG4xyVYBk8DNhXevL7Ws70ZPGHjvBiajhXevb7nbAYBDjDO6efRHvosL715fafG1C0n2+FgHR3+ePCxshkfN4XttXohAewhKgLYO3h6sedFWrZrUHzLkWk0yFJgAAE8YX3Tz+FXQ6wvvXu+1+PpLqeN3EFcW3r0+0AwwkWdLL189vhAetJlk2ZydphCUAO0duP37+bUkL7T8MneSLC38vD0Dj9v/fn6Y5P1D/FfWkwwXfn597K4HAPaNKRaTDOo/px8zluou/LydR3vWbTBO8qw7IqsLP7/e1www8edMLwITHvLMTTJo6/uVdhKUAG0esHVTrZ5r+xED6ws/b9cqyNv/fn4rh1/1uJlkZeHnjlIAgMLHgAcJSHY93+bFFrf//fxGhCSJkARO4nnTi8CEagHCwLycJhKUAG0frA2SXC7gUs8u/Pz6WssG2Z8/5X99O8koVWhi9QoAlDPuO0xAkiSXFn5+fdji9hhF0eVESALTmMsNIzAp0WaS/sLP1SOhmQQlQAkDtXEBg7TWHRsxgX7bSbKW6liuLb8EAGjtWO+wAUmSbC78/PpSi9tkFCFJIiSBaT6HllMVfVcfqQxX6rm3xYo0lqAEKGGA1k3yjwIu9ebCz68v67eHt02qHSZjvwgAaM1Y4WkCkqSFNd4eaJdSdlQXNTaGBj+T+ql2mAhM2mk71S4Sc20aT1AClDI4G+ZwBcKbqlXnbN/+9/MrSS5M8H9SHRMAaP744GkDkl2tOrL0gbbpJ7nuLslmkp6VzTBzz6dhBCZtYhcJrSIoAUoamJVQzHI71QrJWy3ps8UkW3m6jyCPs5NqG/jIsVwA0KhxwVECkiS5svDz64OWts9ykhvuFCEJzPizqh+BSdPZRUIrCUqAkgZkvTx9gfAmadUHgBNYGbmaKjAxyAOA2RwLTCIgSVpcl+T2v59fSjLO5BeXNI2QBJo1z+tH0femuZTqlAbPWVpHUAKUNhib9FFOs+q5hZ9f32hRv53EbiDHcgHAbL3/JxWQJNVu0l6bxkf72klIsjeWE5JA855hvVQ7TAQms2091S6SLU1BWwlKgBIn3Btp/zbfVq2YPOHdQDtJRqlCE4NAADj59343VTjSz+Q+/p9v42KIemw7TvuPlz3I+G3J2A0aP+cbRmAyazaTDJzAQAkEJUB5A7BfFXME16WFd64PW9Rva0leOOH/szeTjBbeaWfBVwCYsXd9N9VHsnMT/p9eXXjner+F7SUkqVS7hd5p324hKHi+3j+GdwGHs51kuPCOExcoh6AEKHXwNY2P7tOYNC4tvNOOlXX1x5N/THGQWBV/f8dxDgAw4Xf8UqodJMfxUWy7Hg/damG7lTCePch4V0gC7Xw3dHM84TlPfm8KSCiSoAQoddC1mGQr7T/LeX3hneu9FvXbMMn7U/5/oyr+/o6txwBwxPd6L8d/zMpzbfyIfvtX50fx8VBIAuXM3SdVr4pHE5BQPEEJUPKAq5/kegGXer4tg516kDwrNWa2U33cWbPLBAAOPQYb5PiPjLq48M71lRa23zDTXzhijAtM6/0xTPtrjp6k9VQLAT1PKZ6gBCh9oDVO+4vF7STptuVj/gwGXDtJ1pKsWNEIAI98fy+mOnN+kJP5wHVz4Z3ryy1sx1kbB02LkATKfqf0oo7JUTkpAR4gKAFKH2B1U+1QaPsW3lZ9LJjhgGszVS0Tu0wAYG+sNUj1QeukxlutrEty+1fnl5PccFcJSYCvvGP69R+7TA72flR7Ex5BUAIYXP3q/CDJ5QIu9fm2rBapVxB9PsP/L+7uMrFCB4BSx1fHWaC9mDHPA+05jvP5W3mcGjCxOWI/ybJn5UPnpk5AgCcQlAAkuf2r/kaO/5zsaatXV45acgRXf5RmbLXet2pnZNUOAG0fU/VTfaia1s7PSwvvjIYta9NuytgB/SSrC++M+n5lwAGem8upApNSQ5PdcGRt4Z3RmjsCDkZQAlANpJaSfFHApV5ZeGc0aEmfLSbZatjA92aqwMRgFYA2jaNOuv7Io6wvvDPqtbBtx2n/gp4nEZIAT/sc7aUKTHotf5Zu1u+L0cI7IztH4CkISgD2BlDDJO8XcKnPtWXg1OA+286X259HW359ADT0PdxNMsxsrNjdSdJt2+7NQnY9P4mQBJjUM3WxfmctpfnByWaq3YbjVDtHnF4ARyQoAfjqoGkj7S8Ct7nwzmipRf221fA+W08yMrgFoEHv3n6me7zWw5xt247NBh0zeqzj1iQ9YyTgGL8B7IYmS/WfWZxbbqc6TWGcOhzxXITJE5QAfHWg1MtsFwmflNac312fP3ujBZeyrwD8aOzXCMCMvW8XUx2t1c/sfURqzdGi+9p7FCGJkASY5neBbv1nKcluoHLcuyfX67/HSW6lCkU2PAfhZAhKAMqcmO6kKuy+1ZI+G2e2VrUelaO5AJiVd2wvVTgyq2OjVu2Urdu8n+R64beekASY1Wd0N1WAkuyFKYe1G4IkyS01RWA2CEoAvj7waWKR8KfRmoKnt3/VX0ryRYs/FKzE0VwAnOxYaDlV/ZFZPt6yVQs/6rbvR0iykyok8eEQADgxghKAh09S23Kc05OcX3hnNGpJn60kudDy/rqZ6miuNb9SAI7hXbqU6nitWSjOfhCtqktSt/847V+s8zhCEgBgKgQlAI+erK4leaGAyWi3DTsVCtoJtNtv6pkAMKn353KqgOTZBv2/vrrwzqjfon7opjqGRUgiJAEApkBQAmDCenPhndFyS/pskORyYbfqbj2TkQ8LABzindlLVXukKbtH9mtV/Yo6rBqnWUHVcWjNTmcAoHkEJQCPn7iW8uH9+bbsTLj9q/5WZvs89eO0nb16Jlt+wQA88I5cTBWODBr8rmzdroPbv+pvREgiJAEApkpQAvDkyes4yZmWX+Z2qmKobTiCq5fkc3duNpOMIjQBMJapaq/1044jRS8uvDNaaVHfjJKcK/wWbVWfAgDNJCgBePIEdinJFwVc6pWFd0aDlvRZCfVlDmM3NBm15ZgSAA40funXf9pyjGhrjgut+2glyYXCb9VW1ZoBAJpLUAJwkInsf/SHSd4v4FKfW3i7+UdZ3P6PfjfJP9y5D3UzVU2TtYW3hSYALRuv7B6t1U/7jnKqdr+25N11+z/6/STXC79lVxfeFpIAALNBUAJw8AntVtpf+2Jz4e3RUkv6a5gywq2jEJoAtOOd109VlL3NuylbsZij7q9eHBO6vvD2qOfXCwDMCkEJgEntgy4uvN38c6LrVbVbac9xI8ftZpJxqtBkS3MANGJc0k8VkLT9XdeKsUndb0v1+7bk8clmkp5FGgDALBGUABxuclvCWdI7qY622GpBf/XjWIunsVcIXmgCMEvvtd26I8tp/y7XXa3ZeWARx5djDCEJADBzBCUAJrgP06aPEhtp3zntJ2k3NBm35cgTgIa9x7qpgpFByglHdu0k6bbho3o9hhwXPibZSRWSGE8AADNHUAJw+InucpIbBVzq2YW3R2st6K9enAM+KdupapqMfOQAONZ3VzdVONJP2R/Wn194ezRuSZ+upd01ZJ5ESAIAzDRBCcBTTXbPlTDZrVdxrrZgFee5UZJz7tyJ3x91IfjVNc0BcOR3VTfCkf0uLby9OmxJ3xqHJM8vvL06dlsDALNKUALwdBPebpKNtP8IrtWFt1f7+osDuJm94MS54wAHfz8JR75uc+Ht1aWW9HE/6qWdX3h7deS2BgBmmaAE4OknvoMklwu41FasALz9H+eGSd53556IzeyFJo7YAPjq+6gb4cjj7CRZWnh7dasFfV3Kca2PIyQBABpBUAJwtAnwOMmZll/mdqoPFrca3leLqXaVPOPOPfH7Z5wqOBnbbQIUOl5YShWOLEc48iRn23CkY93n45S9m7UVO5MBgDIISgCOPgn+ooBLbcU54VZ2zoSbqYOTNqwWBnjMO6eXvXBESH8wVxbeXh20oO8Xk2xFSNJ3SwMATSEoATj6ZHiYMo50eq4NxygVsguoKbZT7zSJ3SZA898vi0l62QtH1MU6nFbUJanvg3HK3jnUmhozAEA5/lkTABzNwturw3qnQtsnxCupPgA13SBl7AJqgmeSXKj/5PZ/nFvP3hFdapsAM29fvZFekhe0yFPbSVWzpQ1GKTwkacl4EQAojB0lABNw5/+e6yX5vIBLvdj52epKC/prlOScO3em7WTfbpPOzxzTBczUO383HFFvZDLOd37W/ILfxhfZSdLt/MwOUQCgeQQlAJObHK+kXhnf8gnwUtM/Wt/5v84Ob6DN1KFJquDERxjgpN4Z3ewdqdXz7pi41c7Pml/L4s7/PddPcr3gftxJ0uv8zI5QAKCZBCUAk5sgl/Lx/WbnZ6vLLeivYcqoLdNWm6l3nHR+tjrWHMCE3xG92DVyErZTLcC41YL75fPC+/I5IQkA0GSCEoDJTpSXk9wo4FLPdn62utaC/tpKVSeD5lvP3m6TseYADvk+WEoVivSi1shJavzH9freGafsnUatODoNACiboARg8hPmtbT/I0srzqC2ArTVBCfA457/3ewFI70Izaeh8XXP6t3EG4XfP0ISAKAVBCUAk580d+tJc9tXFl7p/Gx10IL+Gic5485tvS+DkyQbapxAce/mxXy1zohgZLoaf4xnfU+NU/bRbK2oLwMAkAhKAI5r8jxIcrmAS32+6av162DrH+7a4uwvDr/R+dnqliaBVr2Hu0n2H6elzsjsaEtdklGScwX3o5AEAGgVQQnA8U2gx2n/ToXNzs9Wl1rQVytJLrhri7adOjRJdVyXgrTQrOd4N47Saoo2LLIYJnm/4D7cTNKzOxMAaBNBCcDxTaKXknxRwKVe6vxsddjwvlpMspWyC7HydbvHde2GJz4IwWy9Y3v1n6UIRowZTu7e6ye5XnAfCkkAgFYSlAAc72R6mDJWHH6z6UcX+fDBAWynDk1SHdc11iRwIs/n3foiu+GIulLNtN752Wqv4fdiKYtgHmUnVUhi1yUA0DozGZTcuXxusZ4Ipf57cd+/vf/f22+r/vOof22rc9H548BUnmlbaf9K1/XOxWZ//Kj7aiPOsedwNlOFJxtJNjoXhScwgWdxrx7v7wYjdos0306Sbudic3ch3Ll8rls/608X3Ie9zkUhCQDQTlMNSurB5v5J0GJO5gPVev33eN/ftwz6gGN61vWSfF7ApZ7vXFwd6SsQnsAhnrtL++YDS7FbpK3Odi6urjX4Pl2s54zP6kMAgHY60aCkngj19v2ZxdU4m6l2oez/wLHlVgGO+PwroVh441eL1n21luQFdy3HOL4Y1+ML57tT2ruwl6QboUhprnQurg6MDRqt8YthAACe5NiDkjuXf7iUpJ9kOc3eNr+evfBk3Ln4wZbbBzjEs7CUYuE3Oxc/WG54X3WT/MNdywnY2Te22Eiy1bn4wViz0JJ33u4CqW79jx1rWKbNzsUPlhp+P5ew2OVxrnQufjBwKwMAbXcsQUk9ORqkCkjaeqbw7seNcargZOx2Ap7wbFxOcqOAS32+6c/EO5d/OEzyvruWKdlOFayO678FKMzy87KXKgzpZq/g+mktQz1fWmryArM7l3/YT3K94D5c7Vz8oO9WBgBKMNGgpF6FO0xyrtD23EwdnKQKTxypATz4nCzh6IbtVB9GGlyw9YeLqcJwBYSZtd/WVvYFKEk2jDc4oediL18NRLqekTzB2c7FD9Yafs+XXLdsM0nPOwYAKMVEghIByWMHl+Mka1aCAvuelxtp/2rbS52LHwwb3lf9lL2KlGZZz77wJMktYw+e4rm3lGQxVRCye3yWHSI8jUbvRKh/C+OC730hCQBQnCMFJfWK25UISA7qZvZ2m2xoDijTncs/HCS5XMClPtf0Z92dyz8cR7Fhmm89ya3UAUr26qFsaZoi30G97IUgu393Y3cIk9Poj+z1HHeccuvq7NT9Z74KABTlqYOS+kPfMFaYPa3tegC+Fsd0QXEK+QC/3rn4Qa/h/dRL2cduUMZ4ZCtfD1JiR0ojn1kPBiBJtTskEfpyMhr/kb3wRRJCEgCgWIcOSuoJ2JrJ1sTt7jZZs8IT2q8+0uGLAi71YufiBysN76tR7JykbJupApQvQ5TshSq3fFA7sWdRr/6H3fpPsheCdGNHCN773vlHd75z8YOR2xgAKNGhgpI7K+d6qUISu0iO12bdzmudwaqPD9BSd1bODZO83/LL3Emy1BmsbjW4nywQgIP/3nfHLbce8Y+TZKMzWC16J+2dlXPd7IUdyV7gkeztCNn9x8bdNMXNzmB1ucG/y37Krk12sTNYXXEbAwClOnBQYuA4NdvZPZ5rsLqmOaA96g/wG2n/KuBGfzjZ11/dJIMky7FyGyZpd8fKrgeDlV0bD/znvvbvTzqAeUig8aBH/fu9B/75Ysqtd0A5c5alpoag9YLAko/aXO0MVvtuYwCgZAcKSu6snFtJckFzTd1O9naaCE2gBQqamJ9t03Przsq55ST9JC+4iwEgzzV1J/ydlXNLqY5ALnX3VisWtAAAHNUTg5I7K85mn+VBbb4MThSDh6Yq5DlbrzRt17PqzsoPF1MFJv1YLQ5AmS52Bs2sS1K/x8cFv8M3k/TMJQEAnhCU3Fn54TDtPz+/LYQm0FD1JH0r7V/JeKUz+GDQ4n5cyl5ooqYAACVY7ww+6DX43T1OuTXIdpJ0zR0BACqPDErurPywHzVJmkpoAs2bqC8nuVHApT7XGXywUUh/9uNoLgDaq9Ef2u+s/LDk46V3Uu0k2XAbAwBUHhqU1Ktix7Eitg2EJtCcCfs47V/VuNkZfLBUUJ8upir+PoijuQBol+c7gw/GDX0/91P2osCzncEHal4CAOzztaDEOa2tJjSB2Z60d5NspP0h9aXO4INhof3br/88444HwLt8Ku/jpSRfFNx35zuDD0ZuYQCAr3pYUDKMuiQluJlkZCURzNzkvYRn8E6qwu5bBfezeiYANFVjd4cWtCjlUVY7gw/6bmEAgK/7SlBSDxz/oVmKspO9XSZCE5iNSfxG2r+rr9HFXyfc38upjudajtAEgNmfOzRysYOTE3KzM/hg2S0MAPBwDwYl47T/fHweP/EZpdpporAfTG8iX8qREM7H/nrf91MFJorAA+DdPdl37FrB79fNVMXbHb8MAPAIXwYld1Z+2EvyuSahtp290GRLc8CJT+ZXklxo+WXuJOmatD+0/3eLwAtNAJgFm0lWmlrbovDjpY23AAAOYH9QMkpyTpPwiInRKFVoYoANJzOhX0x1hnbbi35f6Qw+GOjxJ94Ly0kGKfe4EABOXit2m9e7Na8X3Ic9pwUAADzZqfv37+fOyg8Wk/x/moMDuJlkrTP4cKQp4Lgn9j9YTnKjgEt9vjP4cKzHD3RPdFOFJv0ITQA4vvH+qDP4sPHHY95Z+cFSqrokpdYAO9uGfgQAOAm7QckgyWXNwSHsFoFf6Qw+tEIJjm+CX8J52pudwYdLevvQ90Y3QhMAJvQuTrKSakFUK3aQ14sBS9id+yjnLW4DADi43aBkIz6y8PT21TP5cEtzwMQn+Vtp/0rIS53Bh0M9/tT3STdCEwCM4fe/G0ue4652Bh/23eIAAAd36vbllxy7xSSt1xOu1qxGgxmY6Jew628nyZKwdSL3i0LwADzKdqpd4aM27wq/s/KDUcqtv7neGXzYc6sDABzOqduXXyrlDHxO1s6+SdhYc8CRJ/zjJGdM7DnkfSM0AWB3XL5WQr2KOys/6Kfc4u2bSXoWrAEAHN6p25dfGiZ5X1NwjBzNBUef9C8l+aKAS1V09PjuocUkvewFJ6e1CkBrFRWO7HvX9ZJ8XnCf250LAPCUTt2+/FIJhYKZHY7mgqef/A/T/mB7J0nX8+FE7qfl7AUnz2gRgFa8Q4sLR/a917qpireXuhDguTYfpwYAcNxO3b780jjtP86F2Z3IOZoLDvcRYCvt/6h9pTP4cKC3T/S+WsreThPF4AGaN6ZeK3lHZr1rclzwO+x8Z/DhyM8BAODpnbp9+aVbcfwG07WdZKWe4G1pDnjsh4BeyjhS4nkh6tTusW72dprYcQowe4QjX393jVJu8fZLncGHQ3cBAMDRnLp9+aX7moEZcrOe9I00BRT9MWC7M/iwq7dn4n7b3WnSiyO6AKZFOPLo99Qw5dbcXO0MPuy7CwAAju7U7ZUfCEqY1cngKMmoc+EDZ+3C/g8CV364mGQr7d8NeKlz4YOhHp+pe28pVWDSjyO6AI7bdnaPqjUeftR7aTnJjUIvfzNJr3PhA3XdAAAmQFBCUyYBo3qSaCIAZX0Y+Gbnwgdbenwm78HF7O00WY5jPAEmOe4dC0ee+B5aSlWXpMT3z06SrrkRAMDkCEpomtUka50LHzhyAB8IrvxwnORMyy9zvXPhg57ebsT9uFsQvlfAfQkwSTdT7RwZWxxw4HdOycXbd1LtJBGkAQBM0KnbK2qU0Ei7RxGsdC4oAE+pHwl+0E2ykfavpDzfuaBuUcPuzcXs7TTpRW0TgAfHseMka50L6o085XtmnHJD+bPuGwCAyTt1e+WlkgeZtMN6qiMK1joXPrT9nKLcuVJEAdP6eAm/7wbfp93shSa9OKYLKHO8Wu8a+dBOgKO9U1aSXCj08i92Lny44i4AAJg8QQltspMvC15+ONYclOLOlR9spP1HT6x2LnzY19utuWcd0wW03Ze7RlKFI8L+ybw/+kmuF3r5xkIAAMfo1O2Vl4Zp/2pkypycjlKFJluagza7c+UHvSSfF3CpzwtBW30P7wYnz2oRoKFupgpH7Bo5nndFycXbNzsXPlxyFwAAHJ9Tt1deWk5yQ1PQYo7movUKOYbCR4Iy7uXd+ia7fwQnwMy+l7IXjKgZcfzvho2UWfNqO8mSeQwAwPE6dXvlpcUk/5+moACO5qK1CvqAcKlz4cOhHi/u3u5FcAJM3+5xWuNYgHPS74JxyjyqcSdJzw4lAIDjd+r+/fulnG8PD050R3E0Fy1y58oPStghuJNqVaXfbbn3+W5wshQ1ToDjHy+Os7drxLtnOs/9kou3n7VbCQDgZFRByX/+YJDksuagUJtJVpKsdd6yMpBmu/OfP1hL8kLLL3O989aHPb3Nvvu+l70dJ0sp8/x64Oi+Goy8JRiZged7P+UWb7/YeevDFXcBAMDJ2A1KHL8FlZtJRp23rNyime785w+6qY7gavuH4rN+pzzmd7C722T372e0CvAQgpHZf5aPU2b4vdp568O+uwAA4OScun///u5AdJTknCaBJPvrmbylngnNUsguwZ0kXbvAOOBvwnFdQLKv+HqSDcHIzD+3Sy3evtl568MldwEAwMnaF5S8tJTkC00CX7OdL0OTjxRSpBHu/OdLJdSeut+s3J8AACAASURBVNJ566OB3uYpfyP7d50sRa02aJudVB/ax0nGnbc+GmuSRj2jxykz1N5OstR56yMLQQAATtiXQUnhA1I4zOSlrmfy0ZbmYFYVFH4/7+MXE/rNLGZvx8lueOLILmiOzewFIxsWtzT6eVxq8fadJD33LgDAdDwYlHST/EOzwIEn5KMITZhRhXxo2Oy89ZHjKTiu35DwBGbTdr4aiow1SWueu/2UW7z9fOetj0buAgCA6fhKUFIPTktdwQNHITRh5tQfeUs43/tS562PhnqcE/xd7Q9PunFsFxyn3VBkfzDiWKJ2Pl9LLt5uLAMAMGUPC0pKLpwHkyA0YWbc+c+XlpPcaPll7qQ6z9vvjWn+1nrZC06W4ihTeNox1FaEIiU+Q0ueg6523vqo7y4AAJiurwUl+yb7n2semMiEfy1VaOK8Yabizn++tJbkhZZf5s3OWx8t621m7LfXzd6RXXafwJ7dQuu7f7Ycn1X883KcMgPmzVR1SQSCAABT9tCgpB6sDpO8r4lgYrZThSbjzlsfrWkOTkq9SnMr7T/K4qzfFg35Te7feSJAoe3W63fQVqpdIlt2APLAM7Hk4u12xAIAzIhHBiVJcufXxa7sgZOYGK2l+mCw1nnTKjKO151fvzRIcrnll7mdZMnviQb/TvcHKN36j3EYTfH1QORNH4B54nOvn3KLtz/XedOOcwCAWfGkoES9EjgZe0d0mTBxTAoJv6903vxooLdp2W93t4B8N3tBymKEKExnvHIrdRBS/9kQUPOUz7aSi7ef77z50chdAAAwOx4blBjAwlTs1L+56pguqzGZkPp5/kUBl2qFJiX9rh8MUfb/sdCFp7GeKgzZ2Pe33SEcx7NrnDKPHbSoAwBgBj0xKKkGst/vRXF3mJbteiI5TjLuvPnxlibhad359feHaX/9qc3Omx8v6W1I7vz6+7u7T7oP/FmMuiilWq//Hu//u/Pmx2NNwwk+m9aSvFDi76/z5sc9dwAAwOw5UFBSD2b7Kff8WJglghOe2p1ff7+UIxUvdt78eEWPw4GeCbvB4oOhSuJ4r6aND3bHBOP67636z63Omx/bacesPHeGaf+ijYfZTNLrvPmxo+oAAGbQgYOSelDbj7AEZs3uUV0bqYKTsSbhCc/yXtq/S3AnSdfHCJjYc2N/oNLNXpCyG67s/uuO+5qs/eHH1r5/vHsslp0gNO1ZspzkRqHj9Z7AEgBgdh0qKKkHt/0IS2DWbab6iLKRZMNHFB7yLC/hyIubnTc/XtbbMJVnzP5gJflqoPKwf97mo8DWH/jnW9kLPL72z72zafFzoVuPTUusfXm28+bHa+4CAIDZdeigpB7k9iMsmbTdD9vLhU4eOH7b2ReepDqGY6xZylR/xNwq4HnzvPscGv2sejBQ2e/BMOYkPO55suU4THjsuGOcMmsjOQ4UAKABniooqQe7/QhLJm0zVVCyVP8tNOEk7B7rsXuMx7j+1zccW9QuD/ng2E9yroD7e8m9DABTHYOMChhzPMxq582P++4AAIDZ99RBST3g7UdYMmk7SQadNz8e1W28G5gITZiWzdTnoOerK2nHD/znWhesPGEl80H0nuK/c9j/m0ueDU90qfPmx0PNAABTGU8NklwudAyteDsAQEMcKShJkju/eakfYclxuJmk33njo1v72lpoQtusH/G/343CwRzMNztvfLSlGQDg5Nz5zUtLSb4o8NJ3kiwZewAANMeRg5J6ALycZBQf7ydtO1VYMn5EmwtNAA5mvfPGRz3NAAAn485vXiqlHtrDPNd546MNdwEAQHNMJCipB8JLqY7i8dF+8q503vho8JgJyG5g8oKmAnik8503PhppBgA4fnd+89JGyizebrwBANBAEwtKki/P81+Lo3COw2aSfufNjzce0/67oUk/yRlNBvAVO0m6zgoHgON159ffX0lyocBLV7wdAKChJhqU1IPixVQ7S57VvBO3k2TYefPjlQP0Qzd7oYm+AKhc6bz58UAzAMDxuPPr7/dTZg3Lzc6bHy+5AwAAmmniQUk9OF5MtbPErobjURV6P+Cq6HqnTz9VcGK3D1C65ztvfjzWDAAw8Xlgqccx27UKANBwxxKU7Bsoj5Kc08zHNhhfPuzHvju//r4i8EDprPgEgMnP/Uo+WeC5xx2RDADA7Pun4/wfr89nvaSZj8XpJJ/X5/8epk/W6n7pJjmfancKQEmevfPr7zt+CwAma5RSi7cLSQAAGu9Yd5TsKvic2pPyxELvT+ifbtQzAcqyk2Sp8+bHW5oCAI483xskuVzgpat9BgDQEicSlNSD51LPqz0pBy70foB+6td/9BXQZjc7b368rBkA4Ejzh16Szwu89PXOmx/33AEAAO1wYkFJktz9zfeXUu6W7JNyM0l//o2jFxK8+5vv7+4yeUGzAi31/PwbCrsDwFPOFxaTbKW8BVbbSZYmMecCAGA2nGhQsm8wPY6w5DjtpApL1ibYZ/04mgtoHx86AODp5wkbBc4PdpL05t9QlwQAoE1OPCipB9SLSVaSnNMFx+pKkuEkPwDWu4L6cTQX0B6X5t/4eKgZAOBQ84KVJBcKvPTz8298PHIHAAC0y1SCkr3B9f8pdXB9kjaT9Off+NPGMfSfo7mAtvjm/Bt/2tIMAHCgeUA/yfUCL/3K/Bt/UrwdAKCFphqUFD7IPmkX59/408ox9WE3yXKSQZJnNDXQQOvzb/yppxkA4Ilj/6VURymXtrvcWAEAoMWmHpTUg+3lVEXeHeV0zIP7JMvzb/zp1jH25VKqwGRZfwINc3b+jT+taQYAeORYv9R6k3VNsz+paQYA0FIzEZTUg+5SVyadtLrQ+/F+DKwnUbtHc53R7EBDno9dH0EA4JFj/LWUd+xuXbz9T4q3AwC02MwEJfXAu9QVStNQF3o//g+C9dFc/fqPo7mAmX42OnscAB46ph8kuVzgpZ+ff+NPI3cAAEC7zVRQUg/AF1Mdw6VA+PE7tkLvj+nf5VQ7Tc5pfmBGPWfVKAB8ZQy/lOSLAi/dAgoAgELMXFCybzA+io/pJ+XS/Bt/Gp5w/+4ezTWIHUTAbFGsFQC+Om7fSnlHJG/Ov/GnJXcAAEAZZjYoqQflpW7vnob1VLtLtqbQz0vZO5pLjRpgFlycf+NPK5oBgNLd/c3/Gae8moPqlgEAFGamg5J6YN5Pcl1XndiE4NgLvT+hv3cLwDt6DZj289AHEgCKdvc3/2eY5P0CL90xnAAAhZn5oKQeoPeSrMVug5OymmQwzQ+E9Rb/fv3H0VzAVJ6F82/8qa8ZAChRvYDpRoGXrng7AECBGhGUJMnd335vKck4wpKTsp1kef71TzZmpO/7cTQXcPKen3/9k7FmAKAkd3/7vW6SjQLH3qvzr3/SdwcAAJSnMUFJPWBfSjKKHQYn6dL8658MZ+gecDQXcJI251//RCFXAIpy97ff2yhwzuWdDwBQsEYFJfWgfTHVzhJhyQlOGlLtLtmasftgOcnAvQAcs4vzr3+isDsARbj72++Nkpwr7LJ3kizN0nwHAICT1bigpB68C0umM3kYzL/+yWgG74duqsBkOckzugo4hudfd/71TxR2B6DV7v72e/0k1wu8dEdtAgAUrpFByb6B/CjlrXaatptJ+rP6wfDub7/XS3U013LUMwEm+Oybf/2TZc0AQFsVXBPSzlEAAJodlNQD+lGEJSdtO1VYMp7xe0M9E2CSrDYFoJUK3rFvIQQAAEmSf2r6Bcy//kk/yaquPFHPJPn87m+/N5zxe2Otnvj8/5KcT7UbBuBpjTQBAC21kgKLt6daVAUAAM3fUbLr7m+/N0hyWZdOZ4Ix//onGw25TxbrCVE/atwAh3dp/vVPhpoBgLYotC7JTpJeU+YwAAAcv9YEJQUP8mdlojFs2tm+dRH43eO5hCbAQZ93S/Ovf7KlKQBowfxpKckXBV762fnXP1lzBwAAsKtVQUk92O9HWDItM13o/Qn3TTdCE+CAzzrnmQPQgnnTYpKNVMfqluTK/OufDNwBAADs17qgJEnu/tf3+qnO2T2ti0/cTpLl+Z82t+Dx3f8SmgBP9HyTn3MAcPe/vreW5IXCLnt9/qef9PQ+AAAPamVQUg/8l5KMIyyZlitJhvM/bd7ukgfuo26q0KRX4EQSeLTt+Z9+0tUMADR0jFtifcftJEtNn58AAHA8WhuU1BMAYcl0VYXef9qOIol3/+t7i6lCk93gxH0FZbs0/1OF3QFo5BypxLokz7VlXgIAwOS1OijZNxEYx0ftabo4/9NmFXo/4L21PzR5RjdDcarC7j/9ZEtTANCQ8WupdUnOz//0k5E7AACAR2l9UFJPCIQl07eeqnbJrRbfY72oawKluTn/U4XdAWjMmLXEuiSr8z/9pK/3AQB4nCKCknpSICyZvp1UR3Gttfxe2z2iqxe7TaAECrsD0IQxaol1STaT9NQlAQDgSYoJSurJwWKqsMSK/+laTTIoZcKyb7dJLwrCQxsp7A5AE8ajpdUlcUQmAAAHVlRQUk8ShCWzYTvVUVzFFVS8+1/f62UvODnjVoBWUNgdgFme/5RYl+Rs23eyAwAwOcUFJfsmC+MIS2ZB8R8XBSfQClatAjCrY80S65JYwAAAwKEUGZTUEwZhyexYT1W7ZEtTfO2orqWocQJNobA7ALM2riyxLsn6/E8/6el9AAAOo9igJEnu/u67wpLZsZNkMP+TP480xdfu026qwGQ3QFlKclrLwEx6fv4nfx5rBgBmYAxZal2S7vxP/qx4OwAAh1J0UFJPIIQls+Vmkr7JzRPv226+Gp50Y+cJzILt+Z/8uasZAJiBOU6JdUmem//JnzfcAQAAHFbxQcm+icQ4wpJZsZ0qLBlrikPfx7vhSXffP7b7BE7Wxfmf/HlFMwAwxXFhiXVJvH8BAHhqgpK9yYSwZPZcmv/Jn4eaYSL3dy/JbpDS3ffHLhQmaf0A/5mt+j5s87PWsR8ATHPcV2JdktX5n/y5r/cBAHhagpKvTiqEJbNnM9XuElvoj+++76YKTXaDlKQ6ziv1v+b3MP3fwGE+uI8P+J+7lepIjoPYmORH//qe+0fL+80HGwCmMa5bqscCJe0o3kzSs0ABAICjEJR8fXIhLJk9O0mGttLPxO+j95B/uXfA//r+IOakjGfsf3PDJP7Le2mY5P2WX6bC7gCYxxz/PKFnURUAAEclKDHJaBKF3qFdz9m2F5ndnP/Jn5f0NgAn9G4dJTlX2GWfn//Jn0d6HwCAo/onTfB19Yf4Xqpt3MyOF5Js3f3dd5c1BbTiOTto+WU+e/d33+3rbQCOW/2+KS0kWRWSAAAwKXaUPH7CYWfJ7LqS6jguu0ug2c/ZcZIzLb5Ehd0BOO53aTfVLs2i6pLYtQkAwCTZUfIYdpbMtAtJxnXBSqC5+qnChLY6nWSomwE4RmspKyTZSWKHOQAAEyUoeQJhyUx7NskXdVFooJnP2K0kKy2/zAv1al8AmKi7v/vuSsrb/d6vxw8AADAxjt46+CTEMVyzbd2kCRr9jN1Kuwu7r8//5M89PQ3ABN+dvSSfF3bZV+Z/8ueB3gcAYNLsKDkgO0tm3pkkGwq9Q2P12/6M8nwCYFLqRVxrhV32upAEAIDjIig5BGHJzDud5Mbd3313rZ48As15vo6T3Gz5Za7oaQAmRF0SAACYIEHJIQlLGuGFVLtLepoCGmWQdhd2f0ZNJQCO6u7vvjtItZu6JMv1PAwAAI6FoOQpCEsa4Zkkn/soCY16tm6l/bsuBna8AfC07v7uu0tJLhd22ZfqnacAAHBsFHM/2kRFgfdm2ExV6H1DU0Ajnq1baXdh99X5n/y5r6cBeIq5x0bL35EPWp//yZ97eh8AgONmR8kR2FnSGM8mGdfHFACzr9/y6ztXrwgGgMNYSVkhibokAACcGEHJEQlLGuN0kssKvUMjnqvjKOwOAF+6+7vvLic5V9hl99QlAQDgpAhKJkBY0igvJNmqJ5vA7Gp7YfcznkMAHMTd3323m2RU2GVfdGwuAAAnSY2SSU5ifv8dNUua5UqS4fyP/2KlGszmM3WY5P0WX+L2/I//0tXTADzhfThOcqagS745/+O/WEwAAMCJsqNkguoP7r20exV0m1xIMr77+++oFQCz+UwdJtlu8SU+U4dBAPBQ9XuipJBkO+2vVQYAwAwSlEyYsKRxnk3yhY+VMLP6Lb++Qb0bEQC+ol7M835hl71stzcAANMgKDkG8z/+y0aEJU3z/t3ff2d89/ff6WoKmKnn6TjtLux+Ogq7A/CAOkQfFXbZF+t5FAAAnDhByTERljTSmSQbd3//HWciw2xpe2H3c0JaAB4wTFl1D2/O//gvFg4AADA1gpJjJCxppNNJbtz9/XfWHIcDM/Ms3Ur7d12M9DQASXL399/ppaqlVwp1SQAAmLpT9+/f1wrHP9lZSjJO9RGehk3a6qN/gOk/S7eSPNPiS3ze8wag+HfdYpKtwuYNzzlyCwCAabOj5ATUA3/HOTXPM0k+v/v77zgGAGZDv+XX51kDwChlhSSXhCQAAMwCO0pO0N3ff6ef5LqWaKTNVLtLTORgus/Rcap6Qm11fv7HfxnpaQBzhQKsz//4Lz09DwDALBCUmABxcDupCmsKS2B6ui1/hm4nWZr/8V9u6WqAouYI3XqMWcpukp0kXe87AABmxT9rgpM1/+O/jO7+/tuJsKSJTie5rBmAY/RMkkGqUBaAYtwfpawjt5bnf/xXIQkAADNDjZIpmP/xX0dJzmsJAB5icPf3317UDABluPv7bw/S7mMlH3Rp/sd/Het5AABmiaBkSuqw5IqWAOABp6OwO0AR7v7+20spa8fy+vyP/zrU8wAAzBo1SqY9Ofrvb4+SnNMSADzgm/P/9tctzQDQ6rnARpJnC7ncnSRL3m0AAMwiO0qmbP7f/tpPsqolAHiAXSUALXb3v789TDkhSZL0hSQAAMwqO0pmZ6I0ip0lAHzV8/P/5hx3gBaO/ZeSfFHQJV+Z/7e/DvQ8AACzyo6SGVHvLNnUEgDsM9QEAK00KuhaN4UkAADMOkHJbOlFWALAnjN3//vbfc0A0B6FHbm1k8R7DACAmScomSHz//bXWxGWAPBVQ00A0A71kVvvF3TJg/l/++uGngcAYNYJSmbMvrBkW2sAkOSZu//9bUeWALTDqKBrXZ3/t7+OdDkAAE0gKJlBdViynGqrOgAM7/73txc1A0BzFXbk1nYSIT8AAI0hKJlR9Rb1XoQlACSn44MTQGMVeOTWcr34CwAAGkFQMsOEJQDsM7j739/uagaARhoVdK2X1CUBAKBpTt2/f18rzLh7f/h2P8l1LQFQvNW51/7a1wwAjRrLD1PObpL1udf+2tPrAAA0jR0lDTD32l9HSc5rCYDinbv3B7tKAJri3h+KOnJrJ1WdRQAAaBxBSUMISwCojTQBQGOsFHSt/bnX1CUBAKCZBCUNUoclq1oCoGhn7v3h2z3NADDb7v3h24MkZwq53Ctzr/11Ta8DANBUgpKGqc+mF5YAlG2oCQBmV31MYinP6k3vJQAAmk5Q0kB1WHJTSwAU68y9P3y7rxkAZtZKktOFXKsjtwAAaLx/1gRNdb+fZJzkWW0BUKRh1CsBmDn3/vCt5SQvFHK5F+de+3RDrwMA0HSn7t+/rxWaOwlbjLAEoGTn5177dKQZAGZqfL6VMnaTrM+99mlPrwMA0AaO3mqwudc+vZWkl2RHawAUaaX+KAfAbBimjJBkJ0lfdwMA0BaCkoYTlgAU7XSSgWYAmL57f/hWL8mFQi63P/fap1t6HQCAthCUtEB9LnAvwhKAEg3sKgGYCSuFXOfNudc+XdPdAAC0iaCkJeqwxKpigPKcTnXUCwBTcu8P3xqkjLqB23HkFgAALaSYe/smaf0k17UEQHG+6RgUgKmMv0sq4P783GufjvU6AABtY0dJy8y99ukoyRUtAVCcoSYAmIqVlBGSXBGSAADQVnaUtNS9P3xrlOSclgAoynP1UYwAnMyYu5fk8wIudXPutU+X9DgAAG1lR0lLzb32aT/JTS0BUJQVTQDguXsM+roaAIA2E5S0f0KzqRkAinGmXt0MwDErqID7JbsVAQBoO0FJi8299umtJL0ISwBKMtQEAMerLuBewvN2fe61T71XAABoPUFJy9VhST/JjtYAKMKZe3/4Vl8zAByrYdpfwH0njtwCAKAQgpIC1FvlexGWAJRiqAkAjse9P3xrKcmFEt4lc699uqXHAQAowan79+9rhVImdf/zrX6S61oCoAjn53706UgzAEx8TD1Ocqbll7k+96NPe3obAIBS2FFSkPqD2XktAVCE4b3/+daiZgCYnHv/861e2h+SOHILAIDiCEoKU4clq1oCoPWeSTLQDAATNSrgGodzP3LkFgAAZXH0VqHu/c+3RknOaQmAVttJ0p370ae3NAXAkcfP/bT/GFtHbgEAUCQ7Sgo196NP+0k2tQRAq52OXSUAR1YfZbjS8st05BYAAMUSlJStF2EJQNsN7v3Pt7qaAeBoz9JU4XObOXILAIBiCUoKVh/F0k+1egyAdjqdZKgZAJ5OvZuk7bvz1ud+9OmK3gYAoFSCksLN/ejTjVQ7S4QlAO11zq4SgKfW9t0kjtwCAKB4ghJ2wxJn2AO021ATABxOHTK/3/b3gyO3AAAonaCEJMncjz4dJbmoJQBa69y9//nWkmYAOJRhy6/PkVsAAJDknzUBu+Z+9OnKvT/+61KSc1oDoJVWUh23CMAT3Pvjv3ZzqtXjYkduAQBAzY4SvmLu1b/1k9zUEgCtdObeH/+1pxkADmTY8utbmXv1b1u6GQAABCU8XD/JpmYAaKWhJgB4vHt//Ndu2r3LenPu1b95HwAAQE1QwtfMvfq3W6mOZtnRGgCtY1cJwJMNW359fV0MAAB7BCU8lLAEoNUU7gV4hHt//NfFJMstvsQrc6/+bUNPAwDAnlP379/XCjxuoric5IaW4AluxodX2mmY5ExLr+383Kt/G+ligK+Nf4dJ3m/p5W0nWaoXRQEAADVBCQeZLPaTXNcSPMF6kr6ioLTs+beU5IuWXt723Kt/6+plgK889xeTbCU53dJLPDv36t/W9DQAAHyVo7d4onrF8aqW4AnOJNmodyFBW55/Gy1+/j1TB+EA7FlOe0OSm0ISAAB4OEEJBzL36t/6qXYMwOOcTnLj3h//da1ekQltMHRtAJ75DbeTZKB7AQDg4QQlHMZykk3NwAG8kGp3SU9T0HT1cXJXWnp5z9z747/6cAaQL2vzPdPSy1txPCoAADyaGiUccgL5YjfJRtp7JAGTdyXJcO7VzxQNpcnPvjafWb+TpOs3CnjWvzhOdZRo22zOvfrZkh4GAIBHs6OEQ5l79bOtJD0twSFcSDK+98cXTdBp8rPvVpKVll7e6TiOBShcvRjoTEsvzzMeAACeQFDCoc29+tlGkvNagkN4NskX9/744lBT0GArqXZftNGg3jUDUKq2hgk35179bKx7AQDg8QQlPJW5Vz8b5VQu5VTijz+H+PP+vasvbty7+mLXr4gGPvdu5VSGLf1tns4pK46Bgp1Kv4XP9h3PdgAAOBhBCU9t7pXPhklWtQSH9GySjXtXXzRxp4nPvZUk2y29vMG9q3aVAOW5d/XF5bSzBtXK3CufbelhAAB4MkEJRzVIsqkZOKTTSS7fu/ri2IdZGmjY4t/lUPcCBeq38Jq260VNAADAAQhKOJK5Vz67laq4+47W4CmcSbJVr+SEpjz3RmnvrpILjsYDSlIv2HihhZdm5y4AAByCoIQjE5ZwRKeT3Lh39cU1u0tokH6Lr22oe4GCtHGxxvrcK5+t6VoAADg4QQkTMffKZxuxco2jeSFV7ZKepqABz7xxkvWWXt45u0qAgrRx/DrUrQAAcDiCEiamPo7mkpbgCJ5J8vm9qy+u2F1CAwxdG0Bz1WONZ1t2Wat1mA8AAByCoISJqotGrmoJjuhCkvG9qy8uaQpm+Hk3jl0lAE3WxmO3hroVAAAOT1DCcRgk2dQMHNGzSb64d/VFE35m/XnXVn57QNu1LShZnXvlsy3dCgAAhycoYeIUd89mFLafpPfvXX1xw+p2ZvR5t5H27qI7Z1cX0HK9ll3PUJcCAMDTEZRwLAoPS55Ntcp83Z0w0TbduHf1xYGmYAYNW3xtK7oXaKN7V1/sJTndokuymwQAAI5AUMKxqVdal/pheyXVcQ6K20/O6SSX7119cazQOzP2rNtKe3eVnKk/JgK0TduebUNdCgAAT+/U/fv3tQLH6t7VF1dSFecuzebcK58t1UfXjFLtimAydpJsaAZmyGKLf+Prc6981tPFQMvGp+MkZ1pyOatzr3zW16sAAPD0BCWc1GR0LckLBV76lblXPhvUOyCGKTMwAprv+blXPhtrBqBFY9M2TYK+6dgtAAA4GkdvcVL6qYqcl+bCvasvLs+98tmtuVc+GyR5Psm22wFomKEmANqi3u3bFmqTAADABAhKOBF1cfd+yizuPtqdkNcrspeS3HRXAA2iVgnQJm16nq3oTgAAODpHb3Gi7l39l16Szwu89M0kvblX/n5rX1ssp6pdctqdATTA+twrf+9pBqAF49G21M/bnHvl70t6FAAAjs6OEk7U3Ct/Hye5WOClP5sHVvzNvfL3tVS7S9bdGUADnKnDboCma0u4YDcJAABMiKCEEzf3yt9XkqwWeOnn7l39l/4DbbFVr9C+6M4AGmCoCYAW6LbgGnaSrOlKAACYDEEJ0zJImcXdr9+7+i9fW8VYh0fPFdomQHPYVQK0wTMtuIa1/Ue6AgAAR6NGCVNz79q/LCbZSnk1OraTLM29/PDJ7b1rrTk3G2in9bmX1SoBGjv+7Cb5Rwsu5ezcy3+3owQAACbEjhKmpg4KegVe+jOpirg/ql0GSZ5PFagAzJoz96599RhBgAbptmQcLSQBAIAJEpQw7UneaP4flAAAIABJREFURpLzBV76C/eu/cvgMe0yTlVo9Ka7BJhBQ00AMDXrmgAAACZLUMLUzb3891HKLO5++d61r9cr2dcut+Ze/vtykrOpCnYCzIpn7CoBmJpufYQtAAAwIYISZsLcy3/vp8xC5mtPmujWRyt0Y/UgMFuGmgBgKh57jCsAAHB4ghJmSS/l7Zw40ES33l3SS3IxdpcAM/L8sqsEYGpeuHftX0aaAQAAJkNQwsyoirvf7yX3U9ifF+5dOzs4YBut1G20WWA7+eOPP7P3Z+jtBTRLq57B5+5dOzvSpwAAcHSCEmbK3Ms3Si3ufvnetbNLB22juZdvLCW55I4BpuyZe9fO9jUDwNSc8xwGAICjE5Qwc+ZevjFKmcXd1+5dO7t4iHYaJnk+yba7BpiioSYAmKrrwhIAADgaQQkzae7lG/2UV9z90IU5516+MU6ylOSKuwaY1rPLBzqAqROWAADAEZy6f/++VmAm/e/1s4tJtpKcLuzSL37j/I2Vp2iv5VRBy2l3D3DCtr9x/kZXMwANGWO2eQJ0/hvnb4z0MgAAHI4dJcysb5y/cStJr8BLv/y/1w9Wr+SB9lpL0k1y090DnLBn/ve6lcwAM+D6/14/O9QMAABwOIISZto3zt/YSHKxwEtfq3fUHLa9bn3j/I3lJOeT7LiDgBM01ARAQ6y3/Pre/9/rZ0e6GQAADk5Qwsyrj6Eqrbj7oeuVPNBmo1S1S9bdQcBJPbfsKgEaYqOAazwnLAEAgIMTlNAUg5RX3P2F/71+dvC0/+VvnL+x9Y3zN3r/f/buLTuu67oX/p8e3yAuL0RawFILCD04+U7iHBYzjuOLLAG0ZVGWLbHYAkItYLEFAlvAgmUrdpLvEJBk2ZI8zIJt2Y7zYKAFAloQ4IWg9MLvYW+KpMQLLnXZl99vjBrKxYm95157Y64915oryXXDB5iQvhAANbDVkutULAEAgENymDu1cefmxU45sW3bYeXPly3IThK7xRQ7VM4ZScCYOUgYqENO+WmLLnkzyXJ5/h8AAPAYCiXUbGK7vJzkVssuezfJ4vyV9b0RxG81yVUjCRjnO2v+ynpHGICK55Q7KVqdtsV2ku4o8kkAAGgirbeolfkr6+tpXyups0lWRxS/lSQXUhRfAMbyzrpzc7knDEDFrbfses8lGd65udxx6wEA4KsUSqid+Svr/SQbLbvsy6P68Dh/ZX2Y4qD3DaMJGJO+EAAVN2jhNZ9LsnXn5vKi2w8AAI9SKKGuemnfrojVUU1s56+s781fWV9OcjHJvuEEjJhdJUClzV9Z30o7d9ieSbGzpGsUAADAAwol1HVyu5dTWc6p7OdU0pLfmZzK4M5geWGEcVzPqXRyKpstiqOfn99kfn1/rYBKO5XVlr6fz+RUbt8ZKGgDAMB9CiXU1nxvfSvJSssu+1xG3NJmvre+N99b7yZ5M3aXAKNz1kc4oOIGLc99bt4ZLPcNAwAAUCih5uZ764Mkay277Kt3BsvLY4jlaoqzS7aNLGBEekIAVDiP3Ev7DnX/smt3BssDowEAgLY7de/ePVGg9u4MlrdS7LZoi/0ki/O99Z0xxbOf5JqRBYzAhfne+lAYgIrmkJ0kn4pENpMsl8UjAABoHTtKaIrltKt1wpkU7SLGYr633k/yfOwuAU6uLwRAVZWLTm6IRM4nGZaFIwAAaB2FEpo0ye21bUI7zr7S5Rkw3fh4AJz8XdUVBqDC+nFOW1Lszt66M1heFAoAANpG6y0a5c5gqZ/2tYy6MN/bGI45rt0UO1jOGmXAMWzO9za6wgBUOIdcSfKWSCQpikYr872NgVAAANAWCiU0caI7TNE+oC12kyzO9zb2xhzXhRTFkiWjDDiGsRd1AeSQI/XmfG9jVRgAAGgDrbdooradV3I2Yzyv5L753sbefG9jOcnFaE8BHF1fCICK68lxHvHWncHSQBgAAGgDO0popLJV1O2WXfaVSbVIKHeXrMeqS+Bo7CoBqp5D9pLcFIlHbCZZHvfuZQAAmCY7Smik8kPcmy277NU7g6XOhOK7V5438GasvAQOry8EQMVzyEGSNZF4xPkkwzuDJYe8AwDQWAolNHmiu5pko0WXfCbFLo9Jx3gxxUpDgGc5X+74A6hyDtlLsi0SjziXoljiHQ4AQCMplNB0vRSHnbdmEntnsNSf5L/hfG9jp9xdct1wAw75Xgaoum7LcsjDOJPkdtmeDAAAGsUZJTTencHyYpK/teyyL8z31odTivUgxapDgCd5br63viMMQA1yyGGKAgGPWpvvrfeEAQCAplAooS0T3ZUkb7XokneTLM731vemFO/VJFeNPOAJfGAD6pJDdpPcFonHKg95X3fIOwAAtaf1Fq0w31tv23klZ1Ps7JhWvFeSXIiWFcDjXb4zWO4IA1CDHHKY5IpIPFZ5yPuyQ94BAKg9hRJa5F4vubeb3EtLfkvT7CFdfFi4t5jcu9GimPv5+R3+1/d3CaiD+d76ILl3xXv7sb9zyb3hncHSspECAECdab1Fq9wZLLXtvJL9JIvzvY2dKcd9OcUOFz2+gYc9N+33E8AR8hmtRZ/uzfnexqowAABQR3aU0CrzvY2tJG+26JLPJFmvQNzXk3TSrvZnwLOtCAFQozxyJcmaSDzRW3cGSwNhAACgjuwooZXuDJbWkyy16JKvz/c2+hWJfS/JauwuAYpdb5353oaDgIE65ZGDJJdF4om2k3S92wEAqBOFEto6wV1IspXi0PO2eL7cUVOF+HdStOI6bzSOxXYSHyeap9PQd1ZlCrkAR8hlBlEseZr9FMWSLaEAAKAOFEpo8wS3beeV7KY4r2SvQvdgJUk/dpeM2n6SXtnyjOa8szpJPm3oeLWrBKjje3kQxZJnuTLf2xgIAwAAVeeMElqrheeVnE1RlKjSPVhN0k2xA4LROZPk1p3B0mq5e4pmvLN20sze+GfirBKgnu/lXpxZ8iw37wyWHPAOAEDl2VFC691Za915JRfnL1dvp8GdtaV+kmtG5MjtJunNX94YCkUj3ledNHNXye785Y2OOwzU9N08iJ0lz7KZZHn+st2DAABUkx0lkPRSfExui8GdtertMpi/vNFP8nzsLhm1s0lu31lbWq3ifefIz8lOmrl6+eydtaWeOwzU9N3ci50lz3I+ydadtaVFoQAAoIoUSjC5LVa2Lbfoks+kOEi9ivdiK0UrrhtG5shdTfGBoisUtdd3XQCVy2F6USx5lrNJhgrjAABUkdZbULqz9lI/7Wr99Ob85XdXK3w/uikKOmeNzpFbS7Iyf/ld7S/q+74apJltXq7MX3534A4D3s+Nd33+8rt9YQAAoCoUSuDRye0wRWuANthPsjh/+d2dCt+PhRSrzK8anWO5/735y++uC0Ut31WdNPOsku35y+9qywLU/R3dj3PXDmOjzEUs3AAAYOq03oJHLaf4gNwGlW3Bdd/85Xf35i+/u5LkYovuyyTv/607ay+tlwUpaqQscDaxxcu5cjcZQJ3f0f0kV0TimZaSDO+svaRADgDA1CmUwKMT27adV3K+XPVY9fuynqSTYuUho7WUZOfO2kvLQlE7fdcFUNncZRDFksM4l6JYIg8BAGCqtN6Cx7iz9tJq2tXu6fn5y+9u1eTeLKfYCXPGSB05LTDq964apJm98C/MX3536A4DDXhP95LcFIlDcW4JAABTY0cJPEbZ7mm7RZc8qNG9ub+7ZNNIHTm7Szy7VdFza4GG5JSDJM9HC9HDuKYlKAAA02JHCTxBeVjyVtqzc6F2q/jurL20kqJNj90lo2d3SX2eg2GS8w28tOfKs1gAmvCuXkwylLMcynaZg2wJBQAAk2JHCTzB/OV3d3IqvZxKWvK7duen9TpEef7yu6s5lcWcymaL7tOkfks5lZ07P7W7pPJOpd/QMdh3c4EG5ZVbOZVuTmVXjvHM37mcyvDOT1/qGTkAAEzs84odJfB0d37a2DMAHmc3yeL8G/XbRXDnpy+tJHnLiB2LYnfJG3aXVHj8D9PMXSV/Z9wBDXtfL6TYWXJONA7lxvwb764IAwAA42ZHCTzbSooCQhucTeq5inv+jXdXU/QA3zZkR644u8TKzirrN/S6fBwDGqUs/nblK4d29c5PXxqWBSYAABgbO0rgEO789MXFJH9r0SVfmH/jvWGN71c/yTUjdyw2k/Tm33hvRygqN+6Had6ukv0knfk33rOrBGjie3uQ9uxaPqndJMvzb7zn3BIAAMZCoQQOP5ltU2unsgVXfT9OlsWtQbS2GIf9JP35N95bFYpKjfnlJLcaeGlX5t94b+AOAw19dw+iWHKU/GPF3wTgCO/YTpJO+d8uJFl86H+9U/6SJHVeKAjAaCiUwNESrWGaeQ7A49yYf+O9lQbcs9UkV41eqK3d+Tfe6wgD0OD8spfkpkgc2tr8G+/1hAF46D3aSVEEWUzR3rCToq30Ue0n2Xr4ZycbQHsolMDRErCFFKtOzrTkki/Ov/HeegPuWzfF7pKzRjHUkl0lQNNzzF4US45iO0lXa0Zo9XtzOUVRpJvxdhHYT7KeZJhk3XsHoLkUSuB4CdmtllxuY84HKItc/dhdAnW0Of/Ge11hABqeYy6m+BB3RjQOnacua5cDrXtPriRZnuK7ciPJoAkLCgF4lEIJHC9Ba1M7p435N95bbtC968buEqijCz6GAS3IMRdTrFyWpxzem85Ng8a/G3spCiRVOn9yP8lqklW7TACaQaEEjpeoLaRY8deWg8IvNmnFTHn/VuPwVKiTRhVtAeSZI7WW4qB3HyuhWe/DXoquAFUuHt9vzeUdBFBzCiVw3KTt7RcXk/ytJZdbtOB6vVmJ3523X1xOsbtEiwuoh+fmX39vRxiAFuSZFnUc3XaS3vzrDl6GBrwDe6l+geRxc+Zih8nrCiYAdfQ1IYDjKSdhb7bkcs+kKCg07R6uJ+mk6DMLVF9fCICW5Jl786+/10uxU4LDOZdkWC6EAWroztsvdu68/eIwyc3UrwXhmSTXkmx5DwHUkx0lcPJkbpjkfEsu92JZXGjifbS7BKqvkbvbAJ6Ro/RSfDTk8G7Mv/7eijBArd51/RSFhqbYSLHLTd4KUBMKJXDihO57C0l20o4P7OVHyvf3GnwvB0mWjGyorOvzr7/fFwagZfmmBR1Ht5lkual5KzTo/dZJccZHE89l2k/Sm3/9/XV3GqD6tN6CEyonX72WXG4jW3A9fC/nX39/OcmVMqkFqqcnBEAL8831JN0ku6JxaOeTbN15+3uLQgHVVBaBt9LMIsn9+fOtO29/b9XdBqg+O0pgdEneIO05cPNi01fFlCubBmlPWzWokyvzr78/EAaghfnmQpJhmvtR0d8NaM/7bCXJWy26ZLvcACpOoQRGO3HdSv0OnTuORrfgekwC349WF1Al2/Ovv2+FMNDmnHM17VmgMyprSVZ8pIRKvMcGLX2HbSfpeg8BVJPWWzAiZbKz3JLLbXQLri/d19UkiylWAAHVcO7O29/rCgPQ1pxz/vX3e0mui8aRXE4y1IoLpqvFRZKk2A2oJSBARSmUwGgnrlstmrQulT1l23Bfd+Zff7+b5M04uwSqoicEQMvzzn6Kc9U4vHMpiiXLQgGT1/IiyX1no2gLUElab8F4EsAmH0j3sNa04Hro3nbi7BKoiufmX39/RxiAluediynOLdEm9GhuzL/+/oowwMTeVYMokjxsN8miNlwA1WFHCYzHctqx8+BMih7ZrfGl3SXAdPWEAGi7ckfzYore9xze1Ttvf29YnvkCjJEiyWPd31niHQRQEQolMJ4J606KA8Db4HIbzwoozy55Pj5KwDRZCQzwIPfsJtkQjSM5n2RHCxwYnztvf68XRZInOZdkXRgAqkHrLRhvUjhMO1o0tXrb8J23v9dPcs2Ih6m4Mv/6+wNhAPgiL1lNclUkjuzNciEMMLr3UTfJbZF4Jq0AASpAoQTG6ODtFxaS7KQdPaNvzL3+q5UW3+vFFGeXnDPyYaK2517/lZXAAI/mJb0kN0XiyDaS9OZe/5UzA8BceNIuzr3+K7tLAKZI6y0Yo3KS1WvJ5V49ePuFbovv9Vb5sfa6kQ8Tda7N7x6AJ+QlgxQtQvdF40iWkgzLBTDAyaxHkeQoBgdvv9ARBoDpUSiB8U9U19OeftGDcuVQm+93P84ugUnrCQHAV3ISh7wfz7kUxRJ/W+CYDt5+YSXtaEE9SmdSdCgAYEoUSmAyeinO8Wi6s3G4st0lMHmXrcADeGxOspPikPc10TiSM0luHrz9wkAo4GjKnKwvEsdyXpEWYHoUSmAyk9Q2teC6pl3BF/e9H7tLYFJMKgGekIfOvf6rXizgOI7LB2+/sKUYD0eyGi23ThS/tndpAJgWhRKY3CR1mORGSy534I5/cd/tLoHJWBECgKfmJP0kV+LckqM6l2Tr4O0XloUCnq48N25JJE7kjLwWYDoUSmCy+mlHC65zB2+/0He7H7C7BMY/qdSqAOCZ+cggRSuuXdE42t+YJLfkt3Co+S4nd81ONoDJO3Xv3j1RgAkqV9ncbsnlPlf2xubRMdBPck0kYOQ2517/VVcYAJ6ZiywkGabYLcER/9YkWS5b6wLtnOdOwlrZNhGACbGjBCZMCy7sLoGxOW/1HcChcpG9sjWoQ96P8bcmyU75URh4oC8EI3VZXgswWQolMJ3J6Ura8ZH8/MHbL+iv+vgx4OwSMEkHmHY+0ktxbglHcybJbXkuFMrC4XmRGDnvGIAJ0noLppVM/ux7i0n+1oJL3U/SmfvJ+9oTPH0sDKL9BXjnAEwvFxmmKABwNBtJev7u0PJ3yCDJZZGQ1wLUmR0lMCVzP3l/K+3YTXAmWnA9cyzM/eR9u0tgdO+cZWEAOHJeuhhtQY9jKclWWWyC1jn42fcWokgirwVoAIUSmO6ktN+SCenSwc++J8E73HhwdgmcnDYFAEfPQ3aSdOPckuM4m+RvBz/7Xk8oaCHjXnwBGkHrLZiyg5+90JYWXLtJFud+8ivbhg83LvpJrokEHNvzcz/51ZYwABwrD1lJ8pZIHMtakhU5Ly16X2xFC+Fxe27uJ7/aEQaA8bKjBKas/JDXhpZLZ+OQ5aOMi37sLoGTsKsE4Ph5yGqSCyn643M0l5MMy8VQ0GgHP3uhE0WSSdCdAWACFEqgGpPRftrxQfzqwc9e6Lrjhx4XW3M/+ZWzS+CYE8qDn72wIAwAx85DhnFuyXGdS1Es6QkFDWduJ84AjaFQAtXRlonUqlt9NHaXwLE4/BLg5DnITpxbcpK/QzcPfvbCQChoMLnWZCwJAcD4KZRAdSaibWnBda48f4Mjjo+HdpdogwGH0xMCgBPnIHtzP/lVL8mbonEslw9+9sJW2aIImqYrBJOhMwPA+CmUQLUmov20Y9fAisniicbIYpJN0YBnOu9dAzCyHMS5Jcd3LsnWwc9esPqexihzrDMiMTHOPQIYM4USqJ5eC67xTJKBW308cz/51c7cT37VTbGy08cKeDqHugOMLgcZxrklJ8l/bx387AVtaGkKH+4nqysEAOOlUALVm4Bu5VSu51TS8N/5g59bVXfCsbKaU1nMqWy2YLz4+R331/O2ABhp/rGTU+nmVNb8jTnW7+rBz1/YOvi5HY/UXDEP8UxP7uedATBmCiVQxQnoj1vTgmtw8PMXFtzxE42Vnbkf210CT3FGURZg5PnH3tyPnVtyAkUrLn+fqLeuEEz8vQHAGCmUQHX1WnCNZ5L03eqTm/vxr1ZTbH/fEA1o5fsUYFr5h3NLjp8H3zr4+QtyYeBQ7EQDGK9T9+7dEwWobCL03X6Say241AtzP/5g6I6PbNwspzgDxuGK8MDfzf34gz1hABhL7tFJsh4rno9rM8myv1PU7Ln3Mcm8GaBR7CiBCpv78Qf9tKMFl0MtRztu1pN0YncJPKwnBABjyz12UrThWRONYzmfZOfg59/tCgUAwHQolED19VpwjefK3TOMyNyPP9ib+/EHy0kuJtkVEVAoAZhA7tFLckU0juVMkttyYuApukIAMD4KJVD9SedWkhstuNSVsm0Dox0/6ynOLrkhGrTcOe8YgInkHoMkz8e5Jcd17eDn3x0e/Py7C0JBVR38/LuLogBA0yiUQD300/xdAWeiBddYlCs8V1Ictmp3CW22IgQAE8k9tlK0Ad0WjWPRiouqU8gDoHEUSqAek829tKNtzFJ5EDnjGUfDFLtLrosGLeX9AjDB/HXuxx/Y1Xp8WnEBAEyQQgnUZ7I5bMlEc1WrgbGOo725H3/QT9ESwypP2uasVhEAE889VlKcW6IV1/FoxQUAMAH/jxBAjZxKP8WK6LMNvsqzKdrj9N3w8SlbYiwevPPdfhnvM6JSCWtJdir2n6mT5HKDYtyLFlwAk847BgfvfHcryXrD89hxKVpxvfPd5bnXPhgKBxWYl+4JAgCN+/N27949UYAaOXjnu8tJbrXgUp+be+2DHXd8ImOqk2RQTsKZvrUk/SqN/4N3vruT5nzY2p177YOOYQYwlb8nC2XOsSQax3Z97rUP+sJABZ5nH5Mm78251z5wrifAmGi9BTUz99oH60k2WnCpA3d7YmNqZ+61D7rRFqMqLif59OCd7w7KIpbncbTOHrzjcFyAKeUce3OvfbAc56WdxLWDd747LItOQLtsCQHA+CiUQC3d6yX39pN7afDv/ME733Hw8mQ/XgySe53k3kbDx1ZdfpeTe58evPOd9YN3vtOd8jtn0LDY9jzxAFPNOfrJvQstyGfHlicn93amnx/Q8jmp53cqPwDGRaEEajm5/PVeij77TTc4eOc7VstNeGzNvfbr5SQXkuyKSCUsJbl98M53htP6IDL32q930qydbIqwANPPOYZJFpNsi8axnCnzg75QMCV2N0zejhAAjI9CCdR3crmeZLMFE0CTv+mMr2GKjxdaY1TH+RQfRHYO3vlObwr//oMmvVsO3vnOoiEFMPV8YydJN8X5XBzPtXIxhcVFTNqOEEzlnQnAmCiUQL310vwzJa76oDm1RHxv7rVf95M8H6s9q+RskptlwaQ/qQ8jZXG2SbuMeoYSQGXyjV6Ks9I4nvNJtOJi0naEYKI2hQBgvBRKoN4Ty520Y8fFqrs91XG2NffarxeTvBmHvVfJ2STXUnwYWT145zudCfx7DhoUP+23AKqVbwxSLM7Q+vN4tOJi0oZCMFE7QgAwXgolUP9J5Wqav9r//JRaDfHVsbaYZp1V0QRnklxN8unBO98ZjHk16aBBcTtrtxpA5XKNrTLXsHL6+LTiYlKcUSLeAI2iUALN0GvBNfZN+KZv7rVf7zjsvdIup1hNujWO4qJD3QGYQK6xN/far7txTtpJaMXFRJ7VaM87SUMhABgvhRJoRpK61YLJ5NkkK+52ZcbcMA57r7JzKc4x2SvPMemM8P/3eoPipFACUN1co5/kYrT9PC6tuJiEoRBMxH455wdgjE7du3dPFKAByt0WWykKCk32XLmqneqMvU6KlkznRaPSNpIMykPZT3rP91J8gPFOAWASecZ6ikUAHM9mkuVyBwCM8vlcTnJLJMafx5e7+gEYIztKoCHKiU+vBZc6cLcrN/Z2yhYZV2LVZ5UtJbl18M53dg7e+c7KCXeZNGlXSdfQAKh8nrGYZE00jk0rLsb1fK6LwkSIM8AEKJRAsxLVYXJvI7mXBv/OH7zzbatpqjn+Bsm9TnLvRsPHYN1/Z5N7byX3Pj1459vrx3ue7q02KB4+GgHUI8/oJfeuJPf2/S0/1u9Mcu/2wTvf7htNjFbj559V+CmUAEyA1lvQMAfvfHshyU6a0xbncXbnXvtNx92u9DhcTLIa7bhq80ylWKm2Ovfab3YOeY930oxWf/tzr/1mwRAAqFWOsZ7mt5sdp7IV12+04mIUz+RQzj9WG3Ov/cZCQYAJsKMEGqac8PQbfplnrYar/DjcmnvtN90U7bh2RaT6z1SSq0k+PXjn21sH73x7pSy6Ps2gIdd+pvzoBkBNcowkiynO3uJ4ylZc3+4KBSdRzskUScZrIAQAk2FHCTQ3aR02PGndT7J42NXvTHUsLiRZSXJNNGpnI8Wq3fUvrzo9eOfbnSSfNuQ635x77TerbjdA7XKMlSRvicSJXJ977Td9YeAYz99ikr+JxFjppAAwQXaUQHOtNPz6zqT5O2caYe613+yVE/DnYvVn3SwluZnkf8rzTHr3d5qURcrthlxn160GqGWOsZrkQooFNBzPtYN3vj08xE5S+EI5XgYiMXZiDDBBdpRAsxPYfpq/iv/C3Gu/GbrbtRqX3RTnl5wTjdraLidui0kuN+B6nFMCUO/cYiHFDkgtgE7wtzDFuSXyag7zzK2maNvKeJ/JjrOEACZHoQSaP2ncSrMPu9yee+03zheo5/jspSiYnBENKuD5su89APXNLXy8PTmtuHjWc9ZNclskPIsATaP1FjRYufqk1/DLPFd+cKd+43OQpJPkumhQAQquAPXPLVaSXIxWXCdxvxVXRyj4sod2bzFe+ykWlAEwQQol0PwJ4zDNPxdiVV/l2o7Ph88vWRMRpqgrBACNyC3WUxS/t0Xj2M4n2Tp459vLQsGXDGI3+ETmt1puAUyeQgm0w0qavbLuTJp/eH2jzb32m525137TS3Eg66aIMAV2lAA0K69YjEUYJ82vb5XtzOB+29wlkRi7XS23AKbDGSXQlsT23761kuSthl/mc3M/+nDH3W7EeF1Osd38rGgwKXM/+vCUKAA0LqfoxZloJ7WdZFme3ernqJPi7EvP0fhdmPvRh0NhAJg8O0qgJeZ+9OFqmt+CwIq35ozX9bkffdhJcX6JPuNM6iOAXSUAzcspBinaK2rFdXznkmyVC1lop0EUSSbhhiIJwPQolEC7NL091dLBv32r6zY3x9yPPuzHge9MTkcIABqZT2ylKJZoxXV8RSuuf/uWhUktU3YmOC8SY7ebpC8MANOj9Ra0L9EdJLnc4Ev1Z07uAAAgAElEQVTcnvvRh1aFN3PsdsrJw2XRYEyul8U5AJqbT7ShHe3Y8+0kvbIARbOfl8UkfxOJiXjeMwUwXXaUQPs0/WD3c2Uvahpm7kcf7sz96MNeHPjO+CwIAUDj84nVJM+nWL3NMfPtJEM5dysMhGAi3lQkAZg+O0qghcpJzc0GX+J+ks7cjz7cc7cbPY675eTNge+Myubcjz7sCgNAK/KIhTKPWBKNE1lLsiLvbuQzsprkqkiM/xkqF4MBMGV2lEALlYdaNnlF/pk0/zwW4/hHHw7LA9+vxKpQAOBoecTe3I8+XE7ypmicyOUUu0u0vm2QckGSIsn4bSqSAFSHQgm0V9MLCSvlmRY0XFn4W0xx4Pu+iAAAR8gjVlO09ZRDHJ9WXA3y0G4rxms7ybIwAFSHQgm0d1K4leRGgy/xTIqDv2nHeN4rD+HuRMGE4+sIAUAr84hh+TfAGWgny71vHvzbt9bLD+3U1yBa247bdpKulnUA1eKMEmixchKzU05smup5B+O1cmx3UhTKLosGRzH3ow9PiQJAq3OIfpJrInEiu0mW5eC1HP/LSW6JxFgpkgBUlEIJtNzdXzT+YPfN2Vcdztzi8d2JgglHMPuqQgmA/OFb3STrafZiokl4c/bVD1eFoVZ585ZxP1YbSXqzryqSAFSRQgmQu7/41jDJ+QZf4oXZVz8cutOtHuPdFAWT86LBU2zPvvqhw2gByN1ffGshRbFE7nAyPgybE1JYm33Vwe0AVeaMEiBp/sHuA7e43WZf/XBY7iy6EP3HeTIfcQC4nzvslbnDddE4kaUkW+WiFSrq7i++tRJFknHZT3JFkQSg+hRKgMy++uFWkrUGX+LZssUYxrqCCQBwlNyhn+Riio+dHDMXT3L77i++1ReK6rn7i28tJnlLJMZiO0l39tUPB0IBUH1abwH3E+SmH+y+m2TRtn++NO57KVpynRUNkmzMvvrhsjAA8JicoZOiFdc50TiRzSTLcvJKje0t43osrpeFVgBqwo4SIEnRXiDFB+OmOpvmtxjj6ON+MPvqh50kV1IU02i3LSEA4Ak5w055jtUN0TiR80l2tOKqhru/+NZqFElGbTPJ84okAPVjRwnw5WS5ySuK9pN0rGDjKeO/FztM2uzN2Vc/XBUGAJ6RLyynOAPvjGicyI3ZVz+0kGl647ib5LZIjMxukr42WwD1ZUcJ8GVNnqycSbN3zXBCdpi0nh0lABwmX1hPspji/AGO7+rdX3xrq2xrxgSVbZcHIjESuykOa+8okgDUmx0lwOMS5/UkSw2+xOdmX/1wx53mEM9CL3aYtMbsqx+eEgUAjpgrrCa5KhInsp+kVxagMN+ri80kA8URgOZQKAEelzh3Uqysbmo7gbXZVz/sudMc4ZnoRcGk6bbL3vMAcNQ8QSuu0biRonWRNrnjH6+3ROJYdpOsJ1m18K4Vz8piit2DnSTd8n+8eIh3/W6SnSR7Kb6rbCXZMmag+hRKgMcnBb/8136Saw2+xOdnL32kzQ5HfS56UTBpqhuzlz7SJx2A4+YInRQfUB2MfTLbSXry9LGN04UUH3AV9Q5vM8kwybpx2fjnYzFFQWQ5yfkx/Fvs3x9LSYazlz7aEXWoFoUS4GlJ9Faa+0F4c/bSR113mmM+H70omDTNxdlLH2n5AcBJcwStuE5uP8nK7KWPBkIx8vE5zHg+AFfRdo5WuNwv5787ub8D4NJHQ6Om8c/EYpJeiuLI2SmM0UGKItyOuwHTp1ACPC1p6CW52eBLvCD5ZQTPyEqsHq27/dlLHy0IAwAjyg+04hqNjRS7S7TiGs24XEnyVksudzfJ4v2xU+746jzhX7tljJnHVeR9t+r7BEyXQgnwrARimOauOrKrhFE9J90UO0zOi0Ytrc1e+qgnDACMMDfoRCuuUdhNsqzl0YnH42KKlj9tKd5ZEMfjnoOFFMWRlQo/C7tJ+nbUwXR8TQiAZ+g3+NrOlx+44URmL300LItuF1L0MaZeVoUAgBHnBjuzlz5aTHFAOcd3Nsnfyt0QHN8g7SmSXFck4cvKM1h3UpzDWuVn4WySm3d/+a875e5EYILsKAEOk1QMklxu6OXtzl76qOMuM+JnppOiyHhZNCpvu/yQBQDjygu04hoNrbiON/76KT4Oy+to4/jvlu/fup4tuZnizCa76mAC7CgBDqOf4nC7Jjpb9ieFkSlXkfaSPJdkrcHPTxPYTQLAuPOC9SSLKQ7u5fiWkuzYEX54ZazaUiTZT3EoN+TuL/914e4v/3U9ye3Ut0iSFK2d/1YWPIExs6MEOGyi0W9wkm1XCWNP1FP9frht5NkHYNI5wWqSqyJxYtdnL33UF4Zn5p9bqfdH4qN4c/bSRxbA0ORdfNspdtXZXQJjYkcJcFirKQ4WayK7Shir2Usf7c1e+qg/e+mjhSRXGvws1Y1+5wBMOidYSXIxdpue1LW7v/zXrbLdKU+ev7WlSLKpSELyRTH6Vpq5OO1ckqFvFzA+dpQAR0k6ekluNvTyrCxn0s9TN0Vbu/OiMbUJdVcYAJhSHtBJsp7iwxfHt59ihfW6UDwyvpZTfCxuyxjoOLum9WN+oXyntmVutVa2egZGSKEEOGIC8s2tBk/orsxe+njgLjPhZ6qTomCyHG25JjmhXpy99PGOUAAw5TxAK67RuJGkP3vp4z1j6psLSXZalFdenL30sUJZu8f8YopWW20rPG8mWfbeg9HRegs4qia3qumXEwuYmNlLH+/MXvq4l6ST5M1oyzWRZ12RBICK5AFacY3G1STD8oNp262nPUWSNUWSdiuf+WHauTvvfPne8w0DRkShBDjqZG6YZKOhl3c2zixges/W3uylj1dnL33cSfHBZENUxmJj9tLHelgDUKUcYD3JYoqDejm+sn//N3ttDcDdX35zJe1pPbRr7tZuDxVJ2rwr//57T7EERkDrLeA4CUknyacNvbyyx63tq1TmWVtJ0ou2XKOwnaTr+Qagwn/7teIajY0kvTb9zW/hR+ML5SI+2vmuVCQxz4GRs6MEOLKyZc2Nhl7emViZRIWetdlLH6/MXvp4IcmVFH1oOZ7ysFeTBwAq/bdfK67RWEqy1bJWXIO056PxdUWS9ioXkw2jSPIwO0tgBBRKgOPqN3gCtyLBoGpmL308mL30cTfJcykKlT6gHN5+ihVWW0IBQA3+5t9vxWWBxMmcTfK3u7/8Zr/pF1peY1vOaNievfRx3/Bup3Ke3qZzeI7iXBIthuEEtN4CTpqQX2vo5V2XgFODZ3A5RVuuJdF4IkUSAOTbbCZZbuLO0ru//GY3ye0W3cvn5XWtficO055zeI7Ltww4JoUS4CRJykKSrRSrtZrGWSXU7Vnslb9zIvKF7RTttkymAajz3/lurKAeVX6/3KSWTQ2fjz3Om7OXPrZivr3vwn4Ujg/rYrk7ETgCrbeAYyuLCP2GXp6zSqjVszh76ePV2UsfL+ZBa67dlodlM3aSANCMv/PDJJ1oxTWK/P723V9+s0kf2vtpT5FkU5GkvcqCsSLJ4Q20E4ejs6MEGEXSshO7SqCKz+Ziil0myy2aRCe2mwPQ3L/t/fhYOArbKXaX7NR4LCwnudWS+7WfZLHO94sTjfW27Zwalc3yjEvgkBRKgJMnLv/+f7ppbl/c67Ov/LbvLtOA57QNRZOi1dYrv7WLBICm595acZ3cfpKV2Vd+O6jhGFhIstOiMXBx9pXfaiPU3nfeapKrInEsV+r4joNpUSgBRpW8DNPMQ9X2Z1/5rS2rNO15XUxRMFlOM8402U/Sn33lt9oxANCWv+ULKYolDjU+uY0Uq9XrpNuie7+fRI7XXgtRJDnp89OZfeW3umTAISiUAKOarHXT3F0lVmHQ5Gd3IUXBpFv+s04rE+9PnFcl/wC09O/4SpK3RAKAJ7gx+8pvnb8Kh6BQAoxyoraeZKmBl7Y7+8pvO+4wLXmOF1MUTe7/qlg42U0yiAIJANz/270e/fsBeLznZl/57Y4wwNMplACjnKR1knza0Muzq4S2PtcPF04WM72PMPspPgKt61ENAF/5e72QYhHBkmgA8CVrs6/8ticM8HQKJcCoJ2mDJJcbeGl2lUC++BBzv3jSKX/j6pG9mWSYZDj7ym+Hog8Az/w7rRUXAI9jVwk8g0IJMOrJWSd2lUAbn/37BZT7/8xD//2z7OXBIarDJDuSeAA49t9krbgA+DK7SuAZFEqAcUzOVpNcbeCl2VUCAEAd8vGFJKtp5k5vAI7n75zxCE/2NSEAxqCf4jyBpjl799//z7LbCwBAlc2+8tu9cuXwlYbm5QAcXU8I4MnsKAHG4u6//0s/ybUGXtrm7Cu/67rDAADUJC9fTHHQ+znRAGi13dlXftcRBng8O0qAcVlNM1evnb/77//SdXsBAKiD2Vd+t5Wkm+SGaAC02tmyeA48hkIJMK4J2V6KYkkT9d1hAADqlJvPvvK7lSQXoxUXQJv1hAAeT6EEGKcm7yrpuL0AANTJ7Cu/W0+ymGRbNABaqSsE8HjOKAHG6u5/NPaskrXZH/6u5w4DAFDTPH01yVWRAGid52Z/+LsdYYBH2VECjFtTd5VcvvsfdpUAAFBPsz/83UqSC9GKC6BtukIAX6VQAox7AraXZKWhl7fiDgMAUONcfZikk2RTNABaw4Hu8BgKJcAkJmCDJLsNvLTe3f/4lwV3GACAGufqe7M//F03yXXRAGgFhRJ4DIUSYFL6DbymM0l6bi0AAHU3+8Pf9VO04toVDYBGOy8E8FUKJcCkJl6Dhk66tN8CAKApOfswxUrjDdEAaK67//EvdpXAl5y6d++eKAAT+kN8oZfkZgMv7crsD28P3GEAABqUu68keUskABrpwuwPbw+FAR6wowSYmLKY0MizStxdAAAalruvJnk+ybZoADSOHSXwJQolwKT1G3hN5+/+x4WuWwsAQJPM/vD2VpJukjXRAGiUBSGARymUAJOebA2S7Dfw0nruLgAADczf92Z/eLuX5EpD83gAAIUSYApOZTWnkob9Lt/9zwsdNxcAgCaa/eHtQU5lMaey3cBc3s/Pz69tP6234EsUSoBpWI1dJQAAUCuzL9/emX359mKSG6IBUGtab8GXKJQA05hg7aUoljTNirsLAEAL8vmVJBejFRcA0BAKJcC0NHFXyZm7/3lhePc/L6zc/c8LtrECANBYsy/fXk/SSbIpGgBA3Z26d++eKABTcfc/L/STXGvwJe4mGd7/zb58e8ddBwBAXg/AlG3Ovny7KwzwgEIJMM0J1UKSnSRnWnLJDxdO1ssWZAAA0ITcvptkkOSsaABU3o2yjSJQUigBpjyh6g6SXG7p5W/nkR0nQ4UTAADqnNsvpCiWLIkGQKVdn3152BcGeEChBJj2ZKqT5FORSPKgcLI++/JwKBwAANQ0x19J0k97do4D1I1CCXyJQglQhYnUIO3dVfI0m3mw22QoHAAA1CjHX0yxu+ScaABUzsXZl4frwgAPKJQAVZhEdWJXyWFs5EHhZEs4AACoeJ6/kGJnyVXRAKiUCxZkwqMUSoCqTKLWo5fxUezn0fNNFE4AAKhqrr+cYneJVlwAFTD78vCUKMCjFEqAqkyeuklui8Sx7ebRwsmOkAAAUKF8v5NkPVpxAUzb7uzLw44wwKMUSoAqTZ6GSc6LxGgSnyicAABQvZy/n+SaSABMzcbsy8NlYYBHKZQAVZo09ZLcFImx2M6jhZM9IQEAYEp5fzfF7hKtuAAm7/rsy8O+MMCjFEqAqk2adpKcFYmx+6JwMvvycF04AACYcN6/kOLcEucUAkyWg9zhMRRKgKpNmFaSvCUSE7eZB4UTCRMAAPJ/gObZn315uCAM8FUKJUDFJkrnF5LsxDb8adtM0Q5hOPvy5pZwAAAwxjnAYordJQ56BxivtdmXN3vCAF+lUAJUcaK0muSqSFTGfh4530ThBACAkc8BFpKsJrksGgBjc2X25c2BMMBXKZQAVZwkdZJ8KhKVtZ9yt0mKwsmOkAAAMKK5wHKK3SV2mAOMfi7fmX15c08o4KsUSoCqTpAGsZqsLnbz6I6THSEBAOAEc4FOioU5WnEBjI62W/AUCiVAJX32/53vJrktErW0nYcKJzM/sFoFAIBjzQn6Sa6JBMBIXJj5weZQGODxFEqAKk+MtmIVWRN8UTiZ+cHmunAAAHCEOUE3xe4SrbgATjAvn/nB5qIwwJMplABVnhT1ktwUicbZzIPCyVA4AAB4xrxgIcW5JUuiAXAsV2Z+4BB3eBqFEqDqk6K9WD3WdJspD4ef+cHmlnAAAPCEucFKkr75AcCR7M78YLMjDPB0CiVA1SdDq0muikRr7OfR800UTgAAeHh+sJhid4kWvQCHYzcJHIJCCVD1iVAnyaci0Vr3Cyf3d5zsCAkAQOvnCAspdpZYUAXwdHaTwCEplAA1mAj97/XoR0yZ5OWRHSe/3xGSpz473fK/7JS/JxmW/9wRUwCgRrnOcordJVpxATzehZkf/H4oDPBsCiVAXSZAt0SCx9hNudskReFkr6XPyEKSxSTd8tdJcvYE/y+3k2yVv+HMD36vBRoAUNU8qJOiWHJeNEbixswPfr8iDFToGd854dymzTZmfvD7ZWGAw1EoASRHNMl2Ht1xstfgZ6KTZLn8jfvDwH4eFKTW21qQAgAqnRv1k1wTiZHl1D2LZajIs91NclskjjWH65i7weEplAAmPjTZZh4UTYYNeA4WkvTK3zQPMF1LUTBZN8QAgArlSt0Uu0sssDq5/ST9mR/8flUoqMCzvRpnEh3VRfM1OBqFEqAeidH//d+dONSdk7tfOFmf+X59VsiV47+f5HLF/qPtJllNMpj5vpVKAEAl8qaFFMUSZxyOxkaSnlyPCjzbW5nuYrE6WZv5/u97wgBHo1AC1Ckxcqg7o7Sfh9t0VbBwUuECyeNiuZpk1SQaAKhIHtUr8xMHvY8m11ue+b4DoZnqM71Yzt0800+3naRrXgZHp1AC1Ckxcqg7454ADlOexTHz/d/vTHGsL5QT+8s1jGF/5vtaNAAAlZg/LKbYXWIV+mjcmPm+g97xTaDi87FunbonQJUolAB1S4z2YgUJk7GbR3ec7ExojK+k2EVS53G+nWTFqkMAoCJzCOcbjDbP6/kQyxSf516SmyLxWM97NuH4FEoAkxw4nN2Uu01SFE72Rjy2OylWPJ5vUMysOgQAqjKP6Ja5nEVXJ2cXMdN+ngep3+77cbsy8/3fD4QBjk+hBKhbQrSY5G8iQQVs59EdJ3snGNe9NLeHtlWHAEBV5hILKYol50VjJBz0zjSf50EUS+5TJIERUCgB6pgQbUWfYapnMw+KJsMjTNbreBbJUe2naMUleQcAqjCfWEnylkiMLM9z0DvTepYHUSxRJIERUSgBTGxgPJ5aOCmLJMO0q+inFRcAUJU5hYPeR5znpWjHZXcJk36W29yeW5EERkihBKhjIrSQ5H9EghrZz0Ntusr/2XqSsy2MxdrM93/fMyQAgIrMK9qwu3dStFxlWs9yL+064H0/SdezBqOlUALUNBH65/UkSyIBtVT2s/6DFYcAQBXmFsspdpc46H003pz5/h8c9M6kn+NuisVoTX+Ot5Msz3z/DzvuOozW14QAqKl1IYDaWkoy/Oz//vOCUAAA0zbz/T+sJ1lM0TqVk3vrs//7z3I9Jv0cD5N0Gv4c30jSVSSB8bCjBKilMunWfgvqbW3m+3/oCQMAUKF5Rj/JNZEYif0Uu4gtcsNz7FmCylMoAeqc/Gi/BfWnWAIAVG2esZj2nic3DuVB79quMtHnuJOipd75us+Xkqx4fmD8FEqA+iY+t/65l3Yd2AZN9ebMRX2sAYBKzTUWUnxktTBrNIqD3i/+weHTTPpZ7iXpp36Fz80k/ZmLfxi6izAZCiVA3ZOevTh0EZrggkkAAFDB+UYvyao5x8hYIMO0nuV+kpUaPMu7SVZmLmqzBZOmUALUPdnRfguaYT9JZ+aiLeUAQOXmHJ0UrbjOicZIbKbYXbIjFEzhee6lmjtM7CCBKVMoAZqQ5Gi/BQ2ZNM9c/ENXGACAis49+nHQ+6gUh1NbNc/0nudukl6Sy1N+DgZJVhUOYfoUSoC6JzcLSf5HJKAxtGMAAKo8/+im+LDpoPfRKA6qtquY6T3TC0mWk3TLf467Ndduih1qQ4VCqBaFEqAJiY32W9Ac+0kWragCACo8/3DQ+2jtJll20DsVeb4XUxRNFsvfSVvubSbZKn9D8xyoLoUSoAGJzDdWkrwlEtAYGzMX/7gsDABADeYh/TjofVSuz1z8Y18YqOCzvphkIUmn/D3NVpK9JDszF/+4I3pQHwolQBOSlk6ST0UCGuXCzMU/DoUBAKj4XGQxxe4SB72PRnnQuw/MAEzW14QAqLsyid4WCWiUvhAAADWYi2zNXPzjYpIbojES55NsfXbrGz2hAGCSFEqAphgKATRrkvzZrW90hQEAqIOZi39cSXIhxXlrnMyZJDc/u/WN9c9ufWNBOACYBIUSoCnWhQAapy8EAEBdlG1DO0k2RGMkllLsLumW7ZYBYGycUQI0xme3vuGFBs3jrBIAoI5zEwe9j9bmzMU/doUBgHGxowRoVPIsBNA4PSEAAOpm5uIfV5N04yzFUTn/2a1vbH126xuLQgHAOCiUAE0yFAJonMt6UwMAdeSg95E7l2RY7tYBgJFSKAGaZCgE0EjLQgAA1JWD3kfqTJK3HPQOwKgplABNmoAMRQEaqScEAEAD5iqdOOh9VJaS7Hx26xsW1AAwEg5zBxrls1v/NExyXiSgcf5u5uIne8IAADRgzrKS5C2RGJkbSfpyRQBOwo4SoGm2hAAayWpBAKARZi5+sprk+TjofVSuJhl+duufHPQOwLEplABNs9PCa95NciXFSiqTLZqqKwQAQFPMXPxkq8xvHPQ+GueS/O2zW//UFwoAjkPrLaBRPrv1T90kt1t46WszFz/plTFYSLH6vlv+zhoZNMDuzMVPOsIAADRwDrOcZJDioHJObjNJb+biJztCAcBhKZQAzZpkrLe2UJIkazPLRbHkSzHp5EHRpBuFE+rruZllE14AoJHzmIUk63He4qjsJ+nNLH+yLhQAHIZCCdC0CUY37S2UJE8olnwpRp08uuPEyjXq4sLM8idDYQAAGjyfcdD7aG2kKJg46B2Ap1IoAZo2seim3YWSJHlzZvmT1SPEbDGP7jhROKGqrs8sf9IXBgCg4XOaxRStuM6JxkjspiiWDIUCgCdRKAGaNqnoRqEkSa7MLH8yOEEM7/9s/adKnrljCgCgIfOahST9JFdFY2QsugHgiRRKgKZNKPpJrolEkhMUS74U026KoslyrGpjujZnlj/pCgMA0KL5jYPeR2s7xe6SLaEA4GFfEwKAxrpZbts/kZnlT4Yzy5/0Z5Y/WUzyd0kuJrlRTjJgkjpCAAC0SXkYeSfFWRuc3Lkkw/IsGAD4gh0lQKN8tv6P/dhR8rD9JN2Z5T9tjSneC3mw26Sb5KyQM96PBX86JQoAQEvnOisp2nHZXTIa5UHvf3LQOwAKJUDjJg/9KJR82ViLJV+KfyePHgyvcMJIKZQAAC2f7zjoffRzpd7M8p/WhQKg3RRKgKZNHPpRKHmc3SSLk14tVRZO7u826cbqN05IoQQAIPls/R9X46D3UbqRpG93CUB7KZQATZsw9KNQ8iTbKXaW7E3x/izm0R0nCicciUIJAMAXuXU3ybqcemR2kyxPYic+ANWjUAI0a7KwoVDyDEWxZKkaK6U+2/jHbh4UTc67PTzLzJJCCQDAQ/n0QopWXEuiMTLXZ5b+1BcGgHZRKAGaNlHoR6HkWTZmlv60XNH7182Dw+H1XeYrFEoAAB6bRzvofbQ2k/Rmlv60IxQA7fA1IQBonaXPNv5xUMX/YDNLfxrOLP2pP7P0p8Ukf5fkYop+wdtuGwAAPDGPXk2x4EjePBrnk2x9tvGPPaEAaAc7SoBG+WzDoYZHsDaz9Kdeje7tQh7sNukmOesWtvIjgB0lAADmRJO0kWJ3iYPeARpMoQRo2qRgGGddHEVt++9+tvGPnTx6MLzCSQsolAAAHCpX7sZB76O0n6JYsi4UAM2kUAI0bUIwjELJUV2ZWfrToAH3vpMHu026JoWNtF22ZQMA4Nn5sYPex2MzyTDJ+szSn7aEA6AZFEqAhk0G/tcwCiXHcWVm6c+Dho2FxTy640ThpAGT0pmlP3eFAQDgSHlxL8mqfHgs9lMWTZIMZ5b+vCMkAPWkUAI0bRIwjELJcV2YWfrzsMFjYzEPdpwYI/V0Y2bpzyvCAABw5Fy4k+Jj/jnRGKvdMs7DFIUT55oA1IRCCdC0CcAwPoIf136S7szSn7daMla6ebDbxJiphzdnlv68KgwAAMfOgftJronExDzUpuvP2nQBVJhCCdAonyuUnNR+ku7pliXxn2/8r4U82qbLSrtqunC6wbueAAAmlPt2U5xdclY0Jj7XGpa/9dPadAFUikIJ0LSkfxiFklEk8J3TLd4m/qXCybJJZDWcXvrzKVEAABhZvjuIg96naTcPnW9yWpsugKlSKAGalvAPo1AyCtspdpZI1otx1cmjO04UTqYwJk8v/XlRGAAARprn9uKg9yrNwe4XTYbCATBZCiVA0xL9YRRKRpmoK5Y8fpx18mC3SdfEciJunHaQOwDAuHLbgXlUpTzcpmt42vkmAGOnUAI0Lcnfi4/Wo7R5eunPXWF46pgbJLksEmPnfBIAgPHmtf046L2q7rfpGqY438RiNoARUygBmpbce6mN3trppT/3hOGJY66X5KZIjNX+6aU/LwgDAMDYc9vFJH8TicrbzoOiyVA4AE5OoQRoWmLvpTYeiiVPHnMLSf5HJIw/AICG5LeD2DFdNxvRpgvgRBRKgIYl9f+vl9r43Di99BdnRDx+3JlMjtfF00t/WRcGAICJ5LadJJ+KRG3tpzwUPsnw9NJfdoQE4CitweYAACAASURBVNkUSoCmJfVeauN15fTSXwbC8JVxt5zklkiMxe7ppb90hAEAYKL57SAWAjXF/TZdQ4uPAJ5MoQRoWkLvpTZ+iiWPH3s7Sc6KxMhdP730l74wAABMNLftxK6SptpMuePk9NJftOkCKCmUAE1L6L3UJkMrpK+OvZUkb4nEyP3d6aW/7AkDAMDE89tB7Cppuv2Uh8JHmy6g5RRKgKYl815qk0uou1YgPTL2FpLsJDkjGiOzdnrpLz1hAACYSn67mORvItEqu3n0fBMLloDWUCgBmpbMe6lNjmLJV8dfP8k1kRiZ56xqAwCYan47THJeJFprM+WOE/M+oOkUSoCmJfJeapO1n2TRx+wvxp9dJaNjNwkAwPTz226S2yJBtOkCGk6hBGhOEv+uJH5KtpN0T79kW3Y5DntJborEiSdhHWMKAKAS+e0wdpXwVbt5uHAidwdqTqEEaFIC341CybQoljw6FreSnBOJY3vz9Et/WRUGAADzLGo1J7xfNBkKB1A3CiWABJ6RJcanX/rLojAYi8YRAEDj8tth7Crh8O636RomWT/9kjZdQPUplAANSt7/oRsfp6dt7fRL/9UThuTzd/9hNclVkTiy50+/9F8OigQAMNeiOe636RomWT/90n/pRABUjkIJIHln1BRLHoxJLbiO5vrpl/6rLwwAAJXMbYexq4TR2M6DoslQOIAqUCgBmpS4d6NQUhWKJcWYXCwnAGcMiWfaPP3Sf3WFAQDAfIvW2SjnTUO7y4FpUSgBJO6My5XTL/3XwLj8h16Sm4bDU+0mWbQFHwCg8rntMHaVMP65wTAPCic7QgJMgkIJ0KSkvRuFkqpRLInzSp5hP0nXyjEAAHMueIz7bbqGp1/6r3XhAMZFoQSQtDNuiiXF+BwkuWw4fMVFEx4AgFrltcPYVcL0bCZZjzZdwIgplABNStiXk9wSicqxY8Ck8kkU0QAA6pfTdmOBGtWZa65Hm677z+ZCksXyt5CkW/6vFpKce8L/2Wb5z53yt5Vkx/ydNlIoAZqTFLz3D/0k10Sisgls9/SL7U62Pn/vHxbKJP6cIZErp19UJAEAqGleO4wFQFTPF226kgxPv9jsMxDL+eVyioJIN8nZEf9bbD4Uy6HhRdMplABNShL6USipMsWSB8nsIMlSi8OgSAIAUO+cthu7Sqi++x/615syDy3nk73yN8kFePd376yfflHrZJpJoQRoUrLej0JJ1W2nKJbsGa+tPLNkP0lPYg0A0Ih8dhi7SqjXXGSY++ebvFivNl1lcXIl1Vhwt59i8d9q3eIIT6NQAjQoUf/7fhRK6qAslvxVsaRdY3Y3yfLpF/+q1y0AQDNy2W7sKqHe85MH55tUdH76+Xt/30vSz+jbao3KWpLB6Rf/OjSkqDuFEqBJiXo/CiV1oVjyYNwup1iNc6bBl7mZokiyZ+gDADQqlx3GrhKaM0ctd5tM/6N/DQokX7aRZOX0i3/dMZSoK4USoElJej8KJXWycfrFvy4LQ/L5e3/fSVEsaeIk8/rpF//ad5cBABqZx3ZjVwnNc79N1zDJ+iQ//n/+3t8vJlmt8dzwRpK+RXLUkUIJ0KQkvR+FkrpZO/3iX3vC8MUYXkmxaqgJu0u2k/S02gIAaHwOO4xdJTTbbh4532T0RYDP3/v7hXIueLUB8SrPpvyrsympFYUSoEkJej8KJXWkWPLoOO6kWEG0VNNL2E+yahcJAEBr8tdu7CqhXbbzYLfJcATP0GKKIszZhsVpI0XBxO4SakGhBGhSgt6PQkldvXn6xb+uCsNXJpyrSc7V6D/2Woq+tBJhAIB25a7D2FVCe23kwaHwW0d8dlaSvNXg2OymOK9SpwEqT6EEaFJyvp76rsInuXL6xb8OhOEr47qXpFfxiedaij60O+4YAEArc9blJLdEAr5o0zVMseNk7wnPzEKKcyrb8g3DfJ/KUygBmpScD2MVk+SpueO7m6JgcrlCE4BBkoECCQAAn7/39ztpXusgOKn7bbqG98/sKIskw9Sre8Ao3Dj94l9XDAmqSqEEaFJiPoxCSRM8b1vuU8f5QoqCSW8KifV+it656w7mAwDgS3lqL8lNkYCn2kzSSXuLis4opbIUSoAmJebD1LtQsp9kJ+1bVfK4OHQVSw415jtJukmWy3+eGcO/zVdWQAEAwBPy053YVQI8nWIJlaRQAjQoKf/6MPUulGym+OC9k/F88K6Tsljy34olR3sGOkkWH/otlP88zHjaLcfe1kP/3Dr94n87mB0AgMPmo73YVQI829rpF/+7JwxUiUIJ0KSkfJiaF0pOv/jf3c/f+/piihX8bS+W7CZZ9KF+5M9Jt/wvd06/+N87IgIAwIjzzZ3YVQI8m2IJlfI1IQColnIXRTfFroo2O5tk+Pl7X18wKkY6voblb0c0AAAYg74QAIdw+fP3vu59QWUolABUUFksWRaJnItiCQAA1GkuM0ixOxzgWa6VLftg6hRKAKo7wRgmuSISOZfEIeIAAFAffSEADmm1bEEOU6VQAlBh5WosxZLk/OfvfX0gDAAAUJt5jF0lwGGcSWK+z9QplADNcSrncyqp9e9Jk4xTuV77azv57/Ln7yuWAABATeZnfXMYPz+/Q/7Off7+11e9OJkmhRKAGjj9vf/uJ1kTiVz+/H2HvQEAQA3mMIPYVQIc3tXP3/96VxiYFoUSgPpMNHpRLEmSa5+/77A3AACogb4QAEdgVwlTo1ACUB1bz/oXlMWSDaHKTcUSAACoNrtKgCM69/n7X18RBqZBoQSgOvYO+a/r/f/t3U1uG9m5BuDXF0FNpazA6hVIPeDYzLwAq1dgegVXvYKmVxD1CkyvIDLAedPjGoRaQaQVXGnKie+gSm2n/2xZrGL9PA/QSC4ukO56WU7O4cvvnCTX4spbY7kAANB7y5E+132SH+OHbLD3/87YrWfHYqBrihKAgSnK6i7JPMqSJLnarWdnYgAAgN7uX1YZ51TJUZK7oqzOi7J6luQfSd7Yp8Fe/myZKqFzihKAYW42HsqSqY+xHyXZKEsAAKDXlmN/rqKsNkVZLYuyOkvy9yQ/pL5j0tFj8HgXpkromqIEYKCasuQ89cj3lD2UJRZRAADQz73LKuMsDJ7/0d2JRVndFWV1VZTVoiirkyTf5dMxXffeCPiqfb6pEjqlKAEY9oZjm3qyRFmiLAEAgD5bTvW5irK6Kcrqsjmm6zifjun64LWAP7UQAV169vHjRykAg9d8Qf5/A3+MN0VZLb/x+c+S/NubkOsk82baBgAA6Ne+7SbJ8xE+2utmauZb97Lz5q/zkeYD3+qHoqyuxEAXTJQAYzHpOyqayZLXXoOcJtmIAQAAemnpuX63l3s4puvis2O6XscxXZCYKqFDihKAkWh+waQsSU5369lKDAAA0Ms9y2TuKvnGjG6Kslp9dkzX93FMF9P10hHbdEVRAjC+jcePksgrZQkAAPTS0nM9ao+3LcpqWZTVvCirZ0l+SPJz6mOHYQrORUAXFCUA/bHZ00L6Msk7cebVbj27FAMAAPRH8+OuMR4ptbepki/k93BM11k+HdP1Lo7pYrwUJXRCUQIwzs3HIsqSJPnfLjYrAADAo4z1B00XHe/7Ho7pWnx2TNePcUwX4/JSBHRBUQIwUsqSX71VlgAAQK9cZpwTEKe79Wx+wD3gtiirS8d0MTaH/HPFdChKAMbtwqI4SV2WGNcFAIAeKMrqLuOdKln2KOfPj+n6ez4d03XrLWRg5iKgbYoSgPFvQOZRliTJareenYkBAAB6YaxTJS/6+Ov3oqzuPjum6ySfjul671VkAOzlaZ2iBGDklCW/OkqyUZYAAEBv9immSg6X/8MxXefNMV3/iGO66C/7eFqnKAH8j+Z0NiGLjPMXW4/xUJaceCsAAODgTJX0Z8+4+c0xXT/EMV30x3MR0DZFCTAWxyL44sJ3m3qyRFmSXO3WM+8MAAAcdo9iqqSnn0tzv8nDMV3f5dMxXffeXA7Bhe60TVECMK2NiLKkdpp6skRZAgAAh2WqpP/7yJvPjuk6Tn1M15s4pgsYEUUJQH/cdbTI3Sa5ELeyBAAADs1UySA/s01RVsvfHNP1cxzTRbvmIqBNihKA/iw2tx3+vVZJXks9pyPelAEAwFCYKhnuPvbhmK6Lz47peh3HdAEDoygBmChlya9e7dazlRgAAOBgexNTJeP5LG+Kslp9dkzX96mP6frgTQf6TFECMO0NySr1iPTUKUsAAOCwTJWMc8+5bY7pmscxXUCPKUoAJq4oq4sk7ySRV7v1bCEGAAA4yL7EVMkEPuM/OabrXRzTBRyYogSAFGW1iLIkSd4qSwAA4GBMlUxrH/pwTNfis2O6foxjuoADUJQA8LBIXSS5loSyBAAADrQnMVUy7c9/W5TVZVFW86KsnuXTMV32qUDrFCXAWMxFsLccLUKTy916diYGAADofi0eUyUk+eyYrrP89zFd7jcB9k5RAsDnC9G7KEuS5CjJRlkCAAAH2ZOYKuG378Xnx3Sd5NMxXe+lA+yDogSAP9qYnMdlesoSAAA4DFMlfGnf+nBM13lzTNc/4piusbsTAW1SlAD0Q68Wc0VZ3aSeLFGWJKvdenbsFQUAgM72I6ZKeOw7s/nsmK6/xzFdY7QVAW1SlAD0Q+9+GVGU1TbKkiQ5TT1ZoiwBAIDumCrhW/eyd785puu7fDqm615Cg2WihFYpSgD4qwXmNslCEsoSAADoeC9iqoR9vUs3nx3TdZz6mK43cUzX0D5HEyW0SlECwJcWI1epx5an7jTJSgwAANCZsRYlpkoOu8fdFGW1/OyYrh/imK6+U2rROkUJAF+zkFxFWZIkL3fr2UoMAADQyT7kLvUX2GO09An34x0ryurqN8d0vY5juvrGNAmtU5QA8LULyFXq8eSpe6UsAQCAzixH+lwvduvZiY+3d/vem+Z+k4djur5v9sEfpHNQihJapygBxsLdEd0sGpcZ7y+6HuPVbj27EAMAALS+B7mJqRIO9/5tm2O65vl0TNfPcUxX1zYioG3PPn78KAVg8Hbr2dD/y+xDs/AaSt6rJK+8eXndTNoAAADt7T9OkvxnpI/3XVMGMbz38jzJvyTRuvtmugdaZaIEgEcrymoRo8dJ8na3ni3EAAAAre4/bmKqhP69l1dS6ISc6YSiBIBvdZ7kWgx5u1vPzsQAAACtWo70uV65q2TQ3ougdYoSOqEoAeiHzdD+gYuyuksyj7IkSTbKEgAAaHX/cRNTJfSPL/HbdW9yh64oSgB4ymbloSy5n3gUR1GWAABA25YjfS5TJcPdE6/sh1ulJKEzihIAnrowVJbUHsoSl8wBAEA7e4+bmCqhf3yZ355LEdAVRQkA+9iwbKMsSZQlAADQtuVIn8tUiXeS/3bdfNcAnVCUALAXzQLmXBI5jbIEAADa2nfcxFQJ/XsnP0hi70yT0ClFCQD7XCBukryWRE5j/BoAANqyHOlzmSrxTlK7be5/gc4oSoDBc4F2vzSLGWVJ8mK3nlnYAQDA/vccNzFVQr/eyU1MlfhzwKApSoAxcMRR/xaJqyQ/SiKvlCUAANCK5Yj3ECc+Xu/khF2bJuEQFCUAtKIoq8uM91dej93oWDADAMB+9xs3MVVCv97JjT3wXlyIgENQlAD0w91IF4oLC8UkyU+79WwhBgAA2KvlSJ/LVMlwXSS5F8M3e98UTtA5RQlAP2zH+mBNWfLeR5y3yhIAANjrXuMmpkro1zt557P7ZvdJ7Jk5GEUJAF1YJLkWQ97u1rO5GAAAYG+WI30uUyUD1RxD7WL3x1s0RRMchKIEgC4WindJ5lGWJMnVbj07EwMAAOxlr3ETUyX0z3kcwfUY74qyuhIDh6QoAaCrDcxDWXI78SiOkmyUJQAAsDfLkT6XqZJh738Xkvgq13GBOz2gKAGg68WiX9Z8KktsegAA4On7jJuYKqF/7+VVkjeS+Ev3ceQWPaEoAaDrxeI29WSJsqQ+huvYWwEAAE+2HOlzmSoZ9v53mfGWePtw3nxHAAenKAHGYC6CwS0Wtz63JMlp6skSZQkAADxtj3GT8V6gvfQJD/rdXMR9nX/kdVFWGzHQF38TAQAHWixud+vZ6yRvJx7FQ1nycCbrcZLf3l9y0/yVJDfNJhAAAPhvyyS/jPC5Xu3WswvHEw3aPMmm2f9RlyQrMdAnihIADqYoq9VuPUuUJaeP2dA1md2mLk82zV9bGycAACa+v9js1rMPSV6M8PEuYrJkyO/m3W49m0dZkihJ6ClHbwH0w2TP5GwWSK+9Ao/2vNkA/pS6ZPm/3Xq23a1ny916diYeAAAmajnS57pwZO/g9753qSdLPkw4BiUJvaUoAejPgmnKz7+KC+724TR1cfLv3Xp205QmJ2IBAGBCe4tNxvlF9FHqqRIGvvcvymo+wf3vfZIflCT0maIEgL4sGBdRluzT89SlyX9269lVM+YNAABTsBzpc5kqGdf+98eJPO51knlRVlc+efpMUQJA3xaLypL9e5nkl916tlGYAAAwgX3FJqZK6P97epnk+9T3T47V+9QlydYnTt8pSgDom4vUvzhh/15EYQIAwDQsx7pfMlUyHk2BcJa6UBiT+9T3kZxP/ahxhkNRAkDfFooPF9wpS9rzUJisbLIAABjpvmITUyUMZA9clNV5kh8yjumS90nO3EfC0ChKgDHwRe8IF4pRlnThVZKb3Xp2LgoAAEZoOdLnMlUyzn3wVerpkjcDfYTbJP9opkhufKIMjaIEGIMzEYxykXiXZJF6ZJf2HCX5l+kSAABGuKfYxFQJA9sHF2W1TPJdhnN/523qY7ZOmj9zMEiKEgD6vEjcpp4sUZa071WSzW49UzwCADAmy5E+l6mSce+Fb4qyWuRTYdLHPfHnBcnKp8bQPfv48aMUgEHbrWeb1HcuDHkR9Mwn+Zef8VmSTepfTtGu+yTnfgkEAIA9Y+9dJ7lKsk2ycWn2qN/h49QnLiySnB74H+ddkpU9I2OjKAEseg/vQ1FWc5/kFz/n8yT/kkRnXvtVEAAAI9lLzJP8MoFHvU79A7NVM53PON/nk9SFyXm6KU3um/fqKsmVQo6xUpQAY1gkbKIomcpnvUjyVhKdUZYAAGDfOEy3SVapS5Mbb8Bo3+vj1MdVz1Pf3/piT+/ONp8mlTaSZgoUJYAF7+EpSh73eS+iLOmSsgQAgDHsI+aZxlTJH3FU0rTe9ZMkJ6mLk4d7bD7/9w+2Se5+8++3JkaYKkUJMIZFwCaKkql95pdJ/lcSnVGWAABg7zh8H5IsFSYAv/c/IgBgaIqyukj9qyi68baZ5AEAgCFbTvz5XyT5ZbeebZqpAwAaihIABqkoq0WUJV263K1nZ2IAAGDAe4hN6qmKqXuR5D+79WzZ3HEBMHmKEmAMfHk73Y3OIsm1JDpxlOTKRgoAgIFbiuBXPyXZ+kEUgKIEGIcjEUzaPMqSrjxPciUGAACGylTJH67x/71bz5aiAKZMUQLA0Dc6d1GWdOnFbj27EAMAAAO2FMHv/NTcXWKCHJgkRQnA4d2J4GmasuQ8yb00OvFP4/kAAAx4/7BJciuJ33kRR3EBE6UoATi8rQj2stm5ST1ZoizpxqUIAAAYsKUI/tDzJBtlCTA1ihIARqMoq22UJV15sVvPFmIAAGCge4dVTJX8maPUZclcFMBUKEoAGNuGZ5v6GC7ad+kMYwAABmwpgj91lOQXZQkwFYoSAEanOXP4tSQ62Ty52B0AgKHuG1YxVfIlV47hAqZAUQLAmDc9ypL2XZgqAQBgwJYi+EsPx3ApS4BRU5QAMFpNWfJGEq1vnEyVAAAw5D2DqZIvr/mv/EAKGDNFCTBozkvlKzY+yyTvJNEqRQkAAEN2KYIvep7kSgzAWClKABi9oqwWUZa06Wi3ni3EAADA0DRTEktJfJUXu/VMVsAoKUoAmISmLLmWRGtMlQAAMERXqY+W4uv85GQHYIwUJQCHtxVB+5pfip1IojWnu/VMvgAADGmPcJHkhSQebeW+EmBsFCUAh3cngk6cxy/FusgYAAB6z5FbT/I8JsqBkVGUADAVvsRv30IEAAAMxGX8kOopfjJRDoyJogSAqZiLoHWO3wIAoPeaOzZeSeLJViIAxkJRAsBUNkJ+LdaNuQgAAOi5pQj24oWL3YGxUJQAMAUW77IGAICHH1G5wH1/liIAxkBRAgzdsQj4CnMRyBoAAOKL/X0zVQKMgqIEGLozEeA96ZXnu/VMgQkAQO/s1rOzmCZpw4UIgKFTlAAw9s3QSdxP0jXFFAAAfeQL/Xa8bPZdAIOlKAFg7CzYu6coAQCgV5qp51eSaM1CBMCQKUoADqwoq40UWuVL++45egsAgL45F0GrFiIAhkxRAsDY+dK+e8opAAD6RlHSrufNHTAAg6QoAWDsTkTQOeUUAAC90Ry79VISrVuIABgqRQkAY3ciAgAAmDTTJN2YiwAYKkUJAAAAAGM2F0EnTnfr2YkYgCFSlAAA+2ZzBABAn8xF0Bn3lACDpCgBLMKAfXsuAgAA+qCZcLA+7c5cBMAQKUqAoXNpNPTPtQgAAOiJExF0yo8ZgUFSlAAA+3YnAgAAemIugk4pSoBBUpQAHNa9CAAAAFpzIoJOHe3WMyc/AIOjKAE4rK0IZAwAALTmRASdM1UCDI6iBICxcwxU925EAABAT5yIAIAvUZQAMHaKku7diAAAgJ54LoLOzUUADI2iBICxc/RW925EAAAAAAyFogSAsVOUdO9GBAAAAMBQKEoAGLWirO6S3Eui08w3UgAAAACG4m8iAIZot54dJ7lM8kIafIVNkpdi6MS1CAAAAIAhMVECDM5uPTtPfbTPqxE8zsluPTvxqbbO8Vvd2YgAAAAAGBJFCTAYu/XseLeeXSX5V5KjkTzW8yTb3Xp24RNu1ZUIOrMRAQAAADAkihJgEHbr2VnqKZIxHp90lOSfu/XsqjlSjD0rymob95R0ZSMCAAAAYEgUJUDv7dazRZJ/ZzxTJH/mZZJNUwqxf6ZK2vehKKs7MQAAwKTdiAAYGkUJ0Gu79WyV5O2EHvk0ypK2KEpkDADA9HwQQeduRAAMjaIE6K2mJHk1wUc/Sl2WLLwF+1OU1VUcv9W2lQgAAGDyTJkDg6MoAXppwiXJg6Mkb5Ule2fioT3vHbsFAEAPbUTQreaOSIBBUZQAvaMk+S/Kkv26FEFrViIAAKCHbkTQqWsRAEOkKAF6RUnyhy7dWbIfzS+bnFG8f7fN0WYAANA3NyKQN8CXKEqA3titZ8soSf7Iw50lypL9WIpApgAATENRVhspdErewCApSoBe2K1n50l+ksSfOkqy2q1nx6LYy0bJVMn+3BZltRIDAAA9Zv3fHfeTAIOkKAEOrpmUWEnii07ltDdLEcgSAIDJ2IigE/cmeIChUpQAfbBKPTHBl73crWcXYngaUyV7Y5oEAIAhcJ9eNzYiAIZKUQIcVHMvyakkHmW5W89OxPBkCqenW4gAAIC+K8pqm+ReEq1TSAGDpSgBDqY5csu9JI93FEdw7Wuz9EYS3+y9sXoAAAbEl/gyBvhTihLgkFYi+GYvHMG1F5dJbsXwaPcxTQIAgP0nn7wvyupODMBQKUqAg9itZ4s4cuuplrv17FgM365ZyJ9L4tEWNkEAAAxs7b+JH0m1aSUCYMgUJUDnmi/3LyXxZEdxz8Y+NkzbJD9K4qv9XJSVkXoAAIbIPrQdt/YIwNApSoBDuEj9JT9P95OL3Z+uKKvLJO8l8UXXRVkp5wAAGKpVXOreVq4Ag6YoATrVTJP4onW/liLYi0WSazH8qfskczEAADBUzfGxpkr2v0+QKTB4ihKga4uYJtm3c3eV7G3TdB6/MPuzzc/cvSQAAIzApTX/fvO0TwDGQFECdM00yf4dpS6geKKirG5ST03YOH3yUJJsRQEAwAjW/KZK9rtXkCUwCooSoDO79ew8yXNJtEIBtb+N0zbKks83PkoSAADGxlTJfixNkwBjoSgBurQQQWue79azuRj2Q1mSREkCAMB41/t38WOzp7ouyso0CTAaihKgE80dGi8l0aqFCPa6eXooS6Z4wbuSBACAsa/3V0k+SOKbKZqAUVGUAF05F4GMB7h5mmJZcp3kTEkCAMAELOIIrm/xc1FWGzEAY6IoAbriS/z2HTl+a/+Ksroryuosyc8TeNx3qSdJbnzyAABMYK1/k2QpiUe5lhkwRooSoCtzEXRCIdXeJuoiyQ8Z5y/O7pO8Lspq4TJGAAAmts6/TPJeEl+9b7BnAEZJUQK0breenSU5kkQn5iJodRN1leRkZBupD6mP2lr5hAEAmKhFpnk34WNdOKIXGCtFCdCFuQg6cyqCdjVHcZ2nni65HfCjPEyROGoLAIDJr/HjvpIv+dmPq4AxU5QAXTgTQXfcU9LZZuqqebffDHBD9SbJiY0OAAD8ur7fpv6Rn7Lk9941RxEDjJaiBOiCokTeY91M3RVltUx9HFffC5P71Je1f1eU1dK5wgAA8Lv1/TaJQuC/fSjKaiEGYOwUJUAXHAfVrRMRdL6h+rww+TH9OpLrNp8mSBaO2QIAgL9c26+SvJZEkvrelnMxAFPw7OPHj1IAWrNbz06S/EcSnfpQlNVcDAd/9+epzzk+T3LU8d/+PslVkqvmiDAAAOBx6/lFkssDrOX74l3qy9tNogOToCgB2l5czpP8IolOXRdl5fit/v05OE995nFbE1bXSTZJNsoRAADYyzr+rFljT60seee4LWBqFCVA2wvL8yT/kkS3irJ6JoXe/pk4Tn2PzDz1UV0nzf/9tZuv+yTbJHfNv26SbP3SCwAAWlm/nyVZZTpHSv9YlNWlTx6YGkUJ0PaicpnkJ0l0S1Ey6D8z8z/5fylDAADgMGv049RlycsRP+Z9kvOirDY+cWCK/iYCAOgPGxMAAOjdGv0uyfluPbtIssz4juL6kLok8cMsYLL+RwQAAAAA8NeatXACvgAABI1JREFUI6nOUhcLY3Cf+qituZIEmDpFCQAAAAB8haKsboqymid5nbpoGKp3SU7cRwJQU5QAAAAAwCMUZbVKcpLkTYZVmHxI8o+irBamSAA+UZQAAAAAwCMVZXVXlNUywyhMHgqSuXsRAX5PUQIAAAAA3+g3hcmPSW578o92n/qIre8VJAB/7W8iAFpmlBcAAIDRa46yukxyuVvPzpIskpwned7xP8r7JFdJrhyvBfB1nn38+FEKQGt269k8yS+S6NR9UVbHYgAAAOjFvvgsdWEyT/Kihb/FbZJN6nJkoxwBeDwTJQDjsxUBAABAPxRltf18n9YUJ2epj+o6S3Lc/OvRF/6jrlOf2rBt/nWTZKsYAXg6EyVA63brmf+i6db7oqzOxQAAAAAAX+Yyd6AL9yLolIkSAAAAAPhKihKgC764lzcAAAAA9JKiBOjCRgSdUpQAAAAAwFdSlABd8MV9d26LsroRAwAAAAB8HUUJ0IWNCDqjlAIAAACAR1CUAK0ryuouybUkOnElAgAAAAD4eooSoCu+wO/GRgQAAAAA8PUUJUBXFCXtu3Y/CQAAAAA8jqIE6ERRVtskt5Jo1UoEAAAAAPA4ihKgS5ciaNVKBAAAAADwOIoSoEuO32rPu6Ks7sQAAAAAAI+jKAE609yf8U4SrViJAAAAAAAeT1ECdG0lgr27LspqIwYAAAAAeDxFCdCp5gv9D5LYK3e/AAAAAMA3UpQAh7AUwd5cF2W1EgMAAAAAfBtFCdC5ZqrkvST24kIEAAAAAPDtFCXAofiC/+k+uJsEAAAAAJ5GUQIcRFFWN0neSOKb3SdZiAEAAAAAnkZRAhxMUVbLJNeS+CaXTdkEAAAAADyBogQ4tIUIHu1DUzIBAAAAAE+kKAEOqiirbRzB9RiO3AIAAACAPXr28eNHKQAHt1vPNkleSOKLfijK6koMAAAAALAfJkqAvjiP+0q+5I2SBAAAAAD2y0QJ0Bu79ewsySbJkTR+511RVgsxAAAAAMB+KUqAXlGW/KHroqzOxAAAAAAA++foLaBXmsvd56kvLac+jmwuBgAAAABoh6IE6B1lya+uk8yLsrrzVgAAAABAOxQlQC8pS/I+ShIAAAAAaJ07SoBea+4sWSU5ndBju7gdAAAAADqiKAF6b7eeHSe5SvJiAo/7uiirlU8dAAAAALqhKAEGY7eeLZP8NNLHu01y3hw5BgAAAAB0xB0lwGAUZbVM8n3qUmFMfk5ypiQBAAAAgO6ZKAEGpzmK6yLDny65TbIoymrjUwUAAACAw1CUAIO1W89OUl/0PrS7S+6TXDYTMgAAAADAASlKgMHbrWfzJMv0vzC5T3KZuiS588kBAAAAwOEpSoDRaAqTiyQve/aPpiABAAAAgJ5SlACj0xzJtWj+en7Af5T3Sa6Kslr5VAAAAACgnxQlwKjt1rOz1IXJPMlpB3/L90muUhckpkcAAAAAoOcUJcBkNJMmZ6lLk7Pmr6Mn/EfeJtk2f22KstpIGQAAAACGRVECTNpuPTtOXZgkdYHyV+5SlyJ3RVltpQcAAAAAw/f/LIf7x8woKi4AAAAASUVORK5CYII="

const logoSteel = "iVBORw0KGgoAAAANSUhEUgAABkoAAAhPCAYAAACXR9fmAAAACXBIWXMAAC4jAAAuIwF4pT92AAAgAElEQVR42uzdXXIc55km7JsOnxOzAtasgOgNgAWR+qUklNrSRLjdYxblbpwSXoFKKxB0CktiQbLFiG88LdB2S7YoGQVswMAKDKxgiBXgO8iEQEr8AYiqrPy5rgiE3G7LVj2ZSbxP3fm876Xj4+MAdNXq7na//Jf9R/7t/o/+YwflT5I8TLKX5GBjaflABQEAAACg2S4JSoCuWN3dXkwRgvSTLCa5MoX/2p0Uwclekq2NpeWHKg0AAAAAzSEoAVptdXd7kOTk53IF/5P7SSZJxhtLy3uuAAAAAADUm6AEaJ1ycmQt1YUjT7OfZJwiNDFpAgAAAAA1JCgBWmN1d3uYZJjkWg3/8TaTjJxrAgAAAAD1IigBGq8MSEaZzpkjsyYwAQAAAIAaEZQAjbW6u91Psp7kagP/8T9OEZjYkgsAAAAA5khQAjTO6u72QoqA5FbDP8pRkrWNpeWxqwoAAAAA8yEoARpldXd7kOKA9Mst+lg7SQamSwAAAACgeoISoBHKKZJRkjst/YhHSYYbS8tbrjYAAAAAVEdQAtTe6u52L8lWmnkWyXl9uLG0PHLVAQAAAKAaghKg1lZ3txeTTNKurbaeZzPF2SW24gIAAACAGfuZEgB1tbq7PUz3QpKkOKR+Um43BgAAAADMkIkSoJbKkORux8uwn6RvsgQAAAAAZsdECVA7QpIfXI3JEgAAAACYKRMlQK2s7m4PknylEo8xWQIAAAAAM2KiBKiN8uD2sUr8xNUkW8oAAAAAANMnKAFqodxeapLuHdx+VtdWd7fHygAAAAAA0yUoAepiEiHJ89wqz28BAAAAAKZEUALM3eru9nqK7aV4vvVyizIAAAAAYAoEJcBcre5u95PcUYkzuxznuAAAAADA1AhKgLkpzyUZq8S5XV3d3R4pAwAAAABcnKAEmKdRkivK8EI+sAUXAAAAAFycoASYi/JLfltuXcy6EgAAAADAxQhKgHnxJf/FXVvd3R4oAwAAAAC8OEEJULnyAPdrKjEVAicAAAAAuABBCTAPIyWYmiuru9tDZQAAAACAFyMoASplmmQmRkoAAAAAAC9GUAJUbU0Jpu6Ks0oAAAAA4MUISoDKrO5u95KsqMRMDJUAAAAAAM5PUAJUyTTJ7KyUQRQAAAAAcA6CEqBKtodSXwAAAACoFUEJUInV3e3FJFdUYqaGSgAAAAAA5yMoAaoyVIKZu2r7LQAAAAA4H0EJUJW+ElTC9lsAAAAAcA6CEmDmyimHqypRib4SAAAAAMDZCUqAKiwqQWX6SgAAAAAAZycoAarQV4LKXHZOCQAAAACcnaAEqIKJEvUGAAAAgFr6uRIAFfDFffX13lIGAACA5lnd3e4/8n/ubSwtP1QVgNkSlACzXuAtJLmsEpUSTAEAANS3R15MsUV175GfK8/4ex79P3eSPEyyV/4cbCwt76kswMUISoBZ86V99RaUAAAAoB5Wd7cHKYKRfpKrF/yvu1b+deWR//6jJJPyZ2tjaflA1QHOR1AC0D7CKQAAgDkqw5GTn1nvsnA5RXCykuSj1d3t/STjCE0AzkxQAsyaL+2rZ6szAACAiq3ubveSDMufK3P8R7ma5KMUocn9JOsbS8sTVwjg6QQlwKzZBgoAAIDWKgOSUZJbNfzHW0mysrq7fZhktLG0PHbFAH5KUAIAAAAA51QezL6eegYkP3Ylyd3V3e1RkqEJE4DH/UwJAAAAAODsysDhIM0ISR51Jcn26u72pJyEASCCEgAAAAA4k9Xd7cXV3e29JB+k2edDXkvyzzLwAeg8QQkAAAAAPEcZKvwjxWHpbfHB6u72nukSoOsEJQAAAADwFKu72wuru9uTFFMkbXQ1yd7q7vbA1Qa6ymHuAFCP5quXpPec/9jBxtLygWoBAEBl6/TFJJM0e5uts7ic5KvV3e2PN5aW11x5oGsEJcCs7SkB/KTRevSnl+JAxbP+/UlyVD5bP/xsLC171gAAYLpr90GScdofkjzqzuru9kKStY2l5YfuAqArLh0fH6sCMMuFZT/JtkpUamdjabmvDLV5BhaSDJL0y7/Oqsk6SvGm21aSickTAAC40Dp+mORuh0uwn6QvLAG6QlACzHpx2UvyT5WolKCkPo3VIMnKvO6DFG+/bWluAADg3Gv5uyohLAG6Q1ACVLHI9AdNtT7cWFoeKcNc7vVekrUkw9RnPP8oxZTJyJQJAAA8d00/jJDkUcISoBN+pgRARQsrqnOgBJU3U73V3e1xiumpO6nXHsaXk9xK8s/V3e1xeUYKAADw03X9IEKSH7uaYlIdoNUEJUAVHDJdrQMlqKyRWngkILnVgH/kW0n+UQYmPVcQAAB+WNsvRiDwNCtl3wPQWoISoAqCkgptLC1PVKGSRmotRSh1q4H/+CcTJiNXEgAAa/vthRTb1V5Wjaf3EOW2ZACtJCgBqjBRgsrsKMHMm6jF1d3tvSQftaCR+mB1d/vAdlwAAHTcVpIryvBcd/UOQFsJSoCZ21ha3ktxoDSzN1GC2SmnSCYp9ultiysptuMaucIAAHRwjT9Kck0lzmyrnMABaBVBCVDZYkoJ1LnBzdPC6u72VtoxRfI0H6zubk80PQAAdGidv5jkA5U4lytJRsoAtI2gBKiKL/Bn77Cc3mG6zVMvxRTJSgc+7rUke8bpAQDoiLESvJA7q7vbfWUA2kRQAlRiY2l5K7bfmjVh1JSVgcFe2rXV1vNcSTJZ3d0euAMAAGjxWn+tY+v8aRsrAdAmghKgSr7It1BtUuO0mGKS5HIHP/7lJF+t7m4P3QkAALRwrb8Q20dd1BXnHAJtIigBqjRWgpmx7dZ0G6cuhySPuissAQCghUbW+lOx5oxDoC0EJUBlNpaWJ0kOVWJmC32mQEjyE8ISAADatN7vJbmjElNxOcmaMgBtICgBqjZSgqk7im3NptU0CUme7K4D3gEA0JPyBKZKgFYQlACV2lhaHsdUybStbywtP1SGiykX91sRkjzNRFgCAEAL1vy3VGKqTJUArSAoAeZhpARTc5RkXRmmYpLkijI8swEae1sMAIAG84W+ugI8kaAEqJypkqkyTTIFq7vb60muqsRzXY1gDgCA5hoqwUxcdq4h0HSCEmBeRkpwYYfxpfWFre5u9+Mwx/O4pQkCAKCB6/5BTJDP0kAJgCYTlABzUU6V7KjEhayZJrlws7SQZKwS57a+urvdUwYAABrEF/mztWKbXqDJBCXAPA2V4IXtbCwtbynDhY3irbIXcTkCJgAAmkVQosYATyUoAeZmY2n5IMmHKnFuRxEyXZgtty7sWrl9AQAANGHtf1klZk5/ADSWoASYq42l5VFswXVewzJk4mJGSnBhzsgBAKAJfIFfjRUlAJpKUALUZdF6pAxnsmnLrYsrDyO/phIXdmV1d3ukDAAA1FxfCSrrtdQaaCRBCTB35YHk3vB5vv2NpeWhMkzFSAmmZs2hjQAA1NxVJahMXwmAJhKUALWwsbQ8SXJbJZ7qyIJzOsppEge4T8/lJGvKAABATdf/+qhqLSoB0ESCEqA2NpaWx0k+VomfOErSLydvuDhf6k/fUAkAAKgpX9yrN8BzCUqAWtlYWl5LsqkSPzgJSfaU4uLKt8mM3U/flXJSBwAA6qanBNX2BkoANJGgBKid8hwOYYmQZBaGSqC2AAB0igmHiq3ubqs50DiCEqCWhCVCkhks1heSDFRiZq6t7m73lAEAADpvQQmAphGUALVVhiW/7eBHP4yQZBYGKQ4eZ7Y1BgCAOrmmBJXrKQHQNIISoNY2lpbXk7yTYsKiC/aTLApJZsKX+LM3VAIAAOi8nhIATSMoAWpvY2l5K0k/RYjQZh9vLC0vbiwtP3TVZ6KvBDN3tdziDAAAAKAxBCVAI5QTFv0kH7fw4x0leWdjaXnNlZ6N1d3tfmy7VRWTOwAAAECjCEqAxthYWn5YhgnLKc7xaIPDJL1yaobZ6SuBWgMAAAA8iaAEaJyNpeVJksUkH6b5Z5cc2GqrEn0lqMyiEgAAAABNIigBGqmcLhklceg5Z+HL++pcVQIAAACgSQQlALTa6u52L84nqbrmfVUAAAAAmkJQAkDb9ZRAzQEAAACeRlACQNvZdqt6PSUAAKAmDpWgchMlAJpGUAJA2y0oQeV6SgAAQE0cKAEAzyMoAaDtekqg5gAAdNaBElRuTwmAphGUAMyXbaFmr6cEAADQWQdKUKmjjaXlh8oANI2gBGC+LisBAADAzEyUoFKmSYBGEpQAANPmXBgAAOrCF/fVmigB0ESCEqDpDpQAaueqEgAAUAflNlCHKlEZwRTQSIISoOkOlABqZ18JAACokYkSqDXAswhKAIBpc3gjAAB1sqUEldh3kDvQVIISAAAAANpsogTqDPAsghIA2s4euQAA0GHllMN9lZi5sRIATSUoAaDtjH5X70AJAACoGdtvzdbhxtKyl9SAxhKUANB2gpLqHSgBAAA1s5XkSBlmZl0JgCYTlADM2erudl8VZspbTdU7UAIAAOqk3H7LVMnsqC3QaIISANpOUFK9AyUAAKCGRkowE5sbS8t6AKDRBCUAtFr55pgR+2prPlEFAABquE49SLKjElM3VgKg6QQlQNOZFuAsJkpQmX0lAACgxkZKMFU7XpQC2kBQAjSdg7o5C4GaWgMAwMn0s6mS6RkpAdAGghIAusDBgtWZKAEAADW3pgRTcd80CdAWghIAWm9jaXkvzimpilAKAIAm9AebKnEhRxE4AS0iKAGgK3yBP3v7G0vLtsMDAKAJ1uJlqotY31haPlAGoC0EJQB0haBk9sZKAABAE5Qv+AxV4oXsbywtj5QBaBNBCcD89ZSgkkZoK94YmzVhFAAATesR7qvEuQ2VAGgbQQnA/PWUYPZWd7cXktgWanZ2jN4DANBAwySHynBmvy3PeAFoFUEJAF0xSXJFGWZmrAQAADRNuQXXukqcyf2NpWW1AlpJUAJA663ubo+TXFWJmTncWFoeKwMAAA21pgTPtR9bbgEtJigBGm1jaXmiCjxLGZLcUomZGisBAAAN7ReGMXn+PEdJBuX0DUArCUoAaHPTsx4hSRVNk/F7AACaaqQEz13v951HCLSdoASAVirfDLujEjO37s0yAAAa3DOYJnm6k5DE4e1A6wlKAGhrw3NXJWbucGNpeaQMAAA0lLXs0wlJgE4RlADQKqu724MISari0EsAAJraNwxjmuRphCRA5whKAGhTs7MYB4tXZWdjaXlLGQAAaKiREjzRfpKekAToGkEJwPwtKsHFlSHJJMll1Zi5oyRDZQAAoKG9wzCmSZ5kM8UkiTMIgc75uRIAzN2CEly40elFSFKltY2l5QNlAACgoUZK8JijJKONpeV1pQC6SlACQKOt7m4vJNmKkKQqmxtLy2NlAACgof3DMKZJHrWfZGirLaDrBCVAGxxa6Ha2yVlIMUlyVTUqa6Ic4A4AQJONlCCJKRKAxzijBGiDAyXoHiHJXBqpof2KAQBocA8xjJfskuIskp6QBOCUiRIAmmo9QpIq9Y3jAwDQcKOOf/7NFFMkB24FgMcJSgBonNXd7XGSWypRmdtCEgAAGt5DDNPNaZKjFGc6Cki6c6/3k/TKnyTpP+M/fpDTXTomSR7q/egqQQkATVv0jSMkqdJth7cDANACw4593v0UU/hbts9tdX+8mCII6SdZzPnDwGuP/OsPyv/OJNlJspciPJm4h+gCQQkATVoEDiMkqZKQBACANvQR/Tz+hXBb7aSYHtkyPdLq+3kxRfA3yOympK6VP3fK/033Fq0nKAGgKYvBYZK7KlGJk4Pbt5QCAIAWGLX0c+3k9I3/icvc6n64lyIcGWY+W8idBCcfre5u308RmIxdGdrk0vHxsSoATV8wTNLwt4M2lpYvuZLPvMbDCEmqchQHtwMA0J5eop9ku6Xr9p4tkVp//y4mWUs9d1Y4TDJOsu4+pA1MlADQhIXhukpUYifJwCIXAIAWGbX0c/lyut19cC9FCFHnl0KvpDjXZG11d3vdPUnT/UwJAKjx4nAxxSj5ZdWYuQ83lpb7FrYAALSon+innWeTHMXLZG29ZxdWd7fHSf7ZoHv3corA5KDcDQIaSVACtIEtgtq5QBSSVOMwyb9sLC2PlAIAgJZp6xrXm/vt7IHXkhyknttsncXlJHdXd7cnZT8PjWLrLaANLBDbt0BcSLIVIcmsfSggAQCgpT1FP6ZJaMa92kv9t9k6j2tJ/rG6u/3bjaVl9yqNYaIEgLotEhdSTJJcUY2Z2UzyP4UkAAC0WFvXuqZJ2tX/DlLsktHGUO+jcrpkwZWmCQQlANRpkXgSklxVjZm4n2KbreHG0vKBcgAA0NK+oh/TJNT/Ph0l+Srt3knhWoqzS2zFRe3ZeguAOhlHSDKLZmoryUg4AgBAR4xa+rlMk7RA+YLgepp7Fsl5XU6xFdftjaXlsTuAuhKUAFCXxeI4yYpKTM1+ufje0kwBANChvqIf0yTU9/7s8i4Kd1d3tyMsoa4EJQD1WCz1uvy2fxmS3HInXLhxmqSYHpmYHgEAoKNGLf1cpkma3/faaroISxY3lpbX3BHUjaAEoB56SQ46ulhci5DkvI5SHPj3w8/G0vKesgAA0GWmSajxvSkkOXWnnCwRllArghIA5rlYHCb5SCWymWQtyfMOuDswKQIAAE81aunnMk3S7L5XSPJTd1Z3t/dsw0WdCEoAmNdicZjkrkpkZ2NpeVj+64lyAADAC/UX/ZgmoZ7GEZI8iTNLqJWfKQHQAhMlaFwTsxghSVIcuD5QBgAAuLBRSz+XaZJm977rSVZU4un3d/n9AMydoASAqheKixFuJUVI0tf0AADAhXuMfkyTUL/7cpDkjko80+UkW+X2ZDBXghIAqlwonoQklzteiqMISQAAYFpGLf1cpkma2/v2Umy5xfNdUSvqQFACQFULxZMD7IQkQhIAAJhWn9GPaRLqZ0vvey4rq7vba8rAPAlKAKiieRGSnDY7/Y2l5T13BQAATMWopZ9ry8tVje1/R3F4+ws9y+UkDsyFoASAWS8ST0ISC0UhCQAATLPX6Ked0yRJewOgtt+TvSQmI17M5diCizkSlADUw2KLP9tWhCRJcltIAgAAU9XWL6Q3N5aWD1zeRlqPnRQu4trq7vZAGZgHQQlAPSy08UOt7m6P0943vM7j9sbS8lgZAABgar1GL8lKSz/eyBVu5D3Zb/E9WSVn8zAXghIAZrVIHCe5pRL5rZAEAACmbtTSz2WaxD3ZdVdWd7eHykDVBCVAG1hE1kx5eJ2QpGhyvA0DAADT7Td6Le43Rq5wI+/Jfuym4Dmg0QQlQON526Z2C8Rhkg9UIpsbS8tDZQAAgKkbtbiH0N+6JzFVwhwISgCYmnIhc1clcl9IAgAAM+k5ejFNQr3uycWYJvE80HiCEgCmtTjsR0iSJPtJhsoAAAAzMWrp5zJN0lxrSjATV8rvGaASghIALqx8g2ZLJbKfpL+xtPxQKQAAYOp9Ry+mSajXPbmQZKASMzNUAqrycyUA2uGSEsxtYThZTC5NklzueCkOk/Q3lvpCEgAAmE3fN2rpB9vcWOofuL6NvCcHeuGZGqzuThb02VTBRAkAL2x1d9JLMrEwzFGSgcUbAADMtPcwTULdmCaZrctJ+spAFQQlAPXQuF/8q7uThRTbbQlJikmSPbcxAADMzKiln8s0SUOVPfGKSsycMIpK2HoLaIXj42NFqNB/7mwvpJgkudrxUhwl6f/u2rKQBAAAZtd/9GKahJo5Pj7uq0IlBCVUQlACwIuYREiSJGtCEgAAmLlRSz/X5u+uLR+4vM3xnzvb/RQ7Qgz0xJW5/J8724t6b2ZNUAK0xb5FSmULw7FaJ0lu/+7a8lgZAABgpv1HL6ZJmN/9t5giGOnHNlvz1E8iKGGmBCVAWzhEu5pF4rjFTcp5CEkAAKAao5Z+LtMk9ex5F1JMi/TLnyuqUgv9JOvKwCwJSgA464JxPUKSk4ZmrAwAADDzHqQX0yTM/j7r5zQcsXtCPfWUgFkTlABwloXjMMkdlcjm764tD5UBAAAqMWpxX3Hg8s6tvz3ZTmuQ5JqKNIIAi5kTlADwvEXkMMldlRCSAABAhX1IL6ZJmN691M9pOHJZVRp5HR3ozkwJSgB41kJkGCFJkuwnWVMGAACozKiln8s0STW97KPnjJhGaIcFJWCWBCUA9dCr4cJyMQ5LS4qQpP+7a8sPlQIAACrpRXoxTcL5+9eTcMR2Wu20mGSiDMyKoARoh+Pjpn+CK7VaZE7+frIA6fpIchGS9F8SkgAAQHX93ailn+z+7/ovHbjAU+lZezndSquvd+0EEyXMlKAEgB8vOIUkhaMkQyEJAABU2o/00t5pEhP7L35fLOTxc0auqAowTYISAH68+BxHSHKUYpLEQXEAAFCtUUs/187v+i9NXN5z9af9nIYjttMCZkpQArTFxMLpwovQhbKOXT/oTkgCAADz60kGLf14I1f4ude/l9OttPrxAh9QIUEJ0ArHuaQIF/Afk+2F5NIkQpIkGX7SXxaSAABA9X3dWtr55fjOJ/3liSv8pD700XNGLtlOC5gbQQkASbFXrpAkuf1Jf3lLGQAAoFrll+ZrLf14I1f4h+vcz2k4ogcFakNQAmChOk57D0s8j9uf9JfHygAAAHNhmqSd/eZiTrfS6sd2WkBNCUoAOkxI8oOPhSQAADC3vsQ0Sbuu5aPnjNhOC2gEQQlAd5uRYYQkSbL5SX95TRkAAGBuTJM0u7fs5zQcsZ0W0EiCEqAdjo+bv7jc/vviJ8sv7VX0vzVMcteNk81Pll8aKgMAAMytDzJN0sDeNacTIyvuYioyUQJmSVACUB8LFS1qhxGSJMm+kAQAAOauvdMkyy9N2vBB/mP7772cBiODOGcEaCFBCUCHlG/+CEmS/XKRDwAAzK8/MU1S32vz6DkjttNi7toSPFJfghKgLQ6U4LkL3cUYVU3KkOST5ZceKgUAAMyVaZJ69Yv9FBMj19ya1MyhEjBrghKgLQ6U4LmL3kmMSB8lGQhJAABg7j2KaZL51r+X02Ckr1ek5vaUgFkTlAB0owHZsvDNUYpJkgN3BQAAzJ1pkur7wn5Ow5ErbkEaRFDCzAlKAFqsXAxPLIJ/CEksrgAAoB59immS2dd5MacTI7bToskmSsCsCUoA2t18TOLgvaTYbktIAgAA9WCaZDY9YC+206J9jhzkThUEJQDtNY6QJEluW1QBAEA9mCaZei37OQ1GbKdFG+nnqYSgBKCdzcc4yYpK5PYnyy+NlQEAAGrDNMnFer1+TsMRL8bRBVtKQBUEJUA7HB+34VP0M4U3Jf7j79+Pk9xyU+TDT166PlYGAACoh//4+/emSc5fs15OJ0b6sZ0W3SMooRKCEoB2NR5rEZIkyeYnL10fKQMAANRKe6dJXro+mVJPt5DHgxHbadFl9z956fpDZaAKghKgFY5zqfM1+M3f/z5MLn3kbsjmpy+9NFQGAACoVb+ykFwyTfLk2vTzQzhyyXZacGqsBFRFUAK0xV7Hm45hkrtug+wISQAAoJbaOk2y/+lL5zub5Dd///tiTidGnC0JT3b46Usv2XaLyghKgFb49KWXHv7m79938rP/5u/f9yMkSZL9FG9hAQAA9epZ2nw2yfoZPn8vp8FIP7bTgqk8WzBNghKAZjcci3GwWVKEJP1P7V0KAAB11NZpksNPX7o+fkqv9ug5I7bTgvM5im23qJigBKChypBk0tKG41zNSYQkAABQZ60/m6Tsz/opptyvueRwIet6fKomKAFooHJ0fRIhyVGSgQUUAADUtncZtrRvOSo/3zhFOHLZ1YapPVu23aJyghKA5jUaQpLTxVP/05eu77krAACgtkYt/VyX46xImIU1L0MyD4ISoD2OG/8Jes/7D/zm+x9CEnvcJv1PrwtJAACgrn7z/ffDOLgcOLudT68/+dwfmLWfKQFAbfTO8J/ZipAkSW4LSQAAoPZGSgCcw5oSMC+CEoCG+M3334/jUMCkCEnGygAAALXuX4YxTQKc3YdeiGSeBCUAzWgyxkluqUR+KyQBAIBGGCkBcEb7n16/7s8M5kpQArTJThs/1G++/34UIUmSbH56/fq6MgAAQO17mGFMkwBnc5RkoAzMm8PcgRY5bt0n+s333w2TfODaZvPT6zeGygAAAI3ozUZqAJzR4NPrNw6UgXkzUQJQU2VIclclcl9IAgAAjepjTJMAZ3H70+s3JspAHQhKAOrZXAwiJEmS/SRDZQAAgMYYKQFwBpufXr8xVgbqwtZbADXzm++/W0xisVCEJP1Pr994qBQXvqcWkiw+5f/98NPrN/ZUCQCAKaw7hzFNAjyf7bWpHUEJ0BrHx5ca/xne/+77xeTSJMnljl/O/ST9z25cF5Kc7/7ppwhEFpP0yr9eTi497+97tO4Pk0ySHCSZfHbj+oHKAgBwxp5spArAc2x+duP6UBmom0vHx8eqALTC+999P0lyrcEf4aj8a9dDkqMUIYkph+ff84tJBkn6M7z3j1IEJ1tJtoRXAAA8ZW06jO2D4Xn2y79e7ejnF5JQWyZKAOrjshIISc7QgC6mOLdlkGq2NbicZKX8ufv+d9/vpNgaTmgCAMCjRkoAP3GY0xfPJp/duP7w/e++Xyj/va6FJb/97Mb1dbcEdWWiBGiNFkyUdJ2Q5Nn39zDJWo0W00flYn9key4AAGvVmCaBkz5pUv5sPatXev+778dJbnWkJsPPblzfcntQZ4ISoE2L864sMtrq9mc3ro+V4YlN5yj1PhRzJ0VgMnHFAAA6uWY9iEPc6a6dnAYje+d8doZJ1tPeHSb2U4QkXoik9gQlQIsW59+NknygEo10+7MbN8bK8Nj9PEz9A5InNQjDz27cOHAFAQA6tW41TUKXHKbcSivJ5LMbNx5e8BlaTLG9cdu24vo4yeii9YGqOKMEgHkTkvx0kbyeZm4jdy3JP9//7hxvBQAAACAASURBVDsLYgCA7hgpAS13sp1Wec7IdF8M++zGjb0kiy16+fMwxQt0E7cOTWKiBGgNEyWNtPnZjRtDZUje/+67hbLJvNOSj2RxDADQ/jXsMKZJaKednAYjexU+U70U0yVNfHHuKMVLf+temqOJTJQAMC9CktPFcBtHra8k2TZdAgDQaiMloCX2c7qV1twOHS+nVfrvf/ddv3y+mhKYbJZ934FbiaYyUQK0xvsPHoxioqQpNj97+eWhMiTvP3gwTLsP7ztpOgafvfyyRTMAQLvWsaZJaKqjPHrOSE17lfcfPOin3oFJEZDo9WgBEyUAVG0/yZoyJO8/eDBOcqsDH/Vqkr33HzwYfPbyyxNXHgCgFUZKQMPcz2kwsteEf+Cyf+q//+DBYtlHDzL/l+wOU7zsN/7s5ZftHEBrmCgBWsNESSPsJ+l3fTH1/oMHCyneXrrWwY9/+7OXXx57FAAAGr2e7SfZVgka0H9Okmy15YWtspcclD8rFf5PH5Y97LgpIROcl4kSAKpcpApJioXtJO06j+Q87r7/4EGEJQAAjTZSAmrosOy1JinCkdb1nuVnGpc/ef/Bg0GSfpLFTPdFvKNHajkRjtAFJkqA1jBRUmtHSRa7vm+pkOQxJksAAJq5pu3HNAn16TMn8WX+o8/nYpJeiuBkofzriV6SK+W/3vnR3zpJ8jDJXpI9W2rRRYISoE0LgkGSr1SilovXftcXrUKSJxKWAAA0b107STe3kKUe9lMewu78Q2CabL0FtIk3HupHSHJqK0KSH7MNFwBAg5TTJEISqnSyndZJOKLvB2ZCUALALA2FJMn7Dx6MNZRPdff9Bw8OvA0GANAIIyVgxh7dTmur69s3A9URlAAtckkJ6uX2Zy/f2Op6Ed5/8N1acumW2+GZtt5/8N3iZy/f0AQBANR3XdtPLnn5h1nYyQ/njNyYKAcwD4ISAGbh9mcv3xhrJr9bTPKR2+G5LqcYpV9UCgCA2hopAVNyWK7/JynCEdtpAXMnKAFa4/j4WBHq4eO7r7w87noRbn/7YKFc/HM2V29/+2D97isvrykFAEDt1rb92EqWF3eyndZWksndV2ynBdSPoASAadr0RfcPRkmuKMO53Ln97YOtu684rwQAoIZrWziPk+20tu6+4txKoP4EJQBMy+bdV14eKsMPb9zdUYkXMk7SUwYAgFqtbU2T8Dz7KbfSuvvKyybrgcYRlAAwlUWxkOQxYyV4YVduf/tgdPeVl0dKAQBQC9ZlPMlRHjlnxHZaQNMJSgC4qP0kfWUo3P72wSi23LqotdvfPhhrtgAA5r627cc0Cad2cnrOiO20gFYRlACtcfeVlye3v/1WIaq1n6R/95VXHipFcvvbbxeSOKPl4i6neHNxqBQAAPN0PFKDzvd7kyRbd195ZaIcQJsJSgB4UUcRkvzYWoov+bm4W7e//XZ095VXDpQCAKB6t7/9th/TJF1zmHIrrRThiF4P6AxBCQAvQkjy00bSNMn0jWKqBABgnmsx2u9+fjhn5BXbaQGdJSgB4LxOQhKL6MeZJpk+UyUAAHNgmqTV9vPDOSOvTJQDoCAoAeC8BkKSJxoqwczqOlIGAIBKWX+1x8l2WifhiF0BAJ5AUAK0y7ESzNjtu6++MlGGHxXlb98OklxRiZlY06gDAFS6tu3HNEmTHeXRc0ZeNZ0NcBaCEgDO3DPdffWVsTI80VAJZuby7b99O7j76itbSgEAUImREjTO6XZaXmwDeCGCEgDO4kMhyZPd/tu3C0lWVGKmBmXjBwDAbNe2/ZgmaYLDcn08SRGO2E4L4IIEJQA8z+bdV18ZKcNTDZRAjQEAmu72375dS/KRStTSyXZaJ1MjB0oCMF2CEqBtDuOsiGnavPvqK0NleCZf4s+e7bcAAGaknJDeikmSutnJ6Tkje8oBMFuCEqBtDiIomZb7QpKnNpP9JCc/Gspq9GP7LQCAaa9rB0nGSS6rxtzt5/QQdttpAVRMUALA0xbpQ2X4oYFcTDE50o9gZF76SgAAMLX17UKKQ9vvqMbcHOXxc0YOlARgfgQlAPzYfpJ+l99gKoOR/iM/3rCbv6tKAAAwtbXuVkziz8NOTs8ZsZ0WQI0ISgB41GE6GJLc/tu3vRSByMnUiGCkntepf/fVVyYqAQDwwuupUZIPVKIyP2yn5bw9gHoTlACtcnx8rAgv7ijJYPzaq60PSYZ//Vsvj0+MeJuuGRbLRhMAgPOvf8exjeysHeb0nJGtLvRWAG0hKAEgKUKS/vi1V1s5/j38698W8vjEiGCkmXpKAABw7rWwA9tn637KcKSt/RRAFwhKAEhaFpI8Eoyc/Djfoh0WlQAA4Fxr4vUkt1Rjqk6209oav/bqRDkA2kFQAsDtNoQkw7/+rZ/TqRHBSDstKAEAwJnWxg5sn66jJGuxnRZAawlKALrt9vi1V8cNbf76OZ0YsddyNwjAAACev04exYHt07STjpzlCNBlghKgbfbiS/Oz+m2TQpLyrbj+Iz/2WAYAgNP1ci/FFImXS6bjKMlo/Nqr60oB0H6CEqBtvOVzNpt1X/CXjd7J4ev9CEYAAOBpa+dhivNIrJmnYz/J0OHsAN0hKAHons3xa68Oa9jc9fL4xIj9lAEA4Nlr6IUk4yQrqjE1H45fe3WkDADdIigB6JbahCRlU9fP6dSIYAQAAM6+nu6nCEmso6fjMMUUyUQpALpHUAK0y/GxGjzdfpK1uTVy3/z1JBg5+bF3MgAAvNjaehQHtk/T/STD8euv2coZoKMEJQDdsJ+kX/XCf/jNX/s5nRoRjAAAwMXW1704sH2ajlIEJFtKAdBtghKgZS4pwU+VIcmrMw9Jht/8rZ/TiZFrrgcAAExtrT1MLjmwfXp2kgzHr796oBQACEoA2q18Q2o2Icnwm78t5vHttDRtAAAw3TW3A9un77fj119dVwYATghKANrrKMUkyd4Um7ReTg9f70cwQrUOlQAA6JJyYnscB7ZPy36KF8n2lAKARwlKgJZxmHupDEleu1ADUO6B3H/kR4PGPB0oAQDQFQ5sn7qPk4wc2A7AkwhKgLaZaCaSJGsvEpIMv/nrQh6fGBGMUCcHSgAAtJ0D26fuKMlg/PprE6UA4GkEJQDtc3v8+mvjMzZhC3l8YkQzRp0dKAEA0GbDb/46TOLA9um5n2RoigSA5xGUALTLc0OS4Td/7ed0akQwQpNMlAAAaKPyBaZxHNg+LUcpttlyYDsAZyIoAWiPzSeFJGUwcvJzTZloMIduAgCtU67Xx7Ht7bTsp9hq60ApADgrQQnQKsfdPct9c/ON14ZJcuvrvy7mNBjxRhptcbj5hi0TAIB2ufW1A9un7MPNN14bKQMA5yUoAdqm38HPvJ9k79bXf90qP7/9jGmjiRIAAG1x62sHtk/ZYZLh5hsObAfgxQhKgLZZ7OBnvprkI5eelttSAgCgDW597cD2KdtMsmb6GICLEJQAbbOoBNBKEyUAAJrs1tcObJ+yoxRTJF6oAeDCBCVAixqPbxbiAERoo/ubb7zuDUEAoMm9Sj8ObJ+mnSTDzTdeP1AKAKZBUAK0SV8JoJW8JQgANNatr78ZxYHt0/TbzTdeX1cGAKZJUAK0SV8JoHWOIigBABro1tff9OLA9mnaTzFFsqcUAEzbz5QAaJG+EkDrbNl2CwBomltffzNMshchybTsJOkLSQCYFRMlQFsakQVNCLTSSAkAgIb1JeM4sH1ajpIMk+x5eQaAWRKUAO1wnIEiQOvsbN50QCcA0Ay3/tuB7VN2P8lw86aABIDZE5QAbdFXAmidkRIAAE1w678d2D5FR0lGmzcd2A5AdQQlQFv0lQBaZWfz5usTZQAA6uzWf3/TSzFFck01pqI4sP2ms0gAqJagBGhDc7IY4+3QNmtKAADUvA8ZpAhJLqvGVHy8efN1a0Dq9pwvJFlMcvLXE73yJ0kmP/rbJknixS9oFkEJ0AbOJ4F22fQWIQBQV+UXp+tJbqnGVBymmCKZKAU1eL77KXas6KcIRs4ShP54ouyD8r/r5P7eSxGeTPQ5UF+CEqDxjgUl0CZHMU0CANTUr4tp9q2YaJ+W+0mGnzuwnfk9070U3yn0k6zM4H/iSvmzUv7vHZV/hkySbLn3oT4uHR8fqwLQ9EXNP1UCWuOdz2++vqUMAEANe49RHNg+LUdJ1j6/+fpYKZjT8zxMEZCszPk52Eoy/txEFcydoARo+uJmLclHKgGtcP/zm6+bEAMA6tZzLKT4MtOB7dOxn2Tw+c3XD5SCOTzLa+VP3c4WOkwyEh7C/Nh6C2g6X6pCOxwmGSoDAFAnv3Zg+7R9+PnN10fKQMXPcZ0DkhNXktwtJ9cEJjAHJkqA5i52/vL1QpL/pxLQCv/y+ZtvONgQAKhTrzFKckc1puIwyfDzN9+YKAUVP8tr5bN82TMDPIuJEqDJTJNAO9wWkgAAdfHrv3y9mGKK5KpqTMVmkrXP33zDodVU+Rz3k6w3+Dm+kmT713/5+n75/By4qjBbP1MCoMGGSgCN9/Hnb74xVgYAoA7Kt8//ESHJNBwleefzN98YCkmo+DleT7Ldkud4Jcner//y9dCVhdmy9RbQ1IVPL8k/VQIabfPzN9+w4AcA6tBfOLB9unZSbBt0oBRU+By3fRrsfvlcCR5hBkyUAE1l2y1oNiEJAFAL5RY9BxGSTMuHn7/5Rl9IQsXP8SDJJO2eBjuZLll0xWH6TJQAzVwE/fm/92IcnuY6SvMOE5ymzc/fujl0GwAANegr1uPA9mk5TDL4/K2bzp6j6ud4LclHHesnh5+/dXPL1YfpEZQATVwE9WLbLZrXNE5SbOcwKf+9SboZ9glJAIA69BQObJ/yGi/J2udv3bQlEFU/y+Mktzr68W9//tbNsbsApuPnSgA0z6U1NaDmToKRSZLJ52/9dNuBX//5637ZnK90ayHv4HYAYL5+/eevh8ml9XR7wndayjfb3/BmO/N4lsfJpVsdLsHdX//56+ixYDpMlABNXAwdJLmiEtSsQZyUP1tPCkaecT93YbuHoySDz996Y+JWAQDm2EcspHsvqsxScWD7W84iYS7P8zjdnST5MS+kwRQISoBG+d/FW/jbKsGcPRqMTL546429C97Xg7Jpb+NbjTtJBl+89YZtGACAefcR43jhalo+/OKtN0bKwJye53GEJD92+wthCVyIoASwIIKz2clpMDKZwb3dtjccj5KMvnjrjXW3DgAw5x5ilOQDlZiKwxQvwTiwHc9z/bzzhW3w4IUJSoAmLYgWkhzEXsJUYz/l4etfVLhlVDldsp5mv+24k2T4hW0YAID59g+9FC+iXFONqdhMsmZSmDk+08Mkd1XiqY6S9AWZ8GIEJYBFERT28/h2Wg/neK8vJFkrf5oUDB6WzbO3mACAefcObd7atGpHKV6CscZjns/0Ytmreaaf35MtCjTh/AQlQJMWRntJrqoEU1xATnI6NfKwhvf8QorpklsNqOXInrgAgPVT65gUpi7P9V6cMXRW9794642BMsD5CEqAZiyM/vTfi0n+oRJcwEkwMkky+eLtmwcNuv/rOmGyk2T8xds3x24vAKAmPcM4Xq6alg+/ePvmSBmowbM9jvDzvH77xds3nRcJ5yAoASyMaKujPDox0qBg5DnPwjDJIPM79P0oxRcQ4y/evmnvWwCgLmuktSQfqcRUFAe2W+tRj2d7kOQrlXihvm2xLX0wVEFQAjRhYeQQd866EJzkdGJkrwPPxaD86c/4+Tg5v2Xri7dvTtxqAEDN1kRbcWD7NNd9oyTON6AuxrHl1ova+eLtm31lgLMRlABNaH6GcYg7T1n45fQL/L2OPyeLKQKTxSS9C3xZcJgimJyk2Ad48sXbNzXKAEAd1z/9FCGJF6oAnuydL96+uaUM8Hw/VwKgAdaUgNJJMDIx2fC4Mij6SVhUfoFwYjHJwiP/915O3xY8MJYNADTF//7Tf68nuaMSAM+0niJQBp7DRAlQa//+p784xL3bTrZ8miSZ/P7tN002AAB0uz/opfjSz4HtAGdz+/dvvzlWBng2EyVA3Zkm6ZbDsvGdRDACAMAj/v1PfxmmeDvaVlsAZzdKcdYL8AwmSoA6N0ILSf6fSrTaYR6fGDlQEgAAntAXrCe5pRoAL8RUCTyHiRKgzoZK0DpHKQ9fj2AEAIDnKLfi3UpyRTUAXtgopkrgmUyUAHVuig40RI13EoxMUgQje0oCAMAZ+4FRkg9UAmAqln//9psTZYAnM1EC1LMpuv+XQYQkTbWTcmrk9yuCEQAAzt0LLKSYIrmmGgBTMyx7deAJTJQAdW2OJhqjxjgJRia/X/F2CgAAF+oDBim2h3FgO8D0/Y/fr7z5UBngp0yUAHVsjnoRktTZfh7dTssiCwCA6fQB60nuqATAzJyE0cCPCEqAOhopQa0IRgAAmJl/v/+XxRRf3F1VDYCZEpTAUwhKgLo1SQtJbqnEXB3m8WDkQEkAAJjR+n+YZD222gKoQl8J4MkEJUDdrClB5Y5SHJY5iWAEAIAKlC9IjZOsqAZAZS7/+/2/9J0vCj8lKAHqRlAye0d5fGJkT0kAAKhKudXWVpIrqgFQuX75fQDwCEEJUKeGaRgj97OyUzajghEAAOa55h8l+UAlAOamrwTwU4ISoE5GSjA1OzmdGJkoBwAA81RutbWV5JpqAMzVohLAT106Pj5WBWDufrX150GSr1Tihe2nDEb+MHhrSzkAAKjRWr+fIiQxPQ5QD//jD4O3HioDnDJRAtSFs0nO54dgJEU4YoEDAEDt/Grrz+tJ7qgEQK0sxjkl8BhBCVCH5qkfI/jPc5jHg5EDJQEAoMZr/F6KKZKrqgFQOwtKAI8TlAB1YJrkp47KxnISwQgAAA3yq60/D5Osx1ZbAHW1mOI7B6AkKAHm3UT1kqyoRI7y+MTInpIAANCwtf1CioDklmoAAE0iKAHmbdThz76TcmpEMAIAQJP9auvPJ28nX1ENgNqz9Rb8iKAEmGcz1Uu33jbbyenEyMQdAABAS9b1a0k+UgmAxlhUAnicoASYo0ujln/A/RTByNYfBm9OXG8AANrkV1t/WUgyTi7ZShcAaDRBCTDPpqqN0ySb+WE7rTcfutIAALR0Pd8v170ObAcAGk9QAszH8fFaCz/V4R/eeWvo4gIA0Ga/+urPoyQfqAQA0BaCEmAejdVCkjYGJWNXFwCAFq/je+Wa95pqADSaHTDgR36mBMAcrKWdI/rrLi0AAG30q6/+PEiyFyEJQBvsKQE8TlACVN1gtXWaZPMP77zljQwAANq4hl9P8lWcRwIAtJStt4CqtXWaZOTSAgDQJr/66s+LKbbauqoaAK3iRU/4EUEJUGGj9ae2TpPs/OGdtw9cYQAAWrR2H6bYWtYUCUD72HoLfkRQAlTJ2SQAAFBj5ctN60luqQZAax0oATzu0vHxsSoAVTVcB2lfUHL4h3fe7rnCAAC0YM2+mGQryRXVAGivP7zz9iVVgMc5zB2oirNJAACgpn711Z/WkvwjQhKAtttRAvgpW28BVTRdbT2b5OgP77w9doUBAGj4Wn2cZEU1ADrB+STwBIISYOaOj51NAgAAdfNv//WnfoqQxBQJQHdMlAB+ytZbwKybr9ZOk0RQAgBAc9fpoyTbEZIAdM1ECeCnTJQAs9bWaZKtL//17YcuLwAATVK+yLSV5JpqAHTOvu8y4MlMlACzbsLWWvrxRq4wAAANW5/3kxxESALQVWMlgCcTlACz1NZpks0v//XtA5cXAICm+Lf/+tN6iq22LqsGQGdtKQE8ma23gFk1Ym2eJnE2CQAATVmX91J8MXZVNQA6bd9Ln/B0JkqAWVlPO99W2/nyX9/ec3kBAKi7f/uvPw2S7EVIAoCXPuGZTJQAs2jIeklutfTjjVxhAABqvh5fKNetd1QDgCRHse0WPJOgBJiFUUs/186X//r2xOUFAKCu/u2//rSY4rBeUyQAnNj68l/ffqgM8HSCEmC6jdn/vd9Le6dJjKnC05/9fpKFJIvlv9V/5P/dS3LlKX/rziP/epLkYYotQva+/MWKhTwAnO/38TDt3QIXgBc3UgJ4tkvHx8eqAEyzOdtKstLCj3b45S9Weq4wnvH7iynCkEd/ZvVlzGGK8GSSZEtwAgBP/f28kCIguaUaAPzI5pe/WBkqAzyboASYZoPWT7Ld0o93+8tfrIxdZTr2TC+kmAzppwhErs35H+l+in11hSYAcPr72lZbADzL//zyFysHygDPJigBptmkTTL/L1JnwTQJXXmGHw1G+qnvFy4nBxGOLPgB6Pjv7rUU26nYaguAJ/nwy1+sjJQBns8ZJcC0mrR+2hmSJPbypN3P7mKSQYpgpCnP8OUUW4vc+rf/e38zAhMAuvf7eyHFFMmKalzY/RTnozVJm3uvHzuKsyK77gMleGGHnh84OxMlwHSatT/e30s7x/0Pv3zXNAmte14HOQ1HrrTkY32YZP3Ld23JBUDrf48vppisvKIaF3KUZPTluyvrDbwHFlKEO125B37bxOvE1O73UYQlL+qdL99d2VIGOBtBCTCNhcswyd2WfrzbX77rbBIa/4yebKl1EpC0dXuOwyTDL99dmbjqALT0d/pako9U4sL2yzXDXoPvhX7aez7kjx0lWfzyXRPEHe5lJnEO03nd//LdlYEywNkJSoBpLFwO0s63mUyT0PRn8yQYudWxj/5xijdETZcA0Jbf6bbask540n2xnuROR67b/pfvriy6fTv7Z+Bikn+oxJkdpggX9UNwDoIS4KILllHaOwZrmoQmPpMn4UibJ0fO1EwnGXjzEIAW/G631dZ0HKWYItlq2f3R1i2Qn+TDL991KHWH/yw0UXd2y6bs4fwEJcBFFioLSQ7Szi9jTZPQpGdxMckwRTjiS5RTR0n6Td5WA4DO/44fxd7809DaFyg6+Kb9v1jbdfrPxHG6Ny1/Xs70gRckKAFe2C//uNXmxu32vXcHY1eZGj9/CymCkbXYr/dZjpL077070FAD0LTf81tJrqnGhX14793BqOX3S5fetD9Msnjv3YEthbr7Z+NE//NUm/feHQyVAV6MoAR40QVKL8k/27r4vvfuoOcqU9Nnr59iesSbVGcnLAGgab/rt9LtLTSn9ft/cO/dwaQj980k3QnWPr737mDNLd7ZPyMXkuzFJP2P7dx7d9BXBnhxP1MC4MVcGiWX0tKfketLvZqB+wu//OP9tV/+8f5Bcmk7uXSrxc/fLH4uJ5cmvyy2pgCAOv/OH5W/6y/7/X2hn/vJpV5XQpKyPxsml446cn3v/PKP9/v+xOimYpro0qBD9/tZfvaLmgAX+k1qogR4gQaun2S7pR/v8J6zSajXszaM6ZFpOUrSu/fuiq0aAKjb73xbbU3Pb+91dH/+X/7x/jDJXes6OnK/L6bYhqvr03f7SfqeBbi4nysBcG7Hx6MWf7qRC8xcF/z/54ezR0YxTj5tl8tmymQJAHX63d+Prbam4TDJ4N573d1q8967K+Nf/p+tQZKVjqzrxuW6mW7e73uP/PnZ1b6pCEnec2YPTIOJEuC8jdwgyVdtba7uvedsEub2bPVSHMw+jC9KZu3De++1+1BXABrz+3+U5AOVuLDNJGu+LPzhpZuDDq0nb997bzD2CHT+np+kewe8b957z8HtME2CEuC8i5CDtPdtDYts5vFM9VMEJCuqUal/6fIbpwDM/fe/rbam4yhFQGIN/9P15XaH7oHFe+8NDlz5zv+ZOu5QT+XFL5gBh7kD51l8rKW9IcmhBouKn6dhGTxuR0gyD553AOa1BuineONfSHIxJ1vO+J3+I/feG0ySfNyRj3vZuo577w0e3ntvMEjyYcs/6lGSd4QkMBsmSoCzNnRtH+E2TUJVz9Fa+WN7Lc89AN1bC4xiq61p+Pjee4M1ZXjuunOS7mxH5A17Tu79forwrG0vee4kGZqegtkRlABnXWysJ7nT0o+3f++9gcOdmeXz00txOPst1agV5xIBUNVawFZb03GU4ovCLaU40323mOQfHfrItlbl0T9zR2nHdxhHSUb33husu7IwW4IS4CyLjF6Sf7b4Iy6X4+kw7Wenn+JwdgFJfZkqAaCK9cBWTJNelLepX+z+G6U7U0wn27E9dOV55M/f9TR3sup+inOY/LkHFRCUAGdZXGylvWco7Nx7b9B3lZnBgnwUb402gakSAGa5JhjFVlvTYFuli92Hkw6tS23LxpOegWHZnzVlO66dFFMkE1cPqiMoAZ63oOinOGy6rUyT0OUFOP4cAGA2awJbbU3HUZKB39MXvh97SfbSnakmazua2q8JSGCOBCXAsxcS/99Xe2nvAYA79/7XO31XmSk8J3VfcPNsm/f+1ztDZQDg/2fvzpfjqs69Af+cyv/WdwXWuQKUK3ATMk+WGTwwxG0gcYCA2yFzUkW76mQ6OedYCgk5ZHIrE7bBWIYMzLSuAOkKIt2BdQX6/tit2AzGGrpbu/d6nqouJ4Qk7Hft3r3Wftf7riHNC1rRamsYriZpP3fksDZKw5uvni/kcteTTD935PC145euTCeZvsXfv+w+K+77MJuqRfKhmtyvi0nmnjty2Bk7sIckSoAPmzx0kpxr8CXe/tyRw30jzQ6/H1NJZiNB0ojF9HNHDk8JAwBDmB90o9XWMJx57shhBxcP//5sckvlYVhJci1JP1UFTl8CpfHfienBmq6d8W8QvZoqQbLoPoN6kCgBbjZhmEqymubuhLODnN18NzqDj52izXH4uSOHF4UBgF3MD7Ta2r21JLN2VVvj1eyeXEyVNDFXbPb3YzpJ64bPsDfDraRKwvUjCQe1JFEC3GySMJfkdIMv8T+eO3J41UizzYWlBElzzT935LCDPwHYyRyhFa22hmEhScfLw7Hcr2+LxI5stkjq6UxQxHdlOlXbtlaSqSQzg//o4C3ukc1Ebz9VhdKy+wUmg0QJcLMJwb+avAhTGdwS/AAAIABJREFUTcI2vg8SJGVYee7I4RlhAGCb84RutNrarfVUCZKeUIztvm36prhxWEvVglfbJICGkCgB3ufYpSv9NLdtwHqS6Qsms9z6eyBBUp7/59kAwDbmCVpt7d5KkvYFrbb24v7tZ/xnMjR1fTmXZM48EmCyfUQIgPdMmmcbvuAzgeWWC8dj1e7Q1VQ7RCVJyqGiBICtzBVag3mCJMnuzCdpSZKM32A91BaJodg/WDOsHrt0RRtXgAkmUQK811yDr2294dfHLkiQEIkSAG49X+imOt/BPGF3c/LDF44c7tjAtHcGCaqzIjE0+5OcO3bpyuogmQrAhNF6C3jvwq/JPZbPXDhyWKKE9973Wmyx6eyFI4e7wgDATeYLWm3t3kqS2QtHDq8KRW3u7eVowTUK80m6koEAk0NFCbA5QZ5O9aK4qdYkSfiA+74dFSRc1xICAD5gvtCKVlvDMH/hyOEZSZLamU1V5cNwnU6yfOzSFRXLABNCogSobGQuG9mfjaShn65BZtOxi1faxy5eWc1Gzjf8vvfZ7gcA3j1n6GYjb5sv7Oqzno3cfuHIYec31NCFI4dXs5Gu+3QknwPZyDvHLjq7BGASaL0F5NjFK61UvZabaunC0cMtI82xi1faSbpJDogGnhUAfMicQautIf22Jpm9cFT7oQm45xeTHBKJkVlI0vFdAKivjwoBkKTX8OvrGuLiF36twX0uQcKHmRICAI5dvDKTKkli3rA7Zy8cdfbXBGmnajGnHe1onEgyc+zilZZkCUA9ab0FFoLdhi8Cr144erhvpIu9v1vHLl7pp6qY8rKDW3GQKYC5QyfJO+YNu7Ke5HZJkskyeHnfFomRzzX7g4o1AGpG6y0oeyE4lebvGvqPC0cdGFngvT2TZC7aZbD9lwT7RAGg2HlxL1oP7dbVJG075if6uzCX6iByRmclicoSgJrReguKtjGXZidJ5i8cvXPVOJe0sHtxOlWrtROiwQ4XrQCUN3/Qams4zlw4euecMEz8GrGbZNb3YaQGlSUvti4cvVOyBKAmtN6CcheErTT7ZfJ6nE1S0v08dezii3NJ/hVJEnbOQhWgvDlEO1pt7dZako9JkjTD4MX9rEiM3GayRBsugJpQUQLl6jX8+ubszmm+wcKiM/g4eBIA2M4cYi42WOzWoNWWeXeTXDh65/Kxiy+eTfKUaIzUbYPnUFsoAPaeihIoc2HYTbN3za1dOHpn10g3/j5uJ1keLOAkSQCArc4hZpL0I0myW2cuHL1zVpKkmQbrKW1JR+/EYH0OwB5TUQKlLQwvXJ5Otfu+yTpGutH3cCtVRZQWGQxbXwgAGj+PaKfawW2Txc6tJGlfOHbXslA03MbGbKqNSb4vo/XUsQuX+xeO3WUuCrCHVJRAeZq+MFy6cOyuRcPcPMcuXG4du3C5n+TtSJIAANufS/SSnI+XvruxkKQlSVKGC8fuWo1zH8dl8diFy84rAdhDKkqgrMVhK8mhhl+miXzz7tvpwbhqj8Go9YUAoLFzicVU5wGwM+tJOheO3dUTirJcOHbXXCHryL22P1XV/KxQAOwNiRIoyr6mL2wWLhy7s2+cm+HYhc2D2vc5RJJx0WMdoHnzidnBHFgVyc4NWm3dqYqk3HVkO8mq79HIHTp24cXZC8fu1CEBYA9ovQXlLBK7aXa7ovWoJmnS/doZLMYkSRgbL4AAGjefmEtyJV7u7sag1ZbfyMLnSNeStEViLOYGG8YAGDMVJVDEIvHydJr/wnlu0EOXyb5XZ1Odo+MMEsZtSQgAGjOfmErVTlGrrZ3Taot3uXDszsVjFy7PJzktGiN1IEknNgECjJ2KEihD0xc4axeO3WUiOcGOXbg8Mzio/UokSdgbdsoCNGNO0UpVlSpJsnMrSWYkSfgA3SRrwjByHQe7A4yfihJo/mJxNsnBpk8kjfTE3p/TcVA79SBRAjD584putO3crfkLx+4yt+YDXTh217VjFy63k7wtGiO1P1WVfVsoAMZn38bGhihAcxeLU2n+oXtLF47d1TLaE3lvdgYffcOpg49dOHaXZAnA5M4rekkOicaOrSdpXzh2l0Ok2cp3rhtJyXH4fxeO3XVNGADGQ+staLZumv8S2o63yVtYtVPt3n8qkiSTaD3J1SQnk8w35ZokSQAmdl4xM5hXSJLs3GarLUkStmTQ9nhFJKx1AZpE6y1oqKPPXW6l+QftLVw87uXmhN2T3TS/FVwTrSdZTLJ48fj1lyhHn7vclO9f3xADTOTcop3kvEjsyvzF41ptsX0bG2kP5lA2Po2OQ90BxkiiBJprruHXtx47bCbC0ecuTw3uR+eQTN537H3JkRvGdSbNOSi3b7gBzC0K/J1vf9BvPGzFxeN3LR997nI3yTnRGJn9R5+73L54/K6eUACMnkQJNHPx2E1zXmDeTPficf1aJ+RedA7JZLmaKjlyqwVZu0HX3DfsABMzt5hJdR7JbaKxYytJZi8ev2tVKNiNi8fvmjv63OXZqBgfpdnBMw+AEZMogeYtHqfT/EqLlYvH75oz2rW+D1uDCf0B0ZiM79RgvHrbSEDONuTa17TwA5iY+cXmC0MbMHZOqy2Gzea10Tp09LnLUzYJAoyeRAk0zkYJi0eLu5o6+twL06laYThQtf42W2vNXTx+9/I2x7mV5iTB+m4FgImYY8yl+efvjfp3v33x+N1abTHM7+WUef9YqCoBGAOJEmjWRLWEsuerF4/f3Tfatbz/utFmaxIsJeldPH73bhZb7QbFw/MEoN7zi6lUiX2tfXZu0Grr7lWhYMhaQjAWEiUAYyBRAs1aRDZ98uQA93ree61UVSR6hdf7u7Oj6pGbPGtmGxQbO2sB6j3HWIxNGLsxf/H43ebPjMqsEIxFSwgARk+iBJqjW8Aics5OuPoYvDCfS3JCNGprbfBsWLx4/O5h9TWebdCzZmWIcQFguPOMTpJzIrFj66mqSPpCwQi1hGAs9h997oWZ3W54AuDDSZRAMxaSrTS/Z/PaxeN3d412be65dqokiR2e9XQ1VWKxP4L/7XaD4tRzqwDUbo6xWSXt3IOdW0qVJLEZgFF/Vw+IxNi0kkiUAIyQRAk0wUYRL/vaBroGC6K/vjCTKkGiT3j9bLbX6l68dzSVV0f/+sJ0w8Ze2y2A+s0zetHOczfOXrzX5iLGsgadEYSxEm+AEZMogclfUHbT/J08Vy/eq23AHt9nU6nOh3lKNGpnLVXyqnfx3pHvHG1Sj/O1USWUANjRXKMd1aq7UbXaMmdmfFpCMFYSJQAjJlECk72gnEnzX1w7wH3v77NWqt2dSuvrZSXJ3MV77+6N8f+z3aD4qSYBqM9cYy7NbyM7SlWrrXu12mKsvLgfL5V2ACMmUQKTba6Ea7Tre28Mqkh60SO8bpZStdfqj/l+aNIh7onzSQDqMtfoxwvA3dBqi70yJQRjf2ZOWxsDjI5ECUzuJKmT5p8TsWbht2f3VzvaX9TNQkZ4/sgWtBv2bHEYJsDezjVaqar7zDV2Rqst9pqKkvGbTrIqDACjIVECk7mwnE7SLeBS20Z7T+6tXhzWXid7nSDZvC+aVFmk7RbA3s43OknOicSOrSRpabXFHpPkBKBRJEpgMvUKmJg6wH3Mjv71hW4c1l4X66kqeuZq8hKk3cBnKADjn2tMDX7fTojGjs1fvPdu5/dBmWZStSsEYAQkSmDyFpizaf5ufwe4j/eeaqV6aaE/eD3u/TolSDa1GxRjbbcA9ma+MZMqUW2+sfM5QvvivXeriqQu32fGz7kwACMkUQKTNSHdPFy76RzgPr77qZvktGjUwvoN3+/O0b++UJd/rukkBxoUZy+YAMY/55hNGRXRo7KS6jwS82Pqwgt7ABpHogQmyMbGRgkLzJVL993TNdqjdeQvz7dSvbA4IBq1sT+SVuPQEwKAsc45utHaczfmL913j0pr6rYuFQQAGkeiBCZnkTmbZh2mfDMWgqO9jzarkg6JBgVau3TfPdpuAYxvzrGY5reMHZX1JO1L992jEhIAYAwkSmByFpq9Ai514dJ99/SN+MjuI20vKN2cEACMZc4xkypJonJ1Z1aSzF66755VoaCmrgkBAE0jUQKToZvmv9x2gPuIHPnL89OpXhCrIqF0duUCjH7e0R7MO2zM2Bmttqi9S/fds3zkL88LxPhJUAGMkEQJ1H+x2UoZ5xZ0L913j4nf8O+fTspItMGtLNmZCzDyecdcnLe1U1ptAbeihSzACEmUQL0Xm6W03Fq6dN89WuIM996ZHtw7+oJDpScEACOds/aT3CYaO6LVFgDAHpMogXrrpozeztoLDNGRvzzfHcRUFQlcZ4cuwGjmHTOpkiTmHTuj1RaTaik2ZY3bqhAAjI5ECdR30dlKGa0Lzl667x4lxMO5Z2ZS7Zq3mxPebUFrP4CRzD3aSc6LxI6sJ+lcuu+enlAwocytxkzVGcBofUQIoJaLzlJabq2lOuyT3d8z3STvRJIEPkhPCACGPvfoRZJkp1aStCRJmHA2u43/uQHACKkogXrqpoyWW227vHdHFQnc0tql++7pCwPA0OYeziPZnYVUlSTmwEw6iRLxBmgUiRKo2+Lzz8W03Lp66X4vL3d5r3STPCUS8KF6QgAwtLmH80h2rmq1db8qEhpiw4v7MRNvgBHTegvqtfgspeXWepK2Ed/xfdI68ufnVyNJAlvREwKAocw/2qnafEqSbF/VakuShAa5dP89q6laKTMefSEAGC0VJVAv3ZTRcqt76X7tBrZrkEjrpoyKIxiGpcEiHoDdzUF6SU6IxI5UrbbMfWmmvmfDWKxfuv8eFSUAIyZRAvVZgLZSxgvwpUv33+MA953dH72UkUiDYekJAcCu5h/OI9mdM+a9NFw/EiXjijMAIyZRArVYhF4qpeVWknSM+LbvjW5UkcB2rV+6/0hPGAB2PAdxHsnOrSWZvXT/ETvAabiNxSTnxWHkFoUAYPScUQL10E0ZlQJnLRi37sifL7VSHdonSQLb1xMCgB3PQdpxHslOXU0yY85LCS7df+RaqjN4GC2JEoAxUFECe78QbaWMF+Frl+4/0jXiW7onVJHA7ml1ArCzeUgvWuns1JlL9x/x+0OJcy5VJaNzdZCQAmDEJEpgbxeiJbXcahvxLd0TrTiLBHZr6dL9R1aFAWDb89J+nEeyE+upWm31hYICab81+vgCMAZab8He6qaMF+LzFo4f7sifL00d+fOluSRvR5IEdqsnBADbmofMpGr3KUmyfUtJps11KdWg2mFBJEbCmXsAY6SiBPbIPX8qpuXWeqqEEB9+L/QiQQJDeeY8/4AFJcA25iHtVK1znEeyfWeff0BrWdjYyFy07BsFrfwAxkhFCezNgrSollvPP6Cn6s3ug3v+pIoEhqwnBABbnotsni0gSbI960kOS5JA5fkHjiynqq5iuCRKAMZIRQnsjW7KeDF+9fkHjuip+gFUkYAFJcAezkM2N+0cEo1tW0ky+/wDzsKCD1jjvi0MQ7NgwyHAeEmUwPgXprMpp+VWx4i/b/ynBouI06IBQ3fViyuAW85FZlIlSZxHsn3zzz9wxPwWPsDzDxzp3/OnS0tJDoqGtTTAJNJ6C8a7MC2p5VbXC8v3jX8r1UGpkiQwGj0hALjlXKQfSZLtWk9yUpIEbr0GFIKhmFNNAjB+EiUwXr2U0QN66fkHjmh/M+AsEhiLNa3+AD50PtIZzEWcR7I9K0lazz9wpCcU8OGef+BIP8mCSOxuThutZAH2hEQJjG9xOpty+kC3jfi/x70VVSQwDhaUADefj/SSnBOJbVtIlSRZFgrYsk6qKix2GD/VJAB7Y9/GxoYowOgXp1NJVlPGDr6zzz9wpGvMnUUCY/b/LCoBPnA+0o9WWztxRoU07PjZM5vkikhs29XnHzgyKwwAe0NFCYzHYspIkqxIkqgigT2wIEkC8L75yMxgPiJJsj1rST4mSQI7N2iHelUktmU9OjMA7KmPCgGM1t1/vNhJcrCQy20XPtaqSGBveJkF8O45SXvwbHQeyfYsJZl94ctHJd9hlzY2NtqpkrXOaNwazx6APab1Fox2kTo9mBwW0XLrhS8f7RY81q0kPQsBGLulF758tCUMAP+ek3STPCUS5rJQg+fRTJJ3RMLzB2ASqCiB0Sqm5VapEztVJLDnekIA8O85yVySE6KxLeupdnL3hQKG64UvH12++48XTyY5Lxo3tSBJAlAPziiB0S1WuymnJ3Sn0DFuxVkksJfWXvjy0Z4wAOadFzcPbZck2Z6VJDOSJDA6g7naWZG46TOoIwwA9aCiBEazWJ1JOS0P5ktbXKoigdroCQFg3nlxJlWSxHkk27PwwpePtoUBRu+FLx/tDtpSS+Zet5Kk5VwSgPqQKIFhL1YXLkylnJd3a6kSBiWNbyvOIoG6cIg7UPq8c3YwL5Ek2br1JJ0XThzrCQWMzwtfPtq+e+FCIlmSbCZJThyTJAGoEa23YPi6KaflVrukyd3dCxe6Sd6OJAnUwYLFJVCyuxcudJJciSTJdqylejnZEwoYvxdOHGsnWSg8DJIkADW1b2NjQxRgeAvWVqoX6SWYf+HEsU4h4zqTarfmbe5yqI2PvXDi2LIwAIXOOXuxK3u7rqawTT5Q42fYXMpsYyxJAlBjEiUwvMneVJLVlLGrby3JTAkTvEEVyVPucKiVpRdOHGsJA1DofLMfmze26+wLJ451hQFq9TxrJzlf0CUvpGr7J0kCUFPOKIHh6aWc1geN342nigRqzdkkQHHMTXZkPcnsCyeO9YUC6uWFE8d6dy9cWE6V/G36OvrMCyeOmb8C1JwzSmA4C9dOkkOFXO580xebgyqSd+JFBNTR2gsnji0KA1DYXHMmKkm2ayVVBXRfKKCeBm1Up5MsNXXemqpdrCQJwARQUQK7X7hOpzrAvQRrTb5WOzVhInSFAChsrtlOWe1phmFhcGg0UHODTgWtwebDbppTXTKfpKvVFsDkUFECu7cYLbcm3mBi3o8kCdTZ+uCZC1CEQZWrJMn2fidOSpLA5BlUXcwkuTrhl7KW5PYXThxzHgnAhHGYO+x+8VrKQd/zL5w41mngGE6nqiI56I6G2nMYL1DSPLOX5IRIbNlaqvNIloUCJv7510p1Jt0kbWJbT1VBos0WwITSegt2N3krJUnSyJZbDSzvhqbrCQFQwBxzKqpct+tqGlz5DKUZnC00M2g92E1yoMb/uOupkjpznkEAk01FCezAXb3nppIs13zCNky3X24f7zdo/KajigQmzcLl9vG2MAANn2NOp2oxKEmydWcvt493hQEa/WxsJekkOVSjf6zNzYSLl9vHJUgAGkBFCexML+UkSeYbliRpp9rxo4oEJos2BkCj3dV7biZVJYk5ytasJ2lfbh93dhU03GA92h8kk9uDz16sxzfPy+s1aY0MQEVFCWx/EdtOOYdqriWZacIOmUEVUC/12oUEbM3S5fbxljAADZ5fzg7mKZIkW7OSZPZy+/iqUECxz82ZJK0ksxltp4C1VMmRvsQsQLNJlMD2JmPTqVpulbKIbUTLLS8fwLMIoMbzlHbK2YQzDAtJOlrdAO95lrZSJU6mB5+dJE9WklxLVd23nCo54lkDUAiJEtje5Gs55fSMnr/cPt6Z8PFSRQKTb+1y+/i0MAANnVt2kzwlElt25nL7uFaMwHaeszNJpm7xty1LiADgjBLY3kK2lCTJSqqD6SZ5vFqpSqRVkQyfnuD1vOfbaeaO5K7RBRr63O4lOSESW557zKouBLbrcvv4sigAsBUSJbC1hWwrZe32a0/qjppBFUk3yWl37kjMJ+nacVVL3QZe09rl9vGeoQUaNq9U8bo9K0la5h4AAIySRAlsbTFb0s75s5O662aQ0OolOeDOHbq1VAm0vlDU8t6fbeh93zO6QAPnlf2UU6W8WwuX28fbwgAAwKhJlMCt9VJO+6aVy+3j3Un7h1ZFMnKqSOqv08BrWk+iDz3QGHf1nptOtflGkmRrTqoqBABgXCRK4MMWtOf/2klZbRHaEzhGM6mSWV46DF9VRXLy3r5Q1Po70EpysIGXNnf55L2Sc0BTntUzqSpJnJ12a+tJWpdP3utcAQAAxuYjQgAfuqA9V9Aln5m0Beld5//aTfJOJElGYT7JjCTJROg29Lp6hhZo0JyyH0mSrVhJMi1JAgDAuKkogQ9e0G4eslmKpcsn752boPFRRTI6qkgm61nVSjOrSRYun7x31QgDDXlOL0aSZKvP/rYwAACwF1SUwAebSzkv4dczQS23Bu3QVJGMxtmoIpk0XdcFUNs5SzvJ25Ek2YqTkiQAAOwlFSXwHnf+4a+zSU4UdMndFx+s/87tO//w1+lUVSQH3aVDt5Kk/eKD2lxM2LOq1dDvw9VJeCYB3OIZ3U5yXiRuaT1JyxwEAIC9JlEC717UTqeslltXX3yw/i237vzDXzupdpjbkTl8Z1988N6uMEykpo7bnKEFJnw+2Y4kyVaspEqSXBMKAAD2mkQJvFtJPaRr33Lrzj/8dWowJqpIhk8VyQS78w9/nWno92LpxQe1fgMm+vncSXJOJG5p4cUHtdoCAKA+JErg+sK2pHNJkuol+bUaj8dsquoeVSTDp4pk8nUael3uS2CS55K9lNW+dadOvvjgvT1hAACgTvZtbGyIAha21Uv5KwVdcm138Q2qSHpJDrkzh04VSTOeV9NJ/tXAS1t78cF7p40wMKHP5l4kSW7FeSQAANSWihIsbK+/mC/FWmq6G31wOHVJ7c/GSRVJc3RdF0Ct5i+9SJLcivNIAACoNYkSKO/FfO1abg2SVd0kp92OQ6eKpEEG1SRNfBm3pg0LMKHP5V4kSW7FeSQAANSeRAmlL267Keug8LN1Oyh5UEXSS3LAHTmS8e4KQ6N0XRdAbeYwvUiS3MqZFx+8d04YAACoO2eUUPLitpXk7YIueeXFB++dqdkYzEUVyUjGOqpImvjMmk4zzyZZf/HBe6eMMDBhz+ReJEk+9NmeZLZuG3QAAOBmVJRQ6uJ2KlXLrZIWq+0axX8mVRXJbe7GkbiWZO7OP/xVJJpluqHXZacxMGnzyF4kST7MSqokyapQAAAwKSRKKNPGRmnnknRffOi+WlQX3Pn7v3STPOUmHKmDQsCEWI9ECTBB7vz9X3qRJPkwV5O0X3zoPoe2AwAwUSRKKHGB201ZL5KXXnzovrkaxH06VRWJl/jApjkv04AJmkO2I0nyYc6++NB9XWEAAGASfUQIKGyB20pZ1QzrSWZrEPdOkuVIkgDvfj6pJgEmZQ7ZTnJeJG76PD8pSQIAwCRTUUJJC9zSziVJ9rj1wQ0xlyAB3ks1CTApc8h2JEluZj1Jqy4tXgEAYKdUlFCS0s4lmX/xofv2LDF05+//MptkNZIkwAfrCQFQd3f+/i8zUf12MytJpiVJAABoAhUlFOHw7//cTVkv7FeSdPco1lOpXoAecucBN7Fw5aH7V4UBqPn8cSZJP2VttNnyczxJ58pD96sMBACgESRKKGGR20pZ55IkSXsvFq6DWJdWuQNsX1cIgJrPHzc3fpjTvN/ZKw/d7zkOAECjSJTQ8EXuX6aSfaWdS3LmyphbIFRxTjfZd9pdB9zCwpWH7lsVBqDe9i0muU0c3mU9SefKQ/f1hAIAgKaRKKHp+ilrJ+DSlYfuG2sf7cNV7+7FJAfcbsAWdIUAqLPDv//LXJyx9l7rSVpXnEcCAEBDSZTQ3EXu7/48l7J2Aq4nmR1zjLspr60ZsHMLVx52NglQ6/njbBIVsu+2kqR15WHnkQAA0FwSJVjkNkd7XAvYw7/780yqvt1aUgDb0RUCoMbzx+nB/IbrqkPbJUkAAGg4iRIscpth/srD9y+OKb6dVC87HW4KbMdV1SRAzfXMb943v+wIAwAAJZAooVEO/+7PU6nOyyhpkbuSMezSviEBpWc3sBNzQgDUeA7ZNsd5l5NXHr6/JwwAAJRCooSmKfFckpG33Bq0MuvFLktgZ5auPHx/XxiAOhpstJHMvT63bF15+H6HtgMAUBSJEhpjttoJeKKwy+4ujnAhO1u9OOglOeQOA3bzrBICoK42kk5sBkmStSSzi5IkAAAUaN/GxoYoMPFmq8PF+4Utcq8uPnz/7Ahj2kp5bcyA4VtafPj+ljAANZ1DTiVZNd/JSpLWokPbAQAolIoSmrLALe2F/lqS9gjj2U1y2t0FDEFXCIAaU02SLCTpSJIAAFAyiRKaoJfkQGHX3B7FYnZQmbNYYDyB0VhadDYJUFODzSGdwsOwsPjw/W13AwAApfuIEDDhC9xOyjs/4+woXjzO/u7P3STvRJIEGJ6uEAA11k7Z1SQnJUkAAKCiooSJNfvbP7WSnCvsspcWv/JAd8hxnElVlXObuwoY8vOqLwxAbW1slFpNsp6ks/iVB3puAgAAqEiUMJFmf/unzXNJSlvUtoccx06qHd8ObAeGrSsEQI3nkjMps4p2PUlr8SsPLLsLAADgOokSJlU/5b3cby9+5YHVIb0cmE5VRXLQrQSMgGoSoPbzqgKvWZIEAABuwhklTJzZ3/6pl/LaRM0vfuWBxSHFbzbJciRJgNHpCgFQ9yllYde7kmRakgQAAD7Yvo2NDVFgcla0v/lTO8n50ha2i199YGYIsZtKVUVyyJ0EjNDS4lcfaAkDUOP55HSSf5U0l0zSWvzqA9eMPgAAfDAVJUzSonYmyVxhlz2Uc0lmf/OnVpLVSJIAo9cVAqDmWgVd61IkSQAA4JacUcJEGFRDLKa8c0k6i1/deYuEQdy6SU67i4AxWFr8qrNJgNqbKeQ6Fxa/+kDbcAMAwK1JlDApFpMcKOyaFxa/+kBvp//lQQVOL+Wd5wLsna4QABOghESJJAkAAGyD1lvU3uxv/tRNeQePryTp7DJm70SSBBgf1STApGh6okSSBAAAtklFCbV26Dd/mk3yVGGXvZ6kfXUHvaQPVYeTLkaCBBhKvLoZAAAgAElEQVS/rhAAk2Cj2a1cF65KkgAAwLapKKG2Dl1vHVWaztUdnEty6Dd/6iRZjiQJMH5LV1WTAJMxv2w1+PIkSQAAYIdUlFDXRexUqiRJaYe3L1zd5rkkh64fdH/QnQPska4QAOz5HLItDAAAsDMqSqirXsqrjNj2uSSD1mSrkSQB9o5qEoC9JUkCAAC7pKKE2jn07B+7SQ4VdtnVuSSnvnxtizGaSjKX5IQ7BthjXSEAJsbGRtOuaOHqqS+3DSwAAOyORAm1cujZP5Z4eHuSdK6e+vLyFmPUSlVxc8AdA+yxpaunvtwXBoA9IUkCAABDovUWtXHo2T+Wenj7wtVTX+5tMUbdJG9HkgSoh64QAOyJFUkSAAAYHhUl1MKglVQv5R3evqVzSW5IIt3mbgFqQjUJwN7NH1vCAAAAw6OihLropbwkwJbOJTn07B87Sd6JJAlQL10hANgT17Z6rh0AALA1KkrYc4eeXeimvMPbk6Rz9dSJ5Q+Jy3SqBNJBdwlQM0tXT53oCwMweRpxmLu5IQAADJmKEvbUoWcXSj28feHqqRO9W8Rl2UIYqKmuEAATarVBc2gAAGBIJErYywVeqYe33/RckkPPLkwdenZhMcmVlHdeCzAZVJMAE+vqqROrDbkUiRIAABgirbfYE9Xh7ft6KS8ZsJ5k9oP6Sh969o+tQUwOuEOAGusKATDZ9q03YA4qUQIAAEOkooS9spgyDydvXz315dX3/sVDz/5xLsnbkSQB6m3p6qkv94UBmHDLDbiG/Yee/WPbUAIAwHCoKGHsvvR/C3Mp8+yN+Ze+dmLxPbHYbD92mzsDmABdIQAm3cbGRlPOgWunzDa2AAAwdCpKGKsv/d9CO8npAi995aWvnei8JxbdJO9EkgSYDEsvfc3ZJEAjrDbkOg4ONt0AAAC7pKKEsRks5OYKvPT1JK0b4jCdavffQXcFMEG6QgA0xHKDrqWTqrIEAADYhX0bGxuiwMh96f8WplLt3ttf4OXfvrkLe1BRM1doHIDJtfTS1060hAFo0Ny0SYug/3jpaydWjSoAAOycihLGpZ8ykwNnX/raif4gUdRLcsitAEygjhAADbOU5lT3djynAQBgdyRKGLkv/XqhlzLP4bj60iMnul/69UIryWJUkQzTWprTX5xmmGrwc27hpUdOLBtioFE20k9zEiXtL/16ofvSIyeuGVgAANgZiRJG6ku/XugkOVHgpa8l6Xzp1wtzKfPw+lGaT+JlAHV71vXS3ERJ1wgDDdRP8lRDrmV/qooSz2sAANghZ5QwMl/69cJskisFXvp6rrdAuM2dMNS4tl965MSiUFCzZ910kn819PIWXnrkRNsoAw19fjdpIbSeZNpGEgAA2JmPCAEjWnjOpDqTo0TXkpyPJMkwXR0s/iVJqKMmP+u6hhdo+PyiKfZ7ZgMAwM5JlDB0X/r1vw8uL/VMjgPugqFZT3LypUdOzNohSU2fd600p8f9ey289MiJVaMMNFjTNmCcHlQ5AgAA2+SMEkZgYzGqKdi9pSTtlx5prwoFNX7edRt8cV3jCzT8Gd5v6LO7bWwBAGB7nFHCUH3p171eyjy8neE689Ij7TlhoObPu1aStxt6eQsvPdJuG2WggGf5cpq3wedjLz3SXja6AACwdVpvMcyFZjuSJOzOymBxL0nCJGjqfboe1SRAOXp+nwAAAIkShmKws/q8SLALZ196pD1jByQT8sxrp7ktBue0vAMKstjAazo4mJsDAABb5IwSdu2Lz/RmGrrIZDzWkrRffrTdFwomxcZGYysu1mMnMlCQlx5pr37xmd7VJIcadmm9JNNGGAAAtkZFCbvyxWd6U4OF2H7RYAfmk8xIkjBhz712kgMNvby5lx9tXzPKQGGauOHnwBef6XUMLQAAbI3D3NmVLz7T6yc5KBJs03qqKhKVSEzaM28qyWqamRxeTzItUQIU+ny/1sBnu+c6AABskYoSdrOg7EWShO27Oli0S5IwiTppbgWdahKgZL0GXtP+aKcIAABbIlHCjgxK+U+IBNuwnuTky4+2Z72MZUKfe1OpEiVN/X56mQaUrKnPwBNffMbB7gAAcCsSJWzbF585P5tsnEs24uOzxc9SsjHz8qPtnm8Qk2ujk2zsb+h3tCOBCZTs5Ufbq4P5ShOf8RLhAABwCxIlbMsXnzk/k2a2JmB0zr786MnWy4+eXBUKJvjZN53kqYZe3trLj570XAdo7hz3ti8+c97B7gAA8CEkStiyLz5zfipJP83tz89wrST52MuPnuwKBQ3QdW0AzTZIGq819Vk/mMsDAAAf4KNCwFZIkrBN8y8/etLORZry/JtOc89kUk0C8G5zSc418Lr2p6qYmTXEAADwfipK2JqNzGUjtzlqw+cWn7Vs5HZJEhr2/Os1+DvbNcAA73vmrzf0mX/oi7863zLIAADwfhIl3NIXf3V+Ls3dTc3wLCSZefmxk32hoEHPv1aSgw29vJWXH1NNAnCjlx87eS1VVUlTee4DAMAH2LexsSEK3NQXf3W+neS8SHAL80kWhYEG6qa5iZLbJTYBPnD+O53kXw2+xLMvP+YMOQAAuJFECR+2SGwleVskABpn6eXHTraEAeCm8+Beml1R/bGXHzu5bKQBAKCi9RY3WxzORIUAQFN1hQCg6OfknCEGAIDrVJTwPl/45R+mkiwnOSAaAI2z9LevP9gSBoBbzol7aXZVyZm/ff1BCRMAAIiKEt6/IJxK0o8kCUBTdYQAYEu6Tb++L/zyD9OGGQAAJEp4n31zyb7bkn3x8fHx8WncZ+FvX39QT3qALfjb1x9cTfYtNPg3YX+yr2ekAQBAooQbfOGX5+fS7PYCAKXrCgGA5+YNDn7hl+fbhhkAgNJJlJAkGSyQTosEQGMt/O3rJ1eFAWDrBs/NhYZf5twXfnl+ymgDAFCyjwoBX/jlH2aTnBcJgMZaj2oSgB3a6CSZTbK/oRe4P0lvcI0AAFAkFSWF+8Iv/zAzWBgB0FxzVa99ALbrb19/8FqSuYZf5qHB5ikAACiSREnBvvDLP0wn6ae5u+MAqKpJ5oQBYFfmBs/TJut94Zd/0IILAIAiSZQUarAIWowkCUDTzQ12QwOwQ4PnaLfhl7nZggsAAIqzb2NjQxQK9IWnf7+c5DaRAGi09STTf3v8IYkSgOHMoVeTHGj4ZR7+2+MPLRptAABKoqKkzAVeL5IkACXoSJIADPe5WsA19r7w9O+14AIAoCgSJYX5wtO/n0tyQiQAGm/tb48/1BMGgOEZVFosNfwyteACAKA4EiUF+cLTv28nOS0SAEXoCgGA5+sOHRqsHQAAoAjOKCnEF57+/WySKyIBUISVvz3+0IwwAIxsbt1L86u015PM/O3xh1aNOAAATfdRIWi+zz/9+5konwcoSUcIAEZno3rOzqZqU9VUmy24WkYcAICm03qr4QZJkn7DF3EAXLf098cf6gsDwOj8/fGHriWZK+BSD37+6d9LvgMA0HgSJQ32+ad/P5VqF5gkCUA5ukIAMHp/f/yhbpK1En5XBpuvAACgsSRKGmqQJOknuU00AIqxoJoEYKzaBVzjZgsuAABoLImS5upFkgSgNF0hABifQXL6agGXetvnn/693xgAABpr38bGhig0zOd/8btekhMiAVCUhb8/8XBbGADGPveeTrKcMtrdfuzvTzy8bNQBAGgaFSXNW6h1I0kCUJr1JA7bBdgDf3/i4dWUcbB7kix+/he/mzLqAAA0jURJg3z+F79rJ3lKJACKM/f3Jx6+JgwAe+PvTzzcTRkHux+INo8AADSQRElDDJIk50UCoDjrKWcnM0CdtQu5ztOf/8XvZg03AABNIlHSAJ//xe9m4iUZQKm6qkkA9t7fn3i4n2ShkMvtacEFAECTSJRMuEGSpJ8yDo8E4N3W/v7EwxLlAPXRSVXp13T7k/QMNwAATSFRMsEGu7j6kSQBKFVXCADqY1Dh1ynkcg99/he/6xh1AACaYN/GxoYoTKAbkiS3iQZAkVb+/sTDM8IAUMu5ej/JwQIudT1J6+9PPLxs1AEAmGQqSiZz4SVJAoBdvAD11Y4WXAAAMDFUlEygz83/djHJIZEAKNbSP05/pSUMALWes3eTPFXI5c7/4/RXJPABAJhYKkomb8HViyQJQOm8jAKouX+c/ko3yUohl3v6c/O/bRl1AAAmlUTJBBkkSU6IBEDRFv5x+it6wQNMhnZB17r4ufnfThlyAAAmkUTJhPjc/G87kSQBIOkKAcBkGCS2zxZyuc4rAQBgYkmUTIDPzf+2neScSAAUb/4fp7+yKgwAk6OwFlyHBhu8AABgonxUCOrtc3O/aSc5LxIAxVuPahKAybSx0UnydiFXe+5zc7/p/6PzVW0iAQCYGCpKauxzc7+ZiSQJAJW5f3S+ek0YACbPPzpf7SeZL+iSe5+b+43zSgAAmBgqSmrqc/O/ncm+fX2RACDJWpI5YQCYYPv2dZPMJjlQwNXelqoKUhsuAAAmgoqSGvrc/G9nkvRTHYgIAN1/nP6KahKACTZ4jrcLuuTTn5v/7ayRBwBgEuzb2NgQhRr5bFWivhpJEgAqa//sfHVaGAAaM9+fS3K6kMtdTzLzz85XV408AAB1pqKkXoumqagkAeDd2kIA0CjdVC0VS7A/yaIhBwCg7iRKauKGJMltogHAwNI/qwOAAWiIf3a+WloLrts+O/ebrpEHAKDOJEpqQJIEgJtwCC5AAw2S4GcLuuSnPjv3m5aRBwCgriRK6qEXSRIA3m3hn52vLgsDQDP9s/PVbpKVgi55cbBBDAAAauejQrC3Pnvu2V6SQyIBwHt0hQCg4TY22kneKeRqN88raRl4AADqRkXJHhokSU6IBADvcfafZ06tCgNAs/3zzKnllNWC6+Bnzz2rrSQAALUjUbJHJEkAuIn1JHPCAFCGf5451U1ZLbjOffbcszNGHgCAOpEo2QOfPfdsN5IkAHyw7j/PnLomDABFmU2VKC/F4mfPPeu8EgAAamPfxsaGKIzRZ889205yXiQm0nqSTpJVoYA9M5PkXIOvb+2fZ05NG2aAItcJnYb/xr3X1X+eOTVr5AEAqAOJkjH6jCTJJFtKMvuKXd6w18/RfpKDDb7Ew6+cObVopAH8zhXizCtnTmk3CQDAnpMoGd+ipx1Jkkm0nqRrAQeeo2Ow9MqZUy0jDVD0b91Uqurl/QVd9sdeqQ61BwCAPeOMkvEseNqRJJlEK0lakiRQi+foVJp/wHnXSAOUbVC93C7sshc/47wSAAD2mETJiH3m3LOzkSSZRPOvnDk1Y3cb1EYnzd5du/DKmVN9wwzAoAXjQkGXfCBJz8gDALCXJEpG6DPnnp0x6Z84a0luf+XMqY5QQG2epdNJnmr4ZXaNNAA36AzmpaU49JnqMHsAANgTEiUj8pn/fXYmG+lnI/uzkfhMxOdqNjJjVzfUzEZ6DX/2nH3lzKlVAw3AplfOnLqWjcwWNhc/95n/fXbG6AMAsBckSkZgMMHvp6xDGCfZepKTr3zj1Owr3zh1TTigVs/T2SQHG/78cQ4SAO/zyjdOLSc5W9hlL37mf51XAgDA+EmUDJkkycRZSjLzyjdO9YQCavc8LeIAdwlaAG7mlW+c6iZZKeiSnVcCAMCekCgZIkmSiXP2lW+car3yjVOrQgG11En1wqSp1l75xinVJADcymyqCsRSHPrM/zqvBACA8ZIoGRJJkomykuRjgx16QD2fqdNp/gHubSMNwK0MNvWUljhwXgkAAGO1b2NjQxR26dP/83+SJJNjPkn31Se/ptUN1Pu52k+zzyZZevXJr7WMNADb+G1cTHKooEteSzJj3g4AwDh8VAh2vWCZStVHV5Kk3taTtF998muLQgG1f642/QD3RDUJADv77VhOs9tS3mjzvJJZQw8AwKhpvbULgyRJP8ltolFrV5NMS5LAxDxXm35ux/yrT35t1WgDsB2DyorSkgaHPv0//+e8EgAARk6iZIckSSbCepIzrz75tVkl+zAxmn6A+3qSrmEGYCdeffJry0nOFnbZ5watjgEAYGScUbIDn/6fX0uS1N9KkvarTz6yLBQwMc/W6ST/avhlnnn1yUfmjDYAu/zN7Kf5bSpvNDiv5BGbnwAAGAlnlGx/USJJUn9nX33yka4wwMTpNfz6ViRJABiSdqrzSko5J/FAksUkLUMPAMAoaL21DZIktbeW5HZJEpjI52sJB7jrsQ7AULz65COrqZIlJTn46f/5tXk+AAAjofXWFkmS1N7VVK22lOPDZD5fl9Pss0muvvrkI7NGG4Ah/4bOJTld2GXf/uqTj/SNPgAAw6SiZGsLEEmS+lpPcvjVJx+ZlSSBidVN8w9wV00CwKh+Q1cKu+bFwfoMAACGRqLkFj7937+eykb62cht2Uh8avVZykZmXn3ykUV3KkzsM3YmGznd8GfV3KBFCgAM1atPPnItG2lnI+sFrQH2ZyPm/wAADJVEyYf49H+rJKmxs69+85HWq9/08hEmXNMPN18r4BoB2EOvfvOR5ZRXuXjw0//9a7+vAAAMjTNKbkKSpLZWkrQHC0Jgsp+z7STnG36Zh1/9pqo3AMbyu7qY5FBhl+13FgCAoVBR8sGLDEmSeppP0pIkgcY8Z5u+E3TJyxsAxqidqpKxJL1P//evpw09AAC7paLkPT71389IktTPepL2a9981AvHvfteTCe5cRH63n+fLf5ndbU6+OxWfwf/nWuvffPR5QLvqbkkpxt+mR8rcWwB2NPf15kk7xR22StJWq9989Fr7gAAAHZKouTdCwtJkvpZSjJr4TOye346VVJjKsnM4C+3Bn9OJzkgSrV9IbDV78Rqtp4EWt7i/+7ybr6ThbzEmX/tm4923KoA7MH8rpPkXGGXvfDaNx9tG30AAHZKouT6gkKSpF7Wk3Rf++ajDmnc/b09kyoR0sr1hMh0JEEYvaWb/PWm33/rSaYleAHYw/lfieeVnHztm4/2jD4AADshURJJkhpaSdVqS8ua7d3HM7meBGmlSoq4p2H8vKgBoA7rm+WUtTFmPVULLmsIAAC2rfhEiSRJ7WhXs7X7tpUqKbL5cf9CPSy99s1HW8IAQE3mi28XdtlrSWZUdQIAsF0fLXrx8HNJkpotatqvfevRvlC87z5tRVIEJoVELwC18No3H+1/6ufPnE3yVEGXfSBJL8msOwAAgO0otqLkUz9/ZjrJYrx0roOrqZIkxe/8GiTvWoPPTJKDbg+YGAuvfctBsgDUbn7ZL3BOefa1bz3aNfoAAGxVkRUln/r5MzOpKkn2uwX21HqSzmvfKreX/yBh17rh44B1mODnmTAAUEOzSVYLW/s89amfP9NXrQ4AwFYVV1EiSVIbK0lmX/vWo6uF3X9Tg8VqKxIj0CRnXvvWo3PCAEBN56CtlHdeyXqSmdLWGwAA7ExRiRJJktooqhT+Uz9/5sbEiFZv0Dwrr33r0RlhAKDmc9JuyjqvxG80AABbVkyi5FM//5Ukyd5bSzL72rceWy7gXmulqhxxxgg03+2vfeuxvjAAMAHz1H6B89OF1771WNvoAwDwYYpIlEiS1GOBkqTz2rceu9bQe2w211tqaacFBT3bvHwBYILmrFMp77ySJDn52rce67kDAAC4mcYnSiRJ9tx6kvZr33pssWH31XSuV40cMsxQ7PNtuqkJYAAauz5qpczzSlpNr2wHAGDnGp0o+dTPf9VOct4w75mlVEmS1YbcT5sttdpx1giQnHntW485wB2ASZzXdlPeeSVrSWZscAAA4IM0NlHyyf+SJNljZ17/9uS/QPzkf/1qJlViZDZaagHXrbz+7cccDgvAJM9zF1NeZfTV17/92KzRBwDgvT7a0El/O5Ike2UlSfv1b09uWbvkCLAFHSEAYMK1kywXNt899Mn/+lX39W8/1jX8AADcqHEVJZIke2o+Sff1b09eObvkCLANC69/2wHuADRi7TST5J0CL/3217/9WN8dAADApkYlSj75X7+aS3LasI7deqoqksUJu18kR4CdPO+mJzEhDAA3mRN3kpwr8Pd85vVvN+MsRQAAdq8xiZJP/teveklOGNKxu5oqSXJtQu4TyRFgNxpx/hIAvGeOXOJ5JStJWjY/AACQNOSMkk/+7Je9SJKM23qS7uvf+frcBNwf06kSI51IjgA7tzQJzzwA2LaNjXbKO6/ktiRzqTZRAQBQuImuKPnkz345laSX8nY/7bXqwPbvfH255vdGe/C5zZABQ/CxOj/3AGCX8+eZJP0k+wu79JOvf+frPXcAAEDZJjZRMngR3o+X4OM2//p3vt6p8X3RTlU9InkGFPPsA4AhzqXPF3jpNkMAABRuIhMlkiR7Yj3J7Ovf+Xq/hvdDK9fPHdlvqIARPP+mX//O1/UwB6DxCm1r7LceAKBwE3dGyaAkfDHOmhin6sD2Gi0cBueOdOJQdmD0Ol6cAFDS716SmZS1KW1/qo14M4YfAKBME1VR8smfPV1q39y9sp6k8/p3Hu/VZPyncv1QdtVEwDgsvf6dx1vCAEBJCl53zb/+nce12gQAKNDEJEo++bOnW6kqSSRJxmMlyezr33l8tQZjP5sqQXLCsABj9rHXv/O4nuUAFGcwB79S4KWfrMtGMQAAxmciEiWf/NnT7ZR5qOBeOfv6dx7v7vGYz6Q6d6QdyTFgb9hVCkDRPvmzp+eSnC7ssteTtGyUAAAoS+0TJZ/82dOdJOcM1VisJWm//p3H+3s01lprAXV6Hs68/p3HnU0CQNE++bOnlwucm5sHAAAUptaHuX/yZ0/3ot3SuAwObB//YkBrLaCGOl6OAECSpJVkNWVVeR9I1fa5ZfgBAMpQy4qST/z06akkvSSHDNHIrSdpv/HdxxfHPMbTqSpHZgcLEYC6WHrjuw5wB4Ab5u6tJG8XeOnzb3xXG04AgBLULlEySJL0o/XSOCylSpKsjnFsZ1OdO3JQ+IGa+o9xPRcBYFJ84qdPd5M8VeClHx73pjIAAMavVomST/z06ZlUJc4qDEbv7BvfHc+B7YMdaO1USRIHswOejQAwgT7x06cXU17V/3qS1hvfdbg7AECT1eaMksHL9MV4kT5qa0lmRz3RH7TW2jyYXeILmJTn45wwAMBNtZMsFza/35+k94mfPt1647vOLwMAaKpaVJR84qdPt5OcNxwjt5CkM8oJ/mAsZ+N8GWDy3P7Gdx/vCwMAfOh8fybJOwVe+tU3vvv4rDsAAKCZ9jxRUnCv23Ea6YHtg8VSe/BREQRMIi8/AGDr8/92ytzopkUnAEBD7Wmi5BM/fbqX5IRhGKmRHNg+OJi9PfjcJszABFtPMuMAdwCwltsCh7sDADTQniRKBi/Z+/GCfdSGvuPpEz99ejZVckRrLaApzrzx3cedTQIA1nRb4XB3AIAGGnuiZHDI92IkSUZpJVUVyfIQx6wTrbWABj4v3/ju4zPCAAA7XicsF7hGWEmVLHG4OwBAQ3x0rBPpn/xiJtWuIy/bR2c+SfeN7z1xbZdjpbUWUIKOEADAzrzx3cdXP/GTX7STXCns0m9L0kvifDMAgIYYW0XJYAI9F0mSUakObP/eE4u7HCettYBSLLzxvSfawgAAu17rdZM8VeClz7/xvSdsugAAaICxJEo+8ZNfdJKcE+6RWUoyu9MqkkGlTztaawHlWE8yvdvqOwDg32uKfpKDBV76yTe+90TPHQAAMNlGnij5xE9+0UtyQqhH5swb33tibgfjMp2qVLyT5IAwAoXxUgMAhrvum0p1Xklpa4vqcPfvPeFwdwCACTayRMkdP5mfStW3VQun0VhJ0n7ze6eXtzkms4OPcQFKtfTm9063hAEAhr4GLPVMyrUkM29+77RKVQCACfWREU2QpwYTZC/jR2M+SWurSZI7fjI/e8dP5ntJVpOcNy5A4fQSB4ARGKxPSvydPZBk0R0AADC5hl5RMthFtBjtnEZhPVUVyeIWx6Ed544A3Ojsm9873RUGABidwSatEtsvz7/5vdM2ZAAATKChJkoKLrUeh6Uksx9Wzn3HT+ancz05IlEF8G7aYgDAmNzxk/nlJLcVeOkn3/ze6Z47AABgsgwtUXLHT+ZnU51JIkkyXOtJum9+7/TcTeI+nerMkXahCxGArTq8lYo8AGAo68PpVIe7l7Y+XM822iQDAFAPQ0mU3PHj+Xaqsy8YrurA9u+/e5J9x4//fSh7J5IjAFtx9c3vn54VBgAYnzt+PN9K8naBl76eZPrN76tiBQCYFB8dwuS3HUmSUZh/8/vX+9vekByZjcPYmRwrSeq0QJyK5GKJ1uMAdwAYuze/f7p/x4/nzyQ5V9il70/VknrGXQAAMBl2VVFyx4/nOwVOekdtPcnsYFEhOcJe20x0XEvVOiFJVgeffy+ASwzMHT+en0mVeNmu6cFnO7bz/yUZ9H5n3vz+B7cvBGr7jJ3KzV8w7uQ5eqPW4M/d/H4t5yYbAUr9XYRbfKcXC13PLLz5/dNtdwAAQP3tOFFyx4/ne0lOCOFQXU2167kVyRHGYz3Vy57VwWfzxc+yVgHNd8eP57tJnmr4Za68+f3TdnPCeJ8t701yvDfZ+95/P53kQNOfRXl3YuXGDQiJTQiU8Vzop9TD3b/vcHcAgLrbUaJEkmRkC+jVSI4wGpsJkc2kyHIkQ4p2x4+LOWD1di8cYSjPjNbgX96YBJnO9cqO6TQ/2bGXc8TN3+sbK1k2n23X3nueHdT0OTIzuG/3F3j55iMAADW37UTJHT+a60WSBOpsMynSz2ZC5AedVWHhPc/yfpKDDb/M+Td/0HE2CXz4s2CzumM615MercGf05H8mDQf1DKzP/hz+c0fdGyQYK+fObNJrhQ6P58xJwcAqK9tJUru+NHcXJLTwga1spLrSZG+BRhbeJaX8JJiPcm0l4IU/l3frP64sQqkNfjzoAgVay3XW32962MOwZieTaWuKVeStMxNAADqacuJkjt+NJVRRWEAACAASURBVNdOcl7IYM8tpUqM9N/8QacvHGzH4MXpaprf9uLkmz/o9Iw4BXynNxMhrcFf2vxTIoSd2kyk/PvcsiTXzDkY8rOrX+hz6uqbP+jMugMAAOpnS4kSSRLYUxIjDE0huziX3vxBp2W0adD39sZkyGZ1yHS0xWL8Ntt7rg4+/VRJFGeksN3n2tTgXirxOXb2zR90uu4CAIB6uWWiZLA4f0eoYGw2W2n13/xBZ1E4GJY7fjTXSvJ2AZf6H9rHMIHfzxsTINO5nhS5TXSYoPnLtcEcZjVVK6++sHCLdWY/ZR7urvIVAKBmPjRR8vEfzU2n2umzX6hgZNYHi8TFJP23vOBlRD7+o7nlNP+l69m37NKk3t/DzYTIZlJk81+ba9FUm628+oN1xepbKlC4/kxsp8zOBetJWr4LAAD1cdNEyWAh34+djDAKa6kSI4tv2W3JGHz8R3PdJE81/Xv11g8600abGn3vWnl3hYiECFy3kuttvPpJlt9yyHWpz8pekhMFXvp6kmn3PQBAPXxYoqSEPvYw7hcCvVTJkVXhYFwG1YH/KuBSb5d4ZA+/Y9O5ngyZjo0msBObZ6D0B38umzMV8xwtoer1A9cHb/2gM+MOAADYex+YKPn4j+Zmk1wRHti1q7leOWK3GHvi4z+a6yc52PDLXHjrB5220WYM36fpXG+X1YoqERg1yZMynq1TqaqLSnyemsMAANTA+xIlH//PcyVPUmEYridHfnhGcoQ99fH/PNdO83t/V60rfN8Y/vdnMyGy+TkoKlCb5/6NyZO+34DGPHPfKfTyz7z1wzNz7gIAgL3zQYmSXsrsEQu7ITlC7RSU+PZygWF8X6ajUgQm2VpuSJ689cMzfSGZyGdxO2Ue7p4kh9/64ZlFdwEAwN54V6Lk4/95rpXkbWGBLZEcodYKSXwvvfXDMy2jzTa/G1N5d0KkFUkRaORvRN6dPFkVEvOXGltP0nrrh2eW3QUAAOP33kRJP9pKwIeRHGEiFJT4/pgXCmzh+/DeShEHrUOZ1lIlTfqpEid+P+r73C72cPdUyRLrDACAMfvoDZPRViRJ4GYLll6SnkULE6RXwDWe9ZKLDzKY07SiWgR4twOpKhVODJ4V67meOOn7TamVVso8N/O2VJuyWm4BAIDx+ndFycf/89xikkNCAkmqHYe9VMmRVeFgknz8P891kzxVwHd0RvKSQRutVq4nRmz6AHZK4qRez/eSD3dfeOuHZ9ruAgCA8dm3sbGxeYDpv4QDi+N/J0csjJlIBT3Pb3dQb9H3eCvaaAHjmRv2I3Gyl8/8dso93P3kWz8803MXAACMx2aipJPknHBQqKupkiOLQsGkK+Ssqatv/fDMrNEu5p6ezvXESCtV6xyAvXBj4mRR1fHYfgd6KfNw98TGEACAsdlMlJR6WB7lWkkyl//P3p1tx3UdZgL+5eV7Ik/A8pU8KGapk3RsZ2DpCQTdyYljFhN5HghqsKwRBVIkRZESi7Isy7bSLKaV2HcCX6BZ0CxLigCnY9lXAp6giSdAX5wDkqI4YKgC6pzzfWvVgqysXq2z9xn23v8eHMpOjTRk1uVqkpbnttb3cSuCEaAa1g+Hn0+x4sS3aXzfhqb2V1dTHO5uNRMAwJjddtfR56aS/D9FQUM6s/NJ+mYAUjflOQ3Lqf+hp4f/z+OH+2q8dvduJ8l0BCNAtS3lSmgyVBzaOSO8rzqCOACA8frs2tpaRzFQc+eTzF984n5ba1Fba2trg9R/8GDh4hP3C0lq4K6jz62HIp1Y0QrUx77yN3vX0efWt+maTzK8+MT9y4pn6/7P44cv3XX0uU6aebj7vvI+0m8HABij2zpHnu0lmVUU1MzlrbUuPnG/2VfUWjlwcLEBl3rnxSfut/VENe/Rdq6sGNmvRICGtk2HZdt0qDi2/D3pprmHu5+/+MT9XXcBAMB43NY58uwwBi2oh8tba5m1R1OU2ycupv7bFc1dfOL+nhqvzH3Zyie309qjVAAuWy3brMOY1LOVb8wgzT3c/eDFJ+4fuAsAAEZPUEId2FqLxrrr6HO91H9V4EqStoGkib8XO7kSjNhOC2DjlpIMyvbssuLY0DenyX3Yu6xKAgAYvds6c6fXFAMV7lAOLj75gMFTmtlLPvJsO83Yq/uui08+YEBg8u6/Vq4EI3crEYCRWF8hPe/bd9NvUFNW1F7PapLOxScfsB0pAMAICUqoWqdgkCIc0THAIEEzVgReuPjkA9Nqe2LuuU6sGgHYybbvemhi5fSnv0ntFNuXNXF7x2K1rQljAAAjIyihCi6UHcSBooDLgwMzSc7U/DJXk7QMAuzqfTaVIhhx1gjA7n8Th7kSnPg2Ft+pbpp7uPvSxScfaLsLAABGQ1DCpFpJ0i87gsuKAz4xKNBKsd1E3QetD1988oG+Gt/x+6udIhTpxqoRgEl1IUKT9e9WP8mhhl7++YtPPtD1OAAAbJ+ghEmyvr3AwJ7McNMBgfnU/0yIhYtPPtBR2zt2T62vGJlOM/d7B6iyxocmDWkb3YiJJQAAI3BbZ+70pdhKg921kOLsEdsIwK0HAqaTvNqAS73TWURjvY+mciUYmdYOAKiNRoYm5XdtmOauhDxom2IAgO25rTN3epj6HwbM5FkpO3F9W2vBpgYBFlP/Gf9zF598oKfGx3L/rAcjdysRgNprVGjS8MPdV5N0TDIBANi62zpzp5u8TJmdd77srM0rCtj0AEAT9uBeSdK2umxk90wrRTDSjfNGAJrsQortbWvdBm/QytvrWU3S0oYCANia2zpzp3tJZhUFY7SUKweza7jD1jr+nSQXm3Cpzija9r3SinAEgOtbPxOwthOX7jry7EySMw3ud3X0uQAANu+2ztzpTpox+MbOsrUWjLbTv5j6D3pfuPjkA9Nqe0v3RzvFmSPdCEcA2Fx7fVC3LZvuOvLsIMmBhtar9hQAwBbctra2ls7c6TVFwYicTzI/nH3Q1lowIg1Z+beapDWcfdAMyI3fF+0Uwch06n9uDQDjtZJyBfhw9sHlGnwjm364+9nh7IMzbmsAgI1bD0qcU8J2LF3VsTLICaPt6LdSHOBe94NJDw9nH+yr8Q3dDzMRjgAwPgtJBlVv25dhyXKaebh7khwczj44cDsDAGzMelDSTXJOcbAJK2UHalCHWWcwwZ38YZL9Nb/MheHsgx21fcN7oBVnjgCw89bPMxkMZx8cVvQb2k7yYYPr8K6q1h0AwE5bD0qmkvw/xcEGO0v94eyDi4oDxt6576YZIfad3imfqvtWhCMATI6VFIFJT3uqcv23jnYWAMCt3ba2VhxP0umdHqS5B95xcxeSDIY9547AjnXqe43ZLmJu2KveoMsY63w6xdZawhEAJtHBYa962zl1eqf7SQ41tM5WkrSHPVskAwDczNVBSSvJx4qE0pW9iTWqYTc69IPUP7xufMf9qnBkOs4KA2DyrZbf7uUKfnObfC7nUpKOfh0AwI19dv0fhr0Hlzu90+djVUmTLeVKOLKsOGDXOvKdhryLu03tsHd6p9fDkek095BZAKpnT4qteNtVbHckGaaZqzb3JemXZQAAwHVcXlGSXF5VshiDNk2ykvVDGnv2roXdVq4wWEyyt+aXemHYe3C6YXXbTjFA0fWdBaDizg57D85U9Fs8bPB3uJL1BgCwEz4RlJSNx16SWUVTa8IRmNwOfBPewatJWk1YTVJOQFg/d2SvOxyAGrmnimcYlit3Lza43ip5zgwAwLh9KigpGo+nFuMg2bpZTRGOzA97DzmUHSay436qneTDBlzq4WHvoX6N63H93JFukv3ubABq3L9oD3sPLVfwW91Ncq7BdXfXsPfQ0C0MAHDFZ2/w76djC666dF6EI1Ad/QZc40JdQ5JO71QnRTji3BEAmmBPivMNO1X7Dx/2HhqU3+2mns853+md6gx7D9ldAACgdN0VJcnlAZ+LiqhyhCNQQZ3eqZkkZxpwqZ+r4szTm9RbK1fOHbG1FgBNNDfsPdSr6He8yTsprKRYEXTJLQwAcJOgpGw4dtPsJclVIRyBCisH25uwiq+yAynX1JettQDgkyq5lVP5TV9Mcyc7LCXpCEsAAG4RlJSNx26EJZNo/UD2oXAEqq3TOzWf5O66v7OGvYdaFa+ndopD2W2tBaOzlOTqAbrl8ne1SykGMq/n0k5tHVOutr7h//k6/66dZOqq/92KlWfU12qSVhUH3Mvv+7DB3/bzw95DXbcwANB0twxKkmT/rLBkQqyHI4OFOfvJQh3snz01neTVBlzqXQtz1Tw0dP/sqVaKARQDnHBzC+Xfa4ONq5/95YW5+my/t813y9VBylSKYGVd56p/v09pUREXFuYemtYeq6SzC3MPzbiFAYAm21BQclXjcRCzaHfaUlnu8wYWoF72z56aSjFzuu7v1fMLc9Wdqbh/thErfuBGVnMl9BiWf5dzZdXH4sKcLVt26F3USrEqJbkSpKz/O4EKk+LwwtxD/Yo+Y005L+5GDi7MPTRwCwMATbXhoKRsPLZTDNrriI3XhZTbaglHoL72z57qJzlU88tcTdKq6kDq/tlTnSQX3a3U2PoqkGH5dzHFihArP6r7bemU/7i+YuXqvyY8sRPurOrq9/2zpwZJDjS47u5ZmLOtMwDQTJsKSsrG41SSXuo/uLeTVlIMUMxrmEIzNGgAvtId7v2zpxZjcgDVb2Ms50oAspjkUlW3wmMk77X14KRT/qtOrEhh9O+ddoUnSTT527+apGObZwCgiTYdlFxpQD7TSbG6xJ7tW7OUYtXI/MLcTzREoWH2zz7ThE74wsLcTzoVrqNunM9FNVwdhlz+uzD3k2VFwybfe60UW3m1r/mrvc9mXViY+0lFzyt5Zqp8jzb1vi9XA//EtooAQKNsOSi5qhE5U/4s5b+59VUjwxThiIYnNNT+2Wd6SWYb0MluV3Wgtvy+Lfu2MWEWcuV8kPUwxGQLduq92MmVLbzWAxSrULiZgwtzPxlU9H5vl/22prYDlpJ09FkBgCbZVlByVUNyKkk/zd7P9VqruRKMDA1kAOX7spXk4wZc6tzC3E96Fa6nJpwfw+S6OhAZxuoQJvt9eXVw0okVKHyyP9Spaj9o/+wz00lebfK3qMorgwEANmskQclVjckmrzARjAAbeU8Ok+yv+WUuLcz9pF3hOmqlGWEWE/Cs5MrqkMUkiwIRavKtu3rlyXqIsl/JNPY9V9mVCftnn5lJcqbB9Xd+Ye4nXbcxANAEIw1KrmlUdpN0a9wpWkoxqDFMMbAhGAF0tgt3Lcz9ZFjhehrGgB6jt5CrzhCp8jMC23i/Xh2etL1rG+PswtxPZip83w7S7J0TKr1KGABgo8YWlFxuWD55spVkuvxVtTN09YzP4cKRh4duHWCT78KmnHlxduHIwzMVrqdOkovuWLZhNVcmUiwnWVw48rDJFHDj967wpBnuWTjy8HyF79Nhw+/NgwtHHh64jQGAOht7UHJNA3Mqxd7F679JOwByJZ/cAmNZKAKM6P03n+Tuml/mSpL2wpGHL1W4npZjb302Z+GqdsNw4cjDy4oEtv0u7uRKcNLxXq6F1bKNsFzRe3IqRQC+r8F1eJe+MQBQZzsalNyiI9S66u84O0ML5d/FJJfW/2r0AWN8zzXlMNCqzxZt+j7k3Nont920UgR26v28PtlqPTix6qSi79CFIw+3K3wftsv3/56G1t9qko5vHwBQV7selNyiQ7TekL76nzdqeNU/L5vhCeziu2wx9Z8Ne2HhyMPTFa+n5TR38INPWy3bErbdhMl8b6+HJp2yn2DVSTXYorP638ZWlVcPAwDcyMQGJQB1sP/Jk/0khxrQaW5XOZDe/+TJQZp9UCvFapFhbKEFVX2Pt/LJLX4FJ5Or0ls47X/yZDfJuYZ/LzvCEgCgbgQlAGPy9080Ztbh4deOPtyvcD21k3zojm2chRTByDDJ4mtHDfhAzb7BrQhOJtVqklaV37t//0QjJsLc9Bv62tGHO25lAKBOBCUA4+tEL6b+h35WvqP890+cHMZ+93W3vo3WMMnwtaP2V4cGfpNbEZxoP4z2nppPcneD6/D8a0cf7rqVAYC6EJQAjKfz3Esy24BLvbPKg85//8TJ6SSvumNrRzAC3Or938qV0GQ6zqjaDXOvHX24V+F7aKr8zuxrcB2efe1odc+cAQC4mqAEYPQd51aSjxtwqXUY4FiMWcV1IBgBtvtNWD8cfjpWGe6kqk+4mEqynGYHbQdfO/rwwK0MAFSdoARg5J3mp4ep/yDLSpL2a0d/WuH9xZ/upRmrfurqQi4HIz8VjACj/kZM58qKk31KRHviJvdKu/weNTksuee1oz+ddzsDAFUmKAEYbWe5m+RcAy71rteO/nRY4XpqpVhNYquV6rh8+HqV7z2gst+MTorVJh3fjpG78NrRn05r/1XaapKOiQsAQJUJSgBG10luyvYL5187+tNuxetqkOSAu3airSSZz5Vw5JIiASbkG9JJEZpMx/aNo3L4taM/7Vf8vphJcqbBdSgsAQAqTVACMLoO8nySuxvQCW5VfIuMTpKL7tiJvLeGKcOR147+dFmRABX4prRyJTRxtsn23Fn1QXYTMbKUIiwxuQEAqBxBCcBoOsadNGPwvfJ7UDfkDJmqWMqVYGSoOICKf1+mcmV7runYomsr34TKD7JrZwhLAIBq+qwiANiev3v8xFSSQQMudeH1px6Zr3hddSMk2U1XrxqZf/2pRwyiALVRDgwP1tsEf/f4iatDE1t03dq+JP0k3SpfxNra2nT5rdvX4HoclPc9AEBlWFECsE1/9/iJfpJDNb/M1STt1596ZLnC9dSUM2QmzVLKcOT1px4ZKg6goW2FdooAQGhyawdff+qRQcXru5VkseFtjvOvP/VI1+0MAFSFoARgex3hdpIPG3Cpc68/9Uiv4nXVSzLrrt0RF3IlHFlWHACfajt0UgQn+5TIp1R+csZV9TxMs8OSs68/9ciMWxoAqAJBCcD2OsGLqf8gx9LrTz3Srng9tZJ87I4dm9WU22klGdpSC2BT36fpCE1q1/Yo67eb5FzD67LyK4QAgGYQlABsvfPbSzNWKNz5+lOPLFa8ruaT3O2uHamVFMHIoOr3B8CEfKtaEZpcrRarEf7u8RMzSc40vC6FJQDAxBOUAGyl0/tYY1YonH39WLUHKf7usROdJBfdtSOxlOKA1vnXj9lSC2DM7QyhSXLP68cema9BfQ6SHGhwPa4m6bx+zMQKAGByCUoAttbhHSbZX/PLXEnSfv1YtbdR+rvHTizHwbnbceW8EeEIwG58x5p8EPxq2RZZrkE9NqHteKu6FJYAABNLUAKw+Y5uU7ZQuOv1Y48M1VUjXUh55kjVgzKAmrVB1kOTbppzSPjC68ce6dSg7qZSTDxo8gqh1SQtbQsAYBIJSgA238ldTv0HJy68fuyRaXXVKMIRgGp956ZTrDKZbsC3bu71Y4/0alBnrSSLDW+bLKVYWaKtAQBMFEEJwOY6uE04FLwWs/3+7rET/SSH3LU3JRwBqH7bZCpXApM6t1Eqv9K1rK92ipUlwhJtDwBggghKADbobx87Pp3k1QZc6uE3jj3ar3hdtZJ87K69rsvhyBvHHjVAAVCvtkorRWAyk/qdZ7KapFWHb9ffPna8m+Rcw2/X828ce7TrqQUAJoWgBGBjHdqpFFsl1P0Q1YU3jj3aqUF9DdPsA1OvJRwBaF7bpZ0iMKnT1lwX3jj26HRN6qcbYYmwBACYGIISgI11ZpuyjdPn3jj26HLF66opK39uRTgCwPq3sZv6bM1V+ZWvV9XLIMmBht+eZ9849uiMpxQA2G2CEoBbd2I7SS424FLn3jj2aK8G9bWc+q/8uZGlJIMkA+EIANf5RraSdMtflb+Vd75x7NHFmtRJE86/u5WDbxx7dOAJBQB2k6AE4FYd2EePLybZV/PLXHrj+KPtGtRVL8lsw27R9XBk/o3j1V4NBMCOfjPXD4Cv4oqGlSTtN47X4LySR49PpTjcfV/Db8mDbxwXlgAAu0dQAnDzzmsvzRh4v+uN448OK15XU0mWU5992G9mJcW2WoM3jtdjRi0Au/r97KZ6B8BfeON4Tc4rebQxZ+HVvj0KAFSXoATgxp3WVpKPG3CpZ984Xv29of/20drv872aK+HI0BMKwBi+pZ0UoUlVvqe1WYXwt48eb6dYWbKnwbfgapKOSSAAwG4QlADcuMM6TLK/5pdZi60ryoGdup4jcyHFtloDTyUAO/Rdrcoqk1oNrJdhyYcNv/2EJQDArhCUAFy/ozqT5EwDLvWeN44/Ol+D+hqmXqGWc0cAmJRv7HSK0GRSDxxfSjGwfqkm5d1Ncq7ht11tzqABAKpDUAJwjb955FhTzrq48OaJx6ZrUF/d1GNAYTVFODJ488RjZlECMGnf21aurDKZtDbS2TdPPDZTo7JuyoSdm1lK0nnzxGPCEmAS39PtJFPl/2yVv426lOJcqiTJmyceGypRmAyCEoBPN3rmM7mzJkdlNUmr6p3PMtSq+uGnF1KEI/OePgAq8v3tpghM9k3Qf9Y9dfqW/s0jxwap99lrGyEsAXbrHbwehHTKv+v/e5zfvZUUEzbXf4tJlk2ig50jKAH4ZINoOsmrDbjUw2+eeKxfg/rqJZmt4H/6SpJ+ioBE5x+Aqn6H2ykCk0kY0F9N0n7zxGPLNSrfJkzeuZWFN0881vG0AWN813ZSBCHrv30T+J+5lCI4WUyyaBUKjIegBOBKA6kpW27VosNZbgGyWKH6Wk0yn6RvVhAANWxDzWT3t+VaevPEY+2aleswkzlot5POv3nisa4nDRjRe7WTIhDppNrnXC6U/eGh3QlgNAQlAFcaTf0khxpwqZ+rw2zLCs2yXEqxemTe6hEAGtCe6mZ3t+Wq23klddhmdBSEJcBW36PtJNOpfjByKwspJuYNTcyDrRGUAOTyctuLDbjUuTdPPNZTX2O3fjB7v05bgADAJr/VM9mdSQ131WlbknKQb5j6r3q+lVqFYMBY35vTuRKONDFoXkkRmgyEJrBxghKAoiG13IAGVG22o/ibR44tZjK3oVgoG6MDTxUAXN4qs5diwGqnBvpXk7TqtJJTWHLZQe0s4CbvyW75vdmrRC5bD01M4oNbEJQAGlTVPRB8s2oxu7Lc0uPcBP0nWT0CALf+fu/0OSa1OwR8AttAu0VYAlz9bZnO7m75WCW2hYabEJQATW9YtZN82IBLrcVWBWVDeDmTMZvS6hEA2Nr3vJtilcm4Z/zWYsvR65SdsERYAvrxRTiyk6sV62Q1xSqTnsl+cIWgBGh2A+unTw1T7wPdkmKpbfvNpx+/VIP66ic5tMsNykGS/ptPP65BCQDb+66vzwIeZ1vszjeffnyxZuU2SHKg4bfPapJO3eoWuOX7r5tie639SmNkFpL03nz68aGioOkEJUCTG1kzSc404FLvefPpx+drUF+tJB/v0v/3V5Yo1yBwAoAJ+8Z3UqwwGcfAV20mjFxTZoMIS4Ql0IxvxFSKcGQmzh4Ze5/3zacfHygKmkpQAjS1sdVKspj6L9O98ObTj0/XpM6G2fmZQ+eTDMyuAYAda5/1MvoAoDbtoWvKazH25BeWQL2/Cd3s3NlWFFZSrDAZKAqaRlACNLXRNUz9l+uuJmnVZMutTpKLO9gwHKSYTWP1CADs/He/ldEHJofffPrxfs3KaSrJMMKS1RSrhpY9PeAbwEj7xV2TBmkSQQnQxIbXdJJXG3CptRkQ+JufPrWc8S+zXkgRjsx7SgBgIr7/rYx2NnEdzyuZSrIcs62XUqwsMckFqvs+65TvfAHJZHGGCY0hKAEa5WsPN6YzufDWycc7NamzcZ4ls5pkPknvrZNmIQLABLffZrL9wGQpSeetk/UaTP/aw0+1U6wsEZbUsH6hAe/4TsZ3ThWjc16/mboTlABNa4QN0owZKp+rQwNmjMHWSorD2Qc60wBQqXbBdgOT82+dfLxbw7JpJ/nQXSIsgQq9tzoRkFTNapL+Wycf7ykK6khQAjStIXaxAZc6V5eGyxiCrYWyYWd7LQCobvtgu4HJwbdO1u+Q2q89/FQ3yTl3iLAEKtAv70VAUvX37MxbJ23HRb0ISoAmdagXM/5zLna9wfLWycfbNamzUc6MPJ8iIFn0NABArdp3WwlMVpO067h9iLDksgtvnXx8WjHARL2fOhGQ1M3ZFNtxCaaphc8oAqAZ1nrJ2t5kLTX/zdSozvrbLIvVZG0uWfuzt04+3hWSAEC9vHXy8UvFKtq1VvnNX91gG2FPsjZf0zIZJGtnG9DmvdXv7q89fHTgKYHd97WHj3a+9vDRYbJ2MVnb7/1Uq9+hZG3xaw8f7bjTqQMrSoAmNMyasmfz2bdOPjFTkzqbTvLqFv+fryTpvXXyCZ1jAGhWm2+zK0xq03a6TlkM0oxz+W7l/Fsnn+gqBtiV91AnVpA0ydxbJ5/oKQaqTFACNKGBtphkX80vcyVJ+62TT1yqQX1tdZu0hRQBydBdDwCNbvttJjC5562TT8zXtBzmk9ztjhCWwA6/ezoRkDTVUpLpt04+sawoqCJBCVD3RlovyWwDLrU2nfwt1Fl5/sgTttYCAK5uU6wHJjdrV5TnldRvUKe8/mHqP2FoQ+1FYQmM/Z3TiYCE4rvareskBOpNUALUuaHWSvJxAy71wlsnn5iuUZ0t5tazP1eTDFIEJMvudgDgFu2LXm68FdXCWyef6NT02oUlV9gWBsbznulEQMKn1XZ7S+pLUALUt8H2k6PDBjTWVpO03nqm+ltulXU2yM33015N0k/Sr8s1AwA71s5o5caBydxbz9RzEL287o1MRGmCg2894xw72IF3KiTF9tjT+u5UhaAEqGujbSbJGZ29StVZJ8nFG/yfiwPadWwBgO23OdopJl5cO6HmrreeqedZZ+U1DyMsqVX7GXbpfdKKgISNW0kRltgqm4knjDF/UgAAIABJREFUKAHq2HCbSrLcgI7gwlvP1GebiBusAFpKsXpEZxYAGHXbo5NPbhdTq5W617leYckVwhLY/DukFQEJW1OcW/KMc0uYbJ9RBEANDRrQAVxN0q1Ro7ubT4YkCylmdbZ1YgGAcXjrmSeG5aSTgylmvO4p25F1vd7FFIfbk5wr25/ArftqU+UWyR9HSMLW7Enyqvcuk86KEqBujbjpJK824FJrs4/2NSuALqRYQTJ0NwMAO9wmmUkxW7r31jNP9Gt8nd0k59R4EitL4Fb9tJnyZyUao3L2rWcc8s5kEpQAtfHVh440ZcutpbdPPdmuUb31krSS9N4+9eSyOxkA2OX25EyS/tunnrxU4+vsJZlV40mSubdPPdlTDPCp96CAhHE5//apJ7uKgUkjKAHq1KDrJznUgEu98+1TTy7WqN6m6jwQAQAwoW2wQWyjs24lSfftU08OFQUNficISNhJwhImjqAEqEujrpPkYgMu9ezbp560TBUAgFG0oQcRllztfJIZk3ho4Lugm2Lrwb1Kg5185wpLmCSCEqAOjbqpJIsNaNStJGnruAEAMMK29DDJfiVx2WqKsGSgKGjA89+NgITdJSxhYnxGEQA1MNOQhl1XSAIAwIhNJ1lSDJftSXLuqw8dGX71oSNtxUEdffWhI92vPnRkOcm5CEnYXQfK1Y2w66woASrewJtrJ/mwAZd6/u1Ts101DgDAGNrUU0mGSfYpjU85m6T39qlZE5aow7PeSdL3rDOBjHmw66woAapu0IBrXE2xagYAAEauDAE6ZbuTTzqUZPmrD811FQVV9dWH5jpffWhumOJcTyEJk+jAVx+aGygGdpMVJUCVG3u9JLMNuNR73j41O6/GAQAYc/u6nWJlyR6lcV0LSWbePjW7qCioyDPdSXEGiXOIqIqzb5+aNVGUXSEoAara4GulOMC97p24hbdPzXbUOAAAO9TOFpbc2vkUgYntuJjU57gTAQnVdfDtU7MDxcBOE5QAlfSVB+eGDWj0rSZpv3N6dlmNAwCwg23tppwDuN22ev+d07M9RcEEPbutFGeQ3K00qLh73jltZw12lqAEqGLjbybJmQZc6uF3Ts/21TgAALvQ5u4mOackbmklyYwBPXb5eW2lWEFyQGlQE6tJOu+cttUhO0dQAlStATiVZDkN2HLrndO23AIAYFfb3t0ISzbcfk/Se+f07FBRsIPPaCsCEuprJcUuG7Y5ZEd8RhEAFTNIM/ZLdngZAAC76p3Ts4MkB5XEhuxPcvErD84NysFrGJuvPDjX+sqDc4MkH0dIQn3tTXFmFuwIK0qAKjUGp5O82oBLnbPXMQAAE9QO7yc5pCQ216ZPcYaJmdCM8llsxQoSmufsO6dnTSZl7AQlQEUahL2mbLm18s7pXkuNAwAwYe3xQQzObtZqkt47p3vOHWS7z18rAhKa7eA7p3sDxcA42XoLqIpemrHlVldVAwAwad453esmOa8kNmVPkjNfebC3/JUHe9r5bNpXHuy1ypDSFls0Xb8MDGFsrCgBqtA47CS52IBLPfvO6Z7lpAAATHLbfBADtlu1lGTmndO9oaLgFs9ZK1aQwKfeoe+c7rUVA+MiKAEmvYE4lWQxxSFedbaSpP3O6Z49jAEAmPT2+TDJPqWxZQsptuQaKgqueb5aEZDAzZhgytgISoBJbyj2ksw24FLveed0b16NAwBQgTa6sGQ0BCasP1OtCEhgo+7y3mQcBCXA5DYWH5htJ/mwAZd64Z1n56bVOAAAFWqrC0tG53yS3jvPzi0risY9R60ISGCzih05np2zIwcj5TB3YJINGnCNq3GAOwAAFVMOUHVSnLvB9hxI8vFXHpgdlAPn1NxXHphtfeWB2UEc0g5bsTdFwAgjZUUJMKkNx16aseXW4XeeneurcQAAKtpub6U4U3CP0hgZK0zq/bz0IhypuoUkl8p3X1KsrtuIdpKpq/7uV5Tbctc7z84NFQOjIigBdLZ2sXH1zrNzHTUOAEDF2+/tFAOFwpLREpjUq4/bi4CkipbK99tiksV3np1bHMP7c/3Xie0MN8MWXIyUoASYOH99/5PD1H9mxWqS9rvPHdHpAQCgDm14Ycn4nE/S03eo5HPRSRGQWDlQrb76MMl8kvl3nztyaYfvmakk0+XvbtVxS3PvPnekpxgYBUEJMGkNyZkkZ3zMAQCgcm15Ycl4nU8yePe5I0NFMfHPQicCkqpZSHFO6o6HIze5j4QmG3Pnu88dWVQMbJegBJikxuRUkuUGdKyW3n3uSFuNAwBQwza9sGT8FlKsMBkqiom7/7tJZmL7pKpYTRGO9Cd9xdZf3/9kK8n6/eX9es078d3njnQUA9slKAEm6MM/O59mzJK4893n5sx2AACgru366SSvKomxW0gyePe5uYGi2PV7vptiBclepVEJK2V9zb/7XPXOt3C/XddB70K2S1AC6EztrLl3n5vrqXEAAGrevu8mOackdsRKkp5Bwh2/x6dSzO43w786ahUuCkw+9R5sVzH4YnIISoAJ+Lg3Zsut8sN9xIcbAIAmtPO7EZbspNUk/RTbCOlzjO++bqUYnJ6OgKQqar1d3V/f/2QvArvEWbBsk6AEmISPej/JoQZc6l32EQYAoGFt/W6EJTttNcl8ioHhZcUxsnu5k+KMiANKozLOJxk0oR9eTkAdpNmHvq8maQmK2SpBCTAJjc2LDbjUs+8+d2RGjQMA0MA2fzfCkt2ykGKFybyi2Nb9202yX2lUxvk0NCgsx1gGae52XMZe2DJBCbCbH/CpJIsN+ICb1QAAQNPb/t0IS3bTSoptuQb6JRvuq86kCEic/1AdjQ1IrnP/DtLc1SWfs5qOrRCUALv58R6kGcuW7zGDCwAA7X9hyQRY35ar/+5zRxYVx6fu0XaKgMT2WtUiILnxO7ef5p1dcv7d54503QFslqAE2PmP9eEnWmXjfF8DLvfCu2eOTqt1AABI/vrwEzNJziiJibCUYhB1/t0zRy81/L7sxvZaVVQEJGeOLiuKG97b7RSrS/Y17NI/575gswQlwG40QJsyo6HYcqvhnQ4AALimTzCIGfuT1m8pVpmcObrYoPuwlSvba+1xG1SKgGRz9/pU+Yw3KQg8/+6Zo121z2YISoCd/DAP0qw9Mg+/e+ZoX+0DAMCn+geDCEsm0fpZJvN1HYS2eqTSBCTeu5vxZyaushmCEmAnPsadFCFJkw7BW3j3zNGO2gcAgBv2EwYRlkyyCylmoVd+a65y+6FurB6pKgHJ6J6FXpLZhlzu3LtnjvbUOhslKAF8hEdvNUlbIw4AAG7ZXxhEWFIFlQtNyq21plNsr7VXFVb2vpvRtx75s9FNcq4Bl2o7dDZFUAKMxf+cebyV5hzYfq253/Wf6rkLAABgQ32HmSS9mOlfFZdDk9/1n7o0YffSVK6EI/tUVWUtJOn9rv/UUFGM7VnpphlhycHf9Z8aqHE2QlACjOODO51iq60mdnSWftd/qu0uAACATfUhWinOxrhbaVTKQorQZPi7/lOLu3jvTJc/545U/34SkOzcs9NN/cOSld/1n2qpbTZCUAKM8iM7VXZumrx0/s7d6iAAAEAN+hRNnnRVdStJhuu/3/WfWh7jfdJJEYx0YuVIHQhIdu+dO0j9x3Ducm+xEYISYFQf13bZoWlyI9WWWwAAsP2+hQlY9bCaIjRZLP8ubzU8KYORTpJ2+VeQVg8rSboGsXf9nTuo+fv2wu/6T02raW5FUAKM4qNqT+GigdeetD16AQCgwv2MTorJWA7irpeFJJdSBCi55p+TIghJilCkFStG6tp/7jk7YqLet4s1f9Y+N85VbtTDZxUBsI0P6VTZcbGPcDELRkgCAAAjUs4yb/3Pmcd7SWaVSG2snyOiH9k8ApLJ1UmynPpOgJ1OsVIRbsiKEmBLyq225mN2V5Kc/V3/qRnFAAAAY+t/tFJM0nJYN1SPgKQa79l2kg/reg861J1b+YwiALbw8ZwpP55CkmLf3Z5iAACA8fld/6nl3/Wf6iQ5WLbBgWr0l+dSbFM9UBwT/55dTHK4ppe3twyC4IasKAE2zFZb13XP7/pPzSsGAADY0X5JL8khpQETaTXFNkd9W1RX8h07TD1X753/Xf+prhrmRgQlwIb81aHHbLX1aRfeO3tsWjEAAMCu9VH6sR0XTIrLAcl7Z48JSKr7bm0lWUz9zitZfe/ssSk1zI0ISoCNfCRnkpxREp9qALY0/gAAYNf7K90Ug7N7lAbsmvNJZvSRa/Neres40D3vnT1mVxCuS1AC3OzDaKutGzv83tljfcUAAAAT03fpxXZcsNPOJ+m9d/bYsqKo3Xt1mPqt2Dv/3tljXbXL9QhKgBt9ENspQpJ9SuNTFt47e6yjGAAAYCL7MbbjgvETkNT/fdpK8nHNLsv2W9yQoAT49Mfwx492Y+n6DT+qSdrvPX9cYxAAACa3TzNd9mmcsQijVQQk+sRNeZf2kszW7LLuee/547bf4lM+owiAaz6CgyTnIiS5EQ1CAACYcO89f3z+veePt5LMpZjsBGzPQpK73nv+eFefuFH6NXyHdlUr12NFCZAk+asfP9pKMh9bbd3M0nvPH28rBgAAqFxfp5fkgNKATVtIMWFwqCga+w7tpphQWyd/9t7zxy+pXa5mRQmwvix9MUKSW+kqAgAAqJb3nj++/N7zx7tJ7kwx6Avc2voKko6QpPHv0EGSlZpd1rSa5VqCEmi4cr/JV2OrrVuZe+/544uKAQAAqum9548vvvf88U6Se1K/QT8YFQEJ19Or2fV0VSnXsvUWNNRf/fjRqSSDJHcrjVtaKfc3BgAA6tMnmkkx+GfSGNhii1u/M5eT7K3RJX3OeTtczYoSaObHrZ1iqy0hycZ0FQEAANTLe88f7ydpxYHvNNtKrCBhY/o1ux7bb/EJVpRAw5SHcPVj1tRGnX3v+eMzigEAAGrdT2rFge80y0qKFSQDRcEG35NTSZZTn/Eku4fwCYISaNZHrZ/kkJLYVMOx/d7zxy8pCgAAaESfqZViYpnV99S5nysgYavvyLqNK93pPFrWfVYRQCM+ZFNJ5pPsVxqb0hWSAABAc5T71U//1Y8f7aRYYaIPRV0ISBiFugUlM7HdOiUrSqDm/vJHj7RThCR7lcamXHj/ZyfsVwkAAM3uT3UiMKHaVpL03v/ZiUFDn19Gb5D6jDGtvv+zE1OqlERQAnVvFHTjPJItfSiTtN7/2QmrSQAAgPW+VS8moFEdjQpI/vJHj0ylOJx7Oknbs8omHGxikMinCUqgvo0E55Fs3T3v/+zEvGIAAACu6Wd1IzBhsi0kGTQoIOmk2DrpgKpni+woQhJBCdSxkeA8Eh9IAABgvP2ubgQmTJaFFCtIhg15BlsptoAy9sEofO79n51YVgzN5jB3qFND4YfOI9mm1RQHeQEAANxQOVt/8Jc/FJiw64qA5IVmBCRJ8pc/fGQmyRlVzwitv8tpMCtKoD4NhekUsymcR7J1h99/4URfMQAAAJvsj3UjMGFnNTEgmUox7nG36mfEVt5/4URLMTSboATq0VjoJZlVElu2WjYwhSQAAMB2+mbdCEwYr/NJBk0KSMpnayrJMMk+twBjcs/7LzivtskEJVD9hkI/Di3bjoUk3fdfOLGsKAAAgBH11boptvU1qMuonE8xwW+5gc+TkIQdecbef+FEVzE0l6AENBSabO79F070FAMAADCmflsnxQoTB06zFaspziHtNXly31/+8JGhZ4gd8mfvv3DikmJoJkEJVLKR8NN2ipDEeSRbs5Sk+/4LTy8qCgAAYAf6cJ0UK0ycrcBGrKbYPaL//gtPX2r4s9OLrcbZOYfff+Fp27I3lKAEqtdI6JYNJiHJ1pxN0mt6YxMAANiV/lwrxQoT2ydzPSvl/TGvz3p5kuiHbgt28hl8/4WnW4qhmQQlUK1GQi9mUmzVaopVJA7mAgAAdrtvN5VihclMTIKjODtz8P4LTw8UxSeek2FsucXOu8fYUTMJSqA6DYRBzDraqgspQhKrSAAAgEnr63VTrCLYqzQa2Vftv//C00NF8annopPkopJgN57L9194eloxNI+gBCa/ceDQ9q1bTbHNlv0lAQCASe/7deIck6b0U8sD2p9eVhw3fB6GsZqE3fM5z2fzCEpggv3FDx5ulw0oM4s2bylJ94Ofn3RgOwAAUKV+YCtFYNKNbbnqZCXFeaODD35+0m4Ht34GPlYS7KK5D35+sqcYmkVQApPbMOikCEk0jDfv7Ac/PzmjGAAAgAr3CaeSTKcITewwUF0LSfof/PykMw82fu/PJDmjJNhFqx/8/OSUYmgWQQlMZqOgm+Scktj8hyzFKhINUAAAoE59xHaKwGQ6JtNVpW86n6T3wc9PLiuOTd/vw9h2i9138IOfnxwohub4rCKAiWsQ9JMcUhKbtpBk2hJmAACgbsothbtWmUy8lSS9JPP6ptsiJGESdJMMFENzWFECE+QvfvDwIMkBJbFp9o4EAACa1n9spxjI68Yqk912PsXZI0NFMZL7+kMlwYS409m3zWFFCUxCQ+D7D08lGcaMoM1aSTL9wYs+WgAAQLOUg3czSWb+4vsPT6cITO5WMjtmKcVs88EHL1o9MjJrcS4Ek2SmfLfSAFaUwC77i+8/3Eqxd6mQZHMuJOlqkAIAAFzuX9qaa7zWzx7pm7A3tnvYQe5Mms998KKzhprAihLY3QZAO8VKEsukN9cw7X3w4sm+ogAAALiinEg2SDIoJ+WtrzQRmmzPhSTzH7zoYOcdYEUJk6ab4uwhak5QArukXBo9iJBkM5ZSrCIxcwcAAOAmyhnQ/SR9ocmW+5+D2FoLmm4mgpJGsPUW7IK/+P5PuknOKQkm1EqS5RSrneY/ePEZwRQAANSnP9pKEZp04kyTa62HI/MfvPjMsuLYlfuzG+MlTJ6DH7z4zEAx1JugBHb+o99LMqskqJDVsrPQ11kAAIBa9U+nUgQm0+WviTseCEcm657sJLmoJJgwKx+8+ExLMdSboAR29oM/SHJASVBh55P0dCAAAKCWfdZ2rgQn+2t8qRdyZQW9vs1k3YOtJB8rCSbQXR+8+MxQMdSXoAR25kM/lWKGimXN1MFqirCkrygAAKDWfdlOiuCkk2oHJytJ5pMMP3jxmXk1O/H33aU4z5XJs/DBi890FEN9CUpg/B/4qRQzVRyYR91cSNL94MVnHGwIAADN6N+urzhpl79J7eeulP3wYYpwZFntVeo+m4+Jpkwmq0pqTFACY/Q/vveQkIS6W0rS+c9fnBKWAABAM/u9nRShSStXApSdXA2wmmSx7HsvJhnqn1T+nurGge5MpvP/+YtTXcVQT4ISGN+HvV021CwXpe6EJQAAwLV94k6SqRTBSVKsREn57zY7mXA9DEnZz75U/u/l//zFqWWlXbt7ZyrJ/1MSTKjPee/Uk6AExvNRF5LQNMISAABgq33oqwOV/OcvTg2VSuPviUGSA0qCCWRVSU0JSmD0H/PpFAe3C0nQWAAAAIBN+h/fe6iV5GMlwYT6MxNF60dQAiN053fto0nj3fPhS6fmFQMAAADbced3rSphYs19+NKpnmKol88oAhjZB7wbIQn07/zuQ1OKAQAAgG2aSXE+DUzcvWnso34EJTACd373oZkISSBJ9paNWQAAANiyD186dSnJtJJgAu2JsY/aEZTANpVLQc8oCbisqwgAAADYrg9fOjVMMqckmEBWldSMoAS2wX6ZcF17y63oAAAAYFvKsyDOKwkmjFUlNeMwd9iiO7/74CBCEriRCx++dNoSaQAAAEbCOAwTaDVJ68OXTl9SFNVnRQls/sM8ded3H5z3cYabulsRAAAAMCofvnS6m+SgkmCCWFVSI1aUwCbc+d0Hp5IMk+xTGnBLd3340umhYgAAAGBU7vzug+0kgxibYTJYVVITVpTAxj/EQhLYnLYiAAAAYJQ+fOn04ocvnW6nWF2yokTYZVaV1ISgBDZASAJbMqUIAAAAGIcPXzo9+PCl060UgcmCEmEXzZRjh1TYZxUB3Fz7Ow8ISWCLj48iAAAAYJw+fOn0IMmgHL+ZLvui7SStJHuVEDtgfVVJT1FUlzNK4CaEJLAtC4u/fLajGAAAAIB17e88sJz6hVirSVqLv3zWWSUVZestuPFLux0hCQAAAACMUr+G1+SskooTlMB1CEkAAAAAYCwGKVZg1M1MuTsNFSQogWtcFZLsURqwLUNFAAAAAFyt3J6qrqtK+mq4mgQlcJX2tx9oZy3DrGVP1hI/P79t/gAAAACutZZBTcdCDrS//UBLBVePoARK7W9bSQIjNlQEAAAAwLUWf/XscpLzNb28nhquHkEJREgCY2r0DJUCAAAAcAO9ml7Xgfa3H+io3moRlNB4QhIYiwuKAAAAALgRq0qYJIISGk1IAmMzrwgAAACAWxjU9Lr2W1VSLZ9VBDTVvm/fLySB8ViNoAQAAAC4hcVfPTvc9+37F5Lsr+HlDZK01HI1WFFCIwlJYKz6S7967pJiAAAAADagV9Pr2rvv2/d3VW81CEpoHCEJjNVqkr5iAAAAADZi6VfPDZMs1PTy+vu+ff+UWp58ghIaRUgCY9ezmgQAAADYpF5Nr2tPkhnVO/luW1tbUwo0wr5vHRaSwHgtLP36TEcxAAAAAJu171uHl5PsrenlfW7p12eW1fLksqKEprxop1IcoCQkgfFYSTKtGAAAAIAt6tX42gaqd7JZUULtlSHJMMk+pQFjsZqks/TrM4uKAgAAANiqmq8quWvp12eGankyWVFC3V+uQhIYLyEJAAAAMCq9Gl/bQPVOLkEJtSUkgbFbStIWkgAAAACjsPTrM4MU23vX0d593zrcU8uTydZb1NK++2aEJDBeZ5P0ll7uX1IUAAAAwKjsu2+mm+RcTS9vNUl76eX+spqeLIIS6vgyFZLA+CykCEiGigIAAAAYh333zSynvmeVXFh6uT+tlifLZxUBdbOW2/oRksDIP+JJ+r9/2aFjAAAAwHit5bZe6ruq5O4v33e4Y4xlslhRQq18+b7DgyQHlARs20qSxSTzSYa/f/nMsiIBAAAAdsqX7zu8mPpOhl5J0v79y2dsaT4hrCihRi/PmUGEJNdaSjKjGNiE5d/bJxMAAADYdWszSS7W9OL2phiz66nnyWBFCbUgJLmu80lmfu+wbQAAAAAq6Mv3zQyT7K/xJd75+5f7i2p691lRQh1emN0ISa51/vcv97uKAQAAAIAK66W+q0qSZJCkrZp332cUAVVWhiTnlMQnCEkAAAAAqLzfv9wfJlmo8SXu+/J9M7bNnwCCEipLSHJdB4UkAAAAANRIr+7X9+X7ZlqqeXcJSqikL//LoXbW1s5lbS1+l38Hf/9yf+DuAAAAAKAufv9yf5i1tfM1HtPbk7W1gZreXYISKufL/3KonWSoJD7h4O//9awXKgAAAAB11Kv59e3/8r8csgXXLhKUUClXhSR7lEaSZDXJPUISAAAAAOrq9/96djnJ+ZpfZu/L/3KopbZ3h6CEyvjyvxyaSjKIkGTdapLO7//17LyiAAAAAKDmZlKMh9XVnhRjn+wCQQmVUIYkwyT7lEaSKyHJoqIAAAAAoO5+/69nLyXp1/wybcG1SwQlVMLa2tr82travrW1tfitra6trQlJAAAAAGiUtbW1/tra2krNx/56f/7PP26p7Z0lKGHi/fk//3iQZL+SSFKuJPmv//W8kAQAAACARvmv//X8pdT/YPc9SWy1v8NuW1tbUwpMrD//5x/3kxxSEkmSpSRdIQkAAABAs5QrDFpK4rL51P8c47n/+l/P91T1zhCUMMkfgG6Sc0oiSRGSdMrUHAAAAICa+vN//vF0kk6Sduyy0nR3mjS9MwQlTOYH4eCPp5O8qiSSrIck54QkAAAAAHX05wd/3EqxpdR06r9Sgo1bSdI2Ljh+n1UETOCHoZ1koCSSCEkAAAAAauuqgOSA0uA69ibpJ+kqivGyooRJ/DgsRnKeCEkAAAAAauvPD/54JkVIYhyMWzn4X+eeHyiG8RGUMEkfh6kkwyT7lIaQBAAAAKCOyjGwQZK7lQYbtJpirNB5JWPyGUXABJmPkCQRkgAAAADU0lUThYUkbMaeJIPy/mEMnFHCRLjj4I8GSfYriSIk+b/nfiYkAQAAAKiROw7+yG4qbMe+OK9kbKwoYRI+EjNxYFUiJAEAAACos2GEJGzPgTsO/qirGEZPUMKuKh/sM0pCSAIAAABQV3cc/FE/QhJGo3/HwR+1FcNoOcyd3fxAtFMk6XsaXhRCEgAAAICauuPgjzpJLioJRmglSdt44uhYUcJufSDW92QUkghJAAAAAOpsoAgYsb1J5hXD6FhRwo67o/tDB1cVipBk8IKQBAAAAKCG7uj+sJvknJJgTM7+38ELM4ph+6woYTfYk1FIAgAAANAEPUXAGB0qwzi2SVDCjrqj+8NekgMNLwYhCQAAAEDN3dH94XSKLZJgnPp3dH/ocPdtEpSwkx+HbpLZhhfDaoQkAAAAAE0wrQjYAXuSDMvjDtgiQQk7okw1+w0vBiEJAAAAQHMIStgpwpJt+qwiYNzuOPCD9cPb9zS4GIqQ5PzPF90RAAAAAPV2x4EftNLssTB23r4UE9W7imLzrChhJwwjJBGSAAAAADSHMyPYDQfuOPCDvmLYPEEJY3XHgR8Oktv2Jbelob/V5DYhCQAAAECj3NZu8HiY3+7+Dt1x4Iddz+DmCEoYm/KBPNDwYuj83/MvCEkAAAAAgJ1yTliyOc4oYSy+9M0ftJOca3gxHPzvf7OSBAAAAKBp1tbWFAK7rf+lb/5g0fjkxlhRwsh96ZuXD29vsoP//W8/H7gbAAAAAIBdsCfJsJzQzi0IShiHYZp9eLuQBAAAAADYbcKSDRKUMFJf+uYPBkn2NbgIzgpJAAAAAIAJsSfJoNwFiBsQlDAyX/rmD7pp9uHt5//73371YGT8AAAgAElEQVQ+404AAAAAaDznQjBJ9qVYWSIsuYHbHCzEKHzpm99vJ/mwwUVw/r//7cWuOwEAAACAL33z+60kHysJJsxSks5//9uLlxTFJwlKGMWLfypFSr63qS+Y//63F+3zBwAAAMBlX/rm95fT3PEyJpew5DpsvcUozDf4pb+UpOMWAAAAAOAaQ0XABCq34fq+bbiuIihhW770ze/3kuxv6OWvRPoKAAAAwPUNFAETSlhyDVtvsWVf/KfvdZJcbHARrCRZdidU0qUU28UtJxn+4X//Qj0CAAAAI/fFf/recmy/xeRaStL5w//+ReMnggtK2OpLvpVioHmP0qAGVlJsIdcXmgAAAACj8sV/+l43yTklwQQTlkRQwtZf8osplmhB3ZxP0hOYAAAAAKNgVQkVsJJk+g//+xeLTS0AZ5SwlZd7P0IS6utAko+/+E/f63/xn75nn0YAAABgu7qKgAm3N8nwi//0vXZTC8CKEjbli//0vekkryoJGqLxaToAAACwfeXE40NKggm3mmIbrsaNhQlK2PgL/RvOJaGxH4iZP7zyi0GVL+L2e+9rJWmpTirg0p9++/LimJ+HjmKeWIt/+u3LlxQDTXD7vfe1k2xo9eqffvvyUInB7rYJPIfs1Du/zjxHyRe/YSt7KuNg1cfCNktQgpc5NOADcfu99/WSzKpGKmDhT799uTPm50HjpyL3Qvl3mORSiskaghSq8M1dHwxbf5et/21lNHuTryRZvur5SPl8XDIABZefw075HLZ38DkcZgcmfDDx7/92eZ+t34PGUG7+DC2u/23KN+yL3/jeVPm+cG9QBYf/8Mov+k25WEEJG32RWx4IyV1/eOUXlWy8CUqoEEEJG+lYL5YdzKEBKXbx27o+CNvJlYGxfRPyjCyXz8h6wLisxqjpc9gqn7/1Z7GVyTgsef1bteg5rPX91ynvu06S/UpkJJauauPN1/UihSVUzPk/vPKLbhMuVFDCRl7gziWBwmqS9h9e+UXlOjmCEipEUMJW3s3DJPNlp3pZkTCmd8fVoUgnkzEYu9nnZBgBI/V4DtefxSo9h4L+etyD00nWf7YlH78LZRtvvm6risuwZJDkbtVMFfrpSab/8Movar26X1DCrV7crTiXBD7xcfjDK7/oVLBB34ughIo8Y4IStmmp7HTOC03Y5rtiKsVAWCfVC0ZuRcBIVZ7DVvn8rT+Le2r2HM6vP4u2lpzo+7CdZCbCkd12IcmgbitNvviN780k6bm3qEg/q/uHV+p7yLughJv6wje+O4wlpHCtwx+98lKl9mgUlFAhghJGej/lSmhiAIqNvB9auTJTuElt4PWA0Sx3Juk57KZZ29II+ifvXuymCEhsjzRZVspnpV+X9t0XvvHdVoqw5IDqZcKtJpn+6JWXhnW8OEEJN3tR92JgFW70YWh99MpLlWmUCUqoEEEJ43pvzyfpGXziOu+EqRQDst0YDEsM1rI7z2ErzQxHbvUcDgT9u3I/dlMMWu9VGhPfvuunnoGJ1UtMuoMfvfLSoG4XJSjhRi/nTpKLSgJuaO6jV17qVaix34ughGoQlDBuF8oO9VBRNFu5z3w39ga/6Ts5xUDtQFEwpuewm2JA0HN48+/WoM4HW0/Y/diLgKRqaheYJMkXvvHd9S0H2+VPcMKkOf/RKy9163RBghKu9zKeSnEuicYB3NjKR6+81KpQo78XQQnVIChhx+61FCtMhoqiOcrVIzMpAhJt3Y1bzZVtTpYVB9t8DlvlMzgTA3+b6n+kZtsNTdA92SnL1neh+t+qGeE+41KOlw5j5ePVLiTpVmnHlZsRlHC9B38+ZvTARtzz0SsvVWJml6CEChGUsOP3XNmpdi5DjZUDs73Y+3tUHWKrstjKc9hJEZB4DrfvfGwnOYp7cipFQGL8Q9sONuQL3/huO0VYIui/YilJpw5hiaCETz7w//idbpJzSgI25OxH//7LmYp0AnoRlFCRjo2ghF1yvuxUm6VbI+XAbC/NOph9x97XsSoLz6HnsLr35XSKkMRgZ33N/em3L/cUA6P2hX/8TieOK7jWSpLpj/79l5UOKAUlXP2gt1JsuaWhABuz9NG//7JdkY5AL4ISKtLhF5Swi1ZTDDj1FUW1GZjd2fd2DNTiOfQcVue+tIqkec9G1+orRu0L//idmSRnlMSn+lKdKocln1GHXGU+QhLYDPtSAtTLniRnbr/3vuHt997XVhzVc/u997Vuv/e+YYpZfgZnd8b+JBfL56ajOLj93vs6nsNdfQ59v258b7ZTTA4VkjTr2VgsVxDByHz077/sp1iRzif7UsMv/ON3Kvu8CUpIknzhH7/Ti0Ff2MqzY0AAoJ6d6g9vv/e+GUVRDbffe9/U7ffeN0jycQzM7uZzsz5Q21IcjXwOW7ffe998BCST8P0aeA4/dX92U5wr4MD25tmT5NVylwUYmY/+/ZfdFKuWuOZ5K492qBxBCfnCP3y7nbW12aytxc/Pbws/AOpqfXXJlKKY6MGvXpLlOCB6UuxP8vHt997X9+w05hmcKp/Dj2Om/qQ4kGIWfc9zePk7cS520Gi62XJSBYzO2tp01taWjI196nfuC//w7W7VqlNQ0nBf+IdvT6XYcgvYGgMAAPW2P8myLYUmT7m9z3KKM7gMfk2eQ+WzY7uTej+H0ym2MnIW3uTZU9bLYpO/YeXAuPuTdQduv/e+RQEio/LRf/zqUpLpFOdz8EnnvvAP3x5U6T9YUEIvlp7CdtgDGKD+9qTYUqinKHbfVdtsXdSOrcSz86rtuGr5HK6fB/Sq53Di7S2/YfNNGxwuvxVWG3KtfUmsGGZkPvqPXy0n6URYcj0HqhSWCEoa7Av/8O1OiplewNYNFQFAY8yW+77rWO+Scvb6cgx8Vc36YbrO/anHcziTYhWJc0iq5e40aJVXGeT5VnAjwhJG6qP/+NViEu2c66tMWCIoaahyy62BkgAA2FxDX8d655WrSOZTzF63zVY17cmVc39aiqOyz+EwyRnPYaWfw1frvrqkXEkiyONWhCWM1Ef/8atBkoNK4vp9qCqEJYKShlpbS29tLXudLeTnt+3fJW8UgEZ2rBdvv/c+2y/uzIBXJ8XsdYdE18P66hJnl1TrOVxfzWXwuR7WV5d0anivDmIlCZtr0wlLGJmP/uNXg7W1zBkru+7vwOe/PtlhiaCkgT7/dVtuwaj88Te/WlQKAI20t+xYC0vGqDwXxlkk9bM+q91WdtV4Dvuxmquuz+HFsn7rdK8KSdisfbHjCiP0x9/8qpfkvJK4rokOSwQlDfP5r9tyC0ZoQREANNqeCEvG4qotfmaVRr07y56hiX4OW7ffe99iTLKru0PllnhTFb9fu+5VtuHuOoWG7L4//uZX3QhLbtj+m9SwRFDSPL2YkQejMlQEAI0nLBmxsiwdFN0c69ue2Iprsp7DTvkc7lMajbA/xVZc7Yrer+0k51Qj23SoDNxgJMqwxATb65vIsERQ0iC23IKRm1cEAERYMjLlAMUwJvY08Rl6tdxqjd1/DmdSbHlnq63mPYcfVm2guFwJM1R9jEhfe44Rm06ypBiua+LCEkFJQ3z+69+aStYGyVr8/PxG8ltyPgkA1wwwCUu2odzy4lwMzjbZbHkQM7v3HA6SnFESjXauYs/hvO8GI27POT+Lkfnjb351KVnrJGtLxtGu+zvw+a9/a2K+OYKS5piJmXkwSvYvBeB6neuhzvXmlYNyVj6TJAduv/e+Rc/Rjj+DU+V5JA7CZv05nJ/057Bc/WSbRkZtX4pt62Ek/vibX19K0omVJTf85kxKWCIoaYDPf/1b7TgIE0Zp5Y+/+fVAMQBwHcKSTTA4yw2sn1vSUhQ78xym2LrIeSRc7e5J/p6V74eeamJMDpVnNcFICEtu6cDnv/6tmd3+jxCUNMNAEcBIdRUBADexT/vr1gzOsoHnaNF2dmN/DttxaDs3fw4nNSwZxJZbjPkeM/GFURKW3NKZz3/9W93d/A8QlNS/4Tuztra2b21tLX5+fiP5nf3jb3499HYB4BbudjD1TduoQhI2wtk/430O2+VzaItmbmbiQsvywHlbbjFue1NsYw8j88ff/PrS2tpaZ21tbcn42nV/526/977p3aqf29bW1tyl9W34tlLMDjLLAkZjKUnnT799+VIF3we97PAWfH/67cu3uWWY0Odhpxs/c3/67cs9JX/TOmknmSp/7fLXSj0G0e/5029fnlfLn6rv+TRncHYpyaUUA9K56m/+9NuXh5t4PlI+G1NX/W3KQOFq2QZb9ASN9DkcNqiveO1zuFj+7yRZ/tNvX17e4DM4dc1z2GrQu2winsMyaF+uyL27Wt5rw6vuucUq9idHUG+d8h875bPTqdD753M3e0fw/9m7t/VGqjv//5/Kw7k9V2BxJBj4xeoBEpL5z+PiClqciUwGl/9/pUOAoeWETWggLrPppmmgZcIuQfm1zGzQWeQrQH4CBEITZCYk6CjyFYx1Bf0/qGXa3W27vZFqber96qceIBtUtTZVa63v2uAY77KemDTk1PeGQEnYla6rbF9RAON5UVd8bSARKAGuqQ8ESvzqQFQkVU2H2seOhNffjwnkaeiDsxu6OiDWz6ODZyZHbQcYY4UbPCFYQj10uR7GyoImFY+/V15802z0a46QRm1J3YMEw3kXKTHtPJcDjmuDTqtKjmFCfZ2eCJY4870hUBJuZatK+j0pAdAxt9WhIFACh+sDgRJ/865kOtOJZx2K9UGnFZN/QXYGtwdke5J6rswSNoO2sakvIaU3wZLjl40QgyTb9dCZgWnzvot3XEG99wadVsViug4dLb/rktqDTqvNm+ZIeVtVts2Vq8H++wh8gfaxle97rru6ECgJt5L1xV6zwLhezFXfZwITKAGuqQ8ESsLIx4rpUM97csuFLgeBdQI3dHW28NCTtK+aK4TV5gRLjvfe7CmMIMmargZHfKiHJfkZ6N/LyqDTalhIx7aD3/1NSQmD6GPL41hSKvcCJkx6Ae3kAtQ9AiVhVrBUbi9FBXzqgCUh7CFLoAS4pj4QKAmvY9Ewl+uDfyeKOLgbSOdvU1lwpO3z5AmTF4n8H6xlS7uj5b3vk+m8ClLukxclZUGThuf5kes3zcHVJCNJ6aDTavKGmUh+J5KajrXtWFWCSZf7tvyZBJan1UGnleTxQwRKwqtUJUl/JyWAY9mU1Ajp8F0CJcA19YFASZj5Oq1sBuJph2/T2nYllvOmL38H5dckNUMcGPFwVdYN9Uk5b8fg+fux53E9XDX1sB9g3sTKApe+1cPcz2xwbEJoELsOePLu6sqd1SW5Ddai0OW+LYIlu1nIY2vD75DOwWmTBMCRbZqXbymkIAkAFMGg09oy24DcqmyfcBfNlmv1RpHyxXT2fBucHUlakXTroNOqhjp7dNBp9c2Azz9IWjbP7ZNZZYP/uLmup/VwWdI/DDqtJNTVeINOq2fq4a0e1cNNZcGdvLny/VwddFqsaMuvbRebuuGCeTM5GZhkuU9MOxTXumQm+UwUgZKwOqKx3D34CnC5ob+qbBlticP3AMD7zsXQdKrvl5sDTqmZIVmEtmkqv2bEbQ/MlgadVqMog2BmICqVVJJ/AZNZE4zD3vWw7VkfcWc9TIuyYsh8u3yph7lvTWy2YXJhC6YFVhRYqR+ppAVXyj85ghzKfMOhMu+S7qT7UbeQxkEpSifhhPnrtKSYbMcRbCnbo7nPdg0AEGwHo2tm/bm0ZYOUDfQ0Q+9om0Etn87MW1a2tc9WgevMlrJAXlP+nPsjZTN8h2xxuGs99GlrtZF5N1IP3a6HC5ZW2SWOPHubN4u1utEu1+qSdMnyrSTKtnoF8irzrp3VY9OM6dvFk/oBzigJxG0P/KQh6WIBHnXxmw/e47A04PAd5VScUQJs1wfOKOEd6IJgDwQ1y+J7nnTq1pSdSzakptyQjz6c+7PT/Wydek3+xZI+9OR2V5Qdis0Ept3rYVNuBLysBAocOYeVIIk7dSKR/WAJ3xvk5rYHfuJTuzq3/vU3H7w3kf41W2+FUWm2OzGhWydIAgAADssEqlzbiivIttuOg1dd78xtKgtWcRjv3vVm+9yfE3L33J+d2uwd/209LJl66Hz/TtIJs9UdQZK962Fi6uGGxVuxGSioWs6GFYIkTtWJtqRFy7dRJSeQl28+eK8vqWL5G+Capdse+Ek8iX8xgZIwpAo/sjgSe0ECAICjd6y3l2m7EiyZMzO+Q9NWtizeZcvmXLIeNeNAdadvzv1ZlNvnJkwph72rPeF6sHIkaXHQacWhHtI+oXpYsVQPba+msDkOsG4CxnCrPjSVnTNqC4ES5OqbD94bmn7MOqlxta1jFg6MFYESz932wE9K8mc5/LEaR+bFAAAAcNSOdV9uBUvSkNLXnIdw0uFb3FA2ez2lNhyp/jSVzWh0uZM+q2ybosIyZ1vMOnyL65IqpjzB/XpoNUhiVkfZKs8jMSDusoay1aE2TJVrdcoGcvXNB+9tffPBe7HsBgldMqUJnNVNoMR/RWhgrn3zwXvs/wgAAI7NBEtKFjvXOwWzqsScS+LyeXkrg06rwuz1Y9ef4Y7VJa6aL+oAlnlulyfRba8iGVKbxlIPlyf8Uy6cy2GzLidsCed0PdiS3dVGMbkAG7754L3E8XZYnk6aM7vH5hbS1F9mP7aTgT/mpthyCwAAjLlzbQYUe7K/PU3qe2d7x7kkLhpJqrLN1tjrULNcq/eUzeRzcfVCu1yrV4o0IG/qYdvhPl2VQOXY62FartW75v077i0PXTm83Nb3cZ3Dur2oA71yrb4qab5AZdMJ5oDxqrIVbiW5vZIRYUtve+An3XHtQsSKEq9FqRQp8Cv55oP3mMUBAADG3bl2ZRuuObMaw+sOitw8l2RD2RY/PUr8ROvQmoO3N5HtGBzn6rkka6YeEiSZXD0c91ZcCw4dXh5b+l3OJfGrDWLDbNHOxLrtgVOl2x441bztgVNbUvSlFC1J0Ukpmi3A2CSXu9eUFI3tm0WgxN8XVFXSXOCPufLNB7+lYwsAACbCDDAlDtyKtwMyZuswF7f6WZXEFj+Tr0Nbg06rqslvAXQUc+bcnOCZ53Sxb7g86LSqbF+USz2MJa2M4V/nTJDETCKwEfxbJbDnVfkfyt6ZDXER0tgESNqS/m7afFOUPLjW5rvtgVNjafMRKPFX6GeTbCqwA04BAICTHeyu7A/yzvs4K9HhrX4WB50We8vnW49SSQuyv0Lreqk5DDpY5vlc7DctmHKB/Ophw9TD4+SZS+90W6stm5Qm76QFK6O5ue2BU6myAMk8xQyuvwdue+DUsdt8BEr8fFElcnN7g3FKvvngt3RuAQDAxJnBvHXLt5H42CFxsE26MOi0GOSyU4/acmM7u52KsAVXU27N7h1JOuHYgHvR6uH9R6iHCw7mmY1B6A1Wk3hZ7oeysw1kHGqa3vbAqenbHjjVk7RECYMnxtLmI1DipzTw52PLLQAAkLeq7A7wJj4lltkSxaUtt0aS7mdw1i6Hzv7Zaa5cq1dDTG/zXCcdq4cxA83W62H3kPVwwdF3p41ACYF2f9kow6UQE/K2B05VJPUV/nb/CM+cOariyAiUeOb2H51KokgzUSQFem1GEVtuAQCAfJltmhKLtzDr2aHubYfuZXtwtktJdqIuuRgsaYZ26K55nqaD9ZAgiV/1cMHhALONbyLfEX/LfNfCdye4nV5u/9GpShSpF/i4I1fYV/v2H506cpuPQIl/0sCfL/nbf7PlFgAAsNbJXrN4C4kP6VSu1RNJs47cDoOzbtYl14IlM5JCO9i9IXcG6aiHbtfDjT3+JwuOr8LLe0u5Dc628l7PQpsoDiXxzOByWxzWDr9NHafNR6DEr5dWorDPJln923+z5RYAALDK5mCq89sDOTaLncFZhzkYLFkK5WB38xxL1EMcoh6uXvdfOR0ksTT4zGoS//VIgmPXgVmSAQFYuv1HRzvYnUCJX9KAn22k8GZ5AQAAz5gDQZct/fyMBwO5Dbkz07DB4Kzz9cm1YEko5w+40i8kSOJHPdwadFqJpEXzHy1wntOuKMfk4VHEISTc7T861RBnkiAsR2rzESjx56WVKOzVJGy5BQAAXGpY2xrYdXZViWOz2Bno88SOYIkLTvq+TYq5/3lHbocgiV91sSnpHzx5d5Ys/CZl2f8y3iMVDs9suZWSEgjMydt/dOrQbT4CJb6IojTgk3bW//bfv2WZKwAAcKWjvSV7M89d3n7LlU70MkES7+pUX9IC5Tio+18gSOLt980HJQtpM6SEBGGTJDikKGoqiqY4BZwrwOvQbSYCJR64/V9/mijc1SQjeXJwKQAAKBRbq0qc3PbArCZxYRb76qDTSime/jHBrWUHbmXO11Ul5r5deEcQrERoGFwPxzDn3yv5nFi3/+tPp+XOKkVg7G2+2//1p4dq8xEo8UPIncHm3/7rN0OyGAAAuMTMum3b+G1HB3FdaI9uiDPtfK9XqaQ1yrPX971GsBIBGpIEOKKS5/efkIUI3KHaLARKHGciX6GuJtn823/9hkY2AABwla3tt2KXEsGR1SQjSVWPto3B3hLZn73t3aoSR1aTbIpBNQAI7ZsMhOxQq0oIlLgv5YUMAACQP7Nf+YaFn44dSwoX2qMJ+8cHU6+25MZZPL71s1y4X4KVABCI2//1pyVJs6QECuDAbSgCJS6/tH78UKwomgv0QJ21v/3Xb3rkMgAAcJyNVSUVVx7ekdUkq4NOq0tRDIc5BHzR8m14s6rE1EPbq0kWObwdAAISRTGHfXMV5Jq7/ccPHajNR6DEbUmgzzUS+0sDAAA/2BignzIDo7RHs61+aDcGaNBpNSWt0986kNTy76+b/AJCNU0SoIBKJAEK5EBtKQIljrr9xw+VZH/23qQ0//af7w7JZQAA4DqzzYyN7bdc6bzaDlIkbPUTtETZJCpb5h0KSu6qXKtPW+4XjsSWyQgf2w+hiGKSAAUyZ8ba90WgxF2hzpzblL2DUQEAAI7CxqoS653Xcq2eSJqyeAsrg06rR/ELlzl3JrV8Gwn9wn2lnA8EC3IPkJugJAAgXDdtc95CGrnn9h8/NK1wZ+2kf/vPd5kVCAAAfNKTtJTzb5YceG6bA7Sb8u+wbRzBoNNqlmv1quydwdFwvKzZ7Bey5RZssXEeTsV87+H3NyUmFQDsoXr7jx+a3m9cmhUlDooUVSNFU5GC+7P+t/98t00OAwAAzzrdPQs/W7L5zOVavSK7W5E02HKrUGwG5abM6innmADSTEHzBchbTBKgSCL+8Kd4f6YiRdX96gWBEjoKeUrJWgAA4Km8D50uWX7exGZaDzqtLkWuOAadVl/SisVbqDqaNDbr4arJF8AGWytKAABh23fMnUCJY/7xxz+zPXtvUtb++p/v9MhhAADgqbwHbWYsP29i8bdTilshpbJ3sPtJ1w51N+clnLT08yOxmgQWWVpReJKUB4DgzZqx910RKHFPg+cCAABwTmG2gTLb/dg6xH2VA9yLyQyM2jwPw7VVJTbvp8nWd3DAhqXvH1AUrBpEUSV7/RcEStwT4od59a//+c6QrAUAAB7r5f2D5Vo9LmB7NKWoFVpT9laVJI6lha2JZiPZDVgB2/q8B4CJGpIEKKg93/UEShzyj//2s0SRphRJgV10eAEAADxgtvuZt/Tzq4NOi057gVleVTLryvZb5j5sbcfMahK4wsb3wLlt+ICJidQLcPyRi+sg19Q//tvPdp0YRqDELSGuJln+63+wmgQAAPitQNtBxRZ/O6WkQXZXlbjSH7N1H6wmgUtsfXcTkh5F8Nf/eKcvaZOUQEERKHHZP/7bz2we1kdDGwAAAHt2GnLAahJIsr6qJCl4PWQ1CVx6F/Qs/XTDrK4EiqBLEoA+z1UESuiUTrSh/df/eIeGNgAAAG3Sm2mT9NjZj7D0u9a33zIDtHPUQ0CStG7hN6fECkfwvQVCt+v2WwRK3BEH9jysJgEAAPCIOTx+ysJPbxRoazMcgFnVsFrQfhmruoCrbH0bTpdr9QrJj9CZrfLXSQkU1A1tPgIl7ghtRQmrSQAAADzvLOTVbiTp4VC5qBa0HrYpcnCQzW2BqBMoigZJgIJiRYmL7njw4TiKoqkoihTINYqiiA4vAACA552FHIzE/tjYxaDT6kvasPDTseVHt/H7m6zqgsPvgZGln58t1+qMayB4f/2Pd/pRFK0ENCbJxXXQa+aOBx8u7awPBErcEAf2PN2v33+b1SQAAACeMOcizNpoN3J4NPbRtvCbU7a23DHno8xY+GkGg+Eym8H00+VaPSELUACppE2SAQUU7/wHAiUOZkogL1gAAADQHr0ZVpPAxfIRUw8BZ7Qt/36T80oQOjPZuSp7K7gAW65ZUX8L6eGEuYCeZVNScseDD5OrftuS1Je09fX7b/dJDgBA0ZmZ3iGzMQi0Oei0GKDFngad1rBcq69JOpnzT8eys8oitvCbGxziDsffA71yrb4pO6utJGlKUq9cq8dmKzAgSF+//3b/jgcfTiT9ntRAgVzT9iJQYtkdDz4cB/ZIM5KWyNmgyqgkrSubadb9+v236UgBAIqoVKROQk56FCscQFd2AiVFqYdtihg80JbdcQaCJSiEr99/u3vHgw8vSLpEaqAgpu548OHS9lgnW29ZF8VSJC4ux685KbooRX+/48FH2nc8+EhM3QUAFEzJwm8Oc/wtGyucWU2Cg+jZ6DTnvYrMnBM0Qz0EdtV24B62gyUJ2YGQff3+220pOiFFI8bCuApyxdvln0CJfTFJAM/MS/rwjgcf6d7x4CMlkgMAUBC5f/Py2g7H0t7rI7bdwiHqwYaFn64E/ntStv3dkFIGT94Dqw7cypSkS+VavUmuIGRfv/9W37R910kNFMC3bTACJQ5lBuCZk5L6dzz4SEJSAAAKIKY9OlY9ihQcLy951wsb7xiClfBJ26F7OV2u1fsc8rIzgwAAACAASURBVI6Qff3+W1tfv/9WLGlB2XnEQPB9IQIlFt3x4CPTymYkAL6aknTpjgcfaZMUAICiNKBzkucMvpKF9OxRpHAINgb048DfMdRDeGXQafXk1uz2WUlflmv1ptk6DwjS1++/1f76/bdKygImG6QIAvTtFsQESorV4QYmZZ5gCQAgVOasgrwnt2zl+FuxhWTtUbJwUGaANPS+Wol6CNxU6uA9nZY0LNfqad5nGwF5MgGTiqQTkpaVBS5HpAxCcMeDj1Qk6RaSwp4oimJSAQGZv3P+Uf1l9c2EpAAABMZGm62f42+Vcn620aDT6lOscEjr2jHjLwd5B0dnc/69zUGntUWxgk8GnVavXKuvKdsG2iVTkpYkLZVr9VVJXc7hQqjM+SXftuPunH90WkwEL7I05/bZJPtDfQIldrE8E6GZv3P+0eFfVt9MSQoAQECqFn5zmONvzeT8bARJcNRyk2tHvFyrx3msZrF0zkGPIgVPNeReoOSaPrGk+XKtPjL1rGfeX32CkwjRX1bf3OKbUlx3zj/aVhiBkoqkLoES+5kAhGbpzvlHe39ZfZMPZcGVa3XKgGOdSmZwA0cWW/jNYU7vahvPxvcBR2HjGzYd2O/YTk9M5j1ekdTM8zcHnVZs63kHndawXKuvKNvyymVTygI6J3fkleTWOSs2v/89SVv0TwDvdSVdCuA5ShJbb1l2pUQaIFDtO+cfqfxl9S1mzBTbHEngFFYxAkdQrtWryn8LHltnMuSFQRH4Um4qyucg+Zh6iGO28YrW7k6Vrfac8fDei9xH2vnsS6adJUmb5p3Ul9QLvA0EBOUvq29u3Tn/yIby30J03EoSh7nbNkMSIOCy3SAZAAABsLHt1kaOvxVbeL4hxQqHZWnWcciTDAiUwOf3wRb9zaDMKFt5syTpw3KtfqVcq/fKtXqjXKuXSB7AeSGcyVSSCJRYc2fy6LSiSFxcAV+NO5NHmcEOAPBWuVafVrbXeN56gQ9wMUCLo9rI+fcqgf3OthFnJSCAb0lX0hopEaw5SRcl/b1cqw8JmgAOi6JeAGOYMxKBEps4nwShm5KUkAwAAI/Z+o7lGUjIu026SbHCMYQ6uJ/35CKClQjpO813JXwzuho06ZVr9YQkAdzxl3YYZxTfmTw6TaAEwCSxHBoAwHfs8PLsbOQ9QDukWMGTuiHld5YA9RA4ArMyqkpKFMqcpEs7VpmwiwXgho0AnqFCoMQeXuYogpk7k0dZPQUA8I6ZrWjjPLnNQac1DDhpmckO3CjvA1CHJDlCYbZzXCQlCmd7lcmwXKunBEwA2vjjQKDEHgaPURQxSQAA8FBq6XfzPgwx7zYp5yLgOHokAYDrDTqtpqRVUqKQppQdAj9kSy7AqmEAz8DWW9Zw0DdXca6YCg8A8InF1SRS/gPBU+Q4sO/7oBTgY/XIWYRm0GklCmPrFxy9PXOpXKv3y7V6THIAOYuifgDjl2y9BWDiSiQBAMAzqaXfHQ06rW7gadujeIG27FWBBmIAW2IRLCm6WUkflmv1JttxAbkKYtU4gRIAeTRUAADwQrlWT2VvNUmXHAD2FeIZNyWyFRgPc7h7LGlEahTeaUmsLgHyQ6AEAAAACIWZ2b1k8RYIlAD7MIOgAHCz90QsgiXIJr58aCbBAJigv1z6NYe5AwAAAAFpW/ztImy7BcANfZIAIRt0Wn0RLMFVS+VavcdWXABuhkAJAAAACs/MNpyzeAttcgFAHliZg4KU876yre04swQybbxeuVavkBQA9kKgxJKIP/wp0B8AAFxmOs1Llm+jTU4AADA+O7bhIlgCKTs/lWAJMCEhjF8SKAEwaZskAQDAVWYbhp7l21g3M18BAMAYDTqtrUGnVZG0SmpA0pSkL8u1ekJSALgegRIAkzYkCQAALtoRJJmyfCttcgNAju++EqmAohl0WomkRVICxiWCJcD4/J+Fx4I4A4hACYBJ65EEAABHNZVtw2DT5qDTapMVAHJUIglQRINOqynphNj1ABmCJcD4BLGlHYESe9heAZR1AAAsKdfqbUnzDtxKk9wADlxvp0kFAMdhtrpkKy5sI1gC4FsESmyJtKVI4uIK/Br9z6U3ulR4AIBLHAqSjFS8bbcY6MZxhHgAL5OKgJyZc0sSSfeL1SXIgiUc8A4cR6Q4gDHMPoESAJNEkAQA4BSHgiSS1Bx0WlsFywIGIuCbiQYyLL0DCFgCWf3rmu/SMqlReD2CJUDh2xZbBErsGZIEKICUJAAAuKBcq0+Xa/We3AmSjOTGtlvMpAWd8H0EGsxkMBDYUccHnVYq6VZJa6RIYU1JarPFI1DstgWBEkv+5/++MSQVELh1yjkAwAVmhmBP0pxDt9VwZAA27291iRKJonfCAbhn0GkNB51WVdJ9ktZJkUKaVfG2RAXGZS6AZxgSKLFrRBIgYAlJAACwrVyrV5UFSWYduq3NQadV1I54iVKJY8h7pm9e/bW8B2UJOAF7GHRavUGnFUs6IQ58L6KT5Vo9JRmAg/s//+9jcQjP8T//943hLWSnPVEU9RVGxA243vJXv1sZkgwAAFvM1gmppNMO3l7i0L0Mc26PliidOIa8B/hDPWidrWWAmxh0Wn1JiRk0T8w1Q8oUwlK5Vu+aMgDgJqIoigN4jJHE1lsudEyB0Gx89buVlGQAANhSrtVjZQOcLgZJ1gadVq/A7VEGmXAcpUCfK+9t+JisBxyQ2ZIrHXRaJWXbcq2K3UGKoMt5JcCBVQN4hr5EoKRoHVNg0jYlxSQDAMCGcq1eKtfqXUkfys0B+ZGkhmP3tGUhn2gr4Kjyrtf9wH7nmvclxQk4HLMtVzLotKaVbc21LM4zCfl7k5IMwP6++/+dLsmtLY6PaihJbL1lF8v4EJKRpOpXv1vZIikAAHkyA36ppHnHbzUddFpD2qNsv4Uj1fPYws9uBfY719fDISULOBqzLVP/undUbOpWSazcCsHpcq3eZgsuYF/VQJ5jKBEocSITgABsSEq++t0KDQjstEwS8M0BJsmjAIkkrQ86raaD92VjgJaDpHEUJQu/GeyKEmUDuj2KFTAeZlvN3nXtlOkd37yKins+UGnH5dsWnE2xawawnySQ5+hLBEqs+up3K/3v1hskBHy3Lqn6VavJShJc31lISQUA42YGHaqmUe7LbM2Rq52IQafVL9fqef8sgRIcRWzhN/Nq3w4tPBv1EJj8N3ZLV4MnPVLk27ZcbN7psQdtublyrZ4MOq02OQdc67v1Rqwomg3kcYYSgRIXrIslmfDTSFL6VavZJCkAABPuUJdMZ7oq6aSHj5A4uOXWTpvKd4YnbV8cRe4D+2aGeB6/MyRgCaAodq6+MRNgEmVnuLm62iSV1CbngBv7OKE8yFetJitKHDGkswjPjCR1JTVYRQIAGLcd21RsX7H826Zhp9VBp9X1oD06k3M+x3kNQiOY90LeMxY3c/69vCfQzZRr9ZLjQVwAgTOrbpqSmmalSSr3xshmyrV6yo4JwFXfrTdK8mP744O2wSQRKHFBL6CChbBtKJtF0SZAAgCHEpdrdTpW+6TPjr8PbfLIhrIZkj60R+cs5HuP4o8jvCfykve5IUNL9bBN8QLgAjOBIi7X6lVlwROXJso0lAVxAGRCqg/ftvkIlDiUGYFYJ0uDsWXKZ19S/6tWc0iSAMCRzInVo0U0klQ1MyVpj94opojA8fLSt/B78xbStU3xAuCSQafVLdfqPWUDsacdua0pziq5yqwmiCWVaNMVuo8bCgIlrviq1ex/t744kjQVyCOlX7Uu9shZAABQcLFHW9rYCJTMlWv1aU8CSbCvWoB60S9IugLATZn2QaNcq3eVbf3twphZqgIHl79bX9w+TyaRgjnAG5B2rHL/DmnhVoYEICE7AQBAwS0MOi1vVg2bgM7Iwk/HFBXcTLlWL8nO9iv9nOuhjT7hVLlW51B3AC63UXrKzqzbcOB2Zsy2YIXy3fri9Hfri6myLSIvKv8zw4BJ2vyqdXG4/Q8EStzQC+hZ5r9bXyyRpQAAoKAWPd2WgdnscJWNcrJpaUWYjYHAhCIGwGXmfRzLjWBJod6Z360vVpUFSJYUzk44wE69nf9AoMQBka70Il1RQFdKrgIAgAJaHXRazRA6CTkhUIKDSApSH6iHALAHsxVXLPvBkpNmpWPQZuuN6dl6ox3pyu8jXZkKbMySi2vndU3bi0CJAzZazb7sbHcwKfOz9cY0OQsAAApkddBpJR7ff8/Cb04VcQsLHJwZjLKxxYetrfNs/O4M228B8IFDwZKg2y5mPK8naZ5ShwLo7vwHAiWOZkwAGmQpAAAoCN+DJLbOR5DY9gdu9il6Bftd6iEAX9orW+adZXOycbDvzB1BEs4hQRFsbLSaWzv/AwIlroiirqJIAV2N2Z8ssqoEAACEzvsgyQ7rFn7zZLlWp82Ivdg6n8TKihKzDz/nlADA/u/KvuX31myI22/N/mRxWlHUUxTNBjY+ycW119W+vh4QKHFHL7DnmRKrSgAAQNhWAgqSSPZWOCcUJVzPbMs2U8B+mY3fnyrX6tRDAN4YdFpdSSsWbyEOMFmbYiUJiuWGvg+BEkdsvHdxS9JaYI/FqhIAABCqhUGnFdqkkJ6tNiPFCbtIClYPbP9+QpED4JlU9rbgCuqcktmfLFbFmSQolo2N9y4Or/8PCZS4JbRzSqaURaQBAABCMZJ0/6DTaof2YGYri00LPz3Doe7YyWxpcrKIfTIzS9rGwN9ciFvJAAiXOa/E1mSLOJR0NBOc25QoFMyuZZ5AiVu6AT7T/OxPFmlwAwCAEGxKis1AJu3R8WJVCXZKLf3umhl4s61XsHQHgCMxE1dsTPKYKtfqlUCSsaFsojNQJLv2eQiUOGTjvYtbiqK1AA/HocENAAB8tyapYuuQ5xz1LP3uXLlWjylmKNfq07K3/UfPkWSwFbCcZ1UJAA+lln7X+3bL7KmfTyuKGhzqzVWwa323bbckAiUuCnNVyamf0/EFAAC+Whx0WlVHZppPlMVtf2wOdMAtNlcXudIXs3kf1EMAvrVd2rKzqiSEFSVVsZoExdPe678gUOKeULdyoMENAAB8syHpxKDTKtqZa7bao6wqKTizmsFWoGR90GkNXUgHE5Rds/TzrCoB4KO2hd8M4V3J1qcomtF+fR0CJa71xn/7+pak1QAfbW721M85pBMAAPhiRdl5JP0CPrvNwFBK0Su0VPZmtrYdSwtWlQCA2+/wOZ8TbPbUz6clzVJ0ULR3hRl73xWBEl7wRel0AwAAHMT2KpJGEbba2o0JDm1a+vm5cq3O5JoCMqsY5i3eQtexetiWvW3wWFUCwLe2y9C04Wx8u3wVU3JQQPuOTRMocbF3/tvXe5GizUjB/ZmpnPpFSg4DAAAHjZSdRVIp6CqS67Vd7cCAMjcBq44GRrsFzQ8AOIqehd8s+ZpYkaJKgOOO/OHPfn/WN377+nC/ekGghI5C3hqVU78okb0AAMAhK5JKBTyLxNW26Ey5Vk/JguIwZ9PMFbS878fmO4nVXQB807Pwm9Mep1dMkUHB3LR/cQtp5KympKUAn2vKPBuNbgAAYNuapIYrBzi7ZNBpDcu1+pqkk5ZuoVGu1dvkTfjKtfq07AYqNgedVs/Retgv1+obsreHfLNcq/eKug0hrL4XSsp3pv4Wq0mDYCMPK3Js60YAu7f3+r997abtPQIlrr7df/vaVuXUL1Zld5/eSTlZOfWL+CAFFAAAYIKGDMTvqy17gZIp8/sx2RC8hqQZi7/v+kqypqRLln57RtnsywbFFDlLlO/E0XW+N/4zkzxICAC7SQ/yP2LrLfc7pzwbAADAZJxma5m9DTqtruwd6i6x9U/wyrV6RXZX0Y9c75dYPtR9+z0ZU1oBeGKdJABwnc3+b187UHuPQInD+r99radI64qkAK+Zyk852B0AAFjXNlt8YHcp+YNJcGDLLUnqerKtVNOBejhNqQWAG1S8vfOIi6sw14H7MwRKPOi8B/xsjcpPOdgdAABYNSVWuu6nK7uz2cmfcKWyd/bGznvwge1AyYxHaQUAeSKIDLhts/+bg60mkQiUOM9k5magjzcl9/cEBgAA4Zsr1+opyXAjM9u+Sf5gnMyWaqct38aqL2cUmXq4avk22KoQAMIyJAlQAIfqQxAoCTBTPXOy8tNf0OAGAAC2LbEP/56asruqhPwJiNlKrU0fy8v7bZtzZQAA/uuTBAjcxmFWk0gESnxhe8uDiXe+Kz/9BcsVAQCAbezDvwtHVpVIUpfzSvxm6ldX2cpym7xZTbKjHg5lf1XJFO9JAAgGgRKErnHY/8MtpJkHb67fvLZ14qHHm5KWAn3E7T1vG+Q2ACBAm2Jp+0HMOdImaUtiteuNmqatZnOAe0pZsCT25ABu7F6OZh24j9TT9EslzVu+h1nekwgQK6VwVN4GG/q/ea134qHHR7I/eQGYhPUv3321d9j/E4ESOqeuOH3iocfbX777KhFtAEBo2oNOKyUZ9leu1duyPwAoSSfLtXoy6LTa5MpVg05rq1yruzBxZ9a0ixNyxbs6njpSx71bTbKjHg7LtfqqA+l4slyrNwedFhPdEAoGisORd9DL94kbXUe+zcC4HamvwNZbnvjy3Vdd2fJgktrkNAAAhdVQtvrGBU324d89XeTGdrDzJrAGT5Rr9UTurI5PPU/O1JF6eNrkKzAJQwvvKb77/n9rpkXQ67BoTyFEK1++++qRviMESuicumT2xEOPp2QzAADFY7ZScmUrlyk6jnvmkSszyOcZpPWDyadLrnScfV1NsqMeDuXOBLpL1ENMiI16SqDEfzby0OsVJWZronWKDgIy0jEmxRAo8esFVoRVJUsnHnq8RG4DAFA8g06rL2nZkduZNVtN4do8asudlT8M0jrOzNB2JUhyrI6zY1yaQEc9RCgIlPgvtvCbIWwfn1J0EJCGGT8/EgIlNIpd1CabAQAoJnOeiysz206Xa/WYXLlB4tC9MEjrKBMk6Tl0S6lZFRXCe9Kl1V0S2xVi/GXcxrujSsp7z0abzfvvillVskbxQQDWv3z31fZx/gUESvx7gW1JUSpFCviaO/HQExwMCABAcVXlzsSQrtnzGoYZwHKpQ02wxDEmwNiTO3vFbww6rWZg9bAtd4LKU5J61EOMWd7tgJlyrV4i2b397kxLmrPwLu6HkYJRIkWjwMcaucK+Rlk5Ph4CJR768t0LTbmz5cGkpCceeoJGCgAABWRmSyeO3M6UpC65coOG3FrlTLDEESYfPpRbB+o2Aq6HrpiiHmLMbAxAU379ZWNFUDDjcl++e8GlswKBo2h++e6F4XH/JQRK/JUG/nwcogoAQIENOq2upBVHbmeuXKuz2vXa/Bk62B69VK7VaT9a5NjB7dtWLG3jk0c9dOlcp531MKE2YAwIlMD1vOuHlIBfvnuhJ2mBogQPbXz57oWx9EsIlPj7AmvLnaXWk8IWXAAAFFsqacORe7nIHvzXMlsZudYenS/X6m22S8tfuVZvyr0gyabCn2Dm4m4Dl0x5AI7DxiD0TLlWZ1a9f9+fiixsu6XAAiXSt2ONBEvgk5HGGCglUOL/4EHwz8gWXAAAFNOOLbhc2eKJAfgbuZQ/2+aVnZdAGzIH5Vp9ulyrdyWddrF8hnKA+wHek645Xa7VOeMJx9Gz9LtM1vRPo2BldKJ2BEtGFC14IP3y3QtjC1oSKPH75dWLIq1FkRTwNRVF7AsOAEBRma1lUkduZ1bZ7G1czZ+h3Jy8Myupbw4Vx4SYWbw9SScdvL1gt9zapR725M5WhTudVBa0ZDXeZE0HWq6HsjNQO8e3w7vv0LzFd2+Qvnz3QjuKFEeRNgIfc+Ty+1o353iPDYES/xVhtsPsP/3siZSsBgCgmMwWT2uO3M4823Lsmj8ubgk7JenDcq1OO3Iyg1OJsiDJrIO3V4Qtt66vhw25s1XhNX05ZcES3puTqYcNSb8P+BF7ln63Tenyhq0JLBuhJ+yf37nQ//M7FyrKzsJidQlcM5I09rYFgRL/X1xDuXeA3yQs/dPPnmAmEgAAxZXIrS24SmTJNaoOd6KXyrU6W3GNidlqq63sPJIpV8tj6FtuefCe3GlK0u85P2js9bAr6WLgj2prd4kZguxe1IOG7JxNYrNs5u7P71xIJZVEwASOtXn+/M6Fsbf1CJSEwcUD/Cah/U8/e4KGNQAABWQGPV2ZkTxVpA7yIfIncfgW55RtxcWs9mMw29H0ZWmbkwNaNFv2FbEe9uX2jgPzYku8cdTDqqSh3Nzybtx6Fn97iW3jnK4HJdldOVioduCf37mw9ed3LqR/fufCtKT7Ja2qGOOQcNPKn9+5MJE6GF25coXkDcA//eyJRNmsriJUhoZ55pKyqDZwFP1JRJ8dbkimkpZy7qxHFDM4Wh/ybvwsDzqtlJT3931G3h4qf5py81DvndaVHfI9JMcOnK/TygakXM/btUGnVSW/6m25HcySsjNV0oKu/DlOPWzLgQBJnu38cq3el70t/jYkxZRTJ+uDzXKxOei0SuSCZCYzbwcUKwr0zCSLKipGUPxQ72WzJdxEECgJyF0PP9mTvWWHeXdu58hxjMFI2SylrqTuF2+/EmwDmEAJcE19IFBC53ic7ivKgdGHyB8f2qQjSU3q5oHyM1G2gn3K8VtlQPNqnk3L3fNjdtqU1Bh0WqzQu3meNpQFK52ohzkHShqyu8UYAVj36kNbdoPBK+ZcKGBi7nr4yaqy4PgUqXFN+700ybE7tt4KS1Fe1ARJMC5TyqLzlyT9710PP9m96+EnY5IFAJzn0nkY7Lm/e/64vh3DlLJtVYZsx7W7cq0em6CXy2eR7Ow4JwRJMju2wnN9L/kZZWeXcIbQ/vWwryxQUNTBMtuBtJNmYB5u1Im27K+Yozxgou56+MlE0u9FkOSGPsakJzgTKAnIF2+/0le2hBnAERvBkj686+Ene3c9/CSdNQBwlNkyKXHkdmboMN+QP9vnyfhw4OfOgdqY3Mv2fTcDUR/KnwlKSVHPJdmnHvblzrlONzMn6e/msHfa4FfrYdfUw9mCl+WhpDXLtzFPsMSJepHKfpBkk+8NJskESS6REjdY/OLtV3qT/hECJeFJxYFKwFg6a3c9/CTLaQHAUWarllVHbuek2RoEV/PH9UOld/v2f1jkgMmOAMnf5f75Ftd0nNm6ac962JO04NEtz6vgAZPr6iH70l/VdqF8EiyxWjfacuOMuia5gUm56+En2yJIspvVL95+JZe6R6AkMGYJEh11YDwumu242FIFANzUkDsTRNJyrV4hS64adFptSYue3fbOgElShHwyW/t05V+ARJJWB50Wg1Y3r4ernt32zoBJhXoIEwx14Xs/X67V+2y5mWvdmDZ1w4V6MRKriDEhJkjC+/9GG1+8/UpubXICJQH64u1XulK0LkXi4uI69nVSinp3PfwUjWEAcG/gZHuLJxdM0XneNY+a8m+QVsoCJpfMGSZpaINiZuApMWcffCg/Z66vDTqthFp2oHqYeFoP5yV9GWrgMpB6mCdXgqKzkjjfKp86EkvqO1Q3upyFhUm46+Gn2lI0z/jbDdemFMV55gWBknAl8mNfaMAHs5IIlgCAg8wWT66sWpgt1+rMbr8xjxL5OUgrZWeYLEn633Kt3vV9sLZcq1fN9iVDZVs7+Hr2wYbcOafIp3q44entbwcut8q1etP3VSblWr0SSD3MW1vujHFMKTvfqs3qkonUkWnTnvrQfIddkZI7GLcsSMJKkl2MJFW/ePt8rsHJ6MqVKyR9uJUtlRt7OAKhWPvi7fNezhwyB9/l+j4YdFoRRQaO1oe8Gz/Lg06LjtXk87Undw6evp8zE3bNo67CmDE9ktSV1JMHs0vNrOftayqA9N+QFDOr90hlYdqU2xAG5jdNPWz7cLCymRm/XQ9nfE98W+18G32aA34TmpKavJfG8o5qmMu179UqqxgxTmYibteh/otrTnzx9vncv+8ESsKveH0xQwUYp+Uv3j6fetjozL1TQaAEDtcHAiXhdq6HjnSsR5JKDJjsmke9ANum6+a5eubwbNvpXJEUmyu0rXwIklAP93rn9mQCmINOa+hYPYwVRpDSejvfsW/9buWwrSxgMhQOk68lZasEGw7XlVvJV4yLCZKE2CYel4Uv3j7ftvHDBErCr3wVSV+SEsBYWYlsH7PxmYpACbBdHwiUhJu3VUm/d+R21gedVkyu3JBHRegYrivbU70vaTjJ4IkZjK1IKikbjA15ViJBEurhQY1M/ett18VJDnCaQd7tuhibv06FXIZstvPLtXpD0kUP3ldtZasOh8Je9WZ7lZXr366VQafVINcwDgRJbspakEQiUFKMSvjIU01Jp0kJYGzWv3jrfOxZQzQVgRJguz4QKAk7f11q9yyaw8xxbR4VsYO4PXC7Zf6qHf98M9PKBl6lLCCyfc0UKP0IklAPx1WOtnbUvZ318SAqpj5O7/j7Qg502W7nl2v1oUfvwJ2Bu6G5imi7zsSefcNYJYyxuesRgiQ3sfrFW+cTmzdwC3lQCKkC2QsVcMTcXY88FX/x1vkeSQEAbhl0Wg2zF7wLHZCL5Vq958P++Tnn0ZbJo7bC2xpqL1O6OmP2JKXgUAiSTLYe9lScAZvt52Q/eP8lyg769un9T7nzU8r3B2PUFkGSvVgPkkjSd8iH8H3x1vktZXs9Ahhjg4kkAABnJcpmALqga2ZuY4dBp7U16LSqklZJDeyDIMmE66Gy2d3rpAY8K7s9SWukBCZsnZXBGJe7HnmqLSbL7MWJIIlEoKQwvnjrfJeGBDBWc3c98lSJZAAA95gVHK5MEpmRRCd777xKRLAEe3SaRZAkjzq4Zc5Toh7CN4ncmRSB8IxMGQOOzQRJ5kmJ3dt7rgRJJAIlNCQAHEeVJAAANw06rbbcmSQyX67V6WzvnVeJpAVSAjs7zYNOKyFIkns9XCEl4FGZ3RID2ZiczTZUewAAIABJREFUdNBpDUkGHBdBkn1tuBQkkQiUFIrZgouGBDA+BEoAwG2JpE1H7qVZrtVLZMnuTGBrQUzqgbRgBu2Rfz1siKAl/CqzXbEaCuPHllsYC4Ik+9pQtv2nUwiUFMwXb53vRlG0HkWRuLi4jn1xIB8AuD2A4tIkkSlJXXJl3/xqmw7TJqlRSCNJ95lyALv18IQIWsIfDTPgBozrW8SESBzb3Y/+shFF0TzjZrteG1EUxWZCv1MIlBRTQsMXGNvHr0QqAIC7zIGvy47czmy5Vk/JlX3zqy+pIg6XLprtQ9t7JIVT9ZDBZ/hQXrcnRTDGgXHgbCwc292P/jKRdJGU2LvNd/nNl52sZwRKCujymy8PJdFJB8ajRBIAgNsGnVYqdwbel8q1ekyu7Jtf24dLc15CMWwf2t4nKZyqh8NBp1UR2xrBj/LaF6sAcHwLfItwXCZIcomU2NWaHA6SSARKCuvymy83xUw9AABQHIncmW3aLdfq02TJ/sx5CfeLWcKhGsmcR8LsXafrYSLOD4IfZbUnztjB0a2w9SOO6+5Hf1mRxPk2u1u9/ObLVZeDJBKBEgYMaPACx1UhCQDAfYNOayi3ziuhM36wfOsqW73JBJ+wbG+1RT3wox62xVZc8KesLpMSOKRVMzkDODITJOmZdj6uq2OX33w58eFGCZQUWLYFV5RKkbi4uI58MQMSAPwZQOnKnW1kTpZrdTrlB8u37a24FsUknxAsDzqtCtubeFcPt7fiYhAarpfVVGwZh4NbNSvngCO7+9Gnp6WoLUVTjJHdcHkTJJEIlBTe5TfPsQUXcDxDkgAAvNKQO7Oi03KtzsrEAxp0Wk1x0LvPNiXdZwYx4W89TCWdEKtL4HY5TUSwBDdHkATHlgVJ1JM0S2rcYOXym+e8qmMESiCxBRcAACgIcxaCKw32KUltzis5VP4NWV3ipeVBp1UyZwjA/3rY37G6hHoIV8tpIoIl2BtBEoxLUwRJdrNw+c1z3q2eJ1ACXX7z3NChAQPAN2wbAQCeMVv+LDpyO7OSUnLl0Hm4vbpkjdRw2rqkW1lFEmw9TMUqL7hdRhOHvvdwB0ESjMXdjz6dSponJW6wcPnNc20fb5xACSRJl98816WjCRza5uU3z3FGCQB4yAy0u9L2OV2u1avkyqHzcDjotKqS7hPbADnXRpK0MOi04kGnNSQ5gq+HsaT7Tb4DLn7vF8TqJ2QWCJJgHO5+9OlE0hIpcY2RpPt8DZJIBEqwU6REkUacM8TFdeCrx4sDALyWODRwwhZcRzTotHpmGyAGwtzoIC9Lqgw6rTbJUah62B10WiWxHRfcLJ9tSTFls/Dfp/v5NmEc7v73pyuK1GRM7JprpEjx5TfP9XzOWwIl+NblX59zac9uwAc9kgAA/GXOK3FlJceUpC65cqz8bEsqiYFaW1YklQadVmrqFopZD1PqIRwtm31TNtkqrng2lAXwaWfh2O7+928Pb58iNa6tY5d/fc77rekJlOAal399rms6OQD2N7r8a3+XEwIAMuZwaVfaPnPlWj0lV46Vn1sM1OZuVdk5JA0CJKAewoOyGZtyiWJYGXRaFbaBxBj1RJBkp3VJ8eVfnwuijhEowW5Ssb8scDNtkgAAwjDotBpy54yLpXKtXiFXjp2nDNRO1khZgPHWQaeVMAAF6qG1eris7HwYHK5sppJOiPOtQrYp6T7TxgPG4u5/f7otaZaU+Nbq5V+fi80ORUEgUIIbmALOgaLA/pokAQAEpSp3BvG6nFcyHtcN1C6IyUDHtalsYLZkVpAMSRIcsh4uUg/HUg8XTD1MJbGS62jlsm/OtyKIF54VZVtt9UgKjMvd//50ImmelPjW4uVfn0tCe6hbyFfs5vKvz/XveezMsqQlUgO4wfLnb5xlYAAAAjLotIblWr0h6ZIDtzOjbOUiE1fGl79bJk3b5Vo9ltSQdJKUObB1SW0OwcUY6mFTUrNcq1eVnY9JPTy4NVMPOWdhvOUyLdfqbVM2KY/+f6sa5jwaYGzueexMJYqiS6SEpCyw3Pj8jbNBtglZUYI9ff7G2VQcdAZcb1OsJgGAIJlB4DVHbudkuVZPyJWJ5HNv0GlVJd0qZrffrM2zvb1WTJAEY66H3R31cJl6uG89XDb1sEqQZGLlcWjK431iDMTXenKf+VYRJMFY3fPYme3D25EFSeJQgyQSK0pwc4mkvjioCNhW/fyNsyxvB4Dw2z4zDtxLs1yr99jeaDJMum7Pbq+YvK86kvc2O8BdSV0GZJFjPUwlpaYeNkw9LHL/c9PUwzaDvrmXx56k2Kw8TCXNkSpO25DUJJCPCeuKMdHt+haHPh5GoAT7+vyNs8N7HjuTSPo9qQFo4fM3ztJZAYCADTqtLbMlzJcO3M6U6ZxxuPvk872vbIC2UcCgyaaymZIER+BCPUwkybyH44LVQ4Ij7pTFnrKAyXbwjnMJ3LKmLEDSC/1B73nsTMm8C0umPcgZdvmaFoe3S9Kqsu22gp80HF25coXsxkFezk1Jp0kJFNjK52+cbfh68+VaPVXOZw4NOq2IYgNH60PejZ9lc9gqeG8e+Rs06LQa5IqVclBSNlAbK6y969d1NTjCoCxcr4cVUwdDqocjUwe36+HwGOkTS/qQdv5Ey+C0siBeIgZNbdneArsb+krbex47wypXuMTrsbDDYkUJDio1DVMaBSiiZXNmDwCgIMzhrrHc2HbjdLlW7xZh5qSD5WAosz2X9O2AZKxsVmcsP7ZiGCnbTq4nqUc5gof1sG/KsO/1sGeuPvXQuzK4patbNZaUDWAnYnxk0jZ0dTvI4IP69zx2JhZbvsEtCyGfR7IbAiU4kM/fOLtltuDqib35UBwjZcsL2yQFABRSqpxn6e6jW67VS2awBpaYwc3e9j+bAbPKjqskuwNnm5KG5h77ygZkh+QcqIe52jD1sE89DLL8DXU1aDKtq6udKmKAexx1Z/v71S1Km8ccFt5WWCtX4beRpOTzN84WbktWAiU4sM/fONu/57EzDUmXSA0UwLr5MNCpOVzDdrtD2CM5wDtEQ3O1SQ4/DTqtXrlWX5cbAx9TpixVyRmnysh2Pb+mI2kGbnde07p61sxR97vekLQ9aLT9u1vmu7vFFlqgHu5ZD7f39R93Peybv9/+/WHAAZHRjnY+AfurZW/LlLvujnJX2VHudn4DWH2S2bzu+7VddwrZf7znsTNV075jQjJcet/HRT2flzNKcJQXeVscZoawG24pq0gAAAAAAMAkmInIF0kJOKTQQRKJFSU4moaypaUcKoWQrEnqEiABAAAAAACTwgRkOGhTUrXIQRKJFSU4+ku9Is4rgb+2l8z3ZLaJ+vyNsywhBwAAAAAAE2PO/2VLe7hkQ9lKksKPixEowdFf7qefKfLLffXzlZcSSgEAAAAAAABu5p7Tz8SSPiQl4JAsSLLyEpOHRaAEx3/Jt1Xc5YIESwAAAAAAALCve04/M63s8Hp2ZoErCJJc5zskAY6pYSpWEc2bVTUAAAAAAADAXpoiSAJ3ECTZBStKcGz3nH6m6OeVLHy+8lKbkgAAAAAAAICdzLjZl6QEHEGQZA+sKMGxfb7yUl/ZypKiunTP6WeqlAQAAAAAAABcJyUJ4AiCJPtgRQnG5nuNZ5uSThf08UeS4j81X+xTEgAAAAAAAPC9xrMlSX8nJeAAxi5vghUlGJs/NV8s8nklU5J632s8W6EkAAAAAAAAQBI7kMAFBEkOgEAJxi02la+ItoMlJYoBAAAAAABA4SUkASwjSHJABEowVn9qvrilLFhSVFOSut9rPDtNaQAAAAAAACgmMzY0S0rAsipBkoMhUIKxM5VvscBJMKtsZQnBEgAAAAAAgGJie3bYtvCn5os9kuFgCJRgIv7UfLEpabXASUCwBAAAAAAAoLgIlMCmxT81X2yTDAdHoASTVOTD3SUTLKEYAAAAAAAAFA6TZ2HLqpnEjkMgUIKJMeeVVFXcw90lafZ7jWfblAYAAAAAAAAAE7b2p+aLCclweARKMFF/ar44VLEPd5ekeYIlAAAAAAAAACZoQ1JCMhwNgRJMnDncfaHgyUCwBAAAAAAAAMAkjCRVzQ4/OILoypUrpAJy8f3F59qS5gueDKufXXwhoTQAAAAAAACE6/uLz6WSlkgJ5OTEZxdf6JMMR8eKEuTGBAjWC54M8yZgBAAAAAAAgHANSQLkZIEgyfERKEHeqpI2C54GBEsAAAAAAADCNiQJkIOVzy6+0CYZjo+tt5C77y8+V5HUkzRV8KRgGy4AAAAAAIBAfX/xOQZeMUnrn118ISYZxoMVJcidWQqWkBKa//7ic6QDAAAAAABAmNZIAkzISNnOPRgTAiWw4rOLL3QVRYuKIhX8uvT9n/8qoUQAAAAAAAAEJoq6jH1xTeiKP7v4whaVbHwIlMCaz15/vilplZQQwRIAAAAAAIDwdEkCTMDiZ68/z+HtY0agBFZ99vrziaR1UoJgCQAAAAAAQEg+e/35LTFJGOO1aiafY8wIlMAFVUkbJAPBEgAAAAAAgMCkJAHGZENSg2SYDAIlsM5E16vKDiEqOoIlAAAAAAAAgfjs9eeHkpZJCYxBYsZRMQEESuDSRyMWwRIpC5YQHQYAAAAAAAjAZ68/n4rdVHA8nEsyYQRK4NJHoy9FDSkSV3Tx+z9falMqAAAAAAAAQhAlUjRizIvrCNca55JMHoESOOWz15fbkhZJCUnSPMESAAAAAAAA/332+nJfUkJK4JA2KTf5iK5cuUIqwDnf//mv2pLmSQlJ0upnrz/PCxEAAAAAAMBz5mzaS6QEDui+z15/vkcyTB4rSuAkExhYIyUkSfMmcAQAAAAAAACPffb6821J94tzenFzywRJ8kOgBC5LxEFX2wiWAAAAAAAABOCz15/vSorFuBf2tvHZ68+nJEN+2HoLTrv3F0vTknqSZkkNSdLqp68tJyQDAAAAAACA/+79xVIqqSFpitTADic+fW25TzLkh0AJfPhgVJQFS/hgZFYlNT59bXmLpAAAAAAAAPCbmSicKttdhfEvLH762nKTZMgXgRL48sEgWHKtDUkxwRIAAAAAAIAwmIBJ1VyxGAcrovVPX1uOSYb8ESiBTx+LqqTfkxLfIlgCAAAAAAAQKDNxuCSpQmpIygJIIW/PP5JU+fS15SFZnT8CJfDtA5FIukRKfItgCQAAAAAAAIJ27y+WSpL+HvhjsuWWRd8hCeCTT19bbiuKFhRF4oqkKJpVFPXufTwtUToAAAAAAAAQpChKAx/jWydIYheBEnjn01fTtrIDzZGZldS/9/GUZZgAAAAAAAAIipkgPB/4YybktF0ESuClT19NExEs2WlKUo9gCQAAAAAAAALTDvz5lj99NR2SzXZxRgm8du/jaVvhR5QPYySp+umraY+kAAAAAAAAgM/ufTyNJX0Y8CNufPoqE59dwIoS+K6h7EBzZKYkfXjv42lCUgAAAAAAAMBzaeDPl5DFbmBFCbx37+PL05J6ys7qwFUrkrZIBhxRT1L/01eXKEMAAAAAACB39z6+HCvs1SQrn7661CCn3UCgBKG8OAmWAJOxoWwv0O6nry4NSQ4AAAAAAJCHex9f7kmaC/TxNiVVmKDqDgIlCOnlOS2pL2mG1AAmYk1S89NXl3okBQAAAAAAmJQCrCa5/9NXl7rktDsIlCC0l2hF2cqSKVIDmJhVSQ1mPQAAAAAAgEkIfDXJ+qevLsXksls4zB1B+fTVpb6kWNKI1AAmZl7S0MzuAAAAAAAAGJt7H1+uKtwgicQB7k5iRQmC9IMnWFkC5GThjxeW2iQDAAAAAAAYhx88sTxUuFvrL//xwlJKLruHFSUI0h8vsLIEyMmlHzyx3CYZAAAAAADAcf3gieVE4QZJNiU1yWU3EShBsAiWALmZNw0ZAAAAAACA40gCfrbGHy9w3qurCJQgaCZY0iAlgIm79IMnlqskAwAAAAAAOIofPLEcK+AD3P94YalLLruLQAmCZ85PWCAlgIlr/+CJ5WmSAQAAAAAAHEEa8LMlZK/bCJSgEAiWALmYktQmGQAAAAAAwGEEvppk5Y8XlobkstsIlKAwsmBJtCBF4uLimth18gdPPB/zxgEAAAAAAAcXpYGOk4yyZ4PrCJSgUP544VdtsbIEmDQaAAAAAAAA4EDMhMtQV5Okf7zwKw5w9wCBEhQOwRJg4uZ+8MTzJZIBAAAAAAAcQBroc23+8cKvmmSvHwiUoJAIlgAT1yAJAAAAAADAfn7wxPMVhbuahLERjxAoQWERLAEmqkoSAAAAAACAmwg1mLD+xwu/6pK9/oiuXLlCKqDQfvjkC4mkS6QEMHa3fvLKc0OSAQAAAAAAXO+HT75QkvT3QB/vvk9eea5HLvuDFSUovE9eea4tVpYAk1AhCQAAAAAAwB7SQJ9rjSCJfwiUACJYAkwIgRIAAAAAAHCDHz75wrSk+UAfj7NJPESgBDAIlgBjVyIJAAAAAADALkINJqyyDbmfCJQAOxAsAcaqRBIAAAAAAICdzGqSUAMlKTnsJwIlwHU+eeW5tiItKJK4uLiOeQEAAAAAAOwUqapIUwGOgyyzmsRfBEqAXXxynpUlAAAAAAAAwASkAT7TSFKTrPUXgRJgDyZYcsK86AAc3pAkAAAAAAAA23741AtVSTMBPlrzk/PPbZHD/iJQAuzjk/PP9SXFIlgCHMWQJAAAAAAAADuEeDYJq0kCQKAEuAmCJcCR9UkCAAAAAAAgST986oWKpLkAH43VJAEgUAIcQBYsiWIpGnE6NxfXgS8CJQAAAAAAwIgaAY59jKSI1SQBIFACHNAn559lZQlwcJufnH92SDIAAAAAAIAfPvXitKT5AB+t+cn5Z1lNEoBbSALg4D45/2z/h0+9WJHUlTRLigB76pIEAAAAAIC8mXGbiqQSqeGUSoDPxNkkASFQAhzSJ+efHf7wqRdjST0RLAH20iYJAAAAAACTZlYqVM11khRBjlhNEpDoypUrpAJw9A9xTwRLgOutf3L+2ZhkAAAAAABMihmXaZhrihRBzkaSSgRKwsGKEuCIPjn/7NY//5KVJcAuUpIAAAAAADAp//zLFxtRpFQESGBP8+OXCZKEhBUlwHg+0G2FeSAVcFhrH7/8bJVkAAAAAACM2z//8sVpZWdizpEasGgkqUSgJCzfIQmA4/v45WcTSaukBGgoKCEZAAAAAADj9s+/fLEiaSiCJLCvS5AkPARKgDEhWAIooaEAAAAAABg3EyTpia224IaUJAgPgRJgjEywZIGUQAEtfvzys12SAQAAAAAwTgRJ4JjVj19+dkgyhIczSoDJfMQTSZdICRSokZCQDAAAAAB29Itj87fbf61ImjZ/f9itkzYkbZmrr2z7peHHLz/bI6WDL0fTJr8JksAVtxIoCROBEmBSH/OnX6pKavMxR+AWPz73TJNkAAAAAArb942VBUFK5q+VnPvBm8qCJ31JvY/PPdMjV4IqXz1xJgncsfbxuWeqJEOYCJQAk/2gszwUoRpJSj4+9wzbbQEAAADF6uPGuhoQmXX0VjdMX7ynLHjCWYp+lrdE7NYBt9xHMDZcBEqAfBqSXUkzpAYCsSqpQWcDAAAACL4/GysLjMTye1b/humXs+LEn7I3rWyVEGMpcMX6x+eeiUmGcBEoAfL7wPfk7mwb4ECNAkkpHQsAAAAg2L7r9oqRqsLd7mgkEzSR1GUCmLNlsSHpIikBh9zPrhphI1AC5PeRnzaNMfbWhE+2l6w3Pz73zJDkAAAAAILrp8bKAiNVFXPb6DVdXW1Cn8edsjkUq0ngjs2Pzz1TIhnCRqAEyP9j35Y0T0oc2jpJMHFDc0lZcKTP7CoAAAAguD5pSVlQJJZ0khS5xoakplhpYruMxpI+JCXgkIWPzz3TJhnCRqAEsPPRb0o6TUocyrqkKo1VAAAAADh0H7SkLDiSiC2hD2p7pQlBk/zLK2MmcMlIUon3QPgIlAD2PvyJpEukxKE/TlXOyAAAAACAm/Y5SyI4Mi6rygImnE+QT9kdim234I7lj889k5IM4SNQAtj9+FcltVXMfWD5SAEAAADAePuY08oCI4kIjkzCprJVJpzhONky/L+kBBxyK/W9GAiUAPYbARVl50EQLDmcDWWrS/hYAQAAACh6vzJRtnqEM0fysy6pzbkFYy/LsTifBO5Y/fjcMwnJUAwESgAH/D9nzpaUzUphxs/hjCQlH509w/JnAAAAAEXrR1YkNZQFSJh4Z7df2pWUfnT2zJDkOHa5jkWgBO6476OzZ3okQzEQKAHcaQxMm8bVHKlxaCumUcrBWgAAAABC7zdWlQVImGjnnnVJ7Y/OnmmTFEcu46mkJVICDtj46OyZCslQHARKAPcaBW1J86TE4T9gylaX9EkKAAAAAIH1E7dXj9BX9MNIUlNZ0GRIchyqrKciUAI3LBD0LBYCJYCbDYOGpIukxJEao+lHZ880SQoAAAAAnvcLWT0ShjVJTbbvOXC5T0WgBPaNPjp7ZppkKBYCJYC7jYNE2QwU9po9WkM0YSsuAAAAAB72BUvKgiMJ/cGgbCqb2NcmKfYt/7E4owT2rXx09kyDZCgWAiWAyw2EZ85WJPVoHB+5EZp89BKzdgAAAAB40f+LlQVITpIaQbu6LddLbMu1Rz0gUALbbqV+Fg+BEsD9RkJJ2SHvLLU+muWPXjqTkgwAAAAAHOzvbW+vlUqaIUUKZ1VS86OXOGvzujrxv6QELFr76KUzVZKheAiUAP40FNpiZtFRbUiqMhsAAAAAgEN9vIa52EEA65JSdkT4tn4MReAQ9tz/0UtnuiRD8RAoAfxqLDQlnSYljmRkGp4c9A4AAADAVp+upGz1yDypgV1smn5ru+D1pE0dga06+NFLZ0okQzERKAH8azAkki6REkeWHfT+Ege9AwAAAMitHxeL80dwcJu6eo7JVgHrS1XS7ykGsIDt2wuMQAngoX955hyHvB/PSFL1Dy893SMpAAAAAEyw7xYrW0EyR2rgiH3XpqTmH156eqtgdWcott9C/m79w0tPD0mGYiJQAvjbaCiJQ96Pa0VSWrQGJwAAAICJ99cSZStI6K9hHEam/58WZRD3X545l0paIuuRo7U/vPQ0h7gXGIESwO+GA4e8H9+mstUlfZICAAAAwDH7aImyFSTMhMekrKoAARMz3jEUO2kgP/f/4aWnOcS9wAiUAGE0IFIx0+K4lv/w0tMpyQAAAADgCH2yRARIkK/gAyb/8sy5hqSLZDVysPmHl54ukQzFRqAECKth3hSzLY6DYAkAAACAw/bDUhEggT3rygImvUDrWE+c8YPJYzwIBEqAwBoQFWX7ltJIPzoO7gIAAABws75XIgIkcEuQARNzPmtfTArFZDEWBAIlQHAN9mfPTSsLljDj4oiNyz+8+HRMMgAAAADYpb+ViAAJHO/TSkr/8GI4AZN/efZcRdKXZC0mVWcYB4JEoAQIuQHflHSalDiSxT+8+HSTZAAAAABg+ldVZVsdEyCBL/5/9u5tO47jvhfwj1m+J/YTaPwEGr2AObQT2UkcEfS+84lDnWhRB4ISKUq2JA4jJ7Zi2QR9kuQTB7bju4iAdbDOHCgPIOAJDDzBJp6A+6IbIkTxAIADYLrr+9bCkuPESbqqp7uqf1X/alVgUoeUF3UrO+Do//7w2aFmQFAC7R7M9+Pcku1YS9L93x/adgkAAIXPqXqpdpDYsU9TtSYwqX+P8/GNg/FZS9L53x8+e0VTICiB9g/snVuyzcGkrZcAAFDsPKoXAQktm+OmBYFJ/Y1jmORuXcoYzP3vD5/tawYSQQmUMsh3bsn2HP7fHz47rxkAAKCYuVMnVUByRGvQUm0JTAZJzupO7tDBNp3nw50RlEBBvvT8j51bsjVrSTofv/iMLZgAANDuudJUqrLFAhJKsZhk8PGLz4wa/LvtRLDJ9q1+/OIzHc3AOkEJlDcB6Me5JVux8PGLz0xrBgAAaOX8aCrJTP1njkSJ2hCYTCXp139KcrFZ5z5+8ZmBZmCdoATKnAyo6bk1B5s8aAQAAG44L+rHIjJY1/jApP5dTyXpJunV/1Y3yZTuHYu2lXP/4scvPrOiW1knKIFyJwVTqcKSQ1rjtlaTdJXgAgCAVsyFevVc6C6tAZ/TisCEsT83+0kutuiSlj9+8ZmunmWjf9AEUKaPX3zmSl1S6qTWuK27UtU9BQAAGupLz/+486XnfzxKcjlCEriZA0kuf+n5H4/qUBGS9n0TmdWlXM+OEiBfev6lXpL52HJ+Owc/fvHMSDMAAECj5jsOaoftm0sy+PjFMyuaothnaD/t2k2SJP/n4xfPqBrCZwhKgI2Th1GcW3Irqx+/eKajGQAAoDHznEEc1A7jIDAp8xk6lWQp7dqFt/Dxi2em9S7XU3oLSJJ8/OKZKx+/eKab5ILWuKm76okWAAAwwb70/Eu9Lz3/0kqSsxGSwDgcSfL3Lz3/0vBLz7/U0RzFmEn7ShXO61ZuxI4S4EaTiulUhxuaUNzYPR+/eGZJMwAAwMTNZTr1XOaA1oAdZYdJGc/TpbTr29Bako6yW9yIHSXA53z84pn5JN0ky1rjhoaaAAAAJseXnn9pqt79/fcISWA3rO8wGdTlmWif2bRvAe28kISbEZQAN1SvCumlWiXCZ939pedfmtEMAACw9+od8UupymwBu+tskhWBSSufq4daeGnKbnFTSm8Bt3XghZf6aedKgjuxlqS7+O+2GQMAwB7NUzpRZgsmbZ48m2R28d+t2m/ws3UqyUra9w1obfHfzwjzuCk7SoDbWvz3M8NUu0uU4rpmf5TgAgCAXXfghZemDrygzBZM6Dz5bJKVAy+owtBgw7RzoazdJNySoATYlMV/P7MUpbg+N0cz+AMAgF0cgL+gzBY0wP4k5w+88NJKXaGC5jxjZ9LOkluJxa7chtJbwHZenP0oxbVuLUnHtmIAANjROUgnymxBU60YbmQPAAAgAElEQVQmGdTVKpjc52w3ySdtvQcX//1MRy9zK3aUAFumFNdnKMEFAAA7qC6ztRQhCTTVXUku2mEy0c/ZqbS7NNVQL3M7dpQAd/YyPftfs0lOaIkcXjz3tHqXAAAwvrlGL9VO9ru1RqssJ7mSKvy61c78XpJOqo/stMtiksHiuadHmmJinrejtDuM/uLiuadX9DS3IigBxvFCnU57D/varKoE17mnleACAIA7m19MJRnEgqw2WEwyShWKrCyee3ppm/dDL0m3/qedRe26PwQme//MHSY50uJLXFg89/S0nuZ2BCXAuF6snVTbNEte7XVh8dzTDncHAIDtzyt6qRZh2UXQPGupQpFRktF2QpEt3CfTqUKTafdKKwhM9u6ZO5PkfMsvUwUQNkVQAoz7JTtIcrbgJjhocAcAAFueR0ylCkgOaY1GWU4VjMzv1TzowNn/Wt9p0o8ybU23mKSvRNKu/Xb6SS62/DJXF8893dHbbIagBNiJl20v1e6SEktxrSbpKsEFAACbnj8o5dssi/V8b37SPmjXlQ6mIzRpurlUO0xWNMWO/Vb6aX9IkiQnF889PavH2QxBCbBDL92flLwi7NziudMDdwEAANx23tBPGR/rmm4hn4Yjp6805N7qJJmJ8lxNVgcmp1c0hefuNtRnyZ62kJVNEZQAO/0Cnkl1EGNpq8PuWTx3eskdAAAAN50r9CMkmWTLqRa/zTf9Q/WBsz/ppdplMh07l5pIYOK5ux0XFs+ddo4smyYoAXbjRdytB9glbX1eXjx3uqv3AQDghnOEfoQkk2g11c6R2TZ+lK4rH0yn2mmiNFfzCEzu7P4fJjlS0CV/0b3CVghKgN18Kc8mOVHQJSvBBQAAn58X9CMkmTRzqXaOzBd0H3ZzrTSXXSbNu18FJpu/16eSzKaskGRu8dzpvt5nKwQlwG6/oHsp56D3tSRdgzcAAPh0PtCPkGRSrKb6eDosuYa/XSaNJjC5/f3dSfUNprR7224StkxQAuy63qCog94XR4PTPb0OAIB5gJBkQswlGY4Gp0ea4nP3aC/VWSZHtEbj7unBaODD+HX383Sqby+l7ZiaGw3sJmHrBCXAXr60SynFdXI0OD2rxwEAKHjs34+QZC+tpvpgOvQxeVP3aydVYDITZbmaRGCSTxenDlJW6fONvug5x3YISoC9foEvpf1bQNeSdEaDcrezAwBQ9Ji/HyHJXllMFY4MNcUd3b+DJHdpjcYoNjCpd0UNC75f7SZh2wQlwF6/xLtJPingUhdGg9PTehwAgMLG+/0ISfaC8lrjv5d7qQKTA1qjUb+DIgITu0iS1OfE2k3CdglKgEl4oZdSguvwaHB6Xo8DAFDIOL8fIcluWku1knzWh8Idva87qT5IO8ekOebq38VSi5+1s1Em7txocHrgdme7BCXABLzUX55KspT2bw2tS3CdUoILAIC2j/F7SS5riV2xfv7IrLnGrt7jnTjHpGkWkwxGg1OjltyD/SgLt873Fu6YoAQwkdpdF0aDUzN6HACAFo/tu0lG8fF4p62m+ug71BR7er9PpQpL+vHBuimWUwWLw4bec/0ISK531LOQOyUoASbpZV9KCa6DbVnBAgAA143phSQ7bzHVR15lfSfv/u/HB+wmWUtVsmo4GpxamfB7ayrXdjC5v657Jo4Gp3qagTslKAEm7cW/UsCkajVJ15ZQAABaNp4XkuysVpUNavlvoZ/qg/bdWqMxFlIFJvMTdi9NJ5mOM3Fu5Z7R4NSSZuBOCUqASRtQTie5VMClnhsNTg30OAAALRnHC0l2joCkub+LXqodJge0RmOsJZmv/0a7vcCxXkDaSxWOTHum3pby5oyNoASYxMHkfJJDBVyqVQ8AALRh/N5JshQf9MZNQNKe30gvApMm/w5H9TNuadwlujYEI936n+6RzXOAO2MlKAEmbxB5rpgSXMujs6e6ehwAgIaP3UdRYmicqoDkrICkhb+XXqqSXIe0RmOtpQ5NklxJ9e1ipf7vXRmd/exiyN65l7tJpur/cipVILL+z24EzHfi8Oiss5oYH0EJMKkDyJkk5wu41JOjs6dm9TgAAA0cswtJxktAUs5vp5Nqh4lzJ2B7FkZnT01rBsZJUAJM8uBxlPZvO11L0h2dHe/2XQAA2OGxupBkfAQk5f6OOhGYwFZVJbfOKrnFeP2DJgAmWL9+AbbZ/iRDXQ0AQFMIScZmMcnB0dlTPSFJmUZnT62Mzp7qJ/likjktApvSF5KwE+woASZ9EjZIcraASz06OntqqMcBAGjAGH0+zli4E8tJZoQj3OC31YkdJnArF0ZnT81oBnaCoASYeAf//adLaf9qtbUkncsvPGVVBAAAkzw2H8ZH3O1aTTK4/MJTQ03BbX5nnQhM4HrLSXq+m7BTlN4CmqBfwDUqwQUAwEQTkmzbWpKjl194qiMkYTMuv/DUyuUXnupHSS7Y+BztC0nYSXaUAE2ZlA1SRgmuw5dfeGpejwMAMGHj8WGEJFu1lmQ2yayPe9zh768TO0wo21FBMztNUAI0ZWA4lWQpyV0tv9TVJF0TKQAAJmgs3k9yUUtsyYVUZbaM6xnnb7ETgQnlmat3WMGOEpQATRoU9pJcLmFSdfmFpxxOBgDAJIzB+xGSbMVCkpnLLzy1oinYwd9lJwITyrB8+YWnupqB3SAoAZo2IJxNcqKES738wlMjPQ4AwB6OvfsRkmzWcqqAxBie3fyNdlKddXlAa9BCa0k6duaxWwQlQNMGglNJVlIdft7qiZZVEwAA7OG4u5cydnPfqdVUJbaGmoI9/r0OIjChPdaS9C6/8NSSpmC3CEqAJg4Cp5NcKuBSz11+4amBHgcAYJfH290ko7R/cdKdcFA7k/jb7UVgQjs4vJ1dJygBmjoAnE9yqIBLvccKCgAAdnGcLSS5PeeQMOm/414EJjTXycsvPDWrGdhtX9AEQEP1U0YJrtkkPd0NAMBOq887GEVIcjPOIaER6nu0JzChgeaEJOwVO0qA5k7kXvzZTJLzBVzqycvPP2mgAADATo6tp1KFJHdrjc9ZSzIwJqfBv+9+qsDkLq3BBJu7/PyTfc3AXhGUAE0f8I3S/tUxa0m6l59/ckWPAwCwA2NqIcnNzSWZufz8k84hoQ2/9X4EJkymhcvPPzmtGdhL/6AJgIbrpwoS2mx/qhJcAAAwVkKSm1pOcvDy80/2hSS0xeXnnxxefv7JTpKjSVa1CBP0vO1rBvaaHSVAGyZ3gyRnC7jUw5eff3JejwMAMMax9DDJES3xKWW2KOn3P5Nqh4lzidgry0l6AmkmgR0lQONdfv7JQf1ybbthveKvbYPzjrsYAGBPxmHDCEk2WkjSEZJQ0Fx6Nkknybm0v1IDk0dIwkT5giYA2mDfvn39JJ+0/DLXS3D129Z3X/7h+V6SwUfPnRy5mwGAvfLlH56fqsdaw4+eO3ml5dc6u2/fPiFJZTVJ31iUEtUfqQdf/uH52SQz9Z8dJuy0xSTTbX/X0ixKbwFtmuwNUkYJroNtmsTVHySWUh0ouBiBCQCwN2OS9RI0g4+eOznb8mvtJ7mo15MkF+o+97EOrs3PZgqZW7M35j567mRfMzBpBCVA2wZ06x/c22w1SbdNk7kv//D8dJJLG/6t5SSzHz13cujOBgB2eBzSTxWQ3JVk4aPnTk4XcL1CkspR40246bOiUz8b7TxjnIQkTCxBCdC2wVwvyeUCLvXcR8+dHLSs70ZJDlz3b6+mWuFnAgsA7MS4cbBh/NG6xSgFj5U3Q0gCm3tudCIwYTxOtn3HJs0mKAHaOJCbTXKigEu956PnTi61qN+6ufk5M2upzmeZVRYBABjDmGM2n1+g0aqx1U2uexRnDyRCEtjOM6QTgQmeu7SYoARo4wBuKslKAZPA5Y+eO9ltWd8NbzPwXg9Mhh89d3LF3Q4AbGGc0cnNP/K1epWrkOQzfKyDO3+e3ChshpvN4XttXohAewhKgLYO3q4/86KtWjWp32LINZeqLNeKOx4AuMX4opNbr4Je/Oi5k70WX38p5/htxoWPnjs5oxlgLM+WXj5bvhCut5xk2pydphCUAG0euM0nOdTyy1xLVUt7pUX9Nkhydgv/kcVUgcnIXQ8AbBhTTCWZqf/232Is1Wlrac+6DUZJ7nZHOEAYdug504vAhBs8c5PMKJ1NkwhKgDYP2DqpVs+1vcRA61ZBfvmH51ey9VWPy6nOMBm6+wGg6DHgZgKSdQfbvNjiyz88vxQhSSIkgd143vQiMKFagDBjXk4TCUqAtg/WZpKcL+BSD3/03Mn5lg2yL2/zP76aZBgHvwNAaeO+rQQkSXLuo+dODlrcHsM4dDkRksBezOUGEZiUaDlJ33kkNJWgBChhoDYqYJDWurIRY+i3tSTzcY4JALR9rLfVgCRJlj967mS3xW0yjJAkEZLAXj6HplMd+u58pDJcqOfeFivSWF/QBEDr7dvXT/L3ll/l/lS7KKb122fa5EiSI1/+j9mFJLMf/WBm5AcBAO3w5f+YrQKSffu2EpAk1WKK6Ra3y0z27ROSJAsf/WCmrxlgb9QVD+a//B+z/VQ7TAQm7bSapG+uTRvYUQKUMpEeZGsHhDfVwTYNUL78H7OzSU6M8X9ldY7JD2aGfhUA0NjxwXZ2kGx0+KMfzMy3tG36SS66S7KcpPfRD2asbIbJej4NIjBpk2oXiWctLSEoAUoamJVwmOVqkm5bBir1h5CVbO8jyK2spdoGPvzoBzMrfh0A0JhxwZ0EJEly4aMfzMy0tH2mk1xypwhJYMKfVf0ITJrOLhJaSVAClDQg62X7B4Q3Sas+AOzCysi5VIGJQR4ATOZYYBwBSZIsf/SDmW5L26ibZJTxLy5pGiEJNGue149D35vmXKoqDZ6ztI6gBChtMDbuUk6T6p6PfjCz1KJ+243dQMpyAcBkvf/HFZAk1W7SXpvGRxvaSUhybSwnJIHmPcN6qXaYCEwm22KqXSQrmoK2EpQARflKNeFeSvu3+S5/2KIVk1/Z3d1Aa0mGSWY/NAgEgL1473dShSP9jO/j/9EPW7gYoh7bjtL+8rKbGb91jd2g8XO+QQQmk2Y5ycyHKjBQAEEJUOoArIQSXOc+/MHMoEX9Np/k0C7/n11IMvywpQe+AsCEves7qT6SHRnz/+q5D38w029hewlJKmtJeh+2cLcQFDxf7+/Au4CtWU0y+FDFBQoiKAFKHXztxUf3vZg0tmZlXf3x5O97OEicTRWaKOcAAON9x3dT7SDZiY9iq/V46EoL262E8exmxrtCEmjnu6GTnQnPuf17U0BCkQQlQKmDrqkkK2l/LefFD38w02tRvw2SnN3j/zfmUgUmI78kALij93ovO19m5Z42fkT/yn/MDuPjoZAEypm7j+u8Km5OQELxBCVAyQOufpKLBVxqa2pyT9gZM6upPu7M22UCAFseg81k50tGnfzwBzOzLWy/QfZ+4YgxLrBX749B2n/m6G5aTLUQ0POU4glKgLIHWv95YZT2Hxa3lqTz4fdPXGlJn/UzWQHXWpL5JLMffv+EFY0AcOP391SqmvMz2Z0PXAsffv/EdAvbcdLGQXvl6IffPzHUDFDsO6UX55jcqapSwvdPjDQFVAQlQOkDrE6qHQpt38Lbqo8FExxwLac6y2S+LcEUAIxhrDWT6oPWbo23qnNJWvYu/sp/XphOcsldJSQBPvOO6dd/dpls7v1Ynb1pvgqfIygBDK7+88JMkvMFXOrBtqwWqVcQXZ7g/xfXd5lYoQNAqeOrnTygvZgxz3XtOYr6/Cc//P6JWb8w4CZzxH6Sac/KG85NVUCA2xCUAFSDqqXsfJ3svdaq1ZVf+c8LwzRjq7VVOwCUNKbqp/pQtVc7P899+P0Tg5a1aSdl7IC+nbkPv3+i71cGbOK5OZ0qMCk1NFkPR+Y//P6JeXcEbI6gBCCfrtL7pIBLvfDh90/MtKTPppKsNGzgu5AqMDFYBaBN46jdPn/kZhY//P6JXgvbdpT2L+i5HSEJsN3naC9VYNJr+bN0uX5fDO0cge0RlACsD6B+dGGQ5GwBl3rPh8+2Y+DU4D5bzfr252dPrPj1AdDQ93AnySCTsWJ3LUnnw2dbdi7Jj4rY9Xw7cx8+KyQBxvJMnarfWd00PzhZTrXbcJRkvm3vP9gLghKAzw6altL+Q+CWP3z2RLdF/bbS8D5bTDI0uAWgQe/efva2vNaNHP7w2Xbt2PzKjxpTZnRHx61JesZIwA5+A1gPTbr13yTOLVdTVVMYpQ5HPBdh/AQlAJ8dKPUy2YeEj8u5D59tR/3ur/zownSSSy24lGsHwD/rAHgAJu59O5WqtFY/k/cR6cKHz7ajtOiG9h5GSCIkAfbyu0Cn/usmWQ9Udnr35GL9z1GSK6lCkSXPQdgdghKAMiema0m6bSn79JUfXRhlsla13imluQCYlHdsL1U4Mqljo1btlK3bvJ/kYuG3npAEmNRndCdVgJJcC1O2aj0ESZIrbSmNDU33BU0A8DkzmYxa2ztpf6pyT70W9dknLeqfu5KcSHLiKz+6sJxkNkpzAbBLNtRwH2Syy1uu1f9/tqnt+xGSrCXpG/cAk6heyLaiJaB97CgBuPEktS3lnG7n6IfPnhi2pM9mU4ULbbaQqjTXvF8pADvwLu2mWQtGWnUuSd3+o7R7sc7trKXaSWJ1NQCwqwQlADfxjz/6+XySQwVMRjsfPPvElRb011SqlT0lfFz49DyTD559YuTXCsAdvj+nUwUkdzfo//W5D559ot+ifuikKsNSfEjywbNPCEkAgF0nKAEwYV344NknplvSZzNJzhd2q66fZzL0YQGALbwze6nOHmliudHlVB/Ur7SkL6ZS7SS5u/Db8ugHzz4x9OsEAPaCoATg1hPXUj68H2zLzoR//NHPVzLZ9dR30mrq80w+ePaJFb9gAK57R06lCkdmGvyubN2ug3/80c+XIiQRkgAAe0pQAnD7yesoyYGWX+Zqkm5LSnD1klx252Y5yTBCEwBjmR/9fDpVQNKGkqInP3j2idkW9c0wyZHCb9FW9SkA0EyCEoDbT2C7ST4p4FIvfPDsEzMt6bMSzpfZivXQZNiWMiUAbGr80q//2lJGtDXlQus+mk1yovBbtVVnzQAAzSUoAdjMRPbHvxgkOVvApd7zwTOPL7WgvzpJ/u7OvaGFVGeazH/wzONCE4B2jVfWS2v1075STtXu15a8u/7xx7/oJ7lY+C0798Ezj/f9cgGASSAoAdj8hHYl7T/7YvmDZx7vtqS/Bikj3LoTQhOAdrzz+qkOZW/zbspWLOao+6sXZUIXP3jm8Z5fLwAwKQQlACa11zv5wTOPz7agv6aSrKQ95UZ22kKSUarQZEVzADRiXNJPFZC0/V3XirFJ3W/d+n1b8vhkOUnPIg0AYJIISgC2NrktoZb0WqrSFist6K9+lLXYjmsHwQtNACbpvbZ+7sh02r/LdV1rdh5YxPHpGENIAgBMHEEJgAnujbTpo8RS2lenfTethyajtpQ8AWjYe6yTKhiZSTnhyLq1JJ02fFSvx5Cjwscka6lCEuMJAGDiCEoAtj7RnU5yqYBLPfzBM4/Pt6C/elEHfFxWU51pMvSRA2BH312dVOFIP2V/WD/4wTOPj1rSp/Np9xkytyMkAQAmmqAEwGT3VhPatqziHCY54s4d+/2xfhD8vOYAuON3VSfCkY3OffDM44OW9K1xSItCLwCgnb6gCQC2ZSZJL+0uwbU/yWyqDzZNN0gZh93u9v1xJMmRf/zxL5LqMPj14ETdcYBNEI7c1HKLQpJ+hCRHhSQAwKSzowRg+xPfmSTnC7jUVqwA/Mcf/2KQ5Kw7d1cs51poosQGwGffR50IR25lLUn3g2ceX2lBX5dSrvVWjn7wzONDtzUAMOkEJQB3NgEeJTnQ8stcTfXB4krD+2oqyVLKOwh3Eu6fUargZGS3CVDoeKGbKhyZjnDkdtpyRlq3fv+VvJt17oNnHu+7pQGAJhCUANyBf3rpF90knxRwqefeP9P8Ehj/9JKVnRNgIXVw8v6Z5q8WBrjFO6eXa+GIkH5zLrx/5vGZFvT9VJKVFB6SvH9GSAIANIegBODOJ8ODlFHS6Z73zzS/jNI/vVTELqCmWE290yTJ6P0zdpsAjX6/TKU6v2w9HHEu1tYsv3/m8W5L7oNRyt451Iq+BADK4jB3gDv0/pnHB/VOhbZPiGdTfQBqupmUsQuoCe5KcqL+yz+99IvF1MFJG0I5oP3+6aVPzxvpJTmkRbZtLdWZLW0wTOEhSUvGiwBAYewoARiDurzG5QIu9eT7Zx6fbUF/DZMccedOtLV8drfJiiYBJuidvx6OOG9kPI6+f6b5B34bX2QtSccOUQCgiQQlAOObHM+mXhnf8glwt+kfrdUOb6Tl1KFJlOkCdved0cm1klo9746xa8VZFv/00i/6SS4W3I9rSXp2hAIATSUoARjbBPmXpXx8X3j/zGPTLeivQco4W6atlvNpma7HRpoDGPM7ohe7RnbDapLu+2ceu9KC++Vy4X15z/tnHhOSAACNJSgBGO9EeTrJpQIu9fD7Zx6bb0F/raQ6J4PmW8ynu00EJ8CW3wfdVKFIL84a2U2N/7he3zujlL3T6Oj7Zx4bup0BgCYTlACMf8I8n/Z/ZKlrUFsBysQSnAC3ev53ci0Y6UVovhdOvn/msdmG30dTSZYKv3+EJABAKwhKAMY/ae7Uk+a2ryy88P6Zx2Za0F+jJAfcua33aXCSZKnpIR+w5Wf9VD57zohgZG81voxnfU+NUnZptrn3zzzWdzsDAG0gKAHYmcnzTJLzBVzqwaav1q+Drb+7a4uz8XD4pffPPLaiSaBV7+FOko3ltJwzMjnaci7JMMmRgvtRSAIAtIqgBGDnJtCjtH+nwvL7Zx7rtqCvZpOccNcWbTV1aJKqXJcDaaFZz/FOlNJqijYsshgkOVtwHy4n6dmdCQC0iaAEYKcm0f/1q26STwq41HPvP/3ooOF9NZVkJWUfxMrnrZfrqsKTpx/1QQgm6x3bq/+6EYwYM+zevddPcrHgPqxCEu9EAKBlBCUAOzuZHqSMFYdffP/pR1ca3lf9lP3hg9tbTR2aJFl6/+lHR5oEduX5vH6+yHo44lypZlp8/+lHew2/F0tZBHMza6lCErsuAYDWmcigpJ4MrZdy6SaZ2vDf3vjf22il/rvZv7fS9I94QGMn1Stp/0rXxn/8qPtqKerYszXLqcKTpQhPYFzP4l493l8PRuwWab61JJ0m70L4p//6Vad+1u8vuA+FJABAa+1pUFIPNjdOgqayOx+oFut/jjb884pBH7BDz7pekssFXOrR959+dKivQHgCW3judjfMB7qxW6StDr//9KPzDb5Pp+o54936EACgnXY1KLmulnAvk7kaZznVLpSNHzhW3CrAHT7/SjgsvPGrReu+mk9yyF3LDo4vRvX4Qn13SnsX9pJ0IhQpzYX3n350xtig0Rq/GAYA4HZ2PCi59ye/6ibpJ5lOs7fNL+ZaeDJ677TwBNjSs7CUw8IX3jv96HTD+6qT5O/uWnbB2oaxxVKSlfdO231Ca9556wukOvW/VtawTMvvnX602/D7uYTFLrdy4b3TzQ66AAA2Y0eCknpyNJMqIGlrTeH1jxujVMHJyO0E3ObZOJ3kUgGXerDpz8R7f/KrQZKz7lr2yGqqYHVU/1OAwiQ/L3upwpBOrh24vl/LUM+Xuk1eYHbvT37VT3Kx4D6ce+/0o323MgBQgrEGJfUq3EGSI4W253Lq4CRVeKKkBnD9c7KE0g2rqT6MXGlwP02lCsMdIMyk/bZWsiFASbJkvMEuPRd7+Wwg0vGM5DYOv3e6uWda1Pd8yeeWLSfpeccAAKUYS1AiILnl4HKUZN5KUGDD83Ip7V9te+69048OGt5X/ZS9ipRmWcyG8CTJFWMPtvHc6yaZShWErJfPskOE7Wj0ToT6tzAq+N4XkgAAxbmjoKRecTsbAclmLeTabpMlzQFluvcnv5pJcr6AS72n6c+6e3/yq1EcNkzzLSa5kjpAybXzUFY0TZHvoF6uhSDr/+zE7hDGp9Ef2es57ijlnquzVvef+SoAUJRtByX3/uTXM6l2kVhhtj2r9QB8PsnovdPHrdaBgtz7k1+P0v4P8IvvnT7ea3g/9VJ22Q3KGI+s5PNBSt47fXykeRr3zLo+AEmq3SGJ0JfdUX9kP77U4N/RqODfS+P7DwBgu7YclNQTsHmTrbFb320y/97p4yuaA9rt3p/8upvkkwIu9eR7p4/PNryvhrFzkrItpwpQPg1Rci1UueKD2q49i3r1v+zUf8m1EKQTO0Lw3vfOv3NH3zt9fOg2BgBKtKWgpJ6gzccukp22XLfzvI8P0F73/uTXgyRnW36Za0m6TQ6ALRCALf3e18ctV27yr5NkqfSdtPf+5NedXAs7kmuBR3JtR8j6vzbupikW3jt9fLrBv8t+yj6brPGLWwAA7sSmgxIDxz2zmmvlueY1B7RH/QF+Ke1fBdzoDycb+quTZCbJdKzchnFa37Gy7vpgZd3Sdf9zn/vvjzuAuUGgcb2b/fd71/3XUyn3vAPKmbN0mxqCKrWZufdOH++7jQGAkm0qKLn3J7+eTXJCc+25tVzbaSI0gRYoaGJ+uE3PrXt/8uvpJP0kh9zFAJB7mroTvi6HOkq5u7dasaAFAOBO3TYoufdltdkneVCb9eDklMPgoakKec5WK01b9qy69+VfT6UKTPqxWhyAMp1871QzSzbV7/FRwe/w5SQ9c0kAgNsEJfe+XET9/LYQmkBD1ZP0lbR/JeOF904dn2lxP3ZzLTRxpgAAJVh879TxXoPf3aOUewbZWpKOuSMAQOWmQcm9LzuTpMGEJtC8ifp0kksFXOo9751qZmmObfRnP0pzAdBejf7Qfu/LRZeXXku1k2TJbQwAULlhUFKvih3Fitg2EJpAcybso7R/VassgA0AACAASURBVOPye6eOdwvq06lUh7/PRGkuANrl4Hunjo8a+n7up+xFgYffO+XMSwCAjT4XlKjT2mpCE5jsSXsnyVLaH1Kfe+/U8UGh/duv/+5yxwPgXb4n7+Nukk8K7ruj7506PnQLAwB81ueCkq++/MogziUpwUKS4bunHrGSCCZIIc/gtSTdd089slJwPzvPBICmWn731CON3B361Zdf6aSMRSk3M/fuqUf6bmEAgM/7TFBSDxz/rlmKspZ6l4nQBCZmEr+U9u/qW3z31CM9vZ189eVXplOV55qO0ASAyZ87NHKxw1dffqX0ygkL7556ZNotDABwY9cHJaO0vz4+t574DFPtNHGwH+zdRL6UkhCHBbSf6/t+qsDEIfAAeHeP9x07X/D7dTlJ791Tjyi/DABwE58GJV99+ZVeksuahNpqroUmK5oDdn0yP5vkRMsvcy1Jx6T9hv2/fgi80ASASbCcZPbdU48MG/peHaTc8tLGWwAAm7AxKBkmOaJJuMnEaJgqNDHAht2Z0E+lqqHd9kO/L7x76pEZPX7be2E6yUzKLRcCwO5rxW7zerfmxYL7sKdaAADA7e27evXq+keY/6c52ISFVOeZDDUF7PjEfjrJpQIu9eC7px4Z6fFN3ROdVKFJP0ITAHZuvD9sQ3nMupzpKOWeAabMKQDAJlVByU9fmUlyXnOwBeuHwM+++5QVSrBjE/yfFlFPe/ndpx7p6u0t3xudCE0AGNO7OMlskvl3n2rHDvKv/rSY3bk3c/TdpyxuAwDYrPWgZCk+srB9184zecp5JrADk/yVtH8l5Ll3n3pkoMe3fZ90IjQBwBh+47ux5Dnu3LtPPdJ3iwMAbN6+e1/+tbJbjNNiPeFqzWo0mICJfgm7/taSdIWtY7lfHAQPwM2sptoVPmzzrvCv/rTo8zcX333qkZ5bHQBga/bd+/KvS6mBz+5a2zAJG2kOuOMJ/yjJARN7tnjfCE0AWB+Xz7/7VPvPq/jqT4s+vH05Sc+CNQCArdt378u/HiQ5qynYQUpzwZ1P+rtJPingUg+X8BFnj+6hqSS9XAtO9msVgNYqKhzZ8K7rJblccJ/bnQsAsE377n25iIOCmRwbSnN9z0on2NLk/9VB2h9sryXpeD7syv00nWvByV1aBKAV79A6HPlecYsOvvrTVzupDm8vdSHAPe8+9b0lPwMAgO3Zd+/LRZRzYXIncsN3n/reSHPApj8CrKT9H7UvvPvU92b09q7eV91c22niMHiA5o2piwxHNrzHppKMCn6HHX33qe8N/RwAALZv370vv3Ilym+wt1aTzNYTvBXNAbf8ENBLGSUlDgpR9+we6+TaThM7TgEmj3Dk8++uYco9vP3cu099b+AuAAC4M/vuffmVq5qBCbJQT/qGmgKK/hiw+u5T3+vo7Ym439Z3mvSiRBfAXhGO3Pw9NUi5Z27OvfvU9/ruAgCAOycoYZIng8NUpbnU2oXPfhCYSrKS9u8GtEJy8u69bqrApB8lugB22mqulao1Hr7xe2k6yaVCL385Sc+5bgAA47Hvqz99VVBCEyYBwyTDd548ZiIASb72s9dK+TDwxXeePLaixyfyHpzKtZ0m01HGE2Cc497RO08eE47c+j3UTXUuSYnvn7UkHXMjAIDxEZTQNHNJ5t958piSA/hA8LPXRkkOtPwyF9958lhPbzfiflw/EL5XwH0JME4LqXaOjCwO2PQ7p+TD29eS9ARpAADjJSihqdZLEcyaUFLwR4JOkqW0fyXl0XeePDbU4426N6dybadJL842Abh+HDuKxT938p4ZpdxQ/rD7BgBg/PZ99aevljzIpB0WU5UomLf9nNJ87WevDdL+A0yVl2j+fdrJtdCkF2W6gDLHq+u7RuwEuLN3ymySE4Ve/sl3njw26y4AABg/QQltslZPQIfvPHlspDkoxdd+9tpS2l96Yu6dJ4/19XZr7llluoC2+3TXSKpwRNg/nvdHP8nFQi/fWAgAYAft++rPXh2k/auRKXNyOkwyfOfksRXNQZt97fxrvSSXC7jUg++cFIK2+B5eD07u1iJAQy2kCkdG75y0a2QH3hUlH96+/M7JY113AQDAztn31Z+9Op3kkqagxa6V5jppNR/t9LXzRZSh8JGgjHt5/XyT9T/BCTCx76VcC0acGbHz74allHnm1WqSrnkMAMDO2vfVn706leT/aQoKcK00l1XptExBHxDOvXPy2ECPF3dv9yI4AfbeejmtUSzA2e13wShllmpcS9KzQwkAYOftu3r1ar52voj69nD9RHcYpbloka+df62EHYJrqVZV+t2We5+vByfdOOME2Pnx4ijXdo149+zNc7/kw9sP260EALA71oOSmSTnNQeFWk4yGysDaYGvnX9tPsmhll/m4jsnj/X0Nhvu+16u7Tjppsz69cCdE4xM3vO9n3IPbz/5zsljs+4CAIDdse/q1av552p1pvJbUB3COfyblVs01D+ff62TqgRX2z8UH/Y75Ra/g/XdJuv/vEurADfwmWDkb4KRSXyWj1Jm+D33t5PH+u4CAIDds+/q1avrA9FhkiOaBJJsOM/kb84zoWH+uYxdgmtJOn+zC4zN/SaU6wKSDYevJ1kSjEz8c7vUw9uX/3byWNddAACwuzYGJd0kn2gS+JzVXAtNHKRII/xzGWdPXfjbyWMzeptt/kY27jrpxllt0DZrqT60j1LtFhlpkkY9o0cpM9ReTdK1EAQAYPd9GpQUPiCFrUxeZpPMW4XIJCso/D7o4xdj+s1M5dqOk/XwRMkuaI7lXAtGlixuafTzuNTD29eS9Ny7AAB74/qgpJPk75oFNj0hH0ZowoQq5EOD8hTs5G9IeAKTaTWfDUVGmqQ1z91+yj28/ejfTh4bugsAAPbGZ4KSenBa6goeuBNCEyZOQfW9z/3t5LGBHmcXf1cbw5NOlO2CnbQeimwMRpQlaufzteTD241lAAD22OeDktnflHxwHozDtdBk5uEVzcFe+ufZ30wnudTyy1xL0vV7Y49/a71cC066UcoUtjuGWsnGUGTmYaFIGc/Qkuegc3+bebjvLgAA2FufC0o2TPYvax4Yy4R/PlVoot4we+KfZ38zn+RQyy9z4W8zD0/rbSbst9fJtZJddp/ANesHra//rfxt5uGRZin6eTlKmQHzcpKeQBAAYO/dMCipB6uDJGc1EYzNaqrQZPS3mYfnNQe7pV6luZL2l7I47LdFQ36TG3eeCFBou8X6HbSSapfIih2AXPdMLPnwdjtiAQAmxE2DknrQOorSEbBTE6P5VB8M5q0iY6f98+xvZpKcb/llrqb64OD3RFN/pxsDlE79ZxxGUwhE2M5zr59yD2+/x45zAIDJcbugxHklsDuU6GLHFRJ+X/jbzMMzepuW/XbXD5Dv5FqQMhUhCnszXrmSOgip/5wjwnafbSUf3n70bzMPD90FAACT45ZBSZL8y4XfljyAhb2wVv/m5pOM3j7x0IomYRzq5/knBVzqPW+feEjgSCm/6+tDlI1/FrqwHYupwpClDf9cMR5hB55do5RZdvDC2ycesqgDAGDC3DYoqQeyvTjcHfbKaj2RHEVwwh36lwu/HaT9508tv33ioa7ehk8D0ql8PkSZinNRSrVY/3O08Z9vn3hopGnYxWfTfJJDJf7+3j7xUM8dAAAweTYVlCTJv5RdPxYmyWeDE/W/2YJ/Kaek4sm3Zx6e1eOwqWfCerB4faiSKO/VtPHB+phgVP9zpf678rbSnkzOc2eQ9i/auJHlJL23laoDAJhImw5K6kFtP8ISmDTrpbqWUgUnI03CbZ7lvbR/l+Bako6PETC258bGQKWTa0HKeriy/u8r9zVeG8OPlQ3/er0sVrz3adizZDrJpULH6z2BJQDA5NpSUFIPbvsRlsCkW071EWUpyZKPKNzgWV5CyYuFt2centbbsCfPmI3BSvLZQOVG/3WbS4EtXvdfr+Ra4PG5/9o7mxY/Fzr12LTEsy8Pvz3z8Ly7AABgcm05KEmSf7nw236EJeO2/mF7utDJAztvNRvCkyRX1CMvV32I6koBz5uD7nNo9LPq+kBlo+vDmN1wq+eJA8/h1uOOUco8G+nk2yceUg4UAGDCbSsoqQe7/QhLxm05VVDSrf8pNGE3rJf1WC/jMar//aW3TzykbFGL3OCDYz/JkQLu7657GQD2dAwyLGDMcSNzb594qO8OAACYfNsOSuoBbz/CknFbSzLz9omHhnUbrwcmQhP2ynLqOuj57Era0XX/c60LVm6zknkzetv4z2z1/2bXs+G2zr194qGBZgCAPRlPzSQ5X+gYumexBgBAM9xRUFIPfPsRluyEhST9jQNroQkttHiH//lOHBzM5nxRSRwA2F31opNPCrz0tVQ7Wo09AAAa4o6DknoAPJ1kGB/vx201VVgyukmbC00ANmfx7RMP9TQDAOyOgs5Du5F73j7x0JK7AACgOcYSlCTJv/78d91UpXh8tB+/C2898eDMTdp9KtcCk0OaCuCmjr71xINDzQAAO+9ff/67pZR5eLvxBgBAA40tKKkHw90k81EKZycsJ+m/9cSDS7do//XQpJ/kgCYD+Iy1JJ23nnhQrXAA2EH/+vPfzSY5UeClz731xIN9dwAAQPOMNSipB8VTqXaW3K15x24tyeCtJx6c3UQ/dHItNNEXAJWb7tADAMYyH+ynzDMsl9964sGuOwAAoJnGHpTUg+OpVDtL7GrYGQupdpdc2WR/dFMFJtOx2wfg4FtPPDjSDAAw9nlgqeWY7VoFAGi4HQlKNgyUh0mOaOYdG4xPb/Vj37/+/HcOgQdKZ8UnAIx/7ldyZYF7blUiGQCAyfcPO/m/vK7Pek4z74j9SS7X9X+30ifzdb90khxNtTsFoCR3/+vPf6f8FgCM1zDlHt4uJAEAaLgd3VGyruA6tbvltge936Z/OnGeCVCWtSTdt554cEVTAMAdz/dmkpwv8NKdfQYA0BK7EpTUg+dS69Xulk0f9L6JfurXf/oKaLOFt554cFozAMAdzR96SS4XeOmLbz3xYM8dAADQDrsWlNSD6G7K3ZK9W7Z00Ptt+mt9l8khzQq0lIPdAWD784WpJCspb4HVaqqdqQ5vBwBoiV0NSjYMpkcRluyktVRhyfwY+6wfpbmA9vGhAwC2P09YKnB+sJak51wSAIB22fWgpB5QTyWZTXJEF+yoC6nKcV0ZY98pzQW0zbm3nnhwoBkAYEvzgtkkJwq89KNvPfHg0B0AANAuexKUfDq4/sXvSx1c76bqoPfHH1jagf5Tmgtoiy++9fgDK5oBADY1D+gnuVjgpV946/EHHN4OANBCexqUFD7I3m0n33r8gdkd6sNOkukkM0nu0tRAAy2+9fgDPc0AALcd+3dTlVIubXe5sQIAQIvteVBSD7anUx3yrpTTDg/uk0y/9fgDV3awL7upApNp/Qk0zOG3Hn9gXjMAwE3H+qWeN1mdabaD8ygAAPbWRAQl9aC71JVJu6066H2HPwbWk6j10lwHNDvQkOdjx0cQALjpGH8+5ZXdrQ5v34FSxgAATI6JCUrqgXepK5T2QnXQ+y58EKxLc/XrP6W5gIl+Nqo9DgA3HNPPJDlf4KUffevxB4buAACAdpuooCRJvl6FJcM4IHw3LCfpv7mLq6O+XpVZm05yRPMDE+qeN60aBYCNY/hukk8KvPQLb1pAAQBQhIkLSjYMxofxMX23nHvz8QcGu9y/66W5ZmIHETBZFt90WCsAbBy3r6S8EsnLbz7+QNcdAABQhokNSupBeanbu/fCYqrdJSt70M/dXCvN5YwaYBKcfPPxB2Y1AwCl+/ovfj9KeWcOriXpvOncMgCAYkx0UFIPzPtJLuqqXZsQ9N/c4YPeb9Pf6wfAK70G7PXz0AcSAIr29V/8fpDkbIGXrgwnAEBhJj4oqQfovSTzsdtgt8wlmdnLD4T1Fv9+/ac0F7Anz8I3H3+grxkAKFG9gOlSgZd+9E2HtwMAFKcRQUmSfP2Xf+gmGUVYsltWk0y/+dj9SxPS9/0ozQXsvoNvPnb/SDMAUJKv//IPnSRLBY6959587P6+OwAAoDyNCUrqAXs3yTB2GOymc28+dv9ggu4BpbmA3bT85mP3O8gVgKJ8/Zd/WCpwzuWdDwBQsEYFJfWgfSrVzhJhyS5OGlLtLlmZsPtgOsmMewHYYSfffOx+B7sDUISv//IPwyRHCrvstSTdSZrvAACwuxoXlNSDd2HJ3kweZt587P7hBN4PnVSByXSSu3QVsAPPv86bj93vYHcAWu3rv/xDP8nFAi9dqU0AgMI1MijZMJAfprzVTnttIUl/Uj8Yfv2Xf+ilKs01HeeZAGN89r352P3TmgGAtir4TEg7RwEAaHZQUg3oLw4jLNltq0n6bz52dDTh94bzTIBxOjjpzz0A2Oa4udQd+wtvPnbUQggAAPIPTb+ANx872k8ypyt31V1JLn/9lxcHE35vzNcTn/+T5Giq3TAA2zXUBAC01GwKPLw91aIqAABo/o6SdV//5cWZJOd16d5MMN587OhSQ+6TqXpC1I8zboCtO/fmY0cHmgGAtvj6Ly/2U965JGtJek2ZwwAAsPNaE5RUg/xiDx+chInGoGm1fetD4NfLcwlNgM0+77pvPnb/iqYAoAXzp26STwq89MNvPnb/vDsAAIB1rQpK6sF+P8KSvTLRB73f5r7pRGgCbPJZ52B3AFowb5pKspSqrG5JLrz52P0z7gAAADZqXVCSJP/2q4v9VHV29+viXbeWZPqNR5t74PG//epiJ0IT4NYONvk5BwD/9quL80kOFXbZi288erSn9wEAuF4rg5J64N9NMoqwZK9cSDJ449GjVxp+H3VShSa9AieSwM2tvvHo0Y5mAKChY9wSz3dcTdJt+vwEAICd0dqgpJ4ACEv21nKS/huPtuOQxH/71cWpVKHJenDivoKynXvjUQe7A9DIOVKJ55Lc05Z5CQAA49fqoGTDRGAUH7X30sk3Hj0628J7a2NocpduhuKspVqZuqIpAGjI+LXUc0mOvvHo0aE7AACAm2l9UFJPCIQle28x1dklV1p8j/XiXBMozcIbjx51sDsATRmzlnguydwbjx7t630AAG6liKCknhQIS/beWqpSXPMtv9fWS3T1YrcJlMDB7gA0YYxa4rkky0l6ziUBAOB2iglKkuTffn1xKlVYYsX/3ppLMvPG8TImLP/26093m/TiQHhoo9U3jh/taAYAJnw8Wtq5JFWJzONKZAIAcHtFBSX1JEFYMhlWk0y/cby8AxX/7dcXe7kWnBxwK0ArnHvjuIPdAZjY+U+J55IcfuN4u3eyAwAwPsUFJRsmC6MISyZB8R8XBSfQClatAjCpY80SzyWxgAEAgC0pMiipJwzCksmxmKTvA+On9+bGUl3dOOMEmmLhjeMOdgdgosaVJZ5LsvjG8aM9vQ8AwFYUG5TUEwdhyeRYS3VuyVBTfO4+7aQKTNYDlG6S/VoGJtLBN4472B2AiRhDlnouSaeUsxABABifooOSagIxFJZMloUk/TeO901ubn3fdvLZ8KQTO09gEqy+cbzf0QwATMAcp8RzSe5543h/yR0AAMBWFR+UbJhIjCIsmRSrqcKSkabY8n28Hp50Nvxru09gd51843h/VjMAsIfjwhLPJfH+BQBg2wQl1yYTwpLJc+6N4/2BZhjL/d1Lsh6kdDb82YXCOC1u4n9mpb4P2/ysrct+2BkHwJ6M+0o8l2TujeP9vt4HAGC7BCWfnVQISybPcqrdJbbQ79x930kVmqwHKUlVziv1v+f3sPe/ga18cB9t8n/uSqqSHJuxNM6P/vU99/eW95sPNgDsxbiuW48FStpRvJykZ4ECAAB3QlDy+cmFsGTyrCUZ2Eo/Eb+P3g3+7d4m/+Mbg5jdMpqw/51LJvGf3kuDJGdbfpkHlRAEwDxmx+cJPYuqAAC4U4KSG7jvFWHJhFpI0v/rIz40Q0ues20/ZHb5r4/0u3obgF16tw6THCnsso/+9ZH+UO8DAHCn/kETfF79Ib6Xahs3k+NQkpX7XhlOawpoxXN2puWXefd9rwz7ehuAnVa/b0oLSeaEJAAAjIsdJbeecNhZMrkuJBnYXQKNf86Okhxo8SWuJel4VgGwg+/STqpdmkWdS2LXJgAA42RHyS3YWTLRTiQZ3ffK0AQJmq2fKkxoq/1JBroZgB00n7JCkrUkdpgDADBWgpLbEJZMtLuTfHLfK8OBpoDGPmNXksy2/DJP1Kt9AWCs7ntlOJvydr/36/EDAACMjdJbm56EzCnDNdkWq0nTEZMmaOYzdiXtPth98a+PHOnpaQDG+O7sJblc2GVf+OsjR2b0PgAA42ZHySb99ZEjdpZMtgNJlu57Zc42fGimftufUZ5PAIxLvYhrvrDLXhSSAACwUwQlWyAsmXj7k1y675W5+XryCDTn+TpKstDyy5zV0wCMiXNJAABgjAQlWyQsaYRDqXaX9DQFNMpM2n2w+133vTI30M0A3In7XpmbSbWbuiTT9TwMAAB2hKBkG4QljXBXkss+SkKjnq0raf+uixk73gDYrvtemesmOV/YZZ+rd54CAMCOcZj7nUxUXnXAe0MsJ+n/9XtHljQFNOLZupJ2H+w+99fvHenraQC2MfdYavk78nqLf/3ekZ7eBwBgp9lRcgf++j07Sxri7iSj+16dc/gjNEO/5dd35L5X57q6GYAtmk1ZIYlzSQAA2DWCkjskLGmM/UnO3/fq3Hy9Gg+Y3OfqKA52B4BP3ffq3HSSI4Vddq+eawEAwI4TlIyBsKRRDiVZqSebwORq+8HuBzyHANiM+16d6yQZFnbZJ5XNBQBgNwlKxkRY0ij7k1y679W5WbtLYGKfqStp/64Lu0oA2IxhPX4txcJfv3fEOxIAgF0lKBmjDWHJmtZohBOpzi5xVgBM5jN1kGS1xZd4132vzg30NAA3U78nDhR0yatp/1llAABMoH1Xr17VCmN26LU/dpOMUtbKr6Y7t3DsuwPNABP3PO0ludziS1xL0lk49l012AG40Zzik8Iu+56FY99VcgsAgF1nR8kOqAf3vdhZ0iRnD732x9Gh1/7Y0RQwUc/TUdp9sPv+KMEFwHUOvfbHqRR4LomQBACAvSIo2SHVIP9qL7m6llyNv0b8HUiuLh16zQHLMFmuzrT8WXrk0GtzHf0MwIZ33yC5endB4/CFhWPftXAAAIA9IyjZQQvHjthZ0jz7k1w69Nrc/KHXHPQOE/IsXUn7d10M9TQASXLotbleqrP0SuFcEgAA9pwzSnZnsuPMkgZP2haOHRlpCpiIZ+lKkrtafIkHPW8Ain/XTSVZKWzecE+9wAwAAPaMHSW7oBr475tO9sVfo/7uSvZdPvTaH5UBgImwr9/yZ45nDYB33TDZt7+g8fY5IQkAABMxErejZPcceu2P/SQXtUQjLSfpO2AS9vw5OkpyoMWXeHTh2HeHehrAXKEAiwvHvtvT8wAATAJBiQkQm7eWZJBEWAJ7p9PyZ+hqku7Cse9e0dUARc0ROvUYs5SSW2tJOt53AABMii9ogt21cOy7w0Ov/TERljTR/iTnNQOwg+5KMpMqlAWgHMOUdS7JtJAEAIBJ4oySPVCXVTmqJQC4gZlDr/1xSjMAlOHQa3+cSbvLSl7v3MKx7470PAAAk0Tprb2cFP3mT7NJTmgJAK4zt/Dwd/qaAaD184Fukk8KuuTFhYe/09PzAABMGjtK9tDCw9+ZSTKnJQC4zpFDv/lTRzMAtN6woGtdS9LX5QAATCJByR6rVwwLSwC43qwmAGivQ7/50yDJ3QVdcn/h4e+s6HkAACaR0luTM1EaJjmiJQDY4ODCw98ZaQaA1o39Syu5daHeTQ8AABPJjpIJUe8sWdYSAGww0AQArTQs6FqXhSQAAEy6L2iCybEv6SUZpawt+ADc3IHp3/ypP//wd4aaAqAdpn/zp8G+csb7ziUBAKAR7CiZIPMPf+dKqrDEzhIA1g00AUA7TFclt84WdMkz8w9/Z0nPAwAw6QQlE2ZDWLKqNQBIctf0b/6kZAlAOwwLutY5OyIBAGgKQckEqsOS6VRb1QFgMP2bP01pBoDmmv7NnwYpp+TWahIhPwAAjSEomVD1FvVehCUAJPvjgxNAYxVYcmu6XvwFAACNsO/q1ataYZJnGL/9UzfVAe/7tQZA0daSdOcf+s6KpgBo3Jh+KeXsJjk3/9B3BnodAIAmsaNkws0/9J2lWEUMQBWYDzQDQLNM/7aokluLQhIAAJpIUNIA8w99Z5jkqJYAKN6R6d/+qaMZAJqh3h1eSsmttVTnLAIAQOMIShpCWAJAbagJABpjtqBr7c8/5FwSAACaSVDSIHVYMqclAIp2YPq3f+ppBoDJNv3bP80kOVDI5V6Yf+g783odAICmEpQ0zPxD3+lHWAJQuoEmAJhcdZnEUp7Vy95LAAA03b6rV69qhSZOvn735/kkh7QEQLGOzj/47aFmADBW32P3zD/47SW9DgBAk9lR0lz9VKu3ACjTQBMATJ7p3/15OuWEJCeFJAAAtIEdJc2ehE0lGSW5W2sAFMmuEoDJG5+vJNlfwOUuzj/47Z5eBwCgDewoabD5B799JUkvyZrWACjSbP1RDoDJMEgZIclaqh3uAADQCoKShhOWABRtf5IZzQCw96Z/9+dekhOFXG5//sFvr+h1AADaQumtljj8uz93U5Xh2q81AIqylqRzqQrOAdi78fhSyiiJu3DpwW9P63EAANrEjpKWuFQdomhVMUB59sfB7gB76vDv/jyTMkKS1Si5BQBAC9lR0r5JWj/JRS0BUJwvXlIGBWAvxt8lHeB+8NKD3x7pdQAA2saOkpa59OC3h0kuaAmA4gw0AcCemE0ZIckFIQkAAG1lR0lLHf7dn4dJjmgJgKLcU5diBGB3xty9JJcLuNTlSw9+u6vHAQBoqy9ogna69OC3+4d//99TSQ5pwRxWwQAAIABJREFUDYBizCbpaQaAXbJv32whV9rX2QAAtJnSW+2f0CxrBoBiHDj8+//uaQaAnXf49/9dygHu5y498C27FQEAaDVBSYtdeuBbV1KtLBaWAJRjoAkAdla9c7uE5+3ipQe+5b0CAEDrCUpargpLrvaTq2vJ1fjz58+fv9b/HTj8+z/3vQEBdtLVQXJ1f8vfJ2vVPAIAANpPUFKASw98eynVzpI1rQFQhIEmANgZh3//526SEyW8Sy498O0VPQ4AQAn2Xb16VSsU4hu//+9+kotaAqAIR19/4FtDzQAw9jH1KMmBll/m4usPfKuntwEAKIUdJQWpP5gd1RIARRh8o6qhD8CYfOP3/91L+0OStSR9vQ0AQEkEJYWpw5I5LQHQenclmdEMAGM1LOAaB68/8K0VXQ0AQEmU3irUN37/38MkR7QEQKutJem8/sC3rmgKgDseP/fT/jK2Sm4BAFAkO0oK9foD3+onWdYSAK22P3aVANyxupThbMsvU8ktAACK9QVNULB9+3pJRknu1hgArTXzjT/8Zfj6/d9c0RQA2x43z6QKn9ts4F0BAECp7Cgp2Ov3f/NKqlVja1oDoLX2JxloBoDt+cYf/jKV9u/OW3z9/m/O6m0AAEolKCnc6/d/cylJL8ISgDY78o0//KWjGQC2pe27SZTcAgCgeIIS1sMSNewB2m2gCQC2pg6Zz7b9/aDkFgAApROUkCR5/f5vDpOc1BIArXXkG3/4S1czAGzJoOXXp+QWAABEUMIG9SRpTksAtJaPYQCbVO8mOdLiS1RyCwAAaoISPuP1+7/ZT7KgJQBa6cA3/vCXnmYA2JRBy69vVsktAACoCEq4kX6SZc0A0EoDTQBwawXsJll+/f5veh8AAEBNUMLnvH7/N68k6aXajg9Au9hVAnB7g5ZfX18XAwDANYISbkhYAtBqzioBuIlv/OEvU0mmW3yJF16//5tLehoAAK7Zd/XqVa3ArSaK00kuaQluYyE+vNJOgyQHWnptR1+//5tDXQzwufHvIMnZll7eapJuvSgKAACoCUq4rf978S/9JBe1BLexmKT/P0cdCkqrnn/dJJ+09PJW/+foNzt6GeAzz/2pJCtJ9rf0Eg//z9FvzutpAAD4LKW3uK3/OfrNYZI5LcFtHEiy9H8v/mVaU9Ci599Si59/d9VBOADXTKe9IcmCkAQAAG5MUMKm/M/Rb/ZT7RiAW9mf5NL/vfiX+XpFJrTBwLUBeOY33FqSGd0LAAA3JihhK6aTLGsG/j97d54dxZ3lD/ujOu//qFdAegXIKyAxeGBUyszYLhLXAhArIFmBxQJsUmYSk5FcrqrudtXPqRVYWkFJK2hpBbx/RGIDBUZDDpERz+OTp7r79KmquDHofuPG/d4dmE3RXdIUCiZdfzu52xU9vINn7zzw4gwgSb8r9mBFD2/B9qgAAPBuCiXs2LNrV7ZSFEu2RYMdOJjkl7N3HizoLqECOhV+9nXcowBJqttxsf7s2pWO0wsAAO+mUMKuPLt2ZSNTU81MTcXPb4e/65ma6p3tPpxxBzHBz76tTE0tVPQePZCpKV0lQK2d7T5sZGrqcEWf857xAADwHgol7Nqz9uW1JNdEgl04lOTXs92HHaFggi2kul0l82e7D3WVAHVW1WLCyrP25Z7TCwAAf0yhhD151r7cTXJLJNilm2e7D9fOdh82hIIJfO5tpbpDfg/EkF+g3toVPCYD3AEAYIcUStizZ+3LnSSLIsEuHUqydrb70MKdSXzuLSTZrOjh6SoBauls92ErRcG4ahaetS9vOMMAAPB+CiXs13ySdWFglw4k+eZs92HPi1kmUKfC92XH6QVqqF3BY9rsf9QEAADsgEIJ+9LfiqaZ6u7bz3AdTrLR/5ITJuW51011u0qu2xoPqJP+BxuzFTw0nbsAALALCiXsm2IJ+3QgyfOz3YfLukuYIO0KH1vH6QVqpIofa6w+a19edmoBAGDnFEoYiGfty2vx5Rr7M5tidklTKJiAZ14vyWpFD++qrhKgRqqYv3acVgAA2B2FEgamvx3NLZFgHw4m+eVs9+GC7hImQMexAUyufq5xqGKHtdgv5gMAALugUMJA9YdGLooE+3Q9Se9s9+GMUFDi510vukoAJlkVt93qOK0AALB7/58QMGhTU1PzSWZSvS/0GK1DSX49t7h06+nVSxb9lPl592tFD6+Tas9iATzDq1YoWXx69dKGMwsAALuno4SBe3r1Ut2Hu6/HYPtBunlucWnt3OJSQygo4fNuLdXtort6bnFJVxdQZc2KHU/HKQUAgL1RKGEoal4sOZRiMOiqK2GgMV07t7g0LxSUUKfCx7bg9AJVdG5xqZnkQIUOSTcJAADsg0IJQ9P/0rquL7YXUux7bbj94BxI8s25xaXeucUlg94p07NuI9XtKjncf5kIUDVVe7Z1nFIAANi7qRcvXogCQ3VucWkhxXDuull/evXSTH/rmm7MbBmk7SRrwkCJTFf4Hl99evVS0ykGKpaf9pIcrsjhLD69eqntrAIAwN4plDCqxehyktkaHvrtp1cvzfc7IDqpZ8EImHxHnl691BMGoEK5aZUWQR/YdgsAAPbH1luMSjvFkPO6uX5ucan19OqlradXL80nOZJk0+UATJiOEABV0e/2rQqzSQAAYAAUShiJ/nD3duo53L37ckHe/yJ7JsmKqwKYIGaVAFVSpefZgtMJAAD7p1DCyPSHu7dqeOgHUhRLpvtx2Hp69VIryVzqWTgCJlNHCICKaFTkONb7+TUAALBPCiWMVL+j4kYND/1Q3vji7+nVS8spuktWXRnABNBVAlRFVbbe0k0CAAADolDCyD29emkhyWIND/3qucWl9hux2Hh69VIz9SweAZOnIwRABTQqcAzbSZadSgAAGIypFy9eiAIjd+77R9NJeik6Lermw6d/vrj2lpjMJOnWNCbA5Djy9M8Xe8IATHAeWoUF0OLTP19sO5sAADAYOkoYi6d/vriVYpBmHWd0LPcLRW/GZO3pny/OJLntCgFKrCMEwKQ69/2jRlXySWcTAAAGR6GEsXmlWFI3B1N0jrwrLvNJjiTZdJUAJXT43PeP2sIATKhGRfJohRIAABgghRLGvchbS3Kthoc+e+77R/N/EJdeikGjK64SoIQ6QgAwNqtCAAAAg6VQwtg9/fPFbuo53P2b/lySd8Vl6+mfL7aSzKWeW5QB5XVQVwnA2DTeto0rAACwd4a5Uxrn7z5eS/0GmW8mmXny1YWt98RmOsVe1IddKUBZnl9PvrrQEAZgwvLNZpJfKnAoK0++utByRgEAYDB0lFAmzdSvc+IP55W89OSrC1tPvrrQTHIjukuAkjy/zt993BYGgLGYPX/3cVcYAABgMBRKKI1+V0Wzpgvd+R3GaKEfo3VXDFACHSEAGJuriiUAADAYCiWUypOvLtR1uPs35+8+ntlpjJ58dWEmyS1XDDBmukoAxuuq5zAAAOyfQgml8+SrC93Uc7j7cn8WyU7j1ElyJMWcE4Bx6QgBwFjdUSwBAID9USihlJ58daGd+m0vtaN5JW/EqZdkJsltVw0wrmeXF3QAY6dYAgAA+6BQQpk1U7/B5TueV/JSf9D7fJK5GPQOjEdHCIBJ0P/IpKoUSwAAYI8USijzQrauw913PK/kjXgtJ2kkWXH1ACOmqwSgHO6cv/u4IwwAALA7CiWUWn+4+40aHvqu5pW8Eq+tJ19daCW5Ft0lwGh1hACYEKsVP76b5+8+7jrNAACwcwollN6Try4spH7D3Xc9r+SNmHVTzC5ZdQUBo3pu6SoBJsRaDY7xqmIJAADsnEIJk2I+9Rvuvut5Ja968tWFjSdfXWgmueXyAUakIwTABFiryXEqlgAAwA5NvXjxQhSYCBfuPW70F7YHanboHz7+8sLaPmM3k6JD5ZArCRiya4+/vNAVBqDkOeW/a3TIq0laj7+8sOXsAwDA2ymUMGkL21aS5zU77M0kM4NY3F6493ghyXVXEjDMZ9bjLy80hAEoeU65kWKr07pYT9JULAEAgLez9RYT5fGXF5ZTv62kDiZZGFD85pMcSVF8ARjKM+vCPbNKgNJbrtnxHkrS63fTAAAAb1AoYeI8/vJCJ8lKzQ776qBePD7+8kIvxaD3FVcTMCQdIQBKrlvDYz6UZK2/JSsAAPAKhRImVTv164pYGNTC9vGXF7Yef3mhlWQuybbLCRgwXSVAqfXnv9Wxw/ZAis6SpqsAAAB+p1DCpC5ut5KpVjK1nUylJr8DyVT3wr0n0wOM43Iy1UimVmsURz8/v9H8Ov5aAeU2tVDT5/OBZOqXC/eetF0DAABQUChhYj3+8vxakvmaHfahDHhLm8dfnt96/OX5ZpIb0V0CDM5BL+GAkuvWPPe5c+Hek47LAAAAFEqYcI+/PN9Nslizw75+4d6T1hBiuZBidsm6KwsYkLYQACXOI7dSv6Hub7p54d6TrqsBAIC6m3rx4oUoMPEu3HuylqLboi62k8w8/vL8xpDi2Uly05UFDMCRx1+e7wkDUNIcspHk3yKR1SStfvEIAABqR0cJVdFKvbZOOJBiu4ihePzl+U6SD6O7BNi/jhAAZdX/6OS2SORwkl6/cAQAALWjo4TKuHD/SSvJ85od9q3HX5zvDDGm0ylecl53hQH7cOTxF7pKgNLmkNNJNlJ8iFJ320maj784vyYUAADUiY4SKuPxF+eXk9yq2WHfvHD/SXOIMd16/MX5+SRHkmy6yoA96ggBUOIccstz6jcHkvQu3H/SFgoAAOpERwmVc+H+k16K7QPqYjPJTH+RP8y4TqfY7mvWVQbsga4SQA45WW48/uL8gjAAAFAHOkqoorrNKzmYIc4reanfXdJKMlez+AKD0RECoOTacpzXfHPh/pOuMAAAUAc6Sqik/nZUv9TssK89/uJ8d0TxnU6yHF9dArujqwQoew7ZTnJHJF6zmqQ17O5lAAAYJx0lVFL/RdyNmh32woX7Txojiu/W4y/ON/sx9uUlsFMdIQBKnkN2kyyKxGsOp5hbMiMUAABUlUIJVV7oLiRZqdEhH0jR5THqGM+k+NIQ4H0O9zv+AMqcQ7aTrIvEaw6lKJZ4hgMAUEkKJVRdO8Ww89osYi/cf9IZ5X/g4y/Ob/S7S2653IAdPpcByq5ZsxxyJw4k+aW/PRkAAFSKGSVUXn+bgF9rdthjmQPQj3U3xVeHAO/yweMvzm8IAzABOWQvRYGA1y32O28AAKASFEqoy0J3Psk3NTrkzSQz4xq6eeH+k4Uk1115wDt4wQZMSg7ZTPKLSLyVIe8AAFSGrbeohRrOKzmYorNjXPGeT3IktqwA3u7qhftPGsIATEAO2UtyTSTeypB3AAAqQ0cJtXHxwdPpJGspigh1ce3RlXPdMce8E90lwH9afHTlXFsYgAnJI9tJ7ojEW20naT+6cm5ZKAAAmFQKJdRtkVu3eSXbSWYeXTm3Mea4t1J0uNjjG3jVB+N+PgHsIp+xtegfu/HoyrkFYQAAYBLZeotaeXTl3FqSGzU65ANJlksQ9+UkjdRr+zPg/eaFAJigPHI+yaJIvNM3Fx887QoDAACTSEcJtXTxwdPlJLM1OuRbj66c65Qk9u0kC9FdAhRdb41HV84ZBAxMUh7ZTXJVJN5pPUnTsx0AgEmiUEJdF7h1nFfyYb+jpgzxb6TYiuuwq3Eo1pN4OVE9jYo+s0pTyAXYRS7TjWLJH9lOUSxZEwoAACaBQgl1XuDWbV7JZop5JVslOgfzKYa96y4ZLENVq/nMaiT5d0WvV10lwCQ+l7tRLHmfa4+unOsKAwAAZWdGCbVVw3klB1MUJcp0DhaSNFN0QDA4B5I8v/jg6UK/e4pqPLM2Us298Q/ErBJgMp/L7ZhZ8j53Lj54asA7AAClp6OE2qvhvJK5MnYaXHzwtJPkpity4DZTdJf0hKISz6tGqtlVsvnoyrmGMwxM6LO5G50l77OapKV7EACAstJRAkk7xcvkuuiWscugP6Pgw+guGbSDSX7RXVINFe4qOXjxwdO2MwxM6LO5HZ0l73M4yVp/61sAACgdhRIsbosv21o1OuQDKQapl/FcrKXYiuu2K3Pgrqd4QdEUionXcVwApcth2lEseZ+DSXoK4wAAlJGtt6Dv4sPabf1049HlcwslPh/NFAWdg67OgVtMMv/osu0vJvh51U01t3m59uiyob+A53MN3Hp0+VxHGAAAKAsdJdDXX6yt1uiQOxcfPm2U+Hz0ksxEd8kwXE2ycfHh05ZQTO79W9HjMtQdmPR8sp3klki8182LD58uX3xoW1AAAMpBoQRe10qyXZNjLe0WXC89unxu69Hlc/NJ5mp0XkZ5/p97STGZHl2u7KySQ/1uMoBJfkZ3klwTifeaTdK7+NDcEgAAxk+hBF5f2NZtXsnh/pZjZT8vy0kaSVZcpQM3G90lk6rjuABKm7t0o1iyE4dSFEvkIQAAjJUZJfAWFx8+XUgx/LouPnx0+dzahJybVopOmAOu1IFbSdI2u2SinlXdVHMv/CP97fcAJv053U5yRyR2xNwSAADGRkcJvEWx3dPUejKVmvy6E3RulpOpRjK1WqPzM6rfbDK1cfHhM191ToypbkWvxbZzC1Qkp+wmUx8mU9vyjPf+bl58+Gz54sNntgQFAGD0b1h0lMDbXXz4rJFkLfXpXLj16PLZzoSdo/kU2/ToLhm8fnfJWd0l5b8PekkOV/DQPnh0+eyGMwxU5Fk9k6QnZ9mR9X4OsiYUAACMio4SeIf+C7p2jQ755sWHz5oTdo4WkswkWXXFDlx/donukgnQcVwApc9Z1pI0k2yKxnv155Y8awsFAACjoqME3uPiw2fdVHMGwNtsJpmZxC6CfnfJN67YodBdUv7rv5dqdpX8l+sOqNjzejpFZ8kh0diR248un50XBgAAhk1HCbzffOrz9d/BTOhX3P3ukg9TbNfAYL3sLmkLRWl1KnpcXo4BldIv/jblKzt2/eLDZz1zSwAAGDYdJbADl5aezST5tUaHfGTp0tneBJ+vTpKbrtyhWE3SXrpkdkQJr/teqtdVsp2ksXRJVwlQyed2N/XpWt6vzSStpUvmlgAAMBwKJbDzxWydtnbaTDIzyS8n+8WtbmxtMQzbSTpLl84uCEWprvlWkucVPLRrS5fOdp1hoKLP7m4US3aTf8z7mwDs4hnbSNLo/6/TKeZbvrTR/yVJJvlDQQAGQ6EEdpdo9VLNOQBvc3vp0uTvCX1p6dlCkuuuXphYm0uXzjaEAahwftlOckckdmxx6dLZtjAArzxHGymKIDMptjdspNhWere2k6y9+tPJBlAfCiWwuwRsOsVXJwdqcshzS5fOLlfgvDVTdJccdBXDRNJVAlQ9x2xHsWQ31pM0bc0ItX5utlIURZoZ7i4C20mWk/SSLHvuAFSXQgnsLSF7XpPDrcx8gH6RqxPdJTCJVpcunW0KA1DxHHMmxYu4A6Kx4zy1ZbscqN1zcj5Ja4zPypUk3Sp8UAjA6xRKYG8JWp22c1pZunS2VaFz14zuEphER7wMA2qQY86k+HJZnrJzN8xNg8o/G9spCiRlmj+5nWQhyYIuE4BqUCiBPSVqP0yn+OKvLoPC55Yufb5csfO3EMNTYZKsLF36vCUMgDyTt1hMMr906XMvK6Faz8N2il0Bylw8frk1l2cQwIRTKIG9J20zSX6tyeH2t+CqVuJ3aemHVoruEltcwGT4YOnS5xvCANQgz/RRx+6tJ2kvXfrc4GWY/GdgO+UvkLxtzdzvMFEwAZhECiWwrwTu2XySb2pyuJXaguuVczidolgy64qG0ltcunS2LQxAjXLNbhRLdmM7SdvsAJjYZ16jvzY7PMGHsZlk3nMIYPIolMD+k7nehCdyuzFX1YTv0tIz3SVQfv3uNvtAA7XKNdtJ7ojErtxeunR2Xhhgop51nSQ3K3RIKykKt/JWgAmhUAL7T+imk2ykHi/YK/2SUncJTIRbS5fOdoQBqFm+6YOO3VtN0vKSEkr/fGukmPFRxblMutwAJohCCQwiuXv0QyvJ85oc7srSxWoPVL706Id2iv1lvYyA8tlcuvh5QxiAGuabMyleJh4UjZ3/zUjSWrpobgmUeB3drcG66/bSxc91uQGUnEIJDC7J66Y+e0jPLV38fLni57ORyd8fF6rq2tLFz7vCANQw35xO0ks1v7z2dwPq9Tyr07zP5GWX20WD3gHKSqEEBrtwXUs9vvIrtuCqQZLXT+A70V0CZbK+dPHzGWEAapxzLsSQ991aTDLvJSWU4jnWrekzbD1J03MIoJz+JAQwGP1kp1WTwz2QotuiDud1IclMii+AgHI4dOnRD01hAOqacy5d/Lyd5JZo7MrVJL3+FmbAmNS4SJIU3YBrnkMA5aRQAoNduK7VaNE6299Ttg7ndWPp4ufNJDdSdNMA49cWAqDmeWcnyTWR2JVDKYolLaGA0at5keSlg1G0BSglW2/BUBLA52upx97R/S245rZqdG4bMbsEyuKDpYtzG8IA1DzvnEkxt8Q2obtze+ninOHKMLpnVTeKJK/aTDJTp7U0QNnpKIHhaKUenQcHUuyRXRtLF+c2li7ONVN0lwDj1RYCoO6WLs6tpdgmdF00duX6pUfPe5cePZ8WChguRZK36neWeAYBlIVCCQxnwbqRYgB4HVy99Oh5s4bneCHJh/FSAsbJl8AAv+eezSQrorErh5Ns9LtygCG49Oh5O4ok73IoybIwAJSDrbdguElhL/XYoqnWbcOXHj3vJLnpioexuLZ0ca4rDAC/5SULSa6LxK7d6H8IAwzuedRM8otIvJetAAFKQEcJDFddtuA6mPp00PyHpYtznegugXGxqAR4PS+ZjyHve/HNpUfPl22DA4PRv5d0S+zM9UuPnreEAWC8dJTAsBPEx89bSZ7X5HCPLF2Y69X8fHeiuwQ8ewDGn5MY8r4360naSxfm1oQC9vUM6qUeuysMynaSmaULcxtCATAeOkpgyJYuzC2nPvtFdy89rvdXeEsXdJfAGLSFAOA/chJD3vfmUJLepcfP/W2BPbr0+Pl8FEl260CSrjAAjI9CCYxGO8Ucj6o7GNvgZOnC3NrShbmZJLdc+jASVy89ft4QBoD/yEk2Ugx5XxSNXTmQ5M6lx8+7QgG708/JOiKxJ4cVaQHGR6EERrNI3Up9vni+2d/qwXnXXQKjZFEJ8I48dOnCXDs+4NiLq5ceP19TjIddWYgt//YVv7rv0gAwLgolMLpFai/J7ZocbtcZ/+286y6B0TDUHeCPc5JOiiHv26KxK4eSrPXnDgJ/4NLj580ksyKxLwfktQDjoVACIzSVdKaSzanif67y79DlYqg5r7ycmEo+nErWa3D+/fzG8Ttw2VYFAO/LR7pTSbMm+ehA/8ZMJc/lt7Cj9a5nxv5/Ny/rZAMY/d+xFy9eiAKM0OXiK5tfanK4Hzws9sbm9Wugk+SmSMDArT68MNcUBoD35iLTSXopuiXY5d+aJK2Hxda6QD3XuaOw+LDYNhGAEdFRAiP20BZcrgGzS2BYDvv6DmBHucjWw2JrUEPe9/C3JslG/6Uw8LuOEAzUVXktwGgplMB4FqfzqcdL8sOXHz+3v+rbr4G1h2aXgEU6wHjzkXaKuSXszoEkv8hzodAvHB4WiYHzjAEYIYUSGJ92TY6z09/egbfQXQID1/LMAdhVLtLt5yKGvO/eN5cfP1/2dwdqs7YdeVw9XwBGR6EExrcoXUs9ugkOxBZc770WdJfAQJ85LWEA2HVeOhMfbuzFbJK1y4+fzwgFddR/kX9VJOS1AJPOMHcYd2L5ZHkt9RikOffwfGvZGX/v9TCTorBkuCrs3frD8y0vrAB2n4dMJ1mIl557de3h+VZXGKjZc2M+yTciMTSrD8+3msIAMHwKJTD+xHImya81ONTNJDMPz7e2nPUdXRedJDdFAvbsw4fnW2vCALCnPMSLz71bTDIv56VGz4u6fPg3Th88PN/aEAaA4bL1FoxZ/0VeHbZcOhhDlndzXXRidgnsh+GXAHvPQxaSHIm5JXtxNUmv/zEUVNrlJ8uNKJKMgu23AEZAoQTKsRjtpB4vxK9ffrLcdMZ3fF2s9bcPMrsE9rCg7G8hA8De8pBezC3Zq0MpiiVtoaDirO3EGaAyFEqgPOqykFpwqndHdwnsieGXAPvPQTZSvKBbFI09/R26c/nJclcoqDC51mjMCgHA8JlRAiVSo7kUt/ov/9nbNTLfX3wDf8zwS4DB5SDmluzdepKWGQNU8LmwZV0yMkf6nX4ADImOEiiRGm3BNd/fz5a9XSMzSVZFA97rsGcNwMByEHNL9u5QkrXLT5Z9fU9l9HMsRZLRMfcIYMgUSqB82jU4xgNJuk713jw839rofyV/I15WwPsY6g4wuBykF3NL9pP/Pr/8ZNk2tFSFF/ej1RQCgOFSKIHyLUDXUo/h3Yd9Vbfva2UhukvgfdpCADDQ/GMj5pbsx/XLT5bXdDxSAQolo+WZATBkCiVQzgVoJ/X4Uq97+cnytDO+r2tFdwn8sQOKsgADzz+2Hp5vtfv5B7tnKy6qoCkEI39uADBECiVQVlNT7UxNpeK/A5ma6jjZA3lhsZCpqZlMTa3U4Lrx89vtr+0pATC0/ONIpqa2/a3ZUx78/PLTFbkwk7pe9Rvx7/LTlYYLD2CIf9pevHghClBS/YXTzRoc6pGH52Z7zvjArptWihkwhivC7/7r4bnZLWEAGEru0UiyHF8879Vqkpa/U0zYfe9lknUzQKXoKIESe3hutpN6bMFlqOVgr5vlFHvYrogG/KYtBABDyz02Ym7JfhxOsnH56UpTKAAAxkOhBErvRTt5kYr/Dl1+utxxrgf6wmLr4bnZVvJiLnmxWYNryM/vfb+2JwPA0HOPdvLimr85e/odSF78IidmgtapfqP/NV13AMOjUAKlX3S21pLcrsGhzl9+utxwxgd+/Swnmak2T1AnAAAgAElEQVTJNQR/5JBnDMBIco9ukg+TbIvGnty8/HS5d/np8rRQUFaXny7PiAIAVaNQAhNgKlOdqUxtTqXS/xyYypQtuIbzwmLr4bnW/FSmjtTgOvKPf/7on3lPBICR5B5rU5lqTGVq3d+ePf1zeCpTG1dsxUV516fT7tPx/APA8CiUwAR4UAx2bNfgUGevFIPIGc511EvRXXJLNKgpzxeAEeavD87N6mrduwNJfrnydKUjFAAAw6dQApOz2OzVZKG5cOXpiq0GhncdbT04N9tJsSXGuohQMwevPF2xVQTAaHOP+STXYiuuvbp55elKT34MADBc/58QwETppPgi+mCFj/Fgkvn+sTIkD87NriWZ6X+lOJ/iq0XGbzHJRsn+OzWSXK1QjNv9ax6A0eUd3StPV9aSLFc8jx2Ww0k2rjxdafU/noJx2xICAKpm6sWLF6IAE6S/NdXzGhzqBw/OzW444yO5phpJuv1FOOO3mKRTpuv/ytOVjVTnxdbmg3OzDZcZwFj+nkz3c45Z0dizW/3uYBj3/exl0ujdeHBu1lxPgCFRKIFJTEqfrSzXYIG5+uDsbNPZHul11U6yEN0lZVEUTM6Ov2By5dlKJ8nNCsX2yIOzvsgF8HdlcvPkJK0HZ2d91c8472Mvk+SwAJViRglMpnaqv8/z4SvPDHYfpQdnZ7sptllaEY1SuJrk31eerSxfebbSHPN/l24Fn6EAjC/n6CQ5EnNL9pwnJ9koQX5Avbl/AagUhRKYzMXlVurxoq975ZnBlaO+th6cnW2leHmxKSKlMJvklyvPVnrjeiHS72qpUgFNERZg/DlHL8lMknXR2JMD/fygIxSMyZoQjNyGEAAMj0IJTO7icjlF233VF4AWf+O5vnopXl7cEo3SOJzihchGf5u0UetW6dly5dnKjEsKYOz5xkaSZortJtmbm/2PKXxcxKhtCMFYnpkADIlCCUy2dqrf8nzdC82xJeJb/a0xPoyvPcvkYJI7/YJJZ1QvRvrF2Sp1GbVdSgClyTfaSa6Jxp7Ziotx2BCCkVoVAoDhUiiByV5YbqQeHRcLzvZYr7O1B2dnZ5LciL2Iy+RgikG4G1eerSxcebbSGMF/ZrdC8bP9FkC58o1uio8zbP25N7biYtR6QjBSG0IAMFxTL168EAWYcFd++HEtyaGKH+a1B5+f6TrbY7/WGikKV7OiUUqLSboPPj/TG+L5/3eF4vXhg8/P2F8boFy5xnSS5RRdEuzNapLWg8/PbAkFQ75X/08kRubGg8/P+IAQYIh0lEA1tGtwjJ1+Ms4YPfj8zMaDz88Y9l5eV5P8cuWHH9eu/PBjexjnP4a6AzDcXGPrwednmjEnbT+Krbh++LEpFAzzXo3teUepJwQAw6VQAtVIUtdqsJg8mGTe2S7NNdeLYe9ldijJnSs//Lh15YcfO/1OkEFZrlCcFEoAyptrdJLMxbafe1VsxfXDjx2hYIh6QjAS27qgAYbP1ltQEf1ui7UUBYUq+6D/VTvlufYaKWZX2CKj3FZSbMu1PIBzvpXiBYxnCgCjyDOWU/1tZofJVlwM6/5sJXkuEsPP4/td/QAMkY4SqIj+wqddg0PtOtulu/Y2+ltkXIuvPstsNsnzKz/8uHHlhx/n99llUqWukqZLA6D0ecZMijlc7I2tuBjW/bksCiMhzgAjoFAC1UpUe6nW/IC3LvT6Xy5Rvuuvm6SR5LZolNrBJN8k+feVH35c3uP9VKVBkk2XBMBE5Bnt+ChjP2zFxbCsCMHQKZQAjICtt6Bi+ltwbaQ62+K8zeaDz880nO1SX4czKV6m245rQu6p/gJsYafbUF354ceNVGOrv+0Hn5+ZdgkATFSOsZzqbzc7TLbiYpD3ZE/OP1S23QIYER0lUDH9BU+n4od50Ndwpb8O117ZjmtTRMp/TyW5nqLLZK2/Ndf7igfdihz7gf5LNwAmJMdIMhNfse+HrbgYiP6aTJFkuLpCADAaOkqguklrr+JJ63aSGUOYJ+JanE4yn+SmaEyclRRf7S6/+dVpf8bJvytynDcefH5mwekGmLgcYz7FdpLs3a0Hn5/pCAN7uP9mkvwqEkNlJwWAEdJRAtU1X/HjO5Dqd85UwoPPz2z1F+AfxNefk2Y2yZ0k/9efZ9J+2WnSL1KuV+Q4m041wETmGAtJjsTckv24eeWHH3s76CSF3/Svl65IDJ0YA4yQjhKosC+e/9hJ9b/iP3J/7kzP2Z6o67KZYn7JIdGYWOv9hdtMkqsVOJ7t+3PmlABMcG4xnaID0hZA+/hbmKQlr2aH99xCim1bGe492bg/Z5YQwKgolED1F41rqfawy/X7c2fMF5jM67OdomByQDQogQ/vz51ZEwaAic4tvLzdv1v352zFxR/eZ80kv4iEexGgamy9BRXW//qkXfHDPNR/4c7kXZ/dJI0kt0SDElBwBZj83GI+yVxsxbUfN794/mPvi+c/NoSCN73SvcVwbaf4oAyAEVIogeovGHup/lyIhX7SzuRdn1v9L6U+SLIoIoxRUwgAKpFbLKcofq+Lxp4dTrL2xfMfW0LBG7rRDT6S9a0ttwBGT6EE6mE+1f6y7kCqP7y+0u7Pndm4P3emnWIg66qIMAY6SgCqlVfMxEcY+82vn/e3M4OX2+bOisTQbdpyC2A8zCiB2iS2f51P8k3FD/OD+3OnN5ztSlyvrRTt5gdFg1G5P3d6ShQAKpdTtGMm2n6tJ2nJs2t9HzVSzL50Hw3fkftzp3vCADB6OkqgJu7PnV5I9bcg8MVbda7X5ftzpxsp5pfYZ5xRvQTQVQJQvZyim2J7RVtx7d2hJGv9D1mop24USUbhtiIJwPgolEC9VH17qtkvnv+16TRXx/25050Y+M7oNIQAoJL5xFqKYomtuPauvxXXX32YVDP9nQkOi8TQbSbpCAPA+Nh6C+qX6HaTXK3wIa7fnzvtq/BqXruN/uLhqmgwJLf6xTkAqptP1GE72qHn20na/QIU1b5fZpL8KhIj8aF7CmC8dJRA/VR9sPuh/l7UVMz9udMb9+dOt2PgO8MzLQQAlc8nFpJ8mOLrbfaYbyfpyblroSsEI3FDkQRg/HSUQA19sfxTO8mdCh/idpLG/dapLWe70tdxs794M/CdQVm93zrVFAaAWuQR0/08YlY09mUxyby8u5L3yEKS6yIx/HvofutUWxgAxk9HCdTQ/dapbqr9Rf6BVH8ei+u4dap3v3WqkeRafBUKAOwuj9i63zrVSnJDNPblapLeF8s/2fq2QvofJCmSDN+qIglAeSiUQH1VvZAw/8XyTw2nufr6hb+ZFAPft0UEANhFHrGQYltPOcTeFVtxFV3rTLhXuq0YrvUkLWEAKA9bb0Gtk+C/Vr2devF+67QFW72u6ekURcD5FJ1FsBub91unG8IAUNscYjnJYdHYl5Uk7fut07bimtx7YTm2pBu29SRN9wlAuSiUgAXhRqr9QvnD+y2D8Wp4bTeSdFJsBwE7dr91ekoUAGqdQ3SS3BSJfdlM0pKDT+T130ryXCSGSpEEoKRsvQU11k/Oqr4F14IzXctre6PfTfRBiiGjAAA7ySE6sRXXfh1M8usXy381M3CC9D806orEUK1EkQSgtHSUAPli+a+9VHubgSP3W6d7znStr/Fmig4T22nwR9bvt04bRguArbgGx1Zc1oQUbAsNUHI6SoCk+l0lXae43u63Tvfut043U3whuioivIOXOAC8zB22+rnDLdHYl9kka/2PViipfvePIslwbCe5pkgCUH4KJUD6+wdXeXuig18s/1ViioIJALDb3KGTZC624tpXLp7kl/78F0rmi+W/ziT5RiSG4uU8kq5QAJSfrbeAlwly1Qe7byaZ0fbPG9d9O8WWXAdFgyQr91unW8IAwFtyhkaKrbgOica+rKYY9C4nL8+1vea6Hopb/UIrABNCRwmQ5LfB7lVO5A6m+luMsfvrvnu/dbqR5FqKYhr1tiYEALwjZ9joz7G6LRr7cjjJhq24yuGL5b8uRJFk0FaTfKhIAjB5dJQAr/ly5acqf1G0naRxb/aUL9h41/Xfjg6TOrtxb/bUgjAA8J58oZViBt4B0diX2/dmT/mQaXzXcTPJLyIxMJtJOvdmT3WFAmAy6SgB3lTlxcqBVLtrhn26N3uqe2/2VCM6TOpKRwkAO8kXlpPMpJg/wN5d/3Llp7UvV35qCMVofbny03SKYh/7t5nk2r3ZUw1FEoDJpqMEeFvivJxktsKH+MG92VMbzjQ7uBfa0WFSG/dmT02JAgC7zBUWklwXiX3ZTtLuF6Cw3psUq0m6iiMA1aFQArwtcW6k+LK6qtsJLN6bPdV2ptnFPdGOgknVrd+bPTUjDADsIU+wFddg3E6xdZFtcod/vT4XiT3ZTLKcZMGHd7W4V2ZSdA82kjT7/+eZHTzrN5NsJNlK8V5lLcmaawbKT6EEeFdS0Elys8KH+OG92VO22WG390U7CiZVZZ90APaTIzRSvEA1GHt/1lN0l8jTh3OdTqd4gauot3OrSXpJll2Xlb8/ZlIURFpJDg/hP2L75bWUpKdwAuWjUAL8URK9luq+EF69N3uq6Uyzx/ujHQWTqpmz5QcAA8gRbMW1f9tJ5m1pNJTrs5fhvAAuo/XsrnC53V//buT3DoCeq6by98RMknaK4sjBMVyj3RRFuA1nA8ZPoQT4o6ShneROhQ/xiOSXAdwj8/H16KTbvjd7aloYABhQfmArrsFYSdFdYiuuwVyX80m+qcnhbiaZeXnt9Du+Gu/4/11zjVnHleR5t+D9BIyXQgnwvgSil+p+daSrhEHdJ80UHSaHRWMimVsEwKBzg0ZsxTUIm0latjza9/U4k2LLn7oU73wQx9vug+kUxZH5Et8LmylmNXWdMRi9PwkB8B6dCh/b4f4LbtiXe7Onev2i25EU+xgzWRaEAIAB5wYb92ZPzaQYUM7eHUzya78bgr3rpj5FkluKJLypP4N1I8Uc1jLfCweT3Ply5aeNfnciMEI6SoCdJBXdJFcrenib92ZPNZxlBnzPNFIUGa+KRumt919kAcCw8gJbcQ2Grbj2dv11UrwcltdRx+u/2X/+TupsydUUM5t01cEIKJQA708ufvypkWKgXVUXd9fundHaytDunU6K4YBejrj/Aah3TmArrv3bTtK6d0bHwA6vu2aSX2p0bTTvnfFCmeTLH3+aTlEgma3IId26d+ZUx5mF4VIoAXaaaHRS3S+RNu+d0VXC0BP1su+HW0fufQBGnRMsJLkuEvvmpeHO8s+1TO6X9Lt1496ZU7ZTJV/+WNkuvvUkbcVAGB4zSoCdWkgxWKyKDn75409tp5hhuXfm1Na9M6c6986cmk5yrcL30qSx3zkAo84J5pPMpfj6nb27+eWPP631O3V49/qtLkWSVUUSkt+K0c9TzY/TDiXpeXcBw6OjBNhN0tFOcqeih+fLckZ9PzVTbMt1WDTGtqBuCgMAY8oDGrEV1yBsp/jCelkoXru+WileFtflGmjcO2N2Tc2v+en+M7Uua6vFe2dOtZ15GCyFEmC3CchahRd0ZhUwjnuqEXNMxrGgnrl35tSGUAAw5jzAVlyDcTtJx8vy314Yb9Qor5xTKKv9NT+TYqutuhWeV1PMbFIkhAFRKAF25asf/9ZMdQcCbiaZuXvmpESDcdxb00naKbaDOigiQ3Xj7pmTtmcAoCw5QFX30x+19STtu2dOrtX8euqlRl/V3z1zsu3Sr/X1PpOkV+Pn53qSpncYMBhmlAC7cvfMyV6SlYoe3sGYWcD47q2tu2dOLtw9c7KRYu/yFVEZihVFEgBKlgMsJ5lJ8cKLvTuUpPfVj39r1zUAX/34t/nUp0iyae1Wb4okrz33pl0RsH86SoC9JCSNJP+u6OFtJ2n4IoMS3WvzKTpNfGW6f764AqDsf/ttxTUYKym6S7ZqdO3U7aXxkf5HfNTzWalIYp0DA6ejBNi1u2dObqTYB7iKDsSXSZToXrt75uT83TMnp5NcS7EPLXuznZq9MAFgIv/2z6foLN0WjX2ZTbLWf5laF93U56XxLUWS+up/TNaLIsmrdJbAACiUAHvVqfACbl6CQdncPXOye/fMyWaSD1IUKr1A2bntFF9YrQkFABPwN//lVlw+kNifg0l+/erHv3WqfqD9Y6zLIOv1u2dOdlze9dRfpy9HkeRtDiWxxTDsg623gP0m5Dcreni3JOBMwD3YSrEt16xovJMiCQDybVaTtKrYWfrVj39rJvmlRufyQ3ldrZ+JvdRnDs9eeZcBe6RQAuw9Sfnr36eTrKX4Wqtqilklp0/YpodJuRfb/d8hEfnNepL23dMnLKYBmOS/8834gnpQ+X3r7ukTPeuxiXXj7ukTvpiv77OwE4XjnZq7e/rEsjDA7th6C9izfhGhU9HDM6uEiboX754+sXD39ImZ/L4112bNw7KapKlIAkAF/s73kjRiK65B5Pe/fPXXv1fpRXsn9SmSrCqS1Fe/YKxIsnPdfiEV2AUdJcAgkpaN6CqBMt6bMym6TFo1WkQnya27p090XAEAVPBveydeFg7Ceoruko0JvhZaSZ7X5HxtJ5mZ5PPFvq71unVODcrq3dMnmsIAO6ejBBiEdkWPS1cJE+3u6RNrd0+fmL97+kQjyYepfqfJepIPFUkAqPDf9k6SIyleHLN3h5KsffXXv0/kOqb/4rhbp/WmIkmtdaJIsheHJ/UZB+OiowQYVLLeSzWHqm3fPX1CyypVu19nUnSZtFKNmSbbSTq2YwCgRn/Lp1PMLTHUeP9WUnytPkmaNTr320nkePU1neS6MOzr/rFLBuyQQgkwEH8u9gz9paKHd+370ye6zjIVvXenUxRMmv1/naRBsS8XzgvfS/4BqOff8fkk34gEAO9w+/vTJ+yUATugUAIMcqG2nGS2goe2+X2xdRHU4T6eSVE0efkrY+FkM8V2EwokAPjbXfztXo6taQB4uw++t30dvJdCCTDARdrfGkn+XdHDu/b96ZNdZ5ka3tevFk5mMr6XMNspXgItf3/65LIzAwCv/b1+ObNiVjQAeMPi96dPtoUB/phCCTDoRVo3ydUKHtrm96dPNpxh3ON/m05RMGkmafR/w9ojezVJL0nv+9Mne6IPAO/9O20rLgDe5oPvT5/cEAZ4N4USYNCLs0Z0lUAd7/2XBZSX/5pX/vf32crvQ1R7STYk8QCw57/JtuIC4E26SuA9FEqAwS/Ofvr7QpLrFTy0ze9PmVUCAEDp8/HpJAupZqc3AHvzX9+fMuMR3uVPQgAMQSfFPIGqOfjnn/7ecnoBACiz70+d2Pr+1Il2kmsVzcsB2L22EMC7KZQAQ1mYpfiCrYrmnWEAACYkL++mmCu2LhoAted9BvwBhRJgWBZSza/XDv/5p783nV4AACbB96dOrKUoltwWDYBaO/jnn/4+IwzwdgolwLAWZFXuKuk4wwAATFJu/v2pE/NJ5mIrLoA6awsBvJ1h7sDQ/Plv/5hOspHkQAUP74PvTx7fcJYBAJiwHL2RZDnJIdEAqJ31708e11UCb6GjBBia708e11UCAADlytE3+i/JbMUFUD+H+gVz4A0KJcCwVXVWyVXJBQAAk+r7k8fnkxyJrbgA6qYpBPCfFEqAYS/AtpLMV/Tw5p1hAAAmOFfvJWkkWRUNgNqw9Ra8hUIJMIoFWDfJZgUPrd2fwwIAAJOaq299f/J4M8kt0QCoBYUSeAuFEmAkppLOVPGvVfodmErazi4AAJPu+5PHO1PJkalks4J5u5+fn5/f77/D/urBf1IoAUZisbpdJbbfAgCgKjl7L8WXxiuiAVBdV//2D10l8AaFEmCUOhU8poNX//aPtlMLAEAVLJ48vrV48ngryQ3RAKgs24jDGxRKgFEuurqp6KwSZxcAgIrl7gtJPkyyLhoAlaOjBN6gUAKMWqeCx3T46t/+0XRqAQCoksWTx9eSNJMsigZApegogTcolACjXmx1k2xX8NDazi4AABXM37cWTx5vJ7lW0TweAEChBBiDqSxkKqnY7+rVv/+j4eQCAFBFiyePdzOVmUxlvYK5vJ+fn1/dfrbegjcolADjsBBdJQAAMFEWTxzfWDxxfCbJbdEAmGi23oI3KJQA41hgbaUollTNvLMLAEAN8vn5JHOxFRcAUBEKJcC4VLGr5MDVv/+jd/Xv/5i/+vd/aGMFAKCyFk8cX07SSLIqGgDApJt68eKFKABjcfXv/+gkuVnhQ9xM0nv5WzxxfMNZBwBAXg/AmK0unjjeFAb4nUIJMMYF1X9PJ9lIcqAmh/xq4WR58cRnW64CAAAqkts3k3STHBQNgNK7vXjiM9uHwysUSoBxL6i6Sa7W9PDX81rHicIJAAATndtPpyiWzIoGQKndWjzxWUcY4HcKJcC4F1ONJP8WiSS/F06WF0981hMOAAAmNMefT9JJfTrHASaNQgm8QaEEKMNCqpv6dpX8kdX83m3SEw4AACYox59J0V1ySDQASmdu8cRny8IAv1MoAcqwiGpEV8lOrOT3wsmacAAAUPI8fzpFZ8l10QAolSM+yITXKZQApdD+x38vx17Gu7GdV+abdI8rnAAAUNpcv5Wiu8RWXAAl0D3+2ZQowOsUSoCyLJ6aSX4RiT3bzOuFkw0hAQCgRPl+I8lybMUFMG6b3eOfNYQBXqdQApRp8dRLclgkBpP4ROEEAIDy5fydJDdFAmBsVrrHP2sJA7xOoQQo06KpneSOSAzFel4vnGwJCQAAY8r7mym6S2zFBTB6t7rHP+sIA7xOoQQo26JpI8lBkRi63won3eOfLQsHAAAjzvunU8wtMacQYLSOdI8b5A5vUigBSrZg+p/5JN+IxMit5rfCyacSJgAA5P8A1bPdPf7ptDDAf1IoAcq2UJpOshFt+OO2mmI7hF73+KdrwgEAwBDXADMpuksMegcYrsXu8U/bwgD/SaEEKONCaSHJdZEoje28Nt9E4QQAgIGvAaaTLCS5KhoAQ3Ote/zTrjDAf1IoAUq4SPrvRpJ/i0RpbaffbZJixsmGkAAAMKC1QCtFd4kOc4DBr+Ub3eOfbQkF/CeFEqCsC6RufE02KTbzWseJwgkAAPtaCzRSfJhjKy6AwVnsHv+sLQzwdgolQDkXR//9P80kv4jERFrPq4WTzz71tQoAAHtZE3SS3BQJgIE40v3s054wwNsplABlXhitxVdkVfBb4aT72afLwgEAwC7WBM0U3SW24gLYx7q8+9mnM8IA76ZQApR5UdROckckKmc1vxdOesIBAMB71gXTKeaWzIoGwJ5c635miDv8EYUSoOyLoq34eqzqVtMfDt/97NM14QAA4B1rg/kkHesDgF3Z7H72aUMY4I8plABlXwwtJLkuErWxndfnmyicAADw6vpgJkV3iS16AXZGNwnsgEIJUPaFUCPJv0Witl4WTl52nGwICQBA7dcI0yk6S3xQBfDHdJPADimUAJOwEFqO/YjpJ3l5veNkQ0j+8N5p9v/HRv/3Lr3+v26IKQAwQblOK0V3ia24AN7uiNmgsDMKJcCkLICeiwRvsZl+t0mKwslWTe+R6SQzSZr9XyPJwX38W64nWev/bIEGAJQ5D2qkKJYcFo2BuN397NN5YaBE9/jGPtc2dbbS/ezTljDAziiUAJIjqmQ9r3ecbFX4nmgkafV/w34xsJ3fC1LLdS1IAQClzo06SW6KxMBy6raPZSjJvd1M8otI7GkN17B2g51TKAEsfKiy1fxeNOlV4D6YTtLu/8Y5wHQxRcFk2SUGAJQoV2qm6C7xgdX+bSfpdD/7dEEoKMG9vRAziXZrznoNdkehBJiUxKgRQ93Zv5eFk+VJ+kKuf/13klwt2X+1zSQLSbq+VAIASpI3TacolphxOBgrKbpL5HqM+95ey3g/Fpski93PPm0LA+yOQgkwMa79z/8a6s4gbeeVbbrufPrJWgmv+UbKWSB5WywXkizc+fQTi2gAoAx5VLufnxj0Pphcr3Xn0096QsEY7+mZ/trNPf3H1pM0rctg9xRKgElKjAx1Z9gLwF76szjufPrJxhiv9en+wv7qBMawc+fTT2zRAACUYf0wk6K7xFfog3H7zqefGPSOdwLlXo81y/gRIEwChRJg0hKjrfiChNHYzOsdJxsjusbnU3SRTPJ1vp5k3leHAEBJ1hDmGww2z2t7EcsY7+d2kjsi8VYfujdh7xRKAIsc2JnN9LtNUhROtgZ8bTdSfPF4uEIx89UhAFCWdUSzn8v56Gr/dBEz7vu5m8nrvh96WO58+klXGGDvFEqASUuIZpL8KhKUwHpe7zjZ2sd13U5199D21SEAUJa1xHSKYslh0RiIlX6eZxYC47ifu1Es+S0ciiSwfwolwCQmRGuxzzDls5rfiya9XSzWJ3EWyW5tp9iKS/IOAJRhPTGf5BuRGFieZ9A747qXu1EsUSSBAVEoASxsYDj+sHDSL5L0Uq+in624AICyrCkMeh9wnpdiOy7dJYz6Xq7z9tyKJDBACiXAJCZC00n+TySYINt5ZZuu/v9tOcnBGsZi8c6nn7RdEgBASdYVdejuHRVbrjKue7mdeg14307SdK/BYCmUAJOaCC0nmRUJmEj2swYAyrS2aKXoLjHofTBuGPTOGO7jZoqP0ap+H6+n2O5uw1mHwfqTEAATalkIYGLNJun1v+IEABirO59+spxkJsXWqezfN9f+53/leoz6Pu4laVT8Pr6dopNkwxmHwdNRAkyka/9r+y2ogMU7n9iGCwAo1Tqjk+SmSAzEdpL2nU8+8ZEb7mP3EpSeQgkwycmP7bdg8imWAABlW2fMpL7z5IahGPT+iW1XGel93Eixpd7hSV8vJZl3/8DwKZQAk5z4tFOvgW1QVTfufGIfawCgVGuN6RQvWX2YNRjFoPdPDJ9m5PdyO0knk1f4XE1RYOw5izAaCiXApCc9WzF0EargiEUAAFDC9UY7yYI1x8D4QIZx3cudJPJ5WaYAACAASURBVPMTcC9vpuggsc0WjJhCCTDpyY7tt6AatpM0tJQDACVcczRSbMV1SDQGYjVFd8mGUDCG+7mdcnaY6CCBMVMoASY8yfm5HdtvQWUWzXc++bgpDABASdcenRj0Pij94dQf+2qecd3PzSTtJFfHfB90kyzc+eTjDWcFxkuhBJj05GY6yf+JBFTGjTuffGw7BgCgrOuPZooXmwa9D0Z/UPXHuooZ1z09naSVpNn/12FvzbWZokOtp1AI5aJQAlQhsbH9FlTHdpIZX1QBACVefxj0PlibSVp3PvnYoHfKcH/PpCiazPR/+91ybzXJWv/Xs86B8lIoAaqQyMwn+UYkoDJW7nzycUsYAIAJWId0YtD7oNy688nHHWGghPf6TJLpJI3+74+sJdlKsqEoApNFoQSoQtLSSPJvkYBKOXLnk497wgAAlHwtMpOiu8Sg98HoD3r3ghmA0fqTEACTrp9Er4sEVEpHCACACViLrN355OOZJLdFYyAOJ1m79r8/t4UCgFHSUQJUwtc//3MhyXWRgEo58t3Hx3rCAABMyJqkmWJIs624BmMlSfu7j48Z9A7A0OkoAapiWQigcjpCAABMiv4HHo0UL/jZv9kka1///M/m1z//syEcAAyTjhKgMr7++WcPNKieI999bFYJADBxaxOD3gdr9buPP24KAwDDoqMEqFTyLARQOW0hAAAmzXcff7yQpBmzFAfl8Nc//7z29c8/zwgFAMOgUAJUSU8IoHKufv3zz9PCAABMmu8+/njtu48Neh+gQ0l6/W4dABgohRKgSnpCAJXUEgIAYFJ99/HH80mOJNkWjX07kOSbr3/+ednHNAAMkkIJUKUFSE8UoJLaQgAAVGCt0ohB74Mym2Tj659/9kENAANhmDtQKV///HMvyWGRgMr5r+8+/nhLGACACqxZ5pN8IxIDcztJR64IwH7oKAGqZk0IoJJ8LQgAVEJ/0PuHMeh9UK6nmF1i0DsAe6ZQAlTNRg2PeTPJtRRfUllsUVVNIQAAquK7jz9e6+c3Br0PxqEkv379888doQBgL2y9BVTK1//8ZzPJLzU89MXvjh1r92MwneLr+2b/d9CVQQVsfnfsWEMYAIAKrmFaSbopBpWzf6tJ2t8dO7YhFADslEIJULVFRjP1LJQkrxRL3ohJI78XTZpROGFyfWDBCwBUdB0znWQ55i0OynaKYsmyUACwEwolQNUWGM3Ut1CSvKNY8kaMGnm948SXa0yKI98dO9YTBgCgwusZg94HayVFwcSgdwD+kEIJULWFRTP1LpQkyY3vjh1b2EXMZvJ6x4nCCWV167tjxzrCAABUfE0zk2IrrkOiMRCbKYolPaEA4F0USoCqLSqaUShJkmvfHTvW3UcMX/60/lMm7+2YAgCoyLpmOkknyXXRGBgf3QDwTgolQMUWFP/qJLkpEkmSa98dO9odQEybKYomrfiqjfFa/e7Y0aYwAAA1Wt8Y9D5Y60na3x07uiYUALzqT0IAUFl3vv7nv2b2+2/y3bGjve+OHe18d+zoTJL/SjKX5HZ/kQGj1BACAKBOvjt2dLmfA62IxkAcStL7+p//mhcKAF6lowSoFB0l/2E7SXNYX0x9/c9/Tef3bpNmkoNCzpBfFkyJAgBQ07XOfIrtuHSXDEZ/0PtRg94BUCgBKrd46ESh5E1DLZa8Ef9GXh8Mr3DCQCmUAAA1X+8Y9D74tVK737kDQI0plABVWzh0olDyNptJZkb9tVS/cPKy26QZX7+xTwolAADJ1//810IMeh+k20k6uksA6kuhBKiUv/zrn50olLzLepLmt0ePbY3x/Mzk9Y4ThRN25dujxxRKAACK3LqZZFlOPTCbSVrfHj1m0DtADSmUAFVbLHSiUPJHxl4secvi7uXvsNPD+yiUAAC8lk9Pp9iKa1Y0BubWt0ePdYQBoF4USoCqLRQ6USh5n5Vvjx5rlfT8NfP7cHj7LvMfFEoAAN6aRxv0PlirSdrfHj22IRQA9fAnIQCondm//Ouf3TL+F/v26LHet0ePdb49emwmyX8lmUuxX/C60wYAAO/MoxdSfHAkbx6Mw0nW/vKvf7aFAqAedJQAlfKXf/3TUMOdW/z26LH2BJ3b6fzebdJMctAprOVLAB0lAADWRKO0kqK7xKB3gApTKAGqtijoxayL3ZjY/Xf/8q9/NvL6YHiFkxpQKAEA2FGu3IxB74O0naJYsiwUANWkUAJUbEHwr14USnbr2rdHj3YrcO4b+b3bpGlRWEnr3x49OiMMAAA7yo8Neh+O1SS9JMvfHj26JhwA1aBQAlRtMdCLQsleVKJY8sa1MJPXO04UTiqwKP326NGmMAAA7CovbidZkA8PxXb6RZMkvW+PHt0QEoDJpFACVG0R0ItCyV4d+fbo0V6Fr42Z/N5x4hqZTLe/PXp0XhgAAHadCzdSvMw/JBpDtdmPcy9F4cRcE4AJoVACVG0B0IuX4Hu1naRZl/bxv/zrX8383m3impkMN749enRBGAAA9pwDd5LcFImRsU0XwIRQKAGqlvj34qX3ftSqWPLKdTOd17fp8qVdOVW66wkAYES5bzPF7JKDojHytVYvvxdONoQEoDwUSoBqJf3/T6FkQAl849uP6tsm/pf/91rhpGURWQ7ffnR0ShQAAAaW73Zj0Ps4bebV+SYf2aYLYJwUSoCqJfy9KJQMwnqSpmT9t+uqkdc7ThROxnBNfvvR0RlhAAAYaJ7bjkHvZVqDvSya9IQDYLQUSoCqJfq9KJQMMlFXLHn7ddbI790mTQvLkbj97UcGuQMADCm37VpHlcqr23T1vv3IfBOAYVMoAaqW5G/FS+tBWv32o6NNYfjDa66b5KpIDN0RX9YBAAw1r+3EoPeyerlNVy/Jso/ZAAZPoQSoWnLvoTZ4i99+dLQtDO+85tpJ7ojEUG1/+9HRaWEAABh6bjuT5FeRKL31/F406QkHwP4plAAVS+z/n4facCx++9FHbWF46zU3neT/RML1BwBQkfy2Gx3Tk2Ylv23T9ZFtugD2QKEEqFpS76E2PLe//egjMyIsJsdh7tuPPloWBgCAkeS2jST/FomJ9f+3d3fJbVxnGoBfp+aezArErEDMBsCmsgDTKxBUFeM29AoErSD0LaQpQSswtQGriQ0EXEHAFQy5As1FNy3ZkixSRDf653mqVMpMMiP3h0PlfHj7O+cm9aXwqYKTjZIAfJ2gBBjapt5fas169r9PniyV4ZN1d5LkF5VoxNX/PnlyoAwAAK3ub5fxItBQ3B7TVXr5CODLBCXAoPzTHSVtePbqyT+WyvDJ2tskeaQSW/fi1ZN/zJUBAKDVve1BTJUM1UXqiZNXT/7hmC6AmqAEGNqG3l9q7fjh1ZN/eBvp92vvNMm/VWLr/vrqyT+ulQEAoPX97TKmSobuJvWl8KmCk42SAGMlKAGGtZl/5+itFjfUxatjFwV+tPb2k2yS7KnG1rx5dewSdwCAHe1vD5P8RyVG5Sof3W/y6viJF5aA0RCUAEPbzPtLrT3Ckk/X3zzJc5XYmr+9Onb5JADADve3ZZIjlRiti9QTJ/o+YOgEJcDQNvL+UmvXTZJDX2b/tv5MlWyPaRIAgN3vb4sk71SC/PGYLj0gMDCCEsAmnoe6TDVZYiy7WofTJK9V4sFN2IE1BQDQif1tGVMlfOoqvw9O7N2BXhOUAEPawBcRlOyKsOT3a3Gd5LFKfLOfXh0/OVMGAAB9Fr3qCW9Dk1I5gL4RlAA28GxtY/zq+MmhMliL1hEAwOD2t2VMlXB3t8d0lanuN9koCdB1f1ECALbk8T/f/bpUhqR+g+pnlfgmUyUAAOicuRJwD3tJvk/y7yT//ee7Xzf/fPfr8p/vfp3W9zoCdI6JEmAwvMXfGS7h/rAmHcF1Py9eHT/RhAMAdHNvW8ZUCdtxmQ/TJqVyAF0gKAGGtHEvIijpCmFJtSYP6wZgz5L4qotXx08KZQAA0G8xOm/rvql8dfxkrRzALghKABt3mvLs1fGTpXX56zTJa8vhT10lOXx1/ORaKQAAOr23LWOqhOZ7gzIfgpONkgBtEJQAQ9q0FxGUdI2wpFqbZ0n+ZTl81k2SwptjAAB6LviM22O6ylfHT86VA2iKoAQYzqa9fGfT3k3PXhXHS+vz3TLJU8vhEz+8Ko41PAAA/dnXljFVwu5cJDlPUr4qjr1sBWyNoAQY0ob9JMkvKtE51cSATaym8lNCNACA/u1pi3hBje70mue5nTgpjjcj/9ncT3JY/9pPUtT/1n6Sx1/4P7uof9/Uv9ZJNvp3xkhQAgxpUzBP8lwlOruBHX1YUm9cyz/ZpI6JkAQAoL/72jJeAKJ7fjumK1Vwcj3wn8P9JCepApEiyaMt/xEXH9WytLwYOkEJMKRNwjyCki4TlnzYzC6TfD/iMghJAAD6vactYqqE7rv9ov98KH1o3U9O619tvoB3O71z7uhkhkpQAgxpsz6PoKTrLlOFJdfW6yjvLLlJMrWxBgAYxH62jKkS+tWLlPlwv8mmZz9vRZLTdOOFu5tUL/+djf24M4ZFUAIMxo/lr/MISvrgMknxsnhybc2Oas1eJTl5WTxx1i0AwDD2skVMldDv/uS3+0262p/+WP46TTLP9o/V2pY3SZYviyelJUXfCUqAIW3U5xGU9IWw5MO6PUn1Ns7egB/zIlVIcm3pAwAMai9bxlQJw+lRz1OFJmUHfram6XZA8kdvk5y+LJ5sLCX6SlACDGmTPo+gpE/eviyenChD8mP560GqsGSITeaLl8WTuU8ZAGCQ+9gipkoYnttjusok521++f9j+ethkrMe94Y/J5l7SY4+EpQAQ9qkzyMo6Zs3L4snU2X4bQ2fpnpraAjTJZdJpo7aAgAY/B62jKkShu0qH91v0kQI8GP5637dC/5rAPW6qXtBd1PSK4ISYEgb9HkEJX0kLPn9Oj5I9QbR9z19hJskZ6ZIAABGs38tYqqEcbnMh2mTcgs/Q4epQphHA6vT21SBiekSekFQAgxng37xbh5BSV/99PLo+EwZfreei1SByeMe/WO/SXL68ujYRhgAYFx71zKmShivt7m9FP7oeH3Pn53TJP8ecG2ukpzcty6wC4ISYEib8/P09y18kmcvj46XyvDJup4mmXa88XyTZP7y6HjjEwMAGOWe9STJLyoBvx3TVSY5/9JLZD9evNtPdU/lWL7D0O/TeYISYEib8zLeYrJ5Gu76LlIFJk871AAskywFJAAA/HjxbpPhHR0ED3V7TFf58uj4vP5Z2a//d49HVoufXx4dn1oSdJWgBBjSxryMoGQI/m4s90/X+X6qwGS6g431Taqzc89vN/kAAFDvU6dJXqsE/KmLJAcZb6j45uXR8dQyoIsEJcCQNuZl+h2U3CTZZHxvlXyuDoWw5E5r/iBJkeSk/n2vgT/mkzegAADgC/vTTUyVAH9OWEInCUqAIW3Ky/Q7KLlI9YX3Js184d0nwpJv+xk4SHL40a/9+ve7rKereu2tP/p97WJ2AADusR+dxlQJ8HXCEjpHUAIMaVNepudBycuj4+LHi3eHqd7gH3tYcpXk0Bf1W/85Kep/uXG3CAAADew3NzFVAnydsIRO+YsSAHRLPUVRpJqqGLNHScr6Tg62t77K+tdGNQAAaMBcCYA7ePrjxTt/X9AZghKADqrDkhOVyOMISwAAoE+9zDLVdDjA1zyvj+yDnROUAHS3wSiTPFOJPE7iEnEAAOiPuRIAd3RWH0EOO+WOEmAwZquyTM/vKFlMiuIzzzWNCxGT5M1iUkyVAQAAetGfbeKuEuBuLheTQljCTpkoAYbkaIgPtZgUyyQvfLx5OluVS2UAAIBemCsBcEePZ6vyTBnYJUEJQA8sJsU8yRuVyNPZqtRwAQBA93uYZdxVAtzdv2arslAGdkVQAtCfRmMaYUmSPK+PIwMAALptrgTAPZgqYWcEJQDdsf7af6AOS94qVV4LSwAAoNtMlQD39Hi2Kk+VgV0QlAB0x/Ud/3PTJJfKldfGcgEAoPPmA32umyQ/xYtssPW/M2arcl8ZaJugBKBnFpPiOkkRYUmSnM9W5aEyAABAZ/uXZYY5VbKX5HoxKU4Wk+K7JMdJXujTYCs/W6ZKaJ2gBKCfzcZtWDL2Mfa9JKWwBAAAOm0+9OdaTIpyMSnmi0lxmOSvSX5Idceko8fg/k5NldA2QQlAT9VhyUmqke8xuw1LbKIAAKCbvcsywwwMHn3u7sTFpLheTIrzxaSYLibFQZK/5cMxXTdWBNypzzdVQqsEJQD9bjjWqSZLhCXCEgAA6LL5WJ9rMSk2i0lxVh/TtZ8Px3RdWBbwRVMloE3fvX//XhWA3qu/IP+/nj/Gi8WkmH/j8x8m+Y+VkMskRT1tAwAAdKtv2yR5NMBHe1ZPzXxrL1vUv04GWh/4Vj8sJsW5MtAGEyXAUIz6jop6suSZZZDHSUplAACATpp7rk96udtjuk4/OqbrWRzTBYmpElpkogQYhNmqLJK86/ljfPNEyUd1mCZ5bUXkzWJS2FABAED3erdNTJXcp16HqSZNiiRHVhAj9FenRtAGEyUAA1JvzH9SiTydrcqlMgAAQOfMPde9erz1YlLMF5OiWEyK75L8kOTnVMcOwxicKAFtEJQAdEe5pY30WZI3ypmns1V5pgwAANAd9ctdQzxS6lE94d90/W6P6TrMh2O63sQxXQyXoIRWCEoAhtl8TCMsSZJ/tdGsAAAA9zLUF5pOW+77NotJsVxMiuliUuwn+XuqEwYuLDEG5HsloA2CEoCBEpb85rWwBAAAOuUsw5yAeFzfn7mrHnC9mBRnjuliaHb5c8V4CEoAhu3UpjhJFZYY1wUAgA6oL2Ye6lTJvEN1/viYrr/mwzFdV1YhPVMoAU0TlAAMvwEpIixJkuVsVR4qAwAAdMJQp0qOuvj2+2JSXH90TNdBPhzT9dZSpAf08jROUAIwcMKS3+wlKYUlAADQmT7FVMnu6n97TNdJfUzXcRzTRXfp42mcoATwX5rjaUKmGeYbW/dxG5YcWBUAALBzpkq60zOWfzim64c4povueKQENE1QAgzFvhJ8deO7TjVZIixJzmer0poBAIDd9iimSjr6udT3m9we0/W3fDim68bKZRdc6E7TBCUA42pEhCWVx6kmS4QlAACwW6ZKut9Hbj46pms/1TFdL+KYLmBABCUA3XHd0iZ3neRUuYUlAACwa6ZKevmZlYtJMf/DMV0/xzFdNKtQApokKAHozmZz3eKftUzyTNXzeMBNGQAA9IWpkv72sbfHdJ1+dEzXszimC+gZQQnASAlLfvN0tiqXygAAADvrTUyVDOez3CwmxfKjY7r+nuqYrgsrHegyQQnAuBuSZaoR6bETlgAAwG6ZKhlmz7muj+kq4pguoMMEJQAjt5gUp0neqESezlblVBkAAGAnfYmpkhF8xl84putNHNMF7JigBIAsJsU0wpIkeS0sAQCAnTFVMq4+9PaYrulHx3T9FMd0ATsgKAHgdpM6TXKpEsISAADYUU9iqmTcn/96MSnOFpOiWEyK7/LhmC59KtA4QQkwFIUSbK2ONqHJ2WxVHioDAAC0vxePqRKSfHRM12F+f0yX+02ArROUAPDxRvQ6wpIk2UtSCksAAGAnPYmpEv64Lj4+pusgH47peqs6wDYISgD4XGNyEpfpCUsAAGA3TJXwtb719piuk/qYruM4pmvorpWAJglKALqhU5u5xaTYpJosEZYky9mq3LdEAQCgtX7EVAn3XTPlR8d0/TWO6RqitRLQJEEJQDd07s2IxaRYR1iSJI9TTZYISwAAoD2mSvjWXvb6D8d0/S0fjum6UaHeMlFCowQlAPzZBnOdZKoSwhIAAGi5FzFVwrbW0uajY7r2Ux3T9SKO6erb52iihEYJSgD42mbkPNXY8tg9TrJUBgAAaM1QgxJTJbvtccvFpJh/dEzXD3FMV9cJtWicoASAu2wklxGWJMn3s1W5VAYAAGilD7lO9QX2EM19wt1YY4tJcf6HY7qexTFdXWOahMYJSgC46wZymWo8eeyeCksAAKA184E+19FsVR74eDvX927q+01uj+n6e90HX6jOTglKaJygBBgKd0e0s2mcZ7hvdN3H09mqPFUGAABovAfZxFQJu1t/6/qYriIfjun6OY7palupBDTtu/fv36sC0HuzVdn3v8wu6o1XX+q9TPLUysuzetIGAABorv84SPLfgT7e3+owiP6ty5Mkv6hE427q6R5olIkSAO5tMSmmMXqcJK9nq3KqDAAA0Gj/sYmpErq3Ls9VoRXqTCsEJQB8q5Mkl8qQ17NVeagMAADQqPlAn+upu0p67a0SNE5QQisEJQDdUPbtH3gxKa6TFBGWJEkpLAEAgEb7j01MldA9vsRv1o3JHdoiKAHgIc3KbVhyM/JS7EVYAgAATZsP9LlMlfS3J17qhxslJKE1ghIAHroxFJZUbsMSl8wBAEAzvccmpkroHl/mN+dMCWiLoASAbTQs6whLEmEJAAA0bT7Q5zJVYk3ye5f1dw3QCkEJAFtRb2BOVCKPIywBAICm+o5NTJXQvTV5oRJbZ5qEVglKANjmBrFM8kwl8jjGrwEAoCnzgT6XqRJrkspVff8LtEZQAvSeC7S7pd7MCEuSo9mqtLEDAIDt9xybmCqhW2uyjKkSPwf0mqAEGAJHHHVvk7hM8pNK5KmwBAAAGjEfcA9x4OO1Jkfs0jQJuyAoAaARi0lxluG+5XXfRseGGQAAtttvbGKqhG6tyVIPvBWnSsAuCEoAuuF6oBvFqY1ikuT5bFVOlQEAALZqPtDnMlXSX6dJbpThm72tAydonaAEoBvWQ32wOix56yPOa2EJAABstdfYxFQJ3VqT1z67b3aTRM/MzghKAGjDNMmlMuT1bFUWygAAAFszH+hzmSrpqfoYahe739+0DppgJwQlALSxUbxOUkRYkiTns1V5qAwAALCVXmMTUyV0z0kcwXUfbxaT4lwZ2CVBCQBtNTC3YcnVyEuxl6QUlgAAwNbMB/pcpkr63f9OVeJOLuMCdzpAUAJA25tFb9Z8CEs0PQAA8PA+YxNTJXRvXZ4neaESf+omjtyiIwQlALS9WVynmiwRllTHcO1bFQAA8GDzgT6XqZJ+97/zDDfE24aT+jsC2DlBCTAEhRL0brO49rklSR6nmiwRlgAAwMN6jE2Ge4H23Cfc67U5jfs6P+fZYlKUykBX/I8SALCjzeJ6tiqfJXk98lLchiW3Z7LuJ/nj/SWb+leSbOomEAAA+L15kncDfK6ns1V56niiXiuSlHX/RxWSLJWBLvnu/fv3qgD02mxVzpM87/ljHI/1TYrZqpxGWPItrlKFJ2X9a61xAgBAf1iWSY4G+Ggv6mOc6O/a3I+wJBGS0FGO3gLohtGeyVlvkJ5ZAvf2qG4An6d6a+7/ZqtyPVuV89mqPFQeAABGaj7Q5zp1ZG/ve9/rVJMlFyMug5CEzjJRAvTeECZKFpPiO59juUzy1IremqskyyRLR3UBADCy3qKMqRL0v11yk2S6mBTnPn26ykQJAJ1QX3D3RiW25lGqAPG/s1V5PluVhZIAADAS84E+l6mSYfW/P43kcS+TFEISuk5QAkDXNovCku37Psm72aosBSYAAIygrygzzOON9pKc+oQHs07Pkvw91WkAQ/U2VUiy9onTdYISALrmNNUbJ2zfUQQmAACMw3yo/ZKpkuGoA4TDVIHCkNykuo/kpL6bBTpPUAJA1zaKtxfcCUuacxuYLDVZAAAMtK8oY6qEnvTAi0lxkuSHDGO65G2SQ5e20zeCEmAIfNE7wI1ihCVteJpkM1uVJ0oBAMAAzQf6XKZKhtkHn6eaLnnR00e4SnJcT5FsfKL0jaAEGIJDJRjkJvE6yTTVyC7N2Uvyi+kSAAAG2FOUMVVCz/rgxaSYJ/lb+nN/51WqY7YO6p856CVBCQBd3iSuU02WCEua9zRJOVuVgkcAAIZkPtDnMlUy7F54s5gU03wITLrYE38ckCx9avTdd+/fv1cFoNdmq7JMdedCnzdB3/kk//QzPkxSpnpzimbdJDnxJhAAAHrGzrtMcp5knaR0afag1/B+qhMXpkke7/gf502SpZ6RoRGUADa9u3exmBSFT/Krn/NJkl9UojXPvBUEAMBAeokiybsRPOplqhfMlvV0PsNczwepApOTtBOa3NTr6jzJuUCOoRKUAEPYJJQRlIzls54mea0SrRGWAACgb+ynqyTLVKHJxgoY7LreT3VcdZHq/tajLa2ddT5MKpUqzRgISgAb3t0TlNzv855GWNImYQkAAEPoI4qMY6rkcxyVNK61fpDkIFVwcnuPzcf/+tY6yfUf/vXaxAhjJSgBhrAJKCMoGdtnfpbkXyrRGmEJAAB6x/67SDIXmAB86i9KAEDfLCbFaaq3omjH63qSBwAA+mw+8uc/SvJutirLeuoAgJqgBIBeWkyKaYQlbTqbrcpDZQAAoMc9RJlqqmLsjpL8d7Yq5/UdFwCjJygBhsCXt+NtdKZJLlWiFXtJzjVSAAD03FwJfvM8ydoLUQCCEmAY9pRg1IoIS9ryKMm5MgAA0FemSj67x//PbFXOlQIYM0EJAH1vdK4jLGnT0WxVnioDAAA9NleCTzyv7y4xQQ6MkqAEYPeuleBh6rDkJMmNarTi38bzAQDocf9QJrlSiU8cxVFcwEgJSgB2b60EW2l2NqkmS4Ql7ThTAgAAemyuBJ/1KEkpLAHGRlACwGAsJsU6wpK2HM1W5VQZAADoae+wjKmSL9lLFZYUSgGMhaAEgKE1POtUx3DRvDNnGAMA0GNzJfiivSTvhCXAWAhKABic+szhZyrRSvPkYncAAPraNyxjquRrzh3DBYyBoASAITc9wpLmnZoqAQCgx+ZK8Kduj+ESlgCDJigBYLDqsOSFSjTeOJkqAQCgzz2DqZKv7/nPvSAFDJmgBOg156Vyh8ZnnuSNSjRKhhgF1wAADaVJREFUUAIAQJ+dKcFXPUpyrgzAUAlKABi8xaSYRljSpL3ZqpwqAwAAfVNPScxV4k6OZqtSrYBBEpQAMAp1WHKpEo0xVQIAQB+dpzpairt57mQHYIgEJQC7t1aC5tVvih2oRGMez1al+gIA0Kce4TTJkUrc29J9JcDQCEoAdu9aCVpxEm+KtVFjAADoPEduPcijmCgHBkZQAsBY+BK/eVMlAACgJ87iRaqHeG6iHBgSQQkAY1EoQeMcvwUAQOfVd2w8VYkHWyoBMBSCEgDG0gh5W6wdhRIAANBxcyXYiiMXuwNDISgBYAxs3tUaAABuX6Jygfv2zJUAGAJBCdB3+0rAHRRKoNYAABBf7G+bqRJgEAQlQN8dKgHWSac8mq1KASYAAJ0zW5WHMU3ShFMlAPpOUALA0Juhg7ifpG2CKQAAusgX+s34vu67AHpLUALA0Nmwt09QAgBAp9RTz09VojFTJQD6TFACsGOLSVGqQqN8ad8+R28BANA1J0rQqKkSAH0mKAFg6Hxp3z7hFAAAXSMoadaj+g4YgF4SlAAwdAdK0DrhFAAAnVEfu/W9SjRuqgRAXwlKABi6AyUAAIBRM03SjkIJgL4SlAAAAAAwZIUStOLxbFUeKAPQR4ISAGDbNEcAAHRJoQStcU8J0EuCEsAmDNi2R0oAAEAX1BMO9qftKZQA6CNBCdB3Lo2G7rlUAgAAOuJACVrlZUaglwQlAMC2XSsBAAAdUShBqwQlQC8JSgB260YJAAAAGnOgBK3am61KJz8AvSMoAdittRKoMQAA0JgDJWidqRKgdwQlAAydY6Dat1ECAAA64kAJAPgaQQkAQycoad9GCQAA6IhHStC6QgmAvhGUADB0jt5q30YJAAAAgL4QlAAwdIKS9m2UAAAAAOgLQQkAg7aYFNdJblSi1ZqXqgAAAAD0xf8oAdBHs1W5n+QsyZFqcAdlku+VoRWXSgAAAAD0iYkSoHdmq/Ik1dE+TwfwOAezVXngU22c47faUyoBAAAA0CeCEqA3Zqtyf7Yqz5P8kmRvII/1KMl6tipPfcKNOleC1pRKAAAAAPSJoATohdmqPEw1RTLE45P2kvx7tirP6yPF2LLFpFjHPSVtKZUAAAAA6BNBCdB5s1U5TfKfDGeK5Eu+T1LWoRDbZ6qkeReLSXGtDAAAMGobJQD6RlACdNpsVS6TvB7RIz+OsKQpghI1BgBgfC6UoHUbJQD6RlACdFYdkjwd4aPvpQpLplbB9iwmxXkcv9W0pRIAAMDomTIHekdQAnTSiEOSW3tJXgtLts7EQ3PeOnYLAIAOKpWgXfUdkQC9IigBOkdI8jvCku06U4LGLJUAAIAO2ihBqy6VAOgjQQnQKUKSzzpzZ8l21G82OaN4+67qo80AAKBrNkqg3gBfIygBOmO2KucRknzO7Z0lwpLtmCuBmgIAMA6LSVGqQqvUG+glQQnQCbNVeZLkuUp80V6S5WxV7ivFVholUyXbc7WYFEtlAACgw+z/2+N+EqCXBCXAztWTEkuV+KrH6rQ1cyVQSwAARqNUglbcmOAB+kpQAnTBMtXEBF/3/WxVnirDw5gq2RrTJAAA9IH79NpRKgHQV4ISYKfqe0keq8S9zGer8kAZHkzg9HBTJQAAoOsWk2Kd5EYlGieQAnpLUALsTH3klntJ7m8vjuDaVrP0QiW+2Vtj9QAA9Igv8dUY4IsEJcAuLZXgmx05gmsrzpJcKcO93cQ0CQAA+k8+eLuYFNfKAPSVoATYidmqnMaRWw81n63KfWX4dvVG/kQl7m2qCQIAoGd7/zJekmrSUgmAPhOUAK2rv9w/U4kH24t7NrbRMK2T/KQSd/bzYlIYqQcAoI/0oc240iMAfScoAXbhNNWX/Dzccxe7P9xiUpwleasSX3W5mBTCOQAA+moZl7o3VVeAXhOUAK2qp0l80bpdcyXYimmSS2X4opskhTIAANBX9fGxpkq23yeoKdB7ghKgbdOYJtm2E3eVbK1pOok3zL7U/BTuJQEAYADO7Pm3W099AjAEghKgbaZJtm8vVQDFAy0mxSbV1ITG6YPbkGStFAAADGDPb6pku72CWgKDICgBWjNblSdJHqlEIwRQ22uc1hGWfNz4CEkAABgaUyXbMTdNAgyFoARo01QJGvNotioLZdgOYUkSIQkAAMPd71/Hy2YPdbmYFKZJgMEQlACtqO/Q+F4lGjVVgq02T7dhyRgveBeSAAAw9P3+MsmFSnwzQRMwKIISoC0nSqDGPWyexhiWXCY5FJIAADAC0ziC61v8vJgUpTIAQyIoAdriS/zm7Tl+a/sWk+J6MSkOk/w8gsd9k2qSZOOTBwBgBHv9TZK5StzLpZoBQyQoAdpSKEErBFLNNVGnSX7IMN84u0nybDEppi5jBABgZPv8syRvVeLOfYOeARgkQQnQuNmqPEyypxKtKJSg0SbqPMnBwBqpi1RHbS19wgAAjNQ047yb8L5OHdELDJWgBGhDoQSteawEzaqP4jpJNV1y1eNHuZ0icdQWAACj3+PHfSVf87OXq4AhE5QAbThUgva4p6S1Zuq8XtsvethQvUhyoNEBAIDf9vfrVC/5CUs+9aY+ihhgsAQlQBsEJeo91GbqejEp5qmO4+p6YHKT6rL2vy0mxdy5wgAA8Mn+fp1EIPB7F4tJMVUGYOgEJUAbHAfVrgMlaL2h+jgw+SndOpLrKh8mSKaO2QIAgD/d2y+TPFOJJNW9LSfKAIzBd+/fv1cFoDGzVXmQ5L8q0aqLxaQolGHna79Idc7xSZK9lv/4myTnSc7rI8IAAID77eenSc52sJfvijepLm83iQ6MgqAEaHpzWSR5pxKtulxMCsdvde/n4CTVmcdNTVhdJimTlMIRAADYyj7+sN5jjy0seeO4LWBsBCVA0xvLkyS/qES7FpPiO1Xo7M/Efqp7ZIpUR3Ud1P/zXZuvmyTrJNf172WStTe9AACgkf37YZJlxnOk9E+LSXHmkwfGRlACNL2pnCd5rhLtEpT0+mem+MK/JQwBAIDd7NH3U4Ul3w/4MW+SnCwmRekTB8bof5QAALpDYwIAAJ3bo18nOZmtytMk8wzvKK6LVCGJF7OA0fqLEgAAAADAn6uPpDpMFSwMwU2qo7YKIQkwdoISAAAAALiDxaTYLCZFkeRZqqChr94kOXAfCUBFUAIAAAAA97CYFMskB0lepF+ByUWS48WkmJoiAfjAHSUAAAAAcE910DCfrcqzJKf1r67eX3KRZO5ORIDPE5QAAAAAwDf6Q2AyTRWYPOrAP9pNkvMkZ4tJsfZJAXyZoARomlFeAAAABq8OTM6SnM1W5WGq0OQk7Ycmb1MFJOeO1wK4G0EJ0DRvrbTvRgkAAAB2p57gOE1yWocmJ0mKJEcN/HFXScpU4UgpHAG4P0EJwPAIpwAAADqiDk1+69Pq4OQw1WXwh0n269+/dr/JZapTG9b172WStWAE4OG+e//+vSoAjZqtSn/RtOvtYlKcKAMAAAAAfN1flABogaOg2mWiBAAAAADuSFACtMEX9+oNAAAAAJ0kKAHaUCpBqwQlAAAAAHBHghKgDb64b8/VYlJslAEAAAAA7kZQArShVILWCKUAAAAA4B4EJUDjFpPiOsmlSrTiXAkAAAAA4O4EJUBbfIHfjlIJAAAAAODuBCVAWwQlzbt0PwkAAAAA3I+gBGjFYlKsk1ypRKOWSgAAAAAA9yMoAdp0pgSNWioBAAAAANyPoARok+O3mvNmMSmulQEAAAAA7kdQArSmvj/jjUo0YqkEAAAAAHB/ghKgbUsl2LrLxaQolQEAAAAA7k9QArSq/kL/QiW2yt0vAAAAAPCNBCXALsyVYGsuF5NiqQwAAAAA8G0EJUDr6qmStyqxFadKAAAAAADfTlAC7Iov+B/uwt0kAAAAAPAwghJgJxaTYpPkhUp8s5skU2UAAAAAgIcRlAA7s5gU8ySXKvFNzuqwCQAAAAB4AEEJsGtTJbi3izpkAgAAAAAeSFAC7NRiUqzjCK77cOQWAAAAAGzRd+/fv1cFYOdmq7JMcqQSX/XDYlKcKwMAAAAAbIeJEqArTuK+kq95ISQBAAAAgO0yUQJ0xmxVHiYpk+ypxifeLCbFVBkAAAAAYLsEJUCnCEs+63IxKQ6VAQAAAAC2z9FbQKfUl7sXqS4tpzqOrFAGAAAAAGiGoAToHGHJby6TFItJcW1VAAAAAEAzBCVAJwlL8jZCEgAAAABonDtKgE6r7yxZJnk8osd2cTsAAAAAtERQAnTebFXuJzlPcjSCx322mBRLnzoAAAAAtENQAvTGbFXOkzwf6ONdJTmpjxwDAAAAAFrijhKgNxaTYp7k76lChSH5OcmhkAQAAAAA2meiBOid+iiu0/R/uuQqyXQxKUqfKgAAAADshqAE6K3ZqjxIddF73+4uuUlyVk/IAAAAAAA7JCgBem+2Kosk83Q/MLlJcpYqJLn2yQEAAADA7glKgMGoA5PTJN937B9NQAIAAAAAHSUoAQanPpJrWv96tMN/lLdJzheTYulTAQAAAIBuEpQAgzZblYepApMiyeMW/si3Sc5TBSSmRwAAAACg4wQlwGjUkyaHqUKTw/rX3gP+X14lWde/ysWkKFUZAAAAAPpFUAKM2mxV7qcKTJIqQPkz16lCkevFpFirHgAAAAD03/8DL5ICmpzWeN4AAAAASUVORK5CYII="

/**************************************************************************** */

paletteColors10 = {
	//"DefaultTheme": ['#03A5A8','#8fc63e','#B85C3A','#BEDAC4','#412722','#DAB6C2','#58C1C4','#A1B56B','#C7A7B7','#E3DCCF'],
	"DefaultTheme": ['#03A5A8','#8fc63e','#B85C3A', '#2F6F7E', '#5B8E3B', '#9C4F2E', '#6B4C7A', '#1F4E3D', '#C26A7A', '#B08A2E', '#4E5D63', '#7A6A4F', '#3F6B5F', '#8B5D7C', '#5C5A3A'],
	//"SteelTheme" : ['#265763','#65c1bf','#D88C3A','#BEDAC4','#412722','#DAB6C2','#58C1C4','#A1B56B','#C7A7B7','#E3DCCF'],
	"SteelTheme" : ['#265763','#65c1bf','#D88C3A',   '#3E4F6A', '#4F7F78', '#8C5A2B', '#6A4E73', '#2E5F4A', '#B75C6E', '#A8922E', '#5E6266', '#7C6A4E', '#3F6C74', '#8A6A7C', '#6B6A3E'],
	//"CoralTheme": ['#00A3A6','#ed6d6c','#1F3A44','#737F75','#7A8FA3','#D7B377','#A7C7A1','#A79BAE','#A0705A','#92B7C9'],
	"CoralTheme": ['#00A3A6','#ed6d6c','#1F3A44','#2F6F7A', '#7A8F3A', '#9C4B3C', '#6A4F7A', '#2E5E4F', '#B85E73', '#B49A32', '#5A5F63', '#7A6B4A', '#3F6F6A', '#8A5E6E', '#5C5A3F'],
	//"GoldTheme": ['#ed6d6c','#f9b136','#4C8F9C','#a2a32f','#7398A6','#D7A5B3','#6B8E3A','#CFA96E','#7E6FA8','#E3C9B2']
	"GoldTheme": ['#ed6d6c','#f9b136','#4C8F9C','#7E3F1D', '#C97F2A', '#8A9B3F', '#3B7A6A', '#1E4F6A', '#6E5B8C', '#A14C64', '#BFA65A', '#5C4632', '#7F8C92', '#4E6B3F', '#9C6B3D']
}

FROGSlogos = {
	"DefaultTheme": logoBase64,
	"SteelTheme" : logoSteel,
	"CoralTheme" : logoCoral,
	"GoldTheme" : logoGold
}

function getFrogsSunburstPalette() {
	switch (CURRENT_THEME) {
		case "DefaultTheme":
			return paletteColors10["DefaultTheme"];
		case "CoralTheme":
			return paletteColors10["CoralTheme"];
		case "GoldTheme":
			return paletteColors10["GoldTheme"];
		case "SteelTheme":
			return paletteColors10["SteelTheme"];
		default:
			return paletteColors10["DefaultTheme"];
	}
}

function getLogo() {
	switch (CURRENT_THEME) {
		case "DefaultTheme":
			return FROGSlogos["DefaultTheme"];
		case "CoralTheme":
			return FROGSlogos["CoralTheme"];
		case "GoldTheme":
			return FROGSlogos["GoldTheme"];
		case "SteelTheme":
			return FROGSlogos["SteelTheme"];
		default:
			return FROGSlogos["DefaultTheme"];
	}
}

// Fonction pour changer le logo
function update_logo(val){
	CURRENT_THEME = val;
	document.getElementById("logo").src = "data:image/png;base64," + getLogo(val);
}

function update_theme_Rmd(CURRENT_THEME){
	if(CURRENT_THEME == "CoralTheme" ){
		document.documentElement.style.setProperty('--frogsColor', paletteColors10[CURRENT_THEME][0]);
		document.documentElement.style.setProperty('--frogsColorHover', "hsl(from var(--frogsColor) h calc(s + 4) calc(l - 3) / 1)");
		document.documentElement.style.setProperty('--frogsPreColor', "hsl(from var(--frogsColor) h s l / 0.1)");
	}else if(CURRENT_THEME == "SteelTheme" ){
		document.documentElement.style.setProperty('--frogsColor', paletteColors10[CURRENT_THEME][0]);
		document.documentElement.style.setProperty('--frogsColorHover', "hsl(from var(--frogsColor) h calc(s + 4) calc(l - 3) / 1)");
		document.documentElement.style.setProperty('--frogsPreColor', "hsl(from var(--frogsColor) h s l / 0.1)");
	}else if(CURRENT_THEME == "GoldTheme" ){
		document.documentElement.style.setProperty('--frogsColor', paletteColors10[CURRENT_THEME][0]);
		document.documentElement.style.setProperty('--frogsColorHover', "hsl(from var(--frogsColor) h calc(s + 4) calc(l - 3) / 1)");
		document.documentElement.style.setProperty('--frogsPreColor', "hsl(from var(--frogsColor) h s l / 0.1)");
	 }
	 else if(CURRENT_THEME == "DefaultTheme" ){
		document.documentElement.style.setProperty('--frogsColor', paletteColors10[CURRENT_THEME][0]);
		document.documentElement.style.setProperty('--frogsColorHover', "hsl(from var(--frogsColor) h calc(s + 4) calc(l - 3) / 1)");
		document.documentElement.style.setProperty('--frogsPreColor', "hsl(from var(--frogsColor) h s l / 0.1)");
	 }
	 const select = document.getElementById("themechoice");

	 // Réactiver uniquement les vraies options (celles avec une value)
	 Array.from(select.options).forEach(opt => {
	   if (opt.value) {
		 opt.disabled = false;
	   }
	 });
	 
	 // Désactiver l’option actuellement sélectionnée (si ce n’est pas le placeholder)
	 const selectedOption = select.options[select.selectedIndex];
	 if (selectedOption.value) {
	   selectedOption.disabled = true;
	 }

	update_logo(CURRENT_THEME);
}

//## END COMMON CODE TO HTML AND RMD (not remove!)

function update_theme(val) {
	var cfg = themeConfigs[val];
	if (!cfg) return;

	// Appliquer les variables CSS
	Object.entries(cfg.vars).forEach(([key, value]) => {
		//document.documentElement.style.setProperty(key, value);
		document.querySelector(':root').style.setProperty(key, value);

	});
	CURRENT_THEME = val;
	frogsSunburstPalette = getFrogsSunburstPalette();
	if (typeof jDistrib !== "undefined" && jDistrib.graph.colors) {
		jDistrib.graph.colors.set = frogsSunburstPalette;
	}
	// Recharger les graphiques avec le thème ECharts
	// Cette fonction doit être définie dans le template HTML
	updateCharts(CURRENT_THEME);
	update_logo(CURRENT_THEME);

	select = document.getElementById("themechoice");

	 // Réactiver uniquement les vraies options (celles avec une value)
	 Array.from(select.options).forEach(opt => {
	   if (opt.value) {
		 opt.disabled = false;
	   }
	 });
	 
	 // Désactiver l’option actuellement sélectionnée (si ce n’est pas le placeholder)
	 const selectedOption = select.options[select.selectedIndex];
	 if (selectedOption.value) {
	   selectedOption.disabled = true;
	 }

}

// --- Helper pour lire une variable CSS ---
function getCssVar(name) {
	return getComputedStyle(document.documentElement).getPropertyValue(name).trim();
}
  
// --- Générateur de thème ECharts (utilisé pour echarts.registerTheme) ---
function makeEchartsTheme() {
	return {
		get color() {
		return [
			getCssVar("--frogsColor"),
			getCssVar("--frogsColor2"),
			getCssVar("--frogsColor3"),
			getCssVar("--frogsColor4"),
			getCssVar("--frogsColor5"),
			getCssVar("--frogsColor6"),
			getCssVar("--frogsColor7"),
			getCssVar("--frogsColor8"),
			getCssVar("--frogsColor9"),
			getCssVar("--frogsColor10"),
		];
		},
		backgroundColor: getCssVar("--frogsBackgroundColor"),
		textStyle: { fontFamily: "Arial" }
	};
}

// --- Générateur de config de thème (vars + bodyBg) ---
function makeThemeConfig(name, vars) {
	return {
		vars,
		echartsTheme: name
	};
}
  
  // --- Définition des thèmes ---
const themeConfigs = {
	CoralTheme: makeThemeConfig("CoralTheme", {
	  //"--frogsColor": "#00a3a6",
	  "--frogsColor": paletteColors10["CoralTheme"][0],
	  //"--frogsColorHover": "rgb(0,163,166,0.8)",
	  "--frogsColorHover": "hsl(from var(--frogsColor) h calc(s + 4) calc(l - 3) / 1)",
	  "--frogsColorShadow": "#6c5b64",
	  "--frogsColor2": paletteColors10["CoralTheme"][1],
	  "--frogsColor3": paletteColors10["CoralTheme"][2],
	  "--frogsColor4": paletteColors10["CoralTheme"][3],
	  "--frogsColor5": paletteColors10["CoralTheme"][4],
	  "--frogsColor6": paletteColors10["CoralTheme"][5],
	  "--frogsColor7": paletteColors10["CoralTheme"][6],
	  "--frogsColor8": paletteColors10["CoralTheme"][7],
	  "--frogsColor9": paletteColors10["CoralTheme"][8],
	  "--frogsColor10": paletteColors10["CoralTheme"][9],
	  //"--frogsButtonColor": "#00a3a6",
	  //"--frogsButtonColor": "hsl(from var(--frogsColor) h calc(s + 5) calc(l + 5))",
	  "--frogsButtonColor": "hsl(from var(--frogsColor) h calc(s + 4) calc(l + 1) / 0.8)",
	  "--frogsButtonBorderColor": "#f2f2f2",
	  "--frogsOddTable": "rgba(249,86,79,0.1)",
	  "--frogsCircleFontColor": "#FFF",
	  //"--frogsCircleBackgroundColor": "#FA8883",
	  "--frogsCircleBackgroundColor": "#ed6d6c",
	  "--frogsBackgroundColor": "white",
	}),
  
	DefaultTheme: makeThemeConfig("DefaultTheme", {
		"--frogsColor": paletteColors10["DefaultTheme"][0],
		//"--frogsColorHover": "#648a89",
		"--frogsColorHover": "hsl(from var(--frogsColor) h calc(s + 4) calc(l - 3) / 1)", // not
		"--frogsColorShadow": "#648a89", // not
		"--frogsColor2": paletteColors10["DefaultTheme"][1],
		"--frogsColor3": paletteColors10["DefaultTheme"][2],
		"--frogsColor4": paletteColors10["DefaultTheme"][3],
		"--frogsColor5": paletteColors10["DefaultTheme"][4],
		"--frogsColor6": paletteColors10["DefaultTheme"][5],
		"--frogsColor7": paletteColors10["DefaultTheme"][6],
		"--frogsColor8": paletteColors10["DefaultTheme"][7],
		"--frogsColor9": paletteColors10["DefaultTheme"][8],
		"--frogsColor10": paletteColors10["DefaultTheme"][9],
		//"--frogsButtonColor": "#8EADAC",
		"--frogsButtonColor": "hsl(from var(--frogsColor) h calc(s + 4) calc(l + 1) / 0.8)", // not
		"--frogsButtonBorderColor": "#f2f2f2", // not
		"--frogsOddTable": "#f2f2f2", // not
		"--frogsCircleFontColor": "#FFF", // not
		"--frogsCircleBackgroundColor": "#03a5a8",
		"--frogsBackgroundColor": "white" // not
	  }),
	
	  GoldTheme: makeThemeConfig("GoldTheme", {
		//"--frogsColor": "#00a3a6",
		"--frogsColor": paletteColors10["GoldTheme"][0],
		//"--frogsColorHover": "rgb(0,163,166,0.8)",
		"--frogsColorHover": "hsl(from var(--frogsColor) h calc(s + 4) calc(l - 3) / 1)",
		"--frogsColorShadow": "#6c5b64",
		"--frogsColor2": paletteColors10["GoldTheme"][1],
		"--frogsColor3": paletteColors10["GoldTheme"][2],
		"--frogsColor4": paletteColors10["GoldTheme"][3],
		"--frogsColor5": paletteColors10["GoldTheme"][4],
		"--frogsColor6": paletteColors10["GoldTheme"][5],
		"--frogsColor7": paletteColors10["GoldTheme"][6],
		"--frogsColor8": paletteColors10["GoldTheme"][7],
		"--frogsColor9": paletteColors10["GoldTheme"][8],
		"--frogsColor10": paletteColors10["GoldTheme"][9],
		//"--frogsButtonColor": "#00a3a6",
		//"--frogsButtonColor": "hsl(from var(--frogsColor) h calc(s + 5) calc(l + 5))",
		"--frogsButtonColor": "hsl(from var(--frogsColor) h calc(s + 4) calc(l + 1) / 0.8)",
		"--frogsButtonBorderColor": "#f2f2f2",
		"--frogsOddTable": "rgba(249,86,79,0.1)",
		"--frogsCircleFontColor": "#FFF",
		//"--frogsCircleBackgroundColor": "#FA8883",
		"--frogsCircleBackgroundColor": "#f9b136",
		"--frogsBackgroundColor": "white",
	  }),

	  SteelTheme: makeThemeConfig("SteelTheme", {
		//"--frogsColor": "#00a3a6",
		"--frogsColor": paletteColors10["SteelTheme"][0],
		//"--frogsColorHover": "rgb(0,163,166,0.8)",
		"--frogsColorHover": "hsl(from var(--frogsColor) h calc(s + 4) calc(l - 3) / 1)",
		"--frogsColorShadow": "#6c5b64",
		"--frogsColor2": paletteColors10["SteelTheme"][1],
		"--frogsColor3": paletteColors10["SteelTheme"][2],
		"--frogsColor4": paletteColors10["SteelTheme"][3],
		"--frogsColor5": paletteColors10["SteelTheme"][4],
		"--frogsColor6": paletteColors10["SteelTheme"][5],
		"--frogsColor7": paletteColors10["SteelTheme"][6],
		"--frogsColor8": paletteColors10["SteelTheme"][7],
		"--frogsColor9": paletteColors10["SteelTheme"][8],
		"--frogsColor10": paletteColors10["SteelTheme"][9],
		//"--frogsButtonColor": "#00a3a6",
		//"--frogsButtonColor": "hsl(from var(--frogsColor) h calc(s + 5) calc(l + 5))",
		"--frogsButtonColor": "hsl(from var(--frogsColor) h calc(s + 4) calc(l + 1) / 0.8)",
		"--frogsButtonBorderColor": "#f2f2f2",
		"--frogsOddTable": "rgba(249,86,79,0.1)",
		"--frogsCircleFontColor": "#FFF",
		//"--frogsCircleBackgroundColor": "#FA8883",
		"--frogsCircleBackgroundColor": "#65c1bf",
		"--frogsBackgroundColor": "white",
	  }),
  
};
  
// --- Enregistrement des thèmes ECharts ---
Object.keys(themeConfigs).forEach(name => {
	echarts.registerTheme(name, makeEchartsTheme());
});
</script>

		<style type="text/css">
			/*
			 * jDistrib 0.1.0 - CSS jDistrib Library	
			 *		 
			 * Copyright (c) 2015 Escudie Frederic
			 * Licensed under the MIT (http://www.opensource.org/licenses/mit-license.php) license.
			 */
			#sunburst-graph{margin-left:auto;margin-right:auto}.jDistrib-walk-rank{height:100%;margin-right:2px;padding:8px;float:left;border-top-right-radius:7px;border-bottom-right-radius:7px;cursor:pointer;box-shadow:1px 1px 1px #555}.jDistrib-walk-rank-size{margin-left:5px;padding:4px;background-color:#FFF;color:#648a89;border-radius:9px;text-align:center;font-size:10px;font-family:sans-serif}.jDistrib-root-label{font-weight:700;cursor:pointer}.jDistrib-arc-label{cursor:pointer}.jDistrib-arc{cursor:pointer;stroke:#fff;fill-rule:evenodd}.jDistrib-tooltip{position:absolute;padding:10px;font:12px sans-serif;background:var(--frogsColor);border:0;border-radius:8px;pointer-events:none;color:#FFF}.jDistrib-empty-details{color:#fff;background-color:frogsColor;padding:15px;margin-bottom:20px;border:1px solid transparent;border-radius:4px}.jDistrib-table-details>tbody>tr:nth-of-type(2n+1){background-color:#F5F5F5}.jDistrib-table-details{border:1px solid #DDD;border-radius:8px;border-spacing:1px;border-collapse:separate}.jDistrib-table-details td,th{padding:2px 8px}.jDistrib-table-details .number{text-align:right}.jDistrib-export-toggle{height:30px;width:30px;padding:1px}.jDistrib-export-toggle div{background-color:#636363;border-radius:2px;height:3px;margin-top:2px;margin-bottom:2px}
		</style>

		<script type="text/javascript">
			/*
			* d3 v3 - JavaScript d3 Library
			* (http://d3js.org/)
			*/
			!function(){function n(n){return n&&(n.ownerDocument||n.document||n).documentElement}function t(n){return n&&(n.ownerDocument&&n.ownerDocument.defaultView||n.document&&n||n.defaultView)}function e(n,t){return t>n?-1:n>t?1:n>=t?0:0/0}function r(n){return null===n?0/0:+n}function u(n){return!isNaN(n)}function i(n){return{left:function(t,e,r,u){for(arguments.length<3&&(r=0),arguments.length<4&&(u=t.length);u>r;){var i=r+u>>>1;n(t[i],e)<0?r=i+1:u=i}return r},right:function(t,e,r,u){for(arguments.length<3&&(r=0),arguments.length<4&&(u=t.length);u>r;){var i=r+u>>>1;n(t[i],e)>0?u=i:r=i+1}return r}}}function o(n){return n.length}function a(n){for(var t=1;n*t%1;)t*=10;return t}function c(n,t){for(var e in t)Object.defineProperty(n.prototype,e,{value:t[e],enumerable:!1})}function l(){this._=Object.create(null)}function s(n){return(n+="")===pa||n[0]===va?va+n:n}function f(n){return(n+="")[0]===va?n.slice(1):n}function h(n){return s(n)in this._}function g(n){return(n=s(n))in this._&&delete this._[n]}function p(){var n=[];for(var t in this._)n.push(f(t));return n}function v(){var n=0;for(var t in this._)++n;return n}function d(){for(var n in this._)return!1;return!0}function m(){this._=Object.create(null)}function y(n){return n}function M(n,t,e){return function(){var r=e.apply(t,arguments);return r===t?n:r}}function x(n,t){if(t in n)return t;t=t.charAt(0).toUpperCase()+t.slice(1);for(var e=0,r=da.length;r>e;++e){var u=da[e]+t;if(u in n)return u}}function b(){}function _(){}function w(n){function t(){for(var t,r=e,u=-1,i=r.length;++u<i;)(t=r[u].on)&&t.apply(this,arguments);return n}var e=[],r=new l;return t.on=function(t,u){var i,o=r.get(t);return arguments.length<2?o&&o.on:(o&&(o.on=null,e=e.slice(0,i=e.indexOf(o)).concat(e.slice(i+1)),r.remove(t)),u&&e.push(r.set(t,{on:u})),n)},t}function S(){ta.event.preventDefault()}function k(){for(var n,t=ta.event;n=t.sourceEvent;)t=n;return t}function E(n){for(var t=new _,e=0,r=arguments.length;++e<r;)t[arguments[e]]=w(t);return t.of=function(e,r){return function(u){try{var i=u.sourceEvent=ta.event;u.target=n,ta.event=u,t[u.type].apply(e,r)}finally{ta.event=i}}},t}function A(n){return ya(n,_a),n}function N(n){return"function"==typeof n?n:function(){return Ma(n,this)}}function C(n){return"function"==typeof n?n:function(){return xa(n,this)}}function z(n,t){function e(){this.removeAttribute(n)}function r(){this.removeAttributeNS(n.space,n.local)}function u(){this.setAttribute(n,t)}function i(){this.setAttributeNS(n.space,n.local,t)}function o(){var e=t.apply(this,arguments);null==e?this.removeAttribute(n):this.setAttribute(n,e)}function a(){var e=t.apply(this,arguments);null==e?this.removeAttributeNS(n.space,n.local):this.setAttributeNS(n.space,n.local,e)}return n=ta.ns.qualify(n),null==t?n.local?r:e:"function"==typeof t?n.local?a:o:n.local?i:u}function q(n){return n.trim().replace(/\s+/g," ")}function L(n){return new RegExp("(?:^|\\s+)"+ta.requote(n)+"(?:\\s+|$)","g")}function T(n){return(n+"").trim().split(/^|\s+/)}function R(n,t){function e(){for(var e=-1;++e<u;)n[e](this,t)}function r(){for(var e=-1,r=t.apply(this,arguments);++e<u;)n[e](this,r)}n=T(n).map(D);var u=n.length;return"function"==typeof t?r:e}function D(n){var t=L(n);return function(e,r){if(u=e.classList)return r?u.add(n):u.remove(n);var u=e.getAttribute("class")||"";r?(t.lastIndex=0,t.test(u)||e.setAttribute("class",q(u+" "+n))):e.setAttribute("class",q(u.replace(t," ")))}}function P(n,t,e){function r(){this.style.removeProperty(n)}function u(){this.style.setProperty(n,t,e)}function i(){var r=t.apply(this,arguments);null==r?this.style.removeProperty(n):this.style.setProperty(n,r,e)}return null==t?r:"function"==typeof t?i:u}function U(n,t){function e(){delete this[n]}function r(){this[n]=t}function u(){var e=t.apply(this,arguments);null==e?delete this[n]:this[n]=e}return null==t?e:"function"==typeof t?u:r}function j(n){function t(){var t=this.ownerDocument,e=this.namespaceURI;return e?t.createElementNS(e,n):t.createElement(n)}function e(){return this.ownerDocument.createElementNS(n.space,n.local)}return"function"==typeof n?n:(n=ta.ns.qualify(n)).local?e:t}function F(){var n=this.parentNode;n&&n.removeChild(this)}function H(n){return{__data__:n}}function O(n){return function(){return ba(this,n)}}function I(n){return arguments.length||(n=e),function(t,e){return t&&e?n(t.__data__,e.__data__):!t-!e}}function Y(n,t){for(var e=0,r=n.length;r>e;e++)for(var u,i=n[e],o=0,a=i.length;a>o;o++)(u=i[o])&&t(u,o,e);return n}function Z(n){return ya(n,Sa),n}function V(n){var t,e;return function(r,u,i){var o,a=n[i].update,c=a.length;for(i!=e&&(e=i,t=0),u>=t&&(t=u+1);!(o=a[t])&&++t<c;);return o}}function X(n,t,e){function r(){var t=this[o];t&&(this.removeEventListener(n,t,t.$),delete this[o])}function u(){var u=c(t,ra(arguments));r.call(this),this.addEventListener(n,this[o]=u,u.$=e),u._=t}function i(){var t,e=new RegExp("^__on([^.]+)"+ta.requote(n)+"$");for(var r in this)if(t=r.match(e)){var u=this[r];this.removeEventListener(t[1],u,u.$),delete this[r]}}var o="__on"+n,a=n.indexOf("."),c=$;a>0&&(n=n.slice(0,a));var l=ka.get(n);return l&&(n=l,c=B),a?t?u:r:t?b:i}function $(n,t){return function(e){var r=ta.event;ta.event=e,t[0]=this.__data__;try{n.apply(this,t)}finally{ta.event=r}}}function B(n,t){var e=$(n,t);return function(n){var t=this,r=n.relatedTarget;r&&(r===t||8&r.compareDocumentPosition(t))||e.call(t,n)}}function W(e){var r=".dragsuppress-"+ ++Aa,u="click"+r,i=ta.select(t(e)).on("touchmove"+r,S).on("dragstart"+r,S).on("selectstart"+r,S);if(null==Ea&&(Ea="onselectstart"in e?!1:x(e.style,"userSelect")),Ea){var o=n(e).style,a=o[Ea];o[Ea]="none"}return function(n){if(i.on(r,null),Ea&&(o[Ea]=a),n){var t=function(){i.on(u,null)};i.on(u,function(){S(),t()},!0),setTimeout(t,0)}}}function J(n,e){e.changedTouches&&(e=e.changedTouches[0]);var r=n.ownerSVGElement||n;if(r.createSVGPoint){var u=r.createSVGPoint();if(0>Na){var i=t(n);if(i.scrollX||i.scrollY){r=ta.select("body").append("svg").style({position:"absolute",top:0,left:0,margin:0,padding:0,border:"none"},"important");var o=r[0][0].getScreenCTM();Na=!(o.f||o.e),r.remove()}}return Na?(u.x=e.pageX,u.y=e.pageY):(u.x=e.clientX,u.y=e.clientY),u=u.matrixTransform(n.getScreenCTM().inverse()),[u.x,u.y]}var a=n.getBoundingClientRect();return[e.clientX-a.left-n.clientLeft,e.clientY-a.top-n.clientTop]}function G(){return ta.event.changedTouches[0].identifier}function K(n){return n>0?1:0>n?-1:0}function Q(n,t,e){return(t[0]-n[0])*(e[1]-n[1])-(t[1]-n[1])*(e[0]-n[0])}function nt(n){return n>1?0:-1>n?qa:Math.acos(n)}function tt(n){return n>1?Ra:-1>n?-Ra:Math.asin(n)}function et(n){return((n=Math.exp(n))-1/n)/2}function rt(n){return((n=Math.exp(n))+1/n)/2}function ut(n){return((n=Math.exp(2*n))-1)/(n+1)}function it(n){return(n=Math.sin(n/2))*n}function ot(){}function at(n,t,e){return this instanceof at?(this.h=+n,this.s=+t,void(this.l=+e)):arguments.length<2?n instanceof at?new at(n.h,n.s,n.l):bt(""+n,_t,at):new at(n,t,e)}function ct(n,t,e){function r(n){return n>360?n-=360:0>n&&(n+=360),60>n?i+(o-i)*n/60:180>n?o:240>n?i+(o-i)*(240-n)/60:i}function u(n){return Math.round(255*r(n))}var i,o;return n=isNaN(n)?0:(n%=360)<0?n+360:n,t=isNaN(t)?0:0>t?0:t>1?1:t,e=0>e?0:e>1?1:e,o=.5>=e?e*(1+t):e+t-e*t,i=2*e-o,new mt(u(n+120),u(n),u(n-120))}function lt(n,t,e){return this instanceof lt?(this.h=+n,this.c=+t,void(this.l=+e)):arguments.length<2?n instanceof lt?new lt(n.h,n.c,n.l):n instanceof ft?gt(n.l,n.a,n.b):gt((n=wt((n=ta.rgb(n)).r,n.g,n.b)).l,n.a,n.b):new lt(n,t,e)}function st(n,t,e){return isNaN(n)&&(n=0),isNaN(t)&&(t=0),new ft(e,Math.cos(n*=Da)*t,Math.sin(n)*t)}function ft(n,t,e){return this instanceof ft?(this.l=+n,this.a=+t,void(this.b=+e)):arguments.length<2?n instanceof ft?new ft(n.l,n.a,n.b):n instanceof lt?st(n.h,n.c,n.l):wt((n=mt(n)).r,n.g,n.b):new ft(n,t,e)}function ht(n,t,e){var r=(n+16)/116,u=r+t/500,i=r-e/200;return u=pt(u)*Xa,r=pt(r)*$a,i=pt(i)*Ba,new mt(dt(3.2404542*u-1.5371385*r-.4985314*i),dt(-.969266*u+1.8760108*r+.041556*i),dt(.0556434*u-.2040259*r+1.0572252*i))}function gt(n,t,e){return n>0?new lt(Math.atan2(e,t)*Pa,Math.sqrt(t*t+e*e),n):new lt(0/0,0/0,n)}function pt(n){return n>.206893034?n*n*n:(n-4/29)/7.787037}function vt(n){return n>.008856?Math.pow(n,1/3):7.787037*n+4/29}function dt(n){return Math.round(255*(.00304>=n?12.92*n:1.055*Math.pow(n,1/2.4)-.055))}function mt(n,t,e){return this instanceof mt?(this.r=~~n,this.g=~~t,void(this.b=~~e)):arguments.length<2?n instanceof mt?new mt(n.r,n.g,n.b):bt(""+n,mt,ct):new mt(n,t,e)}function yt(n){return new mt(n>>16,n>>8&255,255&n)}function Mt(n){return yt(n)+""}function xt(n){return 16>n?"0"+Math.max(0,n).toString(16):Math.min(255,n).toString(16)}function bt(n,t,e){var r,u,i,o=0,a=0,c=0;if(r=/([a-z]+)\((.*)\)/i.exec(n))switch(u=r[2].split(","),r[1]){case"hsl":return e(parseFloat(u[0]),parseFloat(u[1])/100,parseFloat(u[2])/100);case"rgb":return t(kt(u[0]),kt(u[1]),kt(u[2]))}return(i=Ga.get(n.toLowerCase()))?t(i.r,i.g,i.b):(null==n||"#"!==n.charAt(0)||isNaN(i=parseInt(n.slice(1),16))||(4===n.length?(o=(3840&i)>>4,o=o>>4|o,a=240&i,a=a>>4|a,c=15&i,c=c<<4|c):7===n.length&&(o=(16711680&i)>>16,a=(65280&i)>>8,c=255&i)),t(o,a,c))}function _t(n,t,e){var r,u,i=Math.min(n/=255,t/=255,e/=255),o=Math.max(n,t,e),a=o-i,c=(o+i)/2;return a?(u=.5>c?a/(o+i):a/(2-o-i),r=n==o?(t-e)/a+(e>t?6:0):t==o?(e-n)/a+2:(n-t)/a+4,r*=60):(r=0/0,u=c>0&&1>c?0:r),new at(r,u,c)}function wt(n,t,e){n=St(n),t=St(t),e=St(e);var r=vt((.4124564*n+.3575761*t+.1804375*e)/Xa),u=vt((.2126729*n+.7151522*t+.072175*e)/$a),i=vt((.0193339*n+.119192*t+.9503041*e)/Ba);return ft(116*u-16,500*(r-u),200*(u-i))}function St(n){return(n/=255)<=.04045?n/12.92:Math.pow((n+.055)/1.055,2.4)}function kt(n){var t=parseFloat(n);return"%"===n.charAt(n.length-1)?Math.round(2.55*t):t}function Et(n){return"function"==typeof n?n:function(){return n}}function At(n){return function(t,e,r){return 2===arguments.length&&"function"==typeof e&&(r=e,e=null),Nt(t,e,n,r)}}function Nt(n,t,e,r){function u(){var n,t=c.status;if(!t&&zt(c)||t>=200&&300>t||304===t){try{n=e.call(i,c)}catch(r){return void o.error.call(i,r)}o.load.call(i,n)}else o.error.call(i,c)}var i={},o=ta.dispatch("beforesend","progress","load","error"),a={},c=new XMLHttpRequest,l=null;return!this.XDomainRequest||"withCredentials"in c||!/^(http(s)?:)?\/\//.test(n)||(c=new XDomainRequest),"onload"in c?c.onload=c.onerror=u:c.onreadystatechange=function(){c.readyState>3&&u()},c.onprogress=function(n){var t=ta.event;ta.event=n;try{o.progress.call(i,c)}finally{ta.event=t}},i.header=function(n,t){return n=(n+"").toLowerCase(),arguments.length<2?a[n]:(null==t?delete a[n]:a[n]=t+"",i)},i.mimeType=function(n){return arguments.length?(t=null==n?null:n+"",i):t},i.responseType=function(n){return arguments.length?(l=n,i):l},i.response=function(n){return e=n,i},["get","post"].forEach(function(n){i[n]=function(){return i.send.apply(i,[n].concat(ra(arguments)))}}),i.send=function(e,r,u){if(2===arguments.length&&"function"==typeof r&&(u=r,r=null),c.open(e,n,!0),null==t||"accept"in a||(a.accept=t+",*/*"),c.setRequestHeader)for(var s in a)c.setRequestHeader(s,a[s]);return null!=t&&c.overrideMimeType&&c.overrideMimeType(t),null!=l&&(c.responseType=l),null!=u&&i.on("error",u).on("load",function(n){u(null,n)}),o.beforesend.call(i,c),c.send(null==r?null:r),i},i.abort=function(){return c.abort(),i},ta.rebind(i,o,"on"),null==r?i:i.get(Ct(r))}function Ct(n){return 1===n.length?function(t,e){n(null==t?e:null)}:n}function zt(n){var t=n.responseType;return t&&"text"!==t?n.response:n.responseText}function qt(){var n=Lt(),t=Tt()-n;t>24?(isFinite(t)&&(clearTimeout(tc),tc=setTimeout(qt,t)),nc=0):(nc=1,rc(qt))}function Lt(){var n=Date.now();for(ec=Ka;ec;)n>=ec.t&&(ec.f=ec.c(n-ec.t)),ec=ec.n;return n}function Tt(){for(var n,t=Ka,e=1/0;t;)t.f?t=n?n.n=t.n:Ka=t.n:(t.t<e&&(e=t.t),t=(n=t).n);return Qa=n,e}function Rt(n,t){return t-(n?Math.ceil(Math.log(n)/Math.LN10):1)}function Dt(n,t){var e=Math.pow(10,3*ga(8-t));return{scale:t>8?function(n){return n/e}:function(n){return n*e},symbol:n}}function Pt(n){var t=n.decimal,e=n.thousands,r=n.grouping,u=n.currency,i=r&&e?function(n,t){for(var u=n.length,i=[],o=0,a=r[0],c=0;u>0&&a>0&&(c+a+1>t&&(a=Math.max(1,t-c)),i.push(n.substring(u-=a,u+a)),!((c+=a+1)>t));)a=r[o=(o+1)%r.length];return i.reverse().join(e)}:y;return function(n){var e=ic.exec(n),r=e[1]||" ",o=e[2]||">",a=e[3]||"-",c=e[4]||"",l=e[5],s=+e[6],f=e[7],h=e[8],g=e[9],p=1,v="",d="",m=!1,y=!0;switch(h&&(h=+h.substring(1)),(l||"0"===r&&"="===o)&&(l=r="0",o="="),g){case"n":f=!0,g="g";break;case"%":p=100,d="%",g="f";break;case"p":p=100,d="%",g="r";break;case"b":case"o":case"x":case"X":"#"===c&&(v="0"+g.toLowerCase());case"c":y=!1;case"d":m=!0,h=0;break;case"s":p=-1,g="r"}"$"===c&&(v=u[0],d=u[1]),"r"!=g||h||(g="g"),null!=h&&("g"==g?h=Math.max(1,Math.min(21,h)):("e"==g||"f"==g)&&(h=Math.max(0,Math.min(20,h)))),g=oc.get(g)||Ut;var M=l&&f;return function(n){var e=d;if(m&&n%1)return"";var u=0>n||0===n&&0>1/n?(n=-n,"-"):"-"===a?"":a;if(0>p){var c=ta.formatPrefix(n,h);n=c.scale(n),e=c.symbol+d}else n*=p;n=g(n,h);var x,b,_=n.lastIndexOf(".");if(0>_){var w=y?n.lastIndexOf("e"):-1;0>w?(x=n,b=""):(x=n.substring(0,w),b=n.substring(w))}else x=n.substring(0,_),b=t+n.substring(_+1);!l&&f&&(x=i(x,1/0));var S=v.length+x.length+b.length+(M?0:u.length),k=s>S?new Array(S=s-S+1).join(r):"";return M&&(x=i(k+x,k.length?s-b.length:1/0)),u+=v,n=x+b,("<"===o?u+n+k:">"===o?k+u+n:"^"===o?k.substring(0,S>>=1)+u+n+k.substring(S):u+(M?n:k+n))+e}}}function Ut(n){return n+""}function jt(){this._=new Date(arguments.length>1?Date.UTC.apply(this,arguments):arguments[0])}function Ft(n,t,e){function r(t){var e=n(t),r=i(e,1);return r-t>t-e?e:r}function u(e){return t(e=n(new cc(e-1)),1),e}function i(n,e){return t(n=new cc(+n),e),n}function o(n,r,i){var o=u(n),a=[];if(i>1)for(;r>o;)e(o)%i||a.push(new Date(+o)),t(o,1);else for(;r>o;)a.push(new Date(+o)),t(o,1);return a}function a(n,t,e){try{cc=jt;var r=new jt;return r._=n,o(r,t,e)}finally{cc=Date}}n.floor=n,n.round=r,n.ceil=u,n.offset=i,n.range=o;var c=n.utc=Ht(n);return c.floor=c,c.round=Ht(r),c.ceil=Ht(u),c.offset=Ht(i),c.range=a,n}function Ht(n){return function(t,e){try{cc=jt;var r=new jt;return r._=t,n(r,e)._}finally{cc=Date}}}function Ot(n){function t(n){function t(t){for(var e,u,i,o=[],a=-1,c=0;++a<r;)37===n.charCodeAt(a)&&(o.push(n.slice(c,a)),null!=(u=sc[e=n.charAt(++a)])&&(e=n.charAt(++a)),(i=N[e])&&(e=i(t,null==u?"e"===e?" ":"0":u)),o.push(e),c=a+1);return o.push(n.slice(c,a)),o.join("")}var r=n.length;return t.parse=function(t){var r={y:1900,m:0,d:1,H:0,M:0,S:0,L:0,Z:null},u=e(r,n,t,0);if(u!=t.length)return null;"p"in r&&(r.H=r.H%12+12*r.p);var i=null!=r.Z&&cc!==jt,o=new(i?jt:cc);return"j"in r?o.setFullYear(r.y,0,r.j):"w"in r&&("W"in r||"U"in r)?(o.setFullYear(r.y,0,1),o.setFullYear(r.y,0,"W"in r?(r.w+6)%7+7*r.W-(o.getDay()+5)%7:r.w+7*r.U-(o.getDay()+6)%7)):o.setFullYear(r.y,r.m,r.d),o.setHours(r.H+(r.Z/100|0),r.M+r.Z%100,r.S,r.L),i?o._:o},t.toString=function(){return n},t}function e(n,t,e,r){for(var u,i,o,a=0,c=t.length,l=e.length;c>a;){if(r>=l)return-1;if(u=t.charCodeAt(a++),37===u){if(o=t.charAt(a++),i=C[o in sc?t.charAt(a++):o],!i||(r=i(n,e,r))<0)return-1}else if(u!=e.charCodeAt(r++))return-1}return r}function r(n,t,e){_.lastIndex=0;var r=_.exec(t.slice(e));return r?(n.w=w.get(r[0].toLowerCase()),e+r[0].length):-1}function u(n,t,e){x.lastIndex=0;var r=x.exec(t.slice(e));return r?(n.w=b.get(r[0].toLowerCase()),e+r[0].length):-1}function i(n,t,e){E.lastIndex=0;var r=E.exec(t.slice(e));return r?(n.m=A.get(r[0].toLowerCase()),e+r[0].length):-1}function o(n,t,e){S.lastIndex=0;var r=S.exec(t.slice(e));return r?(n.m=k.get(r[0].toLowerCase()),e+r[0].length):-1}function a(n,t,r){return e(n,N.c.toString(),t,r)}function c(n,t,r){return e(n,N.x.toString(),t,r)}function l(n,t,r){return e(n,N.X.toString(),t,r)}function s(n,t,e){var r=M.get(t.slice(e,e+=2).toLowerCase());return null==r?-1:(n.p=r,e)}var f=n.dateTime,h=n.date,g=n.time,p=n.periods,v=n.days,d=n.shortDays,m=n.months,y=n.shortMonths;t.utc=function(n){function e(n){try{cc=jt;var t=new cc;return t._=n,r(t)}finally{cc=Date}}var r=t(n);return e.parse=function(n){try{cc=jt;var t=r.parse(n);return t&&t._}finally{cc=Date}},e.toString=r.toString,e},t.multi=t.utc.multi=ae;var M=ta.map(),x=Yt(v),b=Zt(v),_=Yt(d),w=Zt(d),S=Yt(m),k=Zt(m),E=Yt(y),A=Zt(y);p.forEach(function(n,t){M.set(n.toLowerCase(),t)});var N={a:function(n){return d[n.getDay()]},A:function(n){return v[n.getDay()]},b:function(n){return y[n.getMonth()]},B:function(n){return m[n.getMonth()]},c:t(f),d:function(n,t){return It(n.getDate(),t,2)},e:function(n,t){return It(n.getDate(),t,2)},H:function(n,t){return It(n.getHours(),t,2)},I:function(n,t){return It(n.getHours()%12||12,t,2)},j:function(n,t){return It(1+ac.dayOfYear(n),t,3)},L:function(n,t){return It(n.getMilliseconds(),t,3)},m:function(n,t){return It(n.getMonth()+1,t,2)},M:function(n,t){return It(n.getMinutes(),t,2)},p:function(n){return p[+(n.getHours()>=12)]},S:function(n,t){return It(n.getSeconds(),t,2)},U:function(n,t){return It(ac.sundayOfYear(n),t,2)},w:function(n){return n.getDay()},W:function(n,t){return It(ac.mondayOfYear(n),t,2)},x:t(h),X:t(g),y:function(n,t){return It(n.getFullYear()%100,t,2)},Y:function(n,t){return It(n.getFullYear()%1e4,t,4)},Z:ie,"%":function(){return"%"}},C={a:r,A:u,b:i,B:o,c:a,d:Qt,e:Qt,H:te,I:te,j:ne,L:ue,m:Kt,M:ee,p:s,S:re,U:Xt,w:Vt,W:$t,x:c,X:l,y:Wt,Y:Bt,Z:Jt,"%":oe};return t}function It(n,t,e){var r=0>n?"-":"",u=(r?-n:n)+"",i=u.length;return r+(e>i?new Array(e-i+1).join(t)+u:u)}function Yt(n){return new RegExp("^(?:"+n.map(ta.requote).join("|")+")","i")}function Zt(n){for(var t=new l,e=-1,r=n.length;++e<r;)t.set(n[e].toLowerCase(),e);return t}function Vt(n,t,e){fc.lastIndex=0;var r=fc.exec(t.slice(e,e+1));return r?(n.w=+r[0],e+r[0].length):-1}function Xt(n,t,e){fc.lastIndex=0;var r=fc.exec(t.slice(e));return r?(n.U=+r[0],e+r[0].length):-1}function $t(n,t,e){fc.lastIndex=0;var r=fc.exec(t.slice(e));return r?(n.W=+r[0],e+r[0].length):-1}function Bt(n,t,e){fc.lastIndex=0;var r=fc.exec(t.slice(e,e+4));return r?(n.y=+r[0],e+r[0].length):-1}function Wt(n,t,e){fc.lastIndex=0;var r=fc.exec(t.slice(e,e+2));return r?(n.y=Gt(+r[0]),e+r[0].length):-1}function Jt(n,t,e){return/^[+-]\d{4}$/.test(t=t.slice(e,e+5))?(n.Z=-t,e+5):-1}function Gt(n){return n+(n>68?1900:2e3)}function Kt(n,t,e){fc.lastIndex=0;var r=fc.exec(t.slice(e,e+2));return r?(n.m=r[0]-1,e+r[0].length):-1}function Qt(n,t,e){fc.lastIndex=0;var r=fc.exec(t.slice(e,e+2));return r?(n.d=+r[0],e+r[0].length):-1}function ne(n,t,e){fc.lastIndex=0;var r=fc.exec(t.slice(e,e+3));return r?(n.j=+r[0],e+r[0].length):-1}function te(n,t,e){fc.lastIndex=0;var r=fc.exec(t.slice(e,e+2));return r?(n.H=+r[0],e+r[0].length):-1}function ee(n,t,e){fc.lastIndex=0;var r=fc.exec(t.slice(e,e+2));return r?(n.M=+r[0],e+r[0].length):-1}function re(n,t,e){fc.lastIndex=0;var r=fc.exec(t.slice(e,e+2));return r?(n.S=+r[0],e+r[0].length):-1}function ue(n,t,e){fc.lastIndex=0;var r=fc.exec(t.slice(e,e+3));return r?(n.L=+r[0],e+r[0].length):-1}function ie(n){var t=n.getTimezoneOffset(),e=t>0?"-":"+",r=ga(t)/60|0,u=ga(t)%60;return e+It(r,"0",2)+It(u,"0",2)}function oe(n,t,e){hc.lastIndex=0;var r=hc.exec(t.slice(e,e+1));return r?e+r[0].length:-1}function ae(n){for(var t=n.length,e=-1;++e<t;)n[e][0]=this(n[e][0]);return function(t){for(var e=0,r=n[e];!r[1](t);)r=n[++e];return r[0](t)}}function ce(){}function le(n,t,e){var r=e.s=n+t,u=r-n,i=r-u;e.t=n-i+(t-u)}function se(n,t){n&&dc.hasOwnProperty(n.type)&&dc[n.type](n,t)}function fe(n,t,e){var r,u=-1,i=n.length-e;for(t.lineStart();++u<i;)r=n[u],t.point(r[0],r[1],r[2]);t.lineEnd()}function he(n,t){var e=-1,r=n.length;for(t.polygonStart();++e<r;)fe(n[e],t,1);t.polygonEnd()}function ge(){function n(n,t){n*=Da,t=t*Da/2+qa/4;var e=n-r,o=e>=0?1:-1,a=o*e,c=Math.cos(t),l=Math.sin(t),s=i*l,f=u*c+s*Math.cos(a),h=s*o*Math.sin(a);yc.add(Math.atan2(h,f)),r=n,u=c,i=l}var t,e,r,u,i;Mc.point=function(o,a){Mc.point=n,r=(t=o)*Da,u=Math.cos(a=(e=a)*Da/2+qa/4),i=Math.sin(a)},Mc.lineEnd=function(){n(t,e)}}function pe(n){var t=n[0],e=n[1],r=Math.cos(e);return[r*Math.cos(t),r*Math.sin(t),Math.sin(e)]}function ve(n,t){return n[0]*t[0]+n[1]*t[1]+n[2]*t[2]}function de(n,t){return[n[1]*t[2]-n[2]*t[1],n[2]*t[0]-n[0]*t[2],n[0]*t[1]-n[1]*t[0]]}function me(n,t){n[0]+=t[0],n[1]+=t[1],n[2]+=t[2]}function ye(n,t){return[n[0]*t,n[1]*t,n[2]*t]}function Me(n){var t=Math.sqrt(n[0]*n[0]+n[1]*n[1]+n[2]*n[2]);n[0]/=t,n[1]/=t,n[2]/=t}function xe(n){return[Math.atan2(n[1],n[0]),tt(n[2])]}function be(n,t){return ga(n[0]-t[0])<Ca&&ga(n[1]-t[1])<Ca}function _e(n,t){n*=Da;var e=Math.cos(t*=Da);we(e*Math.cos(n),e*Math.sin(n),Math.sin(t))}function we(n,t,e){++xc,_c+=(n-_c)/xc,wc+=(t-wc)/xc,Sc+=(e-Sc)/xc}function Se(){function n(n,u){n*=Da;var i=Math.cos(u*=Da),o=i*Math.cos(n),a=i*Math.sin(n),c=Math.sin(u),l=Math.atan2(Math.sqrt((l=e*c-r*a)*l+(l=r*o-t*c)*l+(l=t*a-e*o)*l),t*o+e*a+r*c);bc+=l,kc+=l*(t+(t=o)),Ec+=l*(e+(e=a)),Ac+=l*(r+(r=c)),we(t,e,r)}var t,e,r;qc.point=function(u,i){u*=Da;var o=Math.cos(i*=Da);t=o*Math.cos(u),e=o*Math.sin(u),r=Math.sin(i),qc.point=n,we(t,e,r)}}function ke(){qc.point=_e}function Ee(){function n(n,t){n*=Da;var e=Math.cos(t*=Da),o=e*Math.cos(n),a=e*Math.sin(n),c=Math.sin(t),l=u*c-i*a,s=i*o-r*c,f=r*a-u*o,h=Math.sqrt(l*l+s*s+f*f),g=r*o+u*a+i*c,p=h&&-nt(g)/h,v=Math.atan2(h,g);Nc+=p*l,Cc+=p*s,zc+=p*f,bc+=v,kc+=v*(r+(r=o)),Ec+=v*(u+(u=a)),Ac+=v*(i+(i=c)),we(r,u,i)}var t,e,r,u,i;qc.point=function(o,a){t=o,e=a,qc.point=n,o*=Da;var c=Math.cos(a*=Da);r=c*Math.cos(o),u=c*Math.sin(o),i=Math.sin(a),we(r,u,i)},qc.lineEnd=function(){n(t,e),qc.lineEnd=ke,qc.point=_e}}function Ae(n,t){function e(e,r){return e=n(e,r),t(e[0],e[1])}return n.invert&&t.invert&&(e.invert=function(e,r){return e=t.invert(e,r),e&&n.invert(e[0],e[1])}),e}function Ne(){return!0}function Ce(n,t,e,r,u){var i=[],o=[];if(n.forEach(function(n){if(!((t=n.length-1)<=0)){var t,e=n[0],r=n[t];if(be(e,r)){u.lineStart();for(var a=0;t>a;++a)u.point((e=n[a])[0],e[1]);return void u.lineEnd()}var c=new qe(e,n,null,!0),l=new qe(e,null,c,!1);c.o=l,i.push(c),o.push(l),c=new qe(r,n,null,!1),l=new qe(r,null,c,!0),c.o=l,i.push(c),o.push(l)}}),o.sort(t),ze(i),ze(o),i.length){for(var a=0,c=e,l=o.length;l>a;++a)o[a].e=c=!c;for(var s,f,h=i[0];;){for(var g=h,p=!0;g.v;)if((g=g.n)===h)return;s=g.z,u.lineStart();do{if(g.v=g.o.v=!0,g.e){if(p)for(var a=0,l=s.length;l>a;++a)u.point((f=s[a])[0],f[1]);else r(g.x,g.n.x,1,u);g=g.n}else{if(p){s=g.p.z;for(var a=s.length-1;a>=0;--a)u.point((f=s[a])[0],f[1])}else r(g.x,g.p.x,-1,u);g=g.p}g=g.o,s=g.z,p=!p}while(!g.v);u.lineEnd()}}}function ze(n){if(t=n.length){for(var t,e,r=0,u=n[0];++r<t;)u.n=e=n[r],e.p=u,u=e;u.n=e=n[0],e.p=u}}function qe(n,t,e,r){this.x=n,this.z=t,this.o=e,this.e=r,this.v=!1,this.n=this.p=null}function Le(n,t,e,r){return function(u,i){function o(t,e){var r=u(t,e);n(t=r[0],e=r[1])&&i.point(t,e)}function a(n,t){var e=u(n,t);d.point(e[0],e[1])}function c(){y.point=a,d.lineStart()}function l(){y.point=o,d.lineEnd()}function s(n,t){v.push([n,t]);var e=u(n,t);x.point(e[0],e[1])}function f(){x.lineStart(),v=[]}function h(){s(v[0][0],v[0][1]),x.lineEnd();var n,t=x.clean(),e=M.buffer(),r=e.length;if(v.pop(),p.push(v),v=null,r)if(1&t){n=e[0];var u,r=n.length-1,o=-1;if(r>0){for(b||(i.polygonStart(),b=!0),i.lineStart();++o<r;)i.point((u=n[o])[0],u[1]);i.lineEnd()}}else r>1&&2&t&&e.push(e.pop().concat(e.shift())),g.push(e.filter(Te))}var g,p,v,d=t(i),m=u.invert(r[0],r[1]),y={point:o,lineStart:c,lineEnd:l,polygonStart:function(){y.point=s,y.lineStart=f,y.lineEnd=h,g=[],p=[]},polygonEnd:function(){y.point=o,y.lineStart=c,y.lineEnd=l,g=ta.merge(g);var n=Fe(m,p);g.length?(b||(i.polygonStart(),b=!0),Ce(g,De,n,e,i)):n&&(b||(i.polygonStart(),b=!0),i.lineStart(),e(null,null,1,i),i.lineEnd()),b&&(i.polygonEnd(),b=!1),g=p=null},sphere:function(){i.polygonStart(),i.lineStart(),e(null,null,1,i),i.lineEnd(),i.polygonEnd()}},M=Re(),x=t(M),b=!1;return y}}function Te(n){return n.length>1}function Re(){var n,t=[];return{lineStart:function(){t.push(n=[])},point:function(t,e){n.push([t,e])},lineEnd:b,buffer:function(){var e=t;return t=[],n=null,e},rejoin:function(){t.length>1&&t.push(t.pop().concat(t.shift()))}}}function De(n,t){return((n=n.x)[0]<0?n[1]-Ra-Ca:Ra-n[1])-((t=t.x)[0]<0?t[1]-Ra-Ca:Ra-t[1])}function Pe(n){var t,e=0/0,r=0/0,u=0/0;return{lineStart:function(){n.lineStart(),t=1},point:function(i,o){var a=i>0?qa:-qa,c=ga(i-e);ga(c-qa)<Ca?(n.point(e,r=(r+o)/2>0?Ra:-Ra),n.point(u,r),n.lineEnd(),n.lineStart(),n.point(a,r),n.point(i,r),t=0):u!==a&&c>=qa&&(ga(e-u)<Ca&&(e-=u*Ca),ga(i-a)<Ca&&(i-=a*Ca),r=Ue(e,r,i,o),n.point(u,r),n.lineEnd(),n.lineStart(),n.point(a,r),t=0),n.point(e=i,r=o),u=a},lineEnd:function(){n.lineEnd(),e=r=0/0},clean:function(){return 2-t}}}function Ue(n,t,e,r){var u,i,o=Math.sin(n-e);return ga(o)>Ca?Math.atan((Math.sin(t)*(i=Math.cos(r))*Math.sin(e)-Math.sin(r)*(u=Math.cos(t))*Math.sin(n))/(u*i*o)):(t+r)/2}function je(n,t,e,r){var u;if(null==n)u=e*Ra,r.point(-qa,u),r.point(0,u),r.point(qa,u),r.point(qa,0),r.point(qa,-u),r.point(0,-u),r.point(-qa,-u),r.point(-qa,0),r.point(-qa,u);else if(ga(n[0]-t[0])>Ca){var i=n[0]<t[0]?qa:-qa;u=e*i/2,r.point(-i,u),r.point(0,u),r.point(i,u)}else r.point(t[0],t[1])}function Fe(n,t){var e=n[0],r=n[1],u=[Math.sin(e),-Math.cos(e),0],i=0,o=0;yc.reset();for(var a=0,c=t.length;c>a;++a){var l=t[a],s=l.length;if(s)for(var f=l[0],h=f[0],g=f[1]/2+qa/4,p=Math.sin(g),v=Math.cos(g),d=1;;){d===s&&(d=0),n=l[d];var m=n[0],y=n[1]/2+qa/4,M=Math.sin(y),x=Math.cos(y),b=m-h,_=b>=0?1:-1,w=_*b,S=w>qa,k=p*M;if(yc.add(Math.atan2(k*_*Math.sin(w),v*x+k*Math.cos(w))),i+=S?b+_*La:b,S^h>=e^m>=e){var E=de(pe(f),pe(n));Me(E);var A=de(u,E);Me(A);var N=(S^b>=0?-1:1)*tt(A[2]);(r>N||r===N&&(E[0]||E[1]))&&(o+=S^b>=0?1:-1)}if(!d++)break;h=m,p=M,v=x,f=n}}return(-Ca>i||Ca>i&&0>yc)^1&o}function He(n){function t(n,t){return Math.cos(n)*Math.cos(t)>i}function e(n){var e,i,c,l,s;return{lineStart:function(){l=c=!1,s=1},point:function(f,h){var g,p=[f,h],v=t(f,h),d=o?v?0:u(f,h):v?u(f+(0>f?qa:-qa),h):0;if(!e&&(l=c=v)&&n.lineStart(),v!==c&&(g=r(e,p),(be(e,g)||be(p,g))&&(p[0]+=Ca,p[1]+=Ca,v=t(p[0],p[1]))),v!==c)s=0,v?(n.lineStart(),g=r(p,e),n.point(g[0],g[1])):(g=r(e,p),n.point(g[0],g[1]),n.lineEnd()),e=g;else if(a&&e&&o^v){var m;d&i||!(m=r(p,e,!0))||(s=0,o?(n.lineStart(),n.point(m[0][0],m[0][1]),n.point(m[1][0],m[1][1]),n.lineEnd()):(n.point(m[1][0],m[1][1]),n.lineEnd(),n.lineStart(),n.point(m[0][0],m[0][1])))}!v||e&&be(e,p)||n.point(p[0],p[1]),e=p,c=v,i=d},lineEnd:function(){c&&n.lineEnd(),e=null},clean:function(){return s|(l&&c)<<1}}}function r(n,t,e){var r=pe(n),u=pe(t),o=[1,0,0],a=de(r,u),c=ve(a,a),l=a[0],s=c-l*l;if(!s)return!e&&n;var f=i*c/s,h=-i*l/s,g=de(o,a),p=ye(o,f),v=ye(a,h);me(p,v);var d=g,m=ve(p,d),y=ve(d,d),M=m*m-y*(ve(p,p)-1);if(!(0>M)){var x=Math.sqrt(M),b=ye(d,(-m-x)/y);if(me(b,p),b=xe(b),!e)return b;var _,w=n[0],S=t[0],k=n[1],E=t[1];w>S&&(_=w,w=S,S=_);var A=S-w,N=ga(A-qa)<Ca,C=N||Ca>A;if(!N&&k>E&&(_=k,k=E,E=_),C?N?k+E>0^b[1]<(ga(b[0]-w)<Ca?k:E):k<=b[1]&&b[1]<=E:A>qa^(w<=b[0]&&b[0]<=S)){var z=ye(d,(-m+x)/y);return me(z,p),[b,xe(z)]}}}function u(t,e){var r=o?n:qa-n,u=0;return-r>t?u|=1:t>r&&(u|=2),-r>e?u|=4:e>r&&(u|=8),u}var i=Math.cos(n),o=i>0,a=ga(i)>Ca,c=gr(n,6*Da);return Le(t,e,c,o?[0,-n]:[-qa,n-qa])}function Oe(n,t,e,r){return function(u){var i,o=u.a,a=u.b,c=o.x,l=o.y,s=a.x,f=a.y,h=0,g=1,p=s-c,v=f-l;if(i=n-c,p||!(i>0)){if(i/=p,0>p){if(h>i)return;g>i&&(g=i)}else if(p>0){if(i>g)return;i>h&&(h=i)}if(i=e-c,p||!(0>i)){if(i/=p,0>p){if(i>g)return;i>h&&(h=i)}else if(p>0){if(h>i)return;g>i&&(g=i)}if(i=t-l,v||!(i>0)){if(i/=v,0>v){if(h>i)return;g>i&&(g=i)}else if(v>0){if(i>g)return;i>h&&(h=i)}if(i=r-l,v||!(0>i)){if(i/=v,0>v){if(i>g)return;i>h&&(h=i)}else if(v>0){if(h>i)return;g>i&&(g=i)}return h>0&&(u.a={x:c+h*p,y:l+h*v}),1>g&&(u.b={x:c+g*p,y:l+g*v}),u}}}}}}function Ie(n,t,e,r){function u(r,u){return ga(r[0]-n)<Ca?u>0?0:3:ga(r[0]-e)<Ca?u>0?2:1:ga(r[1]-t)<Ca?u>0?1:0:u>0?3:2}function i(n,t){return o(n.x,t.x)}function o(n,t){var e=u(n,1),r=u(t,1);return e!==r?e-r:0===e?t[1]-n[1]:1===e?n[0]-t[0]:2===e?n[1]-t[1]:t[0]-n[0]}return function(a){function c(n){for(var t=0,e=d.length,r=n[1],u=0;e>u;++u)for(var i,o=1,a=d[u],c=a.length,l=a[0];c>o;++o)i=a[o],l[1]<=r?i[1]>r&&Q(l,i,n)>0&&++t:i[1]<=r&&Q(l,i,n)<0&&--t,l=i;return 0!==t}function l(i,a,c,l){var s=0,f=0;if(null==i||(s=u(i,c))!==(f=u(a,c))||o(i,a)<0^c>0){do l.point(0===s||3===s?n:e,s>1?r:t);while((s=(s+c+4)%4)!==f)}else l.point(a[0],a[1])}function s(u,i){return u>=n&&e>=u&&i>=t&&r>=i}function f(n,t){s(n,t)&&a.point(n,t)}function h(){C.point=p,d&&d.push(m=[]),S=!0,w=!1,b=_=0/0}function g(){v&&(p(y,M),x&&w&&A.rejoin(),v.push(A.buffer())),C.point=f,w&&a.lineEnd()}function p(n,t){n=Math.max(-Tc,Math.min(Tc,n)),t=Math.max(-Tc,Math.min(Tc,t));var e=s(n,t);if(d&&m.push([n,t]),S)y=n,M=t,x=e,S=!1,e&&(a.lineStart(),a.point(n,t));else if(e&&w)a.point(n,t);else{var r={a:{x:b,y:_},b:{x:n,y:t}};N(r)?(w||(a.lineStart(),a.point(r.a.x,r.a.y)),a.point(r.b.x,r.b.y),e||a.lineEnd(),k=!1):e&&(a.lineStart(),a.point(n,t),k=!1)}b=n,_=t,w=e}var v,d,m,y,M,x,b,_,w,S,k,E=a,A=Re(),N=Oe(n,t,e,r),C={point:f,lineStart:h,lineEnd:g,polygonStart:function(){a=A,v=[],d=[],k=!0},polygonEnd:function(){a=E,v=ta.merge(v);var t=c([n,r]),e=k&&t,u=v.length;(e||u)&&(a.polygonStart(),e&&(a.lineStart(),l(null,null,1,a),a.lineEnd()),u&&Ce(v,i,t,l,a),a.polygonEnd()),v=d=m=null}};return C}}function Ye(n){var t=0,e=qa/3,r=ir(n),u=r(t,e);return u.parallels=function(n){return arguments.length?r(t=n[0]*qa/180,e=n[1]*qa/180):[t/qa*180,e/qa*180]},u}function Ze(n,t){function e(n,t){var e=Math.sqrt(i-2*u*Math.sin(t))/u;return[e*Math.sin(n*=u),o-e*Math.cos(n)]}var r=Math.sin(n),u=(r+Math.sin(t))/2,i=1+r*(2*u-r),o=Math.sqrt(i)/u;return e.invert=function(n,t){var e=o-t;return[Math.atan2(n,e)/u,tt((i-(n*n+e*e)*u*u)/(2*u))]},e}function Ve(){function n(n,t){Dc+=u*n-r*t,r=n,u=t}var t,e,r,u;Hc.point=function(i,o){Hc.point=n,t=r=i,e=u=o},Hc.lineEnd=function(){n(t,e)}}function Xe(n,t){Pc>n&&(Pc=n),n>jc&&(jc=n),Uc>t&&(Uc=t),t>Fc&&(Fc=t)}function $e(){function n(n,t){o.push("M",n,",",t,i)}function t(n,t){o.push("M",n,",",t),a.point=e}function e(n,t){o.push("L",n,",",t)}function r(){a.point=n}function u(){o.push("Z")}var i=Be(4.5),o=[],a={point:n,lineStart:function(){a.point=t},lineEnd:r,polygonStart:function(){a.lineEnd=u},polygonEnd:function(){a.lineEnd=r,a.point=n},pointRadius:function(n){return i=Be(n),a},result:function(){if(o.length){var n=o.join("");return o=[],n}}};return a}function Be(n){return"m0,"+n+"a"+n+","+n+" 0 1,1 0,"+-2*n+"a"+n+","+n+" 0 1,1 0,"+2*n+"z"}function We(n,t){_c+=n,wc+=t,++Sc}function Je(){function n(n,r){var u=n-t,i=r-e,o=Math.sqrt(u*u+i*i);kc+=o*(t+n)/2,Ec+=o*(e+r)/2,Ac+=o,We(t=n,e=r)}var t,e;Ic.point=function(r,u){Ic.point=n,We(t=r,e=u)}}function Ge(){Ic.point=We}function Ke(){function n(n,t){var e=n-r,i=t-u,o=Math.sqrt(e*e+i*i);kc+=o*(r+n)/2,Ec+=o*(u+t)/2,Ac+=o,o=u*n-r*t,Nc+=o*(r+n),Cc+=o*(u+t),zc+=3*o,We(r=n,u=t)}var t,e,r,u;Ic.point=function(i,o){Ic.point=n,We(t=r=i,e=u=o)},Ic.lineEnd=function(){n(t,e)}}function Qe(n){function t(t,e){n.moveTo(t+o,e),n.arc(t,e,o,0,La)}function e(t,e){n.moveTo(t,e),a.point=r}function r(t,e){n.lineTo(t,e)}function u(){a.point=t}function i(){n.closePath()}var o=4.5,a={point:t,lineStart:function(){a.point=e},lineEnd:u,polygonStart:function(){a.lineEnd=i},polygonEnd:function(){a.lineEnd=u,a.point=t},pointRadius:function(n){return o=n,a},result:b};return a}function nr(n){function t(n){return(a?r:e)(n)}function e(t){return rr(t,function(e,r){e=n(e,r),t.point(e[0],e[1])})}function r(t){function e(e,r){e=n(e,r),t.point(e[0],e[1])}function r(){M=0/0,S.point=i,t.lineStart()}function i(e,r){var i=pe([e,r]),o=n(e,r);u(M,x,y,b,_,w,M=o[0],x=o[1],y=e,b=i[0],_=i[1],w=i[2],a,t),t.point(M,x)}function o(){S.point=e,t.lineEnd()}function c(){r(),S.point=l,S.lineEnd=s}function l(n,t){i(f=n,h=t),g=M,p=x,v=b,d=_,m=w,S.point=i}function s(){u(M,x,y,b,_,w,g,p,f,v,d,m,a,t),S.lineEnd=o,o()}var f,h,g,p,v,d,m,y,M,x,b,_,w,S={point:e,lineStart:r,lineEnd:o,polygonStart:function(){t.polygonStart(),S.lineStart=c
			},polygonEnd:function(){t.polygonEnd(),S.lineStart=r}};return S}function u(t,e,r,a,c,l,s,f,h,g,p,v,d,m){var y=s-t,M=f-e,x=y*y+M*M;if(x>4*i&&d--){var b=a+g,_=c+p,w=l+v,S=Math.sqrt(b*b+_*_+w*w),k=Math.asin(w/=S),E=ga(ga(w)-1)<Ca||ga(r-h)<Ca?(r+h)/2:Math.atan2(_,b),A=n(E,k),N=A[0],C=A[1],z=N-t,q=C-e,L=M*z-y*q;(L*L/x>i||ga((y*z+M*q)/x-.5)>.3||o>a*g+c*p+l*v)&&(u(t,e,r,a,c,l,N,C,E,b/=S,_/=S,w,d,m),m.point(N,C),u(N,C,E,b,_,w,s,f,h,g,p,v,d,m))}}var i=.5,o=Math.cos(30*Da),a=16;return t.precision=function(n){return arguments.length?(a=(i=n*n)>0&&16,t):Math.sqrt(i)},t}function tr(n){var t=nr(function(t,e){return n([t*Pa,e*Pa])});return function(n){return or(t(n))}}function er(n){this.stream=n}function rr(n,t){return{point:t,sphere:function(){n.sphere()},lineStart:function(){n.lineStart()},lineEnd:function(){n.lineEnd()},polygonStart:function(){n.polygonStart()},polygonEnd:function(){n.polygonEnd()}}}function ur(n){return ir(function(){return n})()}function ir(n){function t(n){return n=a(n[0]*Da,n[1]*Da),[n[0]*h+c,l-n[1]*h]}function e(n){return n=a.invert((n[0]-c)/h,(l-n[1])/h),n&&[n[0]*Pa,n[1]*Pa]}function r(){a=Ae(o=lr(m,M,x),i);var n=i(v,d);return c=g-n[0]*h,l=p+n[1]*h,u()}function u(){return s&&(s.valid=!1,s=null),t}var i,o,a,c,l,s,f=nr(function(n,t){return n=i(n,t),[n[0]*h+c,l-n[1]*h]}),h=150,g=480,p=250,v=0,d=0,m=0,M=0,x=0,b=Lc,_=y,w=null,S=null;return t.stream=function(n){return s&&(s.valid=!1),s=or(b(o,f(_(n)))),s.valid=!0,s},t.clipAngle=function(n){return arguments.length?(b=null==n?(w=n,Lc):He((w=+n)*Da),u()):w},t.clipExtent=function(n){return arguments.length?(S=n,_=n?Ie(n[0][0],n[0][1],n[1][0],n[1][1]):y,u()):S},t.scale=function(n){return arguments.length?(h=+n,r()):h},t.translate=function(n){return arguments.length?(g=+n[0],p=+n[1],r()):[g,p]},t.center=function(n){return arguments.length?(v=n[0]%360*Da,d=n[1]%360*Da,r()):[v*Pa,d*Pa]},t.rotate=function(n){return arguments.length?(m=n[0]%360*Da,M=n[1]%360*Da,x=n.length>2?n[2]%360*Da:0,r()):[m*Pa,M*Pa,x*Pa]},ta.rebind(t,f,"precision"),function(){return i=n.apply(this,arguments),t.invert=i.invert&&e,r()}}function or(n){return rr(n,function(t,e){n.point(t*Da,e*Da)})}function ar(n,t){return[n,t]}function cr(n,t){return[n>qa?n-La:-qa>n?n+La:n,t]}function lr(n,t,e){return n?t||e?Ae(fr(n),hr(t,e)):fr(n):t||e?hr(t,e):cr}function sr(n){return function(t,e){return t+=n,[t>qa?t-La:-qa>t?t+La:t,e]}}function fr(n){var t=sr(n);return t.invert=sr(-n),t}function hr(n,t){function e(n,t){var e=Math.cos(t),a=Math.cos(n)*e,c=Math.sin(n)*e,l=Math.sin(t),s=l*r+a*u;return[Math.atan2(c*i-s*o,a*r-l*u),tt(s*i+c*o)]}var r=Math.cos(n),u=Math.sin(n),i=Math.cos(t),o=Math.sin(t);return e.invert=function(n,t){var e=Math.cos(t),a=Math.cos(n)*e,c=Math.sin(n)*e,l=Math.sin(t),s=l*i-c*o;return[Math.atan2(c*i+l*o,a*r+s*u),tt(s*r-a*u)]},e}function gr(n,t){var e=Math.cos(n),r=Math.sin(n);return function(u,i,o,a){var c=o*t;null!=u?(u=pr(e,u),i=pr(e,i),(o>0?i>u:u>i)&&(u+=o*La)):(u=n+o*La,i=n-.5*c);for(var l,s=u;o>0?s>i:i>s;s-=c)a.point((l=xe([e,-r*Math.cos(s),-r*Math.sin(s)]))[0],l[1])}}function pr(n,t){var e=pe(t);e[0]-=n,Me(e);var r=nt(-e[1]);return((-e[2]<0?-r:r)+2*Math.PI-Ca)%(2*Math.PI)}function vr(n,t,e){var r=ta.range(n,t-Ca,e).concat(t);return function(n){return r.map(function(t){return[n,t]})}}function dr(n,t,e){var r=ta.range(n,t-Ca,e).concat(t);return function(n){return r.map(function(t){return[t,n]})}}function mr(n){return n.source}function yr(n){return n.target}function Mr(n,t,e,r){var u=Math.cos(t),i=Math.sin(t),o=Math.cos(r),a=Math.sin(r),c=u*Math.cos(n),l=u*Math.sin(n),s=o*Math.cos(e),f=o*Math.sin(e),h=2*Math.asin(Math.sqrt(it(r-t)+u*o*it(e-n))),g=1/Math.sin(h),p=h?function(n){var t=Math.sin(n*=h)*g,e=Math.sin(h-n)*g,r=e*c+t*s,u=e*l+t*f,o=e*i+t*a;return[Math.atan2(u,r)*Pa,Math.atan2(o,Math.sqrt(r*r+u*u))*Pa]}:function(){return[n*Pa,t*Pa]};return p.distance=h,p}function xr(){function n(n,u){var i=Math.sin(u*=Da),o=Math.cos(u),a=ga((n*=Da)-t),c=Math.cos(a);Yc+=Math.atan2(Math.sqrt((a=o*Math.sin(a))*a+(a=r*i-e*o*c)*a),e*i+r*o*c),t=n,e=i,r=o}var t,e,r;Zc.point=function(u,i){t=u*Da,e=Math.sin(i*=Da),r=Math.cos(i),Zc.point=n},Zc.lineEnd=function(){Zc.point=Zc.lineEnd=b}}function br(n,t){function e(t,e){var r=Math.cos(t),u=Math.cos(e),i=n(r*u);return[i*u*Math.sin(t),i*Math.sin(e)]}return e.invert=function(n,e){var r=Math.sqrt(n*n+e*e),u=t(r),i=Math.sin(u),o=Math.cos(u);return[Math.atan2(n*i,r*o),Math.asin(r&&e*i/r)]},e}function _r(n,t){function e(n,t){o>0?-Ra+Ca>t&&(t=-Ra+Ca):t>Ra-Ca&&(t=Ra-Ca);var e=o/Math.pow(u(t),i);return[e*Math.sin(i*n),o-e*Math.cos(i*n)]}var r=Math.cos(n),u=function(n){return Math.tan(qa/4+n/2)},i=n===t?Math.sin(n):Math.log(r/Math.cos(t))/Math.log(u(t)/u(n)),o=r*Math.pow(u(n),i)/i;return i?(e.invert=function(n,t){var e=o-t,r=K(i)*Math.sqrt(n*n+e*e);return[Math.atan2(n,e)/i,2*Math.atan(Math.pow(o/r,1/i))-Ra]},e):Sr}function wr(n,t){function e(n,t){var e=i-t;return[e*Math.sin(u*n),i-e*Math.cos(u*n)]}var r=Math.cos(n),u=n===t?Math.sin(n):(r-Math.cos(t))/(t-n),i=r/u+n;return ga(u)<Ca?ar:(e.invert=function(n,t){var e=i-t;return[Math.atan2(n,e)/u,i-K(u)*Math.sqrt(n*n+e*e)]},e)}function Sr(n,t){return[n,Math.log(Math.tan(qa/4+t/2))]}function kr(n){var t,e=ur(n),r=e.scale,u=e.translate,i=e.clipExtent;return e.scale=function(){var n=r.apply(e,arguments);return n===e?t?e.clipExtent(null):e:n},e.translate=function(){var n=u.apply(e,arguments);return n===e?t?e.clipExtent(null):e:n},e.clipExtent=function(n){var o=i.apply(e,arguments);if(o===e){if(t=null==n){var a=qa*r(),c=u();i([[c[0]-a,c[1]-a],[c[0]+a,c[1]+a]])}}else t&&(o=null);return o},e.clipExtent(null)}function Er(n,t){return[Math.log(Math.tan(qa/4+t/2)),-n]}function Ar(n){return n[0]}function Nr(n){return n[1]}function Cr(n){for(var t=n.length,e=[0,1],r=2,u=2;t>u;u++){for(;r>1&&Q(n[e[r-2]],n[e[r-1]],n[u])<=0;)--r;e[r++]=u}return e.slice(0,r)}function zr(n,t){return n[0]-t[0]||n[1]-t[1]}function qr(n,t,e){return(e[0]-t[0])*(n[1]-t[1])<(e[1]-t[1])*(n[0]-t[0])}function Lr(n,t,e,r){var u=n[0],i=e[0],o=t[0]-u,a=r[0]-i,c=n[1],l=e[1],s=t[1]-c,f=r[1]-l,h=(a*(c-l)-f*(u-i))/(f*o-a*s);return[u+h*o,c+h*s]}function Tr(n){var t=n[0],e=n[n.length-1];return!(t[0]-e[0]||t[1]-e[1])}function Rr(){tu(this),this.edge=this.site=this.circle=null}function Dr(n){var t=el.pop()||new Rr;return t.site=n,t}function Pr(n){Xr(n),Qc.remove(n),el.push(n),tu(n)}function Ur(n){var t=n.circle,e=t.x,r=t.cy,u={x:e,y:r},i=n.P,o=n.N,a=[n];Pr(n);for(var c=i;c.circle&&ga(e-c.circle.x)<Ca&&ga(r-c.circle.cy)<Ca;)i=c.P,a.unshift(c),Pr(c),c=i;a.unshift(c),Xr(c);for(var l=o;l.circle&&ga(e-l.circle.x)<Ca&&ga(r-l.circle.cy)<Ca;)o=l.N,a.push(l),Pr(l),l=o;a.push(l),Xr(l);var s,f=a.length;for(s=1;f>s;++s)l=a[s],c=a[s-1],Kr(l.edge,c.site,l.site,u);c=a[0],l=a[f-1],l.edge=Jr(c.site,l.site,null,u),Vr(c),Vr(l)}function jr(n){for(var t,e,r,u,i=n.x,o=n.y,a=Qc._;a;)if(r=Fr(a,o)-i,r>Ca)a=a.L;else{if(u=i-Hr(a,o),!(u>Ca)){r>-Ca?(t=a.P,e=a):u>-Ca?(t=a,e=a.N):t=e=a;break}if(!a.R){t=a;break}a=a.R}var c=Dr(n);if(Qc.insert(t,c),t||e){if(t===e)return Xr(t),e=Dr(t.site),Qc.insert(c,e),c.edge=e.edge=Jr(t.site,c.site),Vr(t),void Vr(e);if(!e)return void(c.edge=Jr(t.site,c.site));Xr(t),Xr(e);var l=t.site,s=l.x,f=l.y,h=n.x-s,g=n.y-f,p=e.site,v=p.x-s,d=p.y-f,m=2*(h*d-g*v),y=h*h+g*g,M=v*v+d*d,x={x:(d*y-g*M)/m+s,y:(h*M-v*y)/m+f};Kr(e.edge,l,p,x),c.edge=Jr(l,n,null,x),e.edge=Jr(n,p,null,x),Vr(t),Vr(e)}}function Fr(n,t){var e=n.site,r=e.x,u=e.y,i=u-t;if(!i)return r;var o=n.P;if(!o)return-1/0;e=o.site;var a=e.x,c=e.y,l=c-t;if(!l)return a;var s=a-r,f=1/i-1/l,h=s/l;return f?(-h+Math.sqrt(h*h-2*f*(s*s/(-2*l)-c+l/2+u-i/2)))/f+r:(r+a)/2}function Hr(n,t){var e=n.N;if(e)return Fr(e,t);var r=n.site;return r.y===t?r.x:1/0}function Or(n){this.site=n,this.edges=[]}function Ir(n){for(var t,e,r,u,i,o,a,c,l,s,f=n[0][0],h=n[1][0],g=n[0][1],p=n[1][1],v=Kc,d=v.length;d--;)if(i=v[d],i&&i.prepare())for(a=i.edges,c=a.length,o=0;c>o;)s=a[o].end(),r=s.x,u=s.y,l=a[++o%c].start(),t=l.x,e=l.y,(ga(r-t)>Ca||ga(u-e)>Ca)&&(a.splice(o,0,new Qr(Gr(i.site,s,ga(r-f)<Ca&&p-u>Ca?{x:f,y:ga(t-f)<Ca?e:p}:ga(u-p)<Ca&&h-r>Ca?{x:ga(e-p)<Ca?t:h,y:p}:ga(r-h)<Ca&&u-g>Ca?{x:h,y:ga(t-h)<Ca?e:g}:ga(u-g)<Ca&&r-f>Ca?{x:ga(e-g)<Ca?t:f,y:g}:null),i.site,null)),++c)}function Yr(n,t){return t.angle-n.angle}function Zr(){tu(this),this.x=this.y=this.arc=this.site=this.cy=null}function Vr(n){var t=n.P,e=n.N;if(t&&e){var r=t.site,u=n.site,i=e.site;if(r!==i){var o=u.x,a=u.y,c=r.x-o,l=r.y-a,s=i.x-o,f=i.y-a,h=2*(c*f-l*s);if(!(h>=-za)){var g=c*c+l*l,p=s*s+f*f,v=(f*g-l*p)/h,d=(c*p-s*g)/h,f=d+a,m=rl.pop()||new Zr;m.arc=n,m.site=u,m.x=v+o,m.y=f+Math.sqrt(v*v+d*d),m.cy=f,n.circle=m;for(var y=null,M=tl._;M;)if(m.y<M.y||m.y===M.y&&m.x<=M.x){if(!M.L){y=M.P;break}M=M.L}else{if(!M.R){y=M;break}M=M.R}tl.insert(y,m),y||(nl=m)}}}}function Xr(n){var t=n.circle;t&&(t.P||(nl=t.N),tl.remove(t),rl.push(t),tu(t),n.circle=null)}function $r(n){for(var t,e=Gc,r=Oe(n[0][0],n[0][1],n[1][0],n[1][1]),u=e.length;u--;)t=e[u],(!Br(t,n)||!r(t)||ga(t.a.x-t.b.x)<Ca&&ga(t.a.y-t.b.y)<Ca)&&(t.a=t.b=null,e.splice(u,1))}function Br(n,t){var e=n.b;if(e)return!0;var r,u,i=n.a,o=t[0][0],a=t[1][0],c=t[0][1],l=t[1][1],s=n.l,f=n.r,h=s.x,g=s.y,p=f.x,v=f.y,d=(h+p)/2,m=(g+v)/2;if(v===g){if(o>d||d>=a)return;if(h>p){if(i){if(i.y>=l)return}else i={x:d,y:c};e={x:d,y:l}}else{if(i){if(i.y<c)return}else i={x:d,y:l};e={x:d,y:c}}}else if(r=(h-p)/(v-g),u=m-r*d,-1>r||r>1)if(h>p){if(i){if(i.y>=l)return}else i={x:(c-u)/r,y:c};e={x:(l-u)/r,y:l}}else{if(i){if(i.y<c)return}else i={x:(l-u)/r,y:l};e={x:(c-u)/r,y:c}}else if(v>g){if(i){if(i.x>=a)return}else i={x:o,y:r*o+u};e={x:a,y:r*a+u}}else{if(i){if(i.x<o)return}else i={x:a,y:r*a+u};e={x:o,y:r*o+u}}return n.a=i,n.b=e,!0}function Wr(n,t){this.l=n,this.r=t,this.a=this.b=null}function Jr(n,t,e,r){var u=new Wr(n,t);return Gc.push(u),e&&Kr(u,n,t,e),r&&Kr(u,t,n,r),Kc[n.i].edges.push(new Qr(u,n,t)),Kc[t.i].edges.push(new Qr(u,t,n)),u}function Gr(n,t,e){var r=new Wr(n,null);return r.a=t,r.b=e,Gc.push(r),r}function Kr(n,t,e,r){n.a||n.b?n.l===e?n.b=r:n.a=r:(n.a=r,n.l=t,n.r=e)}function Qr(n,t,e){var r=n.a,u=n.b;this.edge=n,this.site=t,this.angle=e?Math.atan2(e.y-t.y,e.x-t.x):n.l===t?Math.atan2(u.x-r.x,r.y-u.y):Math.atan2(r.x-u.x,u.y-r.y)}function nu(){this._=null}function tu(n){n.U=n.C=n.L=n.R=n.P=n.N=null}function eu(n,t){var e=t,r=t.R,u=e.U;u?u.L===e?u.L=r:u.R=r:n._=r,r.U=u,e.U=r,e.R=r.L,e.R&&(e.R.U=e),r.L=e}function ru(n,t){var e=t,r=t.L,u=e.U;u?u.L===e?u.L=r:u.R=r:n._=r,r.U=u,e.U=r,e.L=r.R,e.L&&(e.L.U=e),r.R=e}function uu(n){for(;n.L;)n=n.L;return n}function iu(n,t){var e,r,u,i=n.sort(ou).pop();for(Gc=[],Kc=new Array(n.length),Qc=new nu,tl=new nu;;)if(u=nl,i&&(!u||i.y<u.y||i.y===u.y&&i.x<u.x))(i.x!==e||i.y!==r)&&(Kc[i.i]=new Or(i),jr(i),e=i.x,r=i.y),i=n.pop();else{if(!u)break;Ur(u.arc)}t&&($r(t),Ir(t));var o={cells:Kc,edges:Gc};return Qc=tl=Gc=Kc=null,o}function ou(n,t){return t.y-n.y||t.x-n.x}function au(n,t,e){return(n.x-e.x)*(t.y-n.y)-(n.x-t.x)*(e.y-n.y)}function cu(n){return n.x}function lu(n){return n.y}function su(){return{leaf:!0,nodes:[],point:null,x:null,y:null}}function fu(n,t,e,r,u,i){if(!n(t,e,r,u,i)){var o=.5*(e+u),a=.5*(r+i),c=t.nodes;c[0]&&fu(n,c[0],e,r,o,a),c[1]&&fu(n,c[1],o,r,u,a),c[2]&&fu(n,c[2],e,a,o,i),c[3]&&fu(n,c[3],o,a,u,i)}}function hu(n,t,e,r,u,i,o){var a,c=1/0;return function l(n,s,f,h,g){if(!(s>i||f>o||r>h||u>g)){if(p=n.point){var p,v=t-n.x,d=e-n.y,m=v*v+d*d;if(c>m){var y=Math.sqrt(c=m);r=t-y,u=e-y,i=t+y,o=e+y,a=p}}for(var M=n.nodes,x=.5*(s+h),b=.5*(f+g),_=t>=x,w=e>=b,S=w<<1|_,k=S+4;k>S;++S)if(n=M[3&S])switch(3&S){case 0:l(n,s,f,x,b);break;case 1:l(n,x,f,h,b);break;case 2:l(n,s,b,x,g);break;case 3:l(n,x,b,h,g)}}}(n,r,u,i,o),a}function gu(n,t){n=ta.rgb(n),t=ta.rgb(t);var e=n.r,r=n.g,u=n.b,i=t.r-e,o=t.g-r,a=t.b-u;return function(n){return"#"+xt(Math.round(e+i*n))+xt(Math.round(r+o*n))+xt(Math.round(u+a*n))}}function pu(n,t){var e,r={},u={};for(e in n)e in t?r[e]=mu(n[e],t[e]):u[e]=n[e];for(e in t)e in n||(u[e]=t[e]);return function(n){for(e in r)u[e]=r[e](n);return u}}function vu(n,t){return n=+n,t=+t,function(e){return n*(1-e)+t*e}}function du(n,t){var e,r,u,i=il.lastIndex=ol.lastIndex=0,o=-1,a=[],c=[];for(n+="",t+="";(e=il.exec(n))&&(r=ol.exec(t));)(u=r.index)>i&&(u=t.slice(i,u),a[o]?a[o]+=u:a[++o]=u),(e=e[0])===(r=r[0])?a[o]?a[o]+=r:a[++o]=r:(a[++o]=null,c.push({i:o,x:vu(e,r)})),i=ol.lastIndex;return i<t.length&&(u=t.slice(i),a[o]?a[o]+=u:a[++o]=u),a.length<2?c[0]?(t=c[0].x,function(n){return t(n)+""}):function(){return t}:(t=c.length,function(n){for(var e,r=0;t>r;++r)a[(e=c[r]).i]=e.x(n);return a.join("")})}function mu(n,t){for(var e,r=ta.interpolators.length;--r>=0&&!(e=ta.interpolators[r](n,t)););return e}function yu(n,t){var e,r=[],u=[],i=n.length,o=t.length,a=Math.min(n.length,t.length);for(e=0;a>e;++e)r.push(mu(n[e],t[e]));for(;i>e;++e)u[e]=n[e];for(;o>e;++e)u[e]=t[e];return function(n){for(e=0;a>e;++e)u[e]=r[e](n);return u}}function Mu(n){return function(t){return 0>=t?0:t>=1?1:n(t)}}function xu(n){return function(t){return 1-n(1-t)}}function bu(n){return function(t){return.5*(.5>t?n(2*t):2-n(2-2*t))}}function _u(n){return n*n}function wu(n){return n*n*n}function Su(n){if(0>=n)return 0;if(n>=1)return 1;var t=n*n,e=t*n;return 4*(.5>n?e:3*(n-t)+e-.75)}function ku(n){return function(t){return Math.pow(t,n)}}function Eu(n){return 1-Math.cos(n*Ra)}function Au(n){return Math.pow(2,10*(n-1))}function Nu(n){return 1-Math.sqrt(1-n*n)}function Cu(n,t){var e;return arguments.length<2&&(t=.45),arguments.length?e=t/La*Math.asin(1/n):(n=1,e=t/4),function(r){return 1+n*Math.pow(2,-10*r)*Math.sin((r-e)*La/t)}}function zu(n){return n||(n=1.70158),function(t){return t*t*((n+1)*t-n)}}function qu(n){return 1/2.75>n?7.5625*n*n:2/2.75>n?7.5625*(n-=1.5/2.75)*n+.75:2.5/2.75>n?7.5625*(n-=2.25/2.75)*n+.9375:7.5625*(n-=2.625/2.75)*n+.984375}function Lu(n,t){n=ta.hcl(n),t=ta.hcl(t);var e=n.h,r=n.c,u=n.l,i=t.h-e,o=t.c-r,a=t.l-u;return isNaN(o)&&(o=0,r=isNaN(r)?t.c:r),isNaN(i)?(i=0,e=isNaN(e)?t.h:e):i>180?i-=360:-180>i&&(i+=360),function(n){return st(e+i*n,r+o*n,u+a*n)+""}}function Tu(n,t){n=ta.hsl(n),t=ta.hsl(t);var e=n.h,r=n.s,u=n.l,i=t.h-e,o=t.s-r,a=t.l-u;return isNaN(o)&&(o=0,r=isNaN(r)?t.s:r),isNaN(i)?(i=0,e=isNaN(e)?t.h:e):i>180?i-=360:-180>i&&(i+=360),function(n){return ct(e+i*n,r+o*n,u+a*n)+""}}function Ru(n,t){n=ta.lab(n),t=ta.lab(t);var e=n.l,r=n.a,u=n.b,i=t.l-e,o=t.a-r,a=t.b-u;return function(n){return ht(e+i*n,r+o*n,u+a*n)+""}}function Du(n,t){return t-=n,function(e){return Math.round(n+t*e)}}function Pu(n){var t=[n.a,n.b],e=[n.c,n.d],r=ju(t),u=Uu(t,e),i=ju(Fu(e,t,-u))||0;t[0]*e[1]<e[0]*t[1]&&(t[0]*=-1,t[1]*=-1,r*=-1,u*=-1),this.rotate=(r?Math.atan2(t[1],t[0]):Math.atan2(-e[0],e[1]))*Pa,this.translate=[n.e,n.f],this.scale=[r,i],this.skew=i?Math.atan2(u,i)*Pa:0}function Uu(n,t){return n[0]*t[0]+n[1]*t[1]}function ju(n){var t=Math.sqrt(Uu(n,n));return t&&(n[0]/=t,n[1]/=t),t}function Fu(n,t,e){return n[0]+=e*t[0],n[1]+=e*t[1],n}function Hu(n,t){var e,r=[],u=[],i=ta.transform(n),o=ta.transform(t),a=i.translate,c=o.translate,l=i.rotate,s=o.rotate,f=i.skew,h=o.skew,g=i.scale,p=o.scale;return a[0]!=c[0]||a[1]!=c[1]?(r.push("translate(",null,",",null,")"),u.push({i:1,x:vu(a[0],c[0])},{i:3,x:vu(a[1],c[1])})):r.push(c[0]||c[1]?"translate("+c+")":""),l!=s?(l-s>180?s+=360:s-l>180&&(l+=360),u.push({i:r.push(r.pop()+"rotate(",null,")")-2,x:vu(l,s)})):s&&r.push(r.pop()+"rotate("+s+")"),f!=h?u.push({i:r.push(r.pop()+"skewX(",null,")")-2,x:vu(f,h)}):h&&r.push(r.pop()+"skewX("+h+")"),g[0]!=p[0]||g[1]!=p[1]?(e=r.push(r.pop()+"scale(",null,",",null,")"),u.push({i:e-4,x:vu(g[0],p[0])},{i:e-2,x:vu(g[1],p[1])})):(1!=p[0]||1!=p[1])&&r.push(r.pop()+"scale("+p+")"),e=u.length,function(n){for(var t,i=-1;++i<e;)r[(t=u[i]).i]=t.x(n);return r.join("")}}function Ou(n,t){return t=(t-=n=+n)||1/t,function(e){return(e-n)/t}}function Iu(n,t){return t=(t-=n=+n)||1/t,function(e){return Math.max(0,Math.min(1,(e-n)/t))}}function Yu(n){for(var t=n.source,e=n.target,r=Vu(t,e),u=[t];t!==r;)t=t.parent,u.push(t);for(var i=u.length;e!==r;)u.splice(i,0,e),e=e.parent;return u}function Zu(n){for(var t=[],e=n.parent;null!=e;)t.push(n),n=e,e=e.parent;return t.push(n),t}function Vu(n,t){if(n===t)return n;for(var e=Zu(n),r=Zu(t),u=e.pop(),i=r.pop(),o=null;u===i;)o=u,u=e.pop(),i=r.pop();return o}function Xu(n){n.fixed|=2}function $u(n){n.fixed&=-7}function Bu(n){n.fixed|=4,n.px=n.x,n.py=n.y}function Wu(n){n.fixed&=-5}function Ju(n,t,e){var r=0,u=0;if(n.charge=0,!n.leaf)for(var i,o=n.nodes,a=o.length,c=-1;++c<a;)i=o[c],null!=i&&(Ju(i,t,e),n.charge+=i.charge,r+=i.charge*i.cx,u+=i.charge*i.cy);if(n.point){n.leaf||(n.point.x+=Math.random()-.5,n.point.y+=Math.random()-.5);var l=t*e[n.point.index];n.charge+=n.pointCharge=l,r+=l*n.point.x,u+=l*n.point.y}n.cx=r/n.charge,n.cy=u/n.charge}function Gu(n,t){return ta.rebind(n,t,"sort","children","value"),n.nodes=n,n.links=ri,n}function Ku(n,t){for(var e=[n];null!=(n=e.pop());)if(t(n),(u=n.children)&&(r=u.length))for(var r,u;--r>=0;)e.push(u[r])}function Qu(n,t){for(var e=[n],r=[];null!=(n=e.pop());)if(r.push(n),(i=n.children)&&(u=i.length))for(var u,i,o=-1;++o<u;)e.push(i[o]);for(;null!=(n=r.pop());)t(n)}function ni(n){return n.children}function ti(n){return n.value}function ei(n,t){return t.value-n.value}function ri(n){return ta.merge(n.map(function(n){return(n.children||[]).map(function(t){return{source:n,target:t}})}))}function ui(n){return n.x}function ii(n){return n.y}function oi(n,t,e){n.y0=t,n.y=e}function ai(n){return ta.range(n.length)}function ci(n){for(var t=-1,e=n[0].length,r=[];++t<e;)r[t]=0;return r}function li(n){for(var t,e=1,r=0,u=n[0][1],i=n.length;i>e;++e)(t=n[e][1])>u&&(r=e,u=t);return r}function si(n){return n.reduce(fi,0)}function fi(n,t){return n+t[1]}function hi(n,t){return gi(n,Math.ceil(Math.log(t.length)/Math.LN2+1))}function gi(n,t){for(var e=-1,r=+n[0],u=(n[1]-r)/t,i=[];++e<=t;)i[e]=u*e+r;return i}function pi(n){return[ta.min(n),ta.max(n)]}function vi(n,t){return n.value-t.value}function di(n,t){var e=n._pack_next;n._pack_next=t,t._pack_prev=n,t._pack_next=e,e._pack_prev=t}function mi(n,t){n._pack_next=t,t._pack_prev=n}function yi(n,t){var e=t.x-n.x,r=t.y-n.y,u=n.r+t.r;return.999*u*u>e*e+r*r}function Mi(n){function t(n){s=Math.min(n.x-n.r,s),f=Math.max(n.x+n.r,f),h=Math.min(n.y-n.r,h),g=Math.max(n.y+n.r,g)}if((e=n.children)&&(l=e.length)){var e,r,u,i,o,a,c,l,s=1/0,f=-1/0,h=1/0,g=-1/0;if(e.forEach(xi),r=e[0],r.x=-r.r,r.y=0,t(r),l>1&&(u=e[1],u.x=u.r,u.y=0,t(u),l>2))for(i=e[2],wi(r,u,i),t(i),di(r,i),r._pack_prev=i,di(i,u),u=r._pack_next,o=3;l>o;o++){wi(r,u,i=e[o]);var p=0,v=1,d=1;for(a=u._pack_next;a!==u;a=a._pack_next,v++)if(yi(a,i)){p=1;break}if(1==p)for(c=r._pack_prev;c!==a._pack_prev&&!yi(c,i);c=c._pack_prev,d++);p?(d>v||v==d&&u.r<r.r?mi(r,u=a):mi(r=c,u),o--):(di(r,i),u=i,t(i))}var m=(s+f)/2,y=(h+g)/2,M=0;for(o=0;l>o;o++)i=e[o],i.x-=m,i.y-=y,M=Math.max(M,i.r+Math.sqrt(i.x*i.x+i.y*i.y));n.r=M,e.forEach(bi)}}function xi(n){n._pack_next=n._pack_prev=n}function bi(n){delete n._pack_next,delete n._pack_prev}function _i(n,t,e,r){var u=n.children;if(n.x=t+=r*n.x,n.y=e+=r*n.y,n.r*=r,u)for(var i=-1,o=u.length;++i<o;)_i(u[i],t,e,r)}function wi(n,t,e){var r=n.r+e.r,u=t.x-n.x,i=t.y-n.y;if(r&&(u||i)){var o=t.r+e.r,a=u*u+i*i;o*=o,r*=r;var c=.5+(r-o)/(2*a),l=Math.sqrt(Math.max(0,2*o*(r+a)-(r-=a)*r-o*o))/(2*a);e.x=n.x+c*u+l*i,e.y=n.y+c*i-l*u}else e.x=n.x+r,e.y=n.y}function Si(n,t){return n.parent==t.parent?1:2}function ki(n){var t=n.children;return t.length?t[0]:n.t}function Ei(n){var t,e=n.children;return(t=e.length)?e[t-1]:n.t}function Ai(n,t,e){var r=e/(t.i-n.i);t.c-=r,t.s+=e,n.c+=r,t.z+=e,t.m+=e}function Ni(n){for(var t,e=0,r=0,u=n.children,i=u.length;--i>=0;)t=u[i],t.z+=e,t.m+=e,e+=t.s+(r+=t.c)}function Ci(n,t,e){return n.a.parent===t.parent?n.a:e}function zi(n){return 1+ta.max(n,function(n){return n.y})}function qi(n){return n.reduce(function(n,t){return n+t.x},0)/n.length}function Li(n){var t=n.children;return t&&t.length?Li(t[0]):n}function Ti(n){var t,e=n.children;return e&&(t=e.length)?Ti(e[t-1]):n}function Ri(n){return{x:n.x,y:n.y,dx:n.dx,dy:n.dy}}function Di(n,t){var e=n.x+t[3],r=n.y+t[0],u=n.dx-t[1]-t[3],i=n.dy-t[0]-t[2];return 0>u&&(e+=u/2,u=0),0>i&&(r+=i/2,i=0),{x:e,y:r,dx:u,dy:i}}function Pi(n){var t=n[0],e=n[n.length-1];return e>t?[t,e]:[e,t]}function Ui(n){return n.rangeExtent?n.rangeExtent():Pi(n.range())}function ji(n,t,e,r){var u=e(n[0],n[1]),i=r(t[0],t[1]);return function(n){return i(u(n))}}function Fi(n,t){var e,r=0,u=n.length-1,i=n[r],o=n[u];return i>o&&(e=r,r=u,u=e,e=i,i=o,o=e),n[r]=t.floor(i),n[u]=t.ceil(o),n}function Hi(n){return n?{floor:function(t){return Math.floor(t/n)*n},ceil:function(t){return Math.ceil(t/n)*n}}:ml}function Oi(n,t,e,r){var u=[],i=[],o=0,a=Math.min(n.length,t.length)-1;for(n[a]<n[0]&&(n=n.slice().reverse(),t=t.slice().reverse());++o<=a;)u.push(e(n[o-1],n[o])),i.push(r(t[o-1],t[o]));return function(t){var e=ta.bisect(n,t,1,a)-1;return i[e](u[e](t))}}function Ii(n,t,e,r){function u(){var u=Math.min(n.length,t.length)>2?Oi:ji,c=r?Iu:Ou;return o=u(n,t,c,e),a=u(t,n,c,mu),i}function i(n){return o(n)}var o,a;return i.invert=function(n){return a(n)},i.domain=function(t){return arguments.length?(n=t.map(Number),u()):n},i.range=function(n){return arguments.length?(t=n,u()):t},i.rangeRound=function(n){return i.range(n).interpolate(Du)},i.clamp=function(n){return arguments.length?(r=n,u()):r},i.interpolate=function(n){return arguments.length?(e=n,u()):e},i.ticks=function(t){return Xi(n,t)},i.tickFormat=function(t,e){return $i(n,t,e)},i.nice=function(t){return Zi(n,t),u()},i.copy=function(){return Ii(n,t,e,r)},u()}function Yi(n,t){return ta.rebind(n,t,"range","rangeRound","interpolate","clamp")}function Zi(n,t){return Fi(n,Hi(Vi(n,t)[2]))}function Vi(n,t){null==t&&(t=10);var e=Pi(n),r=e[1]-e[0],u=Math.pow(10,Math.floor(Math.log(r/t)/Math.LN10)),i=t/r*u;return.15>=i?u*=10:.35>=i?u*=5:.75>=i&&(u*=2),e[0]=Math.ceil(e[0]/u)*u,e[1]=Math.floor(e[1]/u)*u+.5*u,e[2]=u,e}function Xi(n,t){return ta.range.apply(ta,Vi(n,t))}function $i(n,t,e){var r=Vi(n,t);if(e){var u=ic.exec(e);if(u.shift(),"s"===u[8]){var i=ta.formatPrefix(Math.max(ga(r[0]),ga(r[1])));return u[7]||(u[7]="."+Bi(i.scale(r[2]))),u[8]="f",e=ta.format(u.join("")),function(n){return e(i.scale(n))+i.symbol}}u[7]||(u[7]="."+Wi(u[8],r)),e=u.join("")}else e=",."+Bi(r[2])+"f";return ta.format(e)}function Bi(n){return-Math.floor(Math.log(n)/Math.LN10+.01)}function Wi(n,t){var e=Bi(t[2]);return n in yl?Math.abs(e-Bi(Math.max(ga(t[0]),ga(t[1]))))+ +("e"!==n):e-2*("%"===n)}function Ji(n,t,e,r){function u(n){return(e?Math.log(0>n?0:n):-Math.log(n>0?0:-n))/Math.log(t)}function i(n){return e?Math.pow(t,n):-Math.pow(t,-n)}function o(t){return n(u(t))}return o.invert=function(t){return i(n.invert(t))},o.domain=function(t){return arguments.length?(e=t[0]>=0,n.domain((r=t.map(Number)).map(u)),o):r},o.base=function(e){return arguments.length?(t=+e,n.domain(r.map(u)),o):t},o.nice=function(){var t=Fi(r.map(u),e?Math:xl);return n.domain(t),r=t.map(i),o},o.ticks=function(){var n=Pi(r),o=[],a=n[0],c=n[1],l=Math.floor(u(a)),s=Math.ceil(u(c)),f=t%1?2:t;if(isFinite(s-l)){if(e){for(;s>l;l++)for(var h=1;f>h;h++)o.push(i(l)*h);o.push(i(l))}else for(o.push(i(l));l++<s;)for(var h=f-1;h>0;h--)o.push(i(l)*h);for(l=0;o[l]<a;l++);for(s=o.length;o[s-1]>c;s--);o=o.slice(l,s)}return o},o.tickFormat=function(n,t){if(!arguments.length)return Ml;arguments.length<2?t=Ml:"function"!=typeof t&&(t=ta.format(t));var r,a=Math.max(.1,n/o.ticks().length),c=e?(r=1e-12,Math.ceil):(r=-1e-12,Math.floor);return function(n){return n/i(c(u(n)+r))<=a?t(n):""}},o.copy=function(){return Ji(n.copy(),t,e,r)},Yi(o,n)}function Gi(n,t,e){function r(t){return n(u(t))}var u=Ki(t),i=Ki(1/t);return r.invert=function(t){return i(n.invert(t))},r.domain=function(t){return arguments.length?(n.domain((e=t.map(Number)).map(u)),r):e},r.ticks=function(n){return Xi(e,n)},r.tickFormat=function(n,t){return $i(e,n,t)},r.nice=function(n){return r.domain(Zi(e,n))},r.exponent=function(o){return arguments.length?(u=Ki(t=o),i=Ki(1/t),n.domain(e.map(u)),r):t},r.copy=function(){return Gi(n.copy(),t,e)},Yi(r,n)}function Ki(n){return function(t){return 0>t?-Math.pow(-t,n):Math.pow(t,n)}}function Qi(n,t){function e(e){return i[((u.get(e)||("range"===t.t?u.set(e,n.push(e)):0/0))-1)%i.length]}function r(t,e){return ta.range(n.length).map(function(n){return t+e*n})}var u,i,o;return e.domain=function(r){if(!arguments.length)return n;n=[],u=new l;for(var i,o=-1,a=r.length;++o<a;)u.has(i=r[o])||u.set(i,n.push(i));return e[t.t].apply(e,t.a)},e.range=function(n){return arguments.length?(i=n,o=0,t={t:"range",a:arguments},e):i},e.rangePoints=function(u,a){arguments.length<2&&(a=0);var c=u[0],l=u[1],s=n.length<2?(c=(c+l)/2,0):(l-c)/(n.length-1+a);return i=r(c+s*a/2,s),o=0,t={t:"rangePoints",a:arguments},e},e.rangeRoundPoints=function(u,a){arguments.length<2&&(a=0);var c=u[0],l=u[1],s=n.length<2?(c=l=Math.round((c+l)/2),0):(l-c)/(n.length-1+a)|0;return i=r(c+Math.round(s*a/2+(l-c-(n.length-1+a)*s)/2),s),o=0,t={t:"rangeRoundPoints",a:arguments},e},e.rangeBands=function(u,a,c){arguments.length<2&&(a=0),arguments.length<3&&(c=a);var l=u[1]<u[0],s=u[l-0],f=u[1-l],h=(f-s)/(n.length-a+2*c);return i=r(s+h*c,h),l&&i.reverse(),o=h*(1-a),t={t:"rangeBands",a:arguments},e},e.rangeRoundBands=function(u,a,c){arguments.length<2&&(a=0),arguments.length<3&&(c=a);var l=u[1]<u[0],s=u[l-0],f=u[1-l],h=Math.floor((f-s)/(n.length-a+2*c));return i=r(s+Math.round((f-s-(n.length-a)*h)/2),h),l&&i.reverse(),o=Math.round(h*(1-a)),t={t:"rangeRoundBands",a:arguments},e},e.rangeBand=function(){return o},e.rangeExtent=function(){return Pi(t.a[0])},e.copy=function(){return Qi(n,t)},e.domain(n)}function no(n,t){function i(){var e=0,r=t.length;for(a=[];++e<r;)a[e-1]=ta.quantile(n,e/r);return o}function o(n){return isNaN(n=+n)?void 0:t[ta.bisect(a,n)]}var a;return o.domain=function(t){return arguments.length?(n=t.map(r).filter(u).sort(e),i()):n},o.range=function(n){return arguments.length?(t=n,i()):t},o.quantiles=function(){return a},o.invertExtent=function(e){return e=t.indexOf(e),0>e?[0/0,0/0]:[e>0?a[e-1]:n[0],e<a.length?a[e]:n[n.length-1]]},o.copy=function(){return no(n,t)},i()}function to(n,t,e){function r(t){return e[Math.max(0,Math.min(o,Math.floor(i*(t-n))))]}function u(){return i=e.length/(t-n),o=e.length-1,r}var i,o;return r.domain=function(e){return arguments.length?(n=+e[0],t=+e[e.length-1],u()):[n,t]},r.range=function(n){return arguments.length?(e=n,u()):e},r.invertExtent=function(t){return t=e.indexOf(t),t=0>t?0/0:t/i+n,[t,t+1/i]},r.copy=function(){return to(n,t,e)},u()}function eo(n,t){function e(e){return e>=e?t[ta.bisect(n,e)]:void 0}return e.domain=function(t){return arguments.length?(n=t,e):n},e.range=function(n){return arguments.length?(t=n,e):t},e.invertExtent=function(e){return e=t.indexOf(e),[n[e-1],n[e]]},e.copy=function(){return eo(n,t)},e}function ro(n){function t(n){return+n}return t.invert=t,t.domain=t.range=function(e){return arguments.length?(n=e.map(t),t):n},t.ticks=function(t){return Xi(n,t)},t.tickFormat=function(t,e){return $i(n,t,e)},t.copy=function(){return ro(n)},t}function uo(){return 0}function io(n){return n.innerRadius}function oo(n){return n.outerRadius}function ao(n){return n.startAngle}function co(n){return n.endAngle}function lo(n){return n&&n.padAngle}function so(n,t,e,r){return(n-e)*t-(t-r)*n>0?0:1}function fo(n,t,e,r,u){var i=n[0]-t[0],o=n[1]-t[1],a=(u?r:-r)/Math.sqrt(i*i+o*o),c=a*o,l=-a*i,s=n[0]+c,f=n[1]+l,h=t[0]+c,g=t[1]+l,p=(s+h)/2,v=(f+g)/2,d=h-s,m=g-f,y=d*d+m*m,M=e-r,x=s*g-h*f,b=(0>m?-1:1)*Math.sqrt(M*M*y-x*x),_=(x*m-d*b)/y,w=(-x*d-m*b)/y,S=(x*m+d*b)/y,k=(-x*d+m*b)/y,E=_-p,A=w-v,N=S-p,C=k-v;return E*E+A*A>N*N+C*C&&(_=S,w=k),[[_-c,w-l],[_*e/M,w*e/M]]}function ho(n){function t(t){function o(){l.push("M",i(n(s),a))}for(var c,l=[],s=[],f=-1,h=t.length,g=Et(e),p=Et(r);++f<h;)u.call(this,c=t[f],f)?s.push([+g.call(this,c,f),+p.call(this,c,f)]):s.length&&(o(),s=[]);return s.length&&o(),l.length?l.join(""):null}var e=Ar,r=Nr,u=Ne,i=go,o=i.key,a=.7;return t.x=function(n){return arguments.length?(e=n,t):e},t.y=function(n){return arguments.length?(r=n,t):r},t.defined=function(n){return arguments.length?(u=n,t):u},t.interpolate=function(n){return arguments.length?(o="function"==typeof n?i=n:(i=El.get(n)||go).key,t):o},t.tension=function(n){return arguments.length?(a=n,t):a},t}function go(n){return n.join("L")}function po(n){return go(n)+"Z"}function vo(n){for(var t=0,e=n.length,r=n[0],u=[r[0],",",r[1]];++t<e;)u.push("H",(r[0]+(r=n[t])[0])/2,"V",r[1]);return e>1&&u.push("H",r[0]),u.join("")}function mo(n){for(var t=0,e=n.length,r=n[0],u=[r[0],",",r[1]];++t<e;)u.push("V",(r=n[t])[1],"H",r[0]);return u.join("")}function yo(n){for(var t=0,e=n.length,r=n[0],u=[r[0],",",r[1]];++t<e;)u.push("H",(r=n[t])[0],"V",r[1]);return u.join("")}function Mo(n,t){return n.length<4?go(n):n[1]+_o(n.slice(1,-1),wo(n,t))}function xo(n,t){return n.length<3?go(n):n[0]+_o((n.push(n[0]),n),wo([n[n.length-2]].concat(n,[n[1]]),t))}function bo(n,t){return n.length<3?go(n):n[0]+_o(n,wo(n,t))}function _o(n,t){if(t.length<1||n.length!=t.length&&n.length!=t.length+2)return go(n);var e=n.length!=t.length,r="",u=n[0],i=n[1],o=t[0],a=o,c=1;if(e&&(r+="Q"+(i[0]-2*o[0]/3)+","+(i[1]-2*o[1]/3)+","+i[0]+","+i[1],u=n[1],c=2),t.length>1){a=t[1],i=n[c],c++,r+="C"+(u[0]+o[0])+","+(u[1]+o[1])+","+(i[0]-a[0])+","+(i[1]-a[1])+","+i[0]+","+i[1];for(var l=2;l<t.length;l++,c++)i=n[c],a=t[l],r+="S"+(i[0]-a[0])+","+(i[1]-a[1])+","+i[0]+","+i[1]}if(e){var s=n[c];r+="Q"+(i[0]+2*a[0]/3)+","+(i[1]+2*a[1]/3)+","+s[0]+","+s[1]}return r}function wo(n,t){for(var e,r=[],u=(1-t)/2,i=n[0],o=n[1],a=1,c=n.length;++a<c;)e=i,i=o,o=n[a],r.push([u*(o[0]-e[0]),u*(o[1]-e[1])]);return r}function So(n){if(n.length<3)return go(n);var t=1,e=n.length,r=n[0],u=r[0],i=r[1],o=[u,u,u,(r=n[1])[0]],a=[i,i,i,r[1]],c=[u,",",i,"L",No(Cl,o),",",No(Cl,a)];for(n.push(n[e-1]);++t<=e;)r=n[t],o.shift(),o.push(r[0]),a.shift(),a.push(r[1]),Co(c,o,a);return n.pop(),c.push("L",r),c.join("")}function ko(n){if(n.length<4)return go(n);for(var t,e=[],r=-1,u=n.length,i=[0],o=[0];++r<3;)t=n[r],i.push(t[0]),o.push(t[1]);for(e.push(No(Cl,i)+","+No(Cl,o)),--r;++r<u;)t=n[r],i.shift(),i.push(t[0]),o.shift(),o.push(t[1]),Co(e,i,o);return e.join("")}function Eo(n){for(var t,e,r=-1,u=n.length,i=u+4,o=[],a=[];++r<4;)e=n[r%u],o.push(e[0]),a.push(e[1]);for(t=[No(Cl,o),",",No(Cl,a)],--r;++r<i;)e=n[r%u],o.shift(),o.push(e[0]),a.shift(),a.push(e[1]),Co(t,o,a);return t.join("")}function Ao(n,t){var e=n.length-1;if(e)for(var r,u,i=n[0][0],o=n[0][1],a=n[e][0]-i,c=n[e][1]-o,l=-1;++l<=e;)r=n[l],u=l/e,r[0]=t*r[0]+(1-t)*(i+u*a),r[1]=t*r[1]+(1-t)*(o+u*c);return So(n)}function No(n,t){return n[0]*t[0]+n[1]*t[1]+n[2]*t[2]+n[3]*t[3]}function Co(n,t,e){n.push("C",No(Al,t),",",No(Al,e),",",No(Nl,t),",",No(Nl,e),",",No(Cl,t),",",No(Cl,e))}function zo(n,t){return(t[1]-n[1])/(t[0]-n[0])}function qo(n){for(var t=0,e=n.length-1,r=[],u=n[0],i=n[1],o=r[0]=zo(u,i);++t<e;)r[t]=(o+(o=zo(u=i,i=n[t+1])))/2;return r[t]=o,r}function Lo(n){for(var t,e,r,u,i=[],o=qo(n),a=-1,c=n.length-1;++a<c;)t=zo(n[a],n[a+1]),ga(t)<Ca?o[a]=o[a+1]=0:(e=o[a]/t,r=o[a+1]/t,u=e*e+r*r,u>9&&(u=3*t/Math.sqrt(u),o[a]=u*e,o[a+1]=u*r));for(a=-1;++a<=c;)u=(n[Math.min(c,a+1)][0]-n[Math.max(0,a-1)][0])/(6*(1+o[a]*o[a])),i.push([u||0,o[a]*u||0]);return i}function To(n){return n.length<3?go(n):n[0]+_o(n,Lo(n))}function Ro(n){for(var t,e,r,u=-1,i=n.length;++u<i;)t=n[u],e=t[0],r=t[1]-Ra,t[0]=e*Math.cos(r),t[1]=e*Math.sin(r);return n}function Do(n){function t(t){function c(){v.push("M",a(n(m),f),s,l(n(d.reverse()),f),"Z")}for(var h,g,p,v=[],d=[],m=[],y=-1,M=t.length,x=Et(e),b=Et(u),_=e===r?function(){return g}:Et(r),w=u===i?function(){return p}:Et(i);++y<M;)o.call(this,h=t[y],y)?(d.push([g=+x.call(this,h,y),p=+b.call(this,h,y)]),m.push([+_.call(this,h,y),+w.call(this,h,y)])):d.length&&(c(),d=[],m=[]);return d.length&&c(),v.length?v.join(""):null}var e=Ar,r=Ar,u=0,i=Nr,o=Ne,a=go,c=a.key,l=a,s="L",f=.7;return t.x=function(n){return arguments.length?(e=r=n,t):r},t.x0=function(n){return arguments.length?(e=n,t):e},t.x1=function(n){return arguments.length?(r=n,t):r
			},t.y=function(n){return arguments.length?(u=i=n,t):i},t.y0=function(n){return arguments.length?(u=n,t):u},t.y1=function(n){return arguments.length?(i=n,t):i},t.defined=function(n){return arguments.length?(o=n,t):o},t.interpolate=function(n){return arguments.length?(c="function"==typeof n?a=n:(a=El.get(n)||go).key,l=a.reverse||a,s=a.closed?"M":"L",t):c},t.tension=function(n){return arguments.length?(f=n,t):f},t}function Po(n){return n.radius}function Uo(n){return[n.x,n.y]}function jo(n){return function(){var t=n.apply(this,arguments),e=t[0],r=t[1]-Ra;return[e*Math.cos(r),e*Math.sin(r)]}}function Fo(){return 64}function Ho(){return"circle"}function Oo(n){var t=Math.sqrt(n/qa);return"M0,"+t+"A"+t+","+t+" 0 1,1 0,"+-t+"A"+t+","+t+" 0 1,1 0,"+t+"Z"}function Io(n){return function(){var t,e;(t=this[n])&&(e=t[t.active])&&(--t.count?delete t[t.active]:delete this[n],t.active+=.5,e.event&&e.event.interrupt.call(this,this.__data__,e.index))}}function Yo(n,t,e){return ya(n,Pl),n.namespace=t,n.id=e,n}function Zo(n,t,e,r){var u=n.id,i=n.namespace;return Y(n,"function"==typeof e?function(n,o,a){n[i][u].tween.set(t,r(e.call(n,n.__data__,o,a)))}:(e=r(e),function(n){n[i][u].tween.set(t,e)}))}function Vo(n){return null==n&&(n=""),function(){this.textContent=n}}function Xo(n){return null==n?"__transition__":"__transition_"+n+"__"}function $o(n,t,e,r,u){var i=n[e]||(n[e]={active:0,count:0}),o=i[r];if(!o){var a=u.time;o=i[r]={tween:new l,time:a,delay:u.delay,duration:u.duration,ease:u.ease,index:t},u=null,++i.count,ta.timer(function(u){function c(e){if(i.active>r)return s();var u=i[i.active];u&&(--i.count,delete i[i.active],u.event&&u.event.interrupt.call(n,n.__data__,u.index)),i.active=r,o.event&&o.event.start.call(n,n.__data__,t),o.tween.forEach(function(e,r){(r=r.call(n,n.__data__,t))&&v.push(r)}),h=o.ease,f=o.duration,ta.timer(function(){return p.c=l(e||1)?Ne:l,1},0,a)}function l(e){if(i.active!==r)return 1;for(var u=e/f,a=h(u),c=v.length;c>0;)v[--c].call(n,a);return u>=1?(o.event&&o.event.end.call(n,n.__data__,t),s()):void 0}function s(){return--i.count?delete i[r]:delete n[e],1}var f,h,g=o.delay,p=ec,v=[];return p.t=g+a,u>=g?c(u-g):void(p.c=c)},0,a)}}function Bo(n,t,e){n.attr("transform",function(n){var r=t(n);return"translate("+(isFinite(r)?r:e(n))+",0)"})}function Wo(n,t,e){n.attr("transform",function(n){var r=t(n);return"translate(0,"+(isFinite(r)?r:e(n))+")"})}function Jo(n){return n.toISOString()}function Go(n,t,e){function r(t){return n(t)}function u(n,e){var r=n[1]-n[0],u=r/e,i=ta.bisect(Vl,u);return i==Vl.length?[t.year,Vi(n.map(function(n){return n/31536e6}),e)[2]]:i?t[u/Vl[i-1]<Vl[i]/u?i-1:i]:[Bl,Vi(n,e)[2]]}return r.invert=function(t){return Ko(n.invert(t))},r.domain=function(t){return arguments.length?(n.domain(t),r):n.domain().map(Ko)},r.nice=function(n,t){function e(e){return!isNaN(e)&&!n.range(e,Ko(+e+1),t).length}var i=r.domain(),o=Pi(i),a=null==n?u(o,10):"number"==typeof n&&u(o,n);return a&&(n=a[0],t=a[1]),r.domain(Fi(i,t>1?{floor:function(t){for(;e(t=n.floor(t));)t=Ko(t-1);return t},ceil:function(t){for(;e(t=n.ceil(t));)t=Ko(+t+1);return t}}:n))},r.ticks=function(n,t){var e=Pi(r.domain()),i=null==n?u(e,10):"number"==typeof n?u(e,n):!n.range&&[{range:n},t];return i&&(n=i[0],t=i[1]),n.range(e[0],Ko(+e[1]+1),1>t?1:t)},r.tickFormat=function(){return e},r.copy=function(){return Go(n.copy(),t,e)},Yi(r,n)}function Ko(n){return new Date(n)}function Qo(n){return JSON.parse(n.responseText)}function na(n){var t=ua.createRange();return t.selectNode(ua.body),t.createContextualFragment(n.responseText)}var ta={version:"3.5.5"},ea=[].slice,ra=function(n){return ea.call(n)},ua=this.document;if(ua)try{ra(ua.documentElement.childNodes)[0].nodeType}catch(ia){ra=function(n){for(var t=n.length,e=new Array(t);t--;)e[t]=n[t];return e}}if(Date.now||(Date.now=function(){return+new Date}),ua)try{ua.createElement("DIV").style.setProperty("opacity",0,"")}catch(oa){var aa=this.Element.prototype,ca=aa.setAttribute,la=aa.setAttributeNS,sa=this.CSSStyleDeclaration.prototype,fa=sa.setProperty;aa.setAttribute=function(n,t){ca.call(this,n,t+"")},aa.setAttributeNS=function(n,t,e){la.call(this,n,t,e+"")},sa.setProperty=function(n,t,e){fa.call(this,n,t+"",e)}}ta.ascending=e,ta.descending=function(n,t){return n>t?-1:t>n?1:t>=n?0:0/0},ta.min=function(n,t){var e,r,u=-1,i=n.length;if(1===arguments.length){for(;++u<i;)if(null!=(r=n[u])&&r>=r){e=r;break}for(;++u<i;)null!=(r=n[u])&&e>r&&(e=r)}else{for(;++u<i;)if(null!=(r=t.call(n,n[u],u))&&r>=r){e=r;break}for(;++u<i;)null!=(r=t.call(n,n[u],u))&&e>r&&(e=r)}return e},ta.max=function(n,t){var e,r,u=-1,i=n.length;if(1===arguments.length){for(;++u<i;)if(null!=(r=n[u])&&r>=r){e=r;break}for(;++u<i;)null!=(r=n[u])&&r>e&&(e=r)}else{for(;++u<i;)if(null!=(r=t.call(n,n[u],u))&&r>=r){e=r;break}for(;++u<i;)null!=(r=t.call(n,n[u],u))&&r>e&&(e=r)}return e},ta.extent=function(n,t){var e,r,u,i=-1,o=n.length;if(1===arguments.length){for(;++i<o;)if(null!=(r=n[i])&&r>=r){e=u=r;break}for(;++i<o;)null!=(r=n[i])&&(e>r&&(e=r),r>u&&(u=r))}else{for(;++i<o;)if(null!=(r=t.call(n,n[i],i))&&r>=r){e=u=r;break}for(;++i<o;)null!=(r=t.call(n,n[i],i))&&(e>r&&(e=r),r>u&&(u=r))}return[e,u]},ta.sum=function(n,t){var e,r=0,i=n.length,o=-1;if(1===arguments.length)for(;++o<i;)u(e=+n[o])&&(r+=e);else for(;++o<i;)u(e=+t.call(n,n[o],o))&&(r+=e);return r},ta.mean=function(n,t){var e,i=0,o=n.length,a=-1,c=o;if(1===arguments.length)for(;++a<o;)u(e=r(n[a]))?i+=e:--c;else for(;++a<o;)u(e=r(t.call(n,n[a],a)))?i+=e:--c;return c?i/c:void 0},ta.quantile=function(n,t){var e=(n.length-1)*t+1,r=Math.floor(e),u=+n[r-1],i=e-r;return i?u+i*(n[r]-u):u},ta.median=function(n,t){var i,o=[],a=n.length,c=-1;if(1===arguments.length)for(;++c<a;)u(i=r(n[c]))&&o.push(i);else for(;++c<a;)u(i=r(t.call(n,n[c],c)))&&o.push(i);return o.length?ta.quantile(o.sort(e),.5):void 0},ta.variance=function(n,t){var e,i,o=n.length,a=0,c=0,l=-1,s=0;if(1===arguments.length)for(;++l<o;)u(e=r(n[l]))&&(i=e-a,a+=i/++s,c+=i*(e-a));else for(;++l<o;)u(e=r(t.call(n,n[l],l)))&&(i=e-a,a+=i/++s,c+=i*(e-a));return s>1?c/(s-1):void 0},ta.deviation=function(){var n=ta.variance.apply(this,arguments);return n?Math.sqrt(n):n};var ha=i(e);ta.bisectLeft=ha.left,ta.bisect=ta.bisectRight=ha.right,ta.bisector=function(n){return i(1===n.length?function(t,r){return e(n(t),r)}:n)},ta.shuffle=function(n,t,e){(i=arguments.length)<3&&(e=n.length,2>i&&(t=0));for(var r,u,i=e-t;i;)u=Math.random()*i--|0,r=n[i+t],n[i+t]=n[u+t],n[u+t]=r;return n},ta.permute=function(n,t){for(var e=t.length,r=new Array(e);e--;)r[e]=n[t[e]];return r},ta.pairs=function(n){for(var t,e=0,r=n.length-1,u=n[0],i=new Array(0>r?0:r);r>e;)i[e]=[t=u,u=n[++e]];return i},ta.zip=function(){if(!(r=arguments.length))return[];for(var n=-1,t=ta.min(arguments,o),e=new Array(t);++n<t;)for(var r,u=-1,i=e[n]=new Array(r);++u<r;)i[u]=arguments[u][n];return e},ta.transpose=function(n){return ta.zip.apply(ta,n)},ta.keys=function(n){var t=[];for(var e in n)t.push(e);return t},ta.values=function(n){var t=[];for(var e in n)t.push(n[e]);return t},ta.entries=function(n){var t=[];for(var e in n)t.push({key:e,value:n[e]});return t},ta.merge=function(n){for(var t,e,r,u=n.length,i=-1,o=0;++i<u;)o+=n[i].length;for(e=new Array(o);--u>=0;)for(r=n[u],t=r.length;--t>=0;)e[--o]=r[t];return e};var ga=Math.abs;ta.range=function(n,t,e){if(arguments.length<3&&(e=1,arguments.length<2&&(t=n,n=0)),(t-n)/e===1/0)throw new Error("infinite range");var r,u=[],i=a(ga(e)),o=-1;if(n*=i,t*=i,e*=i,0>e)for(;(r=n+e*++o)>t;)u.push(r/i);else for(;(r=n+e*++o)<t;)u.push(r/i);return u},ta.map=function(n,t){var e=new l;if(n instanceof l)n.forEach(function(n,t){e.set(n,t)});else if(Array.isArray(n)){var r,u=-1,i=n.length;if(1===arguments.length)for(;++u<i;)e.set(u,n[u]);else for(;++u<i;)e.set(t.call(n,r=n[u],u),r)}else for(var o in n)e.set(o,n[o]);return e};var pa="__proto__",va="\x00";c(l,{has:h,get:function(n){return this._[s(n)]},set:function(n,t){return this._[s(n)]=t},remove:g,keys:p,values:function(){var n=[];for(var t in this._)n.push(this._[t]);return n},entries:function(){var n=[];for(var t in this._)n.push({key:f(t),value:this._[t]});return n},size:v,empty:d,forEach:function(n){for(var t in this._)n.call(this,f(t),this._[t])}}),ta.nest=function(){function n(t,o,a){if(a>=i.length)return r?r.call(u,o):e?o.sort(e):o;for(var c,s,f,h,g=-1,p=o.length,v=i[a++],d=new l;++g<p;)(h=d.get(c=v(s=o[g])))?h.push(s):d.set(c,[s]);return t?(s=t(),f=function(e,r){s.set(e,n(t,r,a))}):(s={},f=function(e,r){s[e]=n(t,r,a)}),d.forEach(f),s}function t(n,e){if(e>=i.length)return n;var r=[],u=o[e++];return n.forEach(function(n,u){r.push({key:n,values:t(u,e)})}),u?r.sort(function(n,t){return u(n.key,t.key)}):r}var e,r,u={},i=[],o=[];return u.map=function(t,e){return n(e,t,0)},u.entries=function(e){return t(n(ta.map,e,0),0)},u.key=function(n){return i.push(n),u},u.sortKeys=function(n){return o[i.length-1]=n,u},u.sortValues=function(n){return e=n,u},u.rollup=function(n){return r=n,u},u},ta.set=function(n){var t=new m;if(n)for(var e=0,r=n.length;r>e;++e)t.add(n[e]);return t},c(m,{has:h,add:function(n){return this._[s(n+="")]=!0,n},remove:g,values:p,size:v,empty:d,forEach:function(n){for(var t in this._)n.call(this,f(t))}}),ta.behavior={},ta.rebind=function(n,t){for(var e,r=1,u=arguments.length;++r<u;)n[e=arguments[r]]=M(n,t,t[e]);return n};var da=["webkit","ms","moz","Moz","o","O"];ta.dispatch=function(){for(var n=new _,t=-1,e=arguments.length;++t<e;)n[arguments[t]]=w(n);return n},_.prototype.on=function(n,t){var e=n.indexOf("."),r="";if(e>=0&&(r=n.slice(e+1),n=n.slice(0,e)),n)return arguments.length<2?this[n].on(r):this[n].on(r,t);if(2===arguments.length){if(null==t)for(n in this)this.hasOwnProperty(n)&&this[n].on(r,null);return this}},ta.event=null,ta.requote=function(n){return n.replace(ma,"\\$&")};var ma=/[\\\^\$\*\+\?\|\[\]\(\)\.\{\}]/g,ya={}.__proto__?function(n,t){n.__proto__=t}:function(n,t){for(var e in t)n[e]=t[e]},Ma=function(n,t){return t.querySelector(n)},xa=function(n,t){return t.querySelectorAll(n)},ba=function(n,t){var e=n.matches||n[x(n,"matchesSelector")];return(ba=function(n,t){return e.call(n,t)})(n,t)};"function"==typeof Sizzle&&(Ma=function(n,t){return Sizzle(n,t)[0]||null},xa=Sizzle,ba=Sizzle.matchesSelector),ta.selection=function(){return ta.select(ua.documentElement)};var _a=ta.selection.prototype=[];_a.select=function(n){var t,e,r,u,i=[];n=N(n);for(var o=-1,a=this.length;++o<a;){i.push(t=[]),t.parentNode=(r=this[o]).parentNode;for(var c=-1,l=r.length;++c<l;)(u=r[c])?(t.push(e=n.call(u,u.__data__,c,o)),e&&"__data__"in u&&(e.__data__=u.__data__)):t.push(null)}return A(i)},_a.selectAll=function(n){var t,e,r=[];n=C(n);for(var u=-1,i=this.length;++u<i;)for(var o=this[u],a=-1,c=o.length;++a<c;)(e=o[a])&&(r.push(t=ra(n.call(e,e.__data__,a,u))),t.parentNode=e);return A(r)};var wa={svg:"http://www.w3.org/2000/svg",xhtml:"http://www.w3.org/1999/xhtml",xlink:"http://www.w3.org/1999/xlink",xml:"http://www.w3.org/XML/1998/namespace",xmlns:"http://www.w3.org/2000/xmlns/"};ta.ns={prefix:wa,qualify:function(n){var t=n.indexOf(":"),e=n;return t>=0&&(e=n.slice(0,t),n=n.slice(t+1)),wa.hasOwnProperty(e)?{space:wa[e],local:n}:n}},_a.attr=function(n,t){if(arguments.length<2){if("string"==typeof n){var e=this.node();return n=ta.ns.qualify(n),n.local?e.getAttributeNS(n.space,n.local):e.getAttribute(n)}for(t in n)this.each(z(t,n[t]));return this}return this.each(z(n,t))},_a.classed=function(n,t){if(arguments.length<2){if("string"==typeof n){var e=this.node(),r=(n=T(n)).length,u=-1;if(t=e.classList){for(;++u<r;)if(!t.contains(n[u]))return!1}else for(t=e.getAttribute("class");++u<r;)if(!L(n[u]).test(t))return!1;return!0}for(t in n)this.each(R(t,n[t]));return this}return this.each(R(n,t))},_a.style=function(n,e,r){var u=arguments.length;if(3>u){if("string"!=typeof n){2>u&&(e="");for(r in n)this.each(P(r,n[r],e));return this}if(2>u){var i=this.node();return t(i).getComputedStyle(i,null).getPropertyValue(n)}r=""}return this.each(P(n,e,r))},_a.property=function(n,t){if(arguments.length<2){if("string"==typeof n)return this.node()[n];for(t in n)this.each(U(t,n[t]));return this}return this.each(U(n,t))},_a.text=function(n){return arguments.length?this.each("function"==typeof n?function(){var t=n.apply(this,arguments);this.textContent=null==t?"":t}:null==n?function(){this.textContent=""}:function(){this.textContent=n}):this.node().textContent},_a.html=function(n){return arguments.length?this.each("function"==typeof n?function(){var t=n.apply(this,arguments);this.innerHTML=null==t?"":t}:null==n?function(){this.innerHTML=""}:function(){this.innerHTML=n}):this.node().innerHTML},_a.append=function(n){return n=j(n),this.select(function(){return this.appendChild(n.apply(this,arguments))})},_a.insert=function(n,t){return n=j(n),t=N(t),this.select(function(){return this.insertBefore(n.apply(this,arguments),t.apply(this,arguments)||null)})},_a.remove=function(){return this.each(F)},_a.data=function(n,t){function e(n,e){var r,u,i,o=n.length,f=e.length,h=Math.min(o,f),g=new Array(f),p=new Array(f),v=new Array(o);if(t){var d,m=new l,y=new Array(o);for(r=-1;++r<o;)m.has(d=t.call(u=n[r],u.__data__,r))?v[r]=u:m.set(d,u),y[r]=d;for(r=-1;++r<f;)(u=m.get(d=t.call(e,i=e[r],r)))?u!==!0&&(g[r]=u,u.__data__=i):p[r]=H(i),m.set(d,!0);for(r=-1;++r<o;)m.get(y[r])!==!0&&(v[r]=n[r])}else{for(r=-1;++r<h;)u=n[r],i=e[r],u?(u.__data__=i,g[r]=u):p[r]=H(i);for(;f>r;++r)p[r]=H(e[r]);for(;o>r;++r)v[r]=n[r]}p.update=g,p.parentNode=g.parentNode=v.parentNode=n.parentNode,a.push(p),c.push(g),s.push(v)}var r,u,i=-1,o=this.length;if(!arguments.length){for(n=new Array(o=(r=this[0]).length);++i<o;)(u=r[i])&&(n[i]=u.__data__);return n}var a=Z([]),c=A([]),s=A([]);if("function"==typeof n)for(;++i<o;)e(r=this[i],n.call(r,r.parentNode.__data__,i));else for(;++i<o;)e(r=this[i],n);return c.enter=function(){return a},c.exit=function(){return s},c},_a.datum=function(n){return arguments.length?this.property("__data__",n):this.property("__data__")},_a.filter=function(n){var t,e,r,u=[];"function"!=typeof n&&(n=O(n));for(var i=0,o=this.length;o>i;i++){u.push(t=[]),t.parentNode=(e=this[i]).parentNode;for(var a=0,c=e.length;c>a;a++)(r=e[a])&&n.call(r,r.__data__,a,i)&&t.push(r)}return A(u)},_a.order=function(){for(var n=-1,t=this.length;++n<t;)for(var e,r=this[n],u=r.length-1,i=r[u];--u>=0;)(e=r[u])&&(i&&i!==e.nextSibling&&i.parentNode.insertBefore(e,i),i=e);return this},_a.sort=function(n){n=I.apply(this,arguments);for(var t=-1,e=this.length;++t<e;)this[t].sort(n);return this.order()},_a.each=function(n){return Y(this,function(t,e,r){n.call(t,t.__data__,e,r)})},_a.call=function(n){var t=ra(arguments);return n.apply(t[0]=this,t),this},_a.empty=function(){return!this.node()},_a.node=function(){for(var n=0,t=this.length;t>n;n++)for(var e=this[n],r=0,u=e.length;u>r;r++){var i=e[r];if(i)return i}return null},_a.size=function(){var n=0;return Y(this,function(){++n}),n};var Sa=[];ta.selection.enter=Z,ta.selection.enter.prototype=Sa,Sa.append=_a.append,Sa.empty=_a.empty,Sa.node=_a.node,Sa.call=_a.call,Sa.size=_a.size,Sa.select=function(n){for(var t,e,r,u,i,o=[],a=-1,c=this.length;++a<c;){r=(u=this[a]).update,o.push(t=[]),t.parentNode=u.parentNode;for(var l=-1,s=u.length;++l<s;)(i=u[l])?(t.push(r[l]=e=n.call(u.parentNode,i.__data__,l,a)),e.__data__=i.__data__):t.push(null)}return A(o)},Sa.insert=function(n,t){return arguments.length<2&&(t=V(this)),_a.insert.call(this,n,t)},ta.select=function(t){var e;return"string"==typeof t?(e=[Ma(t,ua)],e.parentNode=ua.documentElement):(e=[t],e.parentNode=n(t)),A([e])},ta.selectAll=function(n){var t;return"string"==typeof n?(t=ra(xa(n,ua)),t.parentNode=ua.documentElement):(t=n,t.parentNode=null),A([t])},_a.on=function(n,t,e){var r=arguments.length;if(3>r){if("string"!=typeof n){2>r&&(t=!1);for(e in n)this.each(X(e,n[e],t));return this}if(2>r)return(r=this.node()["__on"+n])&&r._;e=!1}return this.each(X(n,t,e))};var ka=ta.map({mouseenter:"mouseover",mouseleave:"mouseout"});ua&&ka.forEach(function(n){"on"+n in ua&&ka.remove(n)});var Ea,Aa=0;ta.mouse=function(n){return J(n,k())};var Na=this.navigator&&/WebKit/.test(this.navigator.userAgent)?-1:0;ta.touch=function(n,t,e){if(arguments.length<3&&(e=t,t=k().changedTouches),t)for(var r,u=0,i=t.length;i>u;++u)if((r=t[u]).identifier===e)return J(n,r)},ta.behavior.drag=function(){function n(){this.on("mousedown.drag",i).on("touchstart.drag",o)}function e(n,t,e,i,o){return function(){function a(){var n,e,r=t(h,v);r&&(n=r[0]-M[0],e=r[1]-M[1],p|=n|e,M=r,g({type:"drag",x:r[0]+l[0],y:r[1]+l[1],dx:n,dy:e}))}function c(){t(h,v)&&(m.on(i+d,null).on(o+d,null),y(p&&ta.event.target===f),g({type:"dragend"}))}var l,s=this,f=ta.event.target,h=s.parentNode,g=r.of(s,arguments),p=0,v=n(),d=".drag"+(null==v?"":"-"+v),m=ta.select(e(f)).on(i+d,a).on(o+d,c),y=W(f),M=t(h,v);u?(l=u.apply(s,arguments),l=[l.x-M[0],l.y-M[1]]):l=[0,0],g({type:"dragstart"})}}var r=E(n,"drag","dragstart","dragend"),u=null,i=e(b,ta.mouse,t,"mousemove","mouseup"),o=e(G,ta.touch,y,"touchmove","touchend");return n.origin=function(t){return arguments.length?(u=t,n):u},ta.rebind(n,r,"on")},ta.touches=function(n,t){return arguments.length<2&&(t=k().touches),t?ra(t).map(function(t){var e=J(n,t);return e.identifier=t.identifier,e}):[]};var Ca=1e-6,za=Ca*Ca,qa=Math.PI,La=2*qa,Ta=La-Ca,Ra=qa/2,Da=qa/180,Pa=180/qa,Ua=Math.SQRT2,ja=2,Fa=4;ta.interpolateZoom=function(n,t){function e(n){var t=n*y;if(m){var e=rt(v),o=i/(ja*h)*(e*ut(Ua*t+v)-et(v));return[r+o*l,u+o*s,i*e/rt(Ua*t+v)]}return[r+n*l,u+n*s,i*Math.exp(Ua*t)]}var r=n[0],u=n[1],i=n[2],o=t[0],a=t[1],c=t[2],l=o-r,s=a-u,f=l*l+s*s,h=Math.sqrt(f),g=(c*c-i*i+Fa*f)/(2*i*ja*h),p=(c*c-i*i-Fa*f)/(2*c*ja*h),v=Math.log(Math.sqrt(g*g+1)-g),d=Math.log(Math.sqrt(p*p+1)-p),m=d-v,y=(m||Math.log(c/i))/Ua;return e.duration=1e3*y,e},ta.behavior.zoom=function(){function n(n){n.on(q,f).on(Oa+".zoom",g).on("dblclick.zoom",p).on(R,h)}function e(n){return[(n[0]-k.x)/k.k,(n[1]-k.y)/k.k]}function r(n){return[n[0]*k.k+k.x,n[1]*k.k+k.y]}function u(n){k.k=Math.max(N[0],Math.min(N[1],n))}function i(n,t){t=r(t),k.x+=n[0]-t[0],k.y+=n[1]-t[1]}function o(t,e,r,o){t.__chart__={x:k.x,y:k.y,k:k.k},u(Math.pow(2,o)),i(d=e,r),t=ta.select(t),C>0&&(t=t.transition().duration(C)),t.call(n.event)}function a(){b&&b.domain(x.range().map(function(n){return(n-k.x)/k.k}).map(x.invert)),w&&w.domain(_.range().map(function(n){return(n-k.y)/k.k}).map(_.invert))}function c(n){z++||n({type:"zoomstart"})}function l(n){a(),n({type:"zoom",scale:k.k,translate:[k.x,k.y]})}function s(n){--z||n({type:"zoomend"}),d=null}function f(){function n(){f=1,i(ta.mouse(u),g),l(a)}function r(){h.on(L,null).on(T,null),p(f&&ta.event.target===o),s(a)}var u=this,o=ta.event.target,a=D.of(u,arguments),f=0,h=ta.select(t(u)).on(L,n).on(T,r),g=e(ta.mouse(u)),p=W(u);Dl.call(u),c(a)}function h(){function n(){var n=ta.touches(p);return g=k.k,n.forEach(function(n){n.identifier in d&&(d[n.identifier]=e(n))}),n}function t(){var t=ta.event.target;ta.select(t).on(x,r).on(b,a),_.push(t);for(var e=ta.event.changedTouches,u=0,i=e.length;i>u;++u)d[e[u].identifier]=null;var c=n(),l=Date.now();if(1===c.length){if(500>l-M){var s=c[0];o(p,s,d[s.identifier],Math.floor(Math.log(k.k)/Math.LN2)+1),S()}M=l}else if(c.length>1){var s=c[0],f=c[1],h=s[0]-f[0],g=s[1]-f[1];m=h*h+g*g}}function r(){var n,t,e,r,o=ta.touches(p);Dl.call(p);for(var a=0,c=o.length;c>a;++a,r=null)if(e=o[a],r=d[e.identifier]){if(t)break;n=e,t=r}if(r){var s=(s=e[0]-n[0])*s+(s=e[1]-n[1])*s,f=m&&Math.sqrt(s/m);n=[(n[0]+e[0])/2,(n[1]+e[1])/2],t=[(t[0]+r[0])/2,(t[1]+r[1])/2],u(f*g)}M=null,i(n,t),l(v)}function a(){if(ta.event.touches.length){for(var t=ta.event.changedTouches,e=0,r=t.length;r>e;++e)delete d[t[e].identifier];for(var u in d)return void n()}ta.selectAll(_).on(y,null),w.on(q,f).on(R,h),E(),s(v)}var g,p=this,v=D.of(p,arguments),d={},m=0,y=".zoom-"+ta.event.changedTouches[0].identifier,x="touchmove"+y,b="touchend"+y,_=[],w=ta.select(p),E=W(p);t(),c(v),w.on(q,null).on(R,t)}function g(){var n=D.of(this,arguments);y?clearTimeout(y):(v=e(d=m||ta.mouse(this)),Dl.call(this),c(n)),y=setTimeout(function(){y=null,s(n)},50),S(),u(Math.pow(2,.002*Ha())*k.k),i(d,v),l(n)}function p(){var n=ta.mouse(this),t=Math.log(k.k)/Math.LN2;o(this,n,e(n),ta.event.shiftKey?Math.ceil(t)-1:Math.floor(t)+1)}var v,d,m,y,M,x,b,_,w,k={x:0,y:0,k:1},A=[960,500],N=Ia,C=250,z=0,q="mousedown.zoom",L="mousemove.zoom",T="mouseup.zoom",R="touchstart.zoom",D=E(n,"zoomstart","zoom","zoomend");return Oa||(Oa="onwheel"in ua?(Ha=function(){return-ta.event.deltaY*(ta.event.deltaMode?120:1)},"wheel"):"onmousewheel"in ua?(Ha=function(){return ta.event.wheelDelta},"mousewheel"):(Ha=function(){return-ta.event.detail},"MozMousePixelScroll")),n.event=function(n){n.each(function(){var n=D.of(this,arguments),t=k;Tl?ta.select(this).transition().each("start.zoom",function(){k=this.__chart__||{x:0,y:0,k:1},c(n)}).tween("zoom:zoom",function(){var e=A[0],r=A[1],u=d?d[0]:e/2,i=d?d[1]:r/2,o=ta.interpolateZoom([(u-k.x)/k.k,(i-k.y)/k.k,e/k.k],[(u-t.x)/t.k,(i-t.y)/t.k,e/t.k]);return function(t){var r=o(t),a=e/r[2];this.__chart__=k={x:u-r[0]*a,y:i-r[1]*a,k:a},l(n)}}).each("interrupt.zoom",function(){s(n)}).each("end.zoom",function(){s(n)}):(this.__chart__=k,c(n),l(n),s(n))})},n.translate=function(t){return arguments.length?(k={x:+t[0],y:+t[1],k:k.k},a(),n):[k.x,k.y]},n.scale=function(t){return arguments.length?(k={x:k.x,y:k.y,k:+t},a(),n):k.k},n.scaleExtent=function(t){return arguments.length?(N=null==t?Ia:[+t[0],+t[1]],n):N},n.center=function(t){return arguments.length?(m=t&&[+t[0],+t[1]],n):m},n.size=function(t){return arguments.length?(A=t&&[+t[0],+t[1]],n):A},n.duration=function(t){return arguments.length?(C=+t,n):C},n.x=function(t){return arguments.length?(b=t,x=t.copy(),k={x:0,y:0,k:1},n):b},n.y=function(t){return arguments.length?(w=t,_=t.copy(),k={x:0,y:0,k:1},n):w},ta.rebind(n,D,"on")};var Ha,Oa,Ia=[0,1/0];ta.color=ot,ot.prototype.toString=function(){return this.rgb()+""},ta.hsl=at;var Ya=at.prototype=new ot;Ya.brighter=function(n){return n=Math.pow(.7,arguments.length?n:1),new at(this.h,this.s,this.l/n)},Ya.darker=function(n){return n=Math.pow(.7,arguments.length?n:1),new at(this.h,this.s,n*this.l)},Ya.rgb=function(){return ct(this.h,this.s,this.l)},ta.hcl=lt;var Za=lt.prototype=new ot;Za.brighter=function(n){return new lt(this.h,this.c,Math.min(100,this.l+Va*(arguments.length?n:1)))},Za.darker=function(n){return new lt(this.h,this.c,Math.max(0,this.l-Va*(arguments.length?n:1)))},Za.rgb=function(){return st(this.h,this.c,this.l).rgb()},ta.lab=ft;var Va=18,Xa=.95047,$a=1,Ba=1.08883,Wa=ft.prototype=new ot;Wa.brighter=function(n){return new ft(Math.min(100,this.l+Va*(arguments.length?n:1)),this.a,this.b)},Wa.darker=function(n){return new ft(Math.max(0,this.l-Va*(arguments.length?n:1)),this.a,this.b)},Wa.rgb=function(){return ht(this.l,this.a,this.b)},ta.rgb=mt;var Ja=mt.prototype=new ot;Ja.brighter=function(n){n=Math.pow(.7,arguments.length?n:1);var t=this.r,e=this.g,r=this.b,u=30;return t||e||r?(t&&u>t&&(t=u),e&&u>e&&(e=u),r&&u>r&&(r=u),new mt(Math.min(255,t/n),Math.min(255,e/n),Math.min(255,r/n))):new mt(u,u,u)},Ja.darker=function(n){return n=Math.pow(.7,arguments.length?n:1),new mt(n*this.r,n*this.g,n*this.b)},Ja.hsl=function(){return _t(this.r,this.g,this.b)},Ja.toString=function(){return"#"+xt(this.r)+xt(this.g)+xt(this.b)};var Ga=ta.map({aliceblue:15792383,antiquewhite:16444375,aqua:65535,aquamarine:8388564,azure:15794175,beige:16119260,bisque:16770244,black:0,blanchedalmond:16772045,blue:255,blueviolet:9055202,brown:10824234,burlywood:14596231,cadetblue:6266528,chartreuse:8388352,chocolate:13789470,coral:16744272,cornflowerblue:6591981,cornsilk:16775388,crimson:14423100,cyan:65535,darkblue:139,darkcyan:35723,darkgoldenrod:12092939,darkgray:11119017,darkgreen:25600,darkgrey:11119017,darkkhaki:12433259,darkmagenta:9109643,darkolivegreen:5597999,darkorange:16747520,darkorchid:10040012,darkred:9109504,darksalmon:15308410,darkseagreen:9419919,darkslateblue:4734347,darkslategray:3100495,darkslategrey:3100495,darkturquoise:52945,darkviolet:9699539,deeppink:16716947,deepskyblue:49151,dimgray:6908265,dimgrey:6908265,dodgerblue:2003199,firebrick:11674146,floralwhite:16775920,forestgreen:2263842,fuchsia:16711935,gainsboro:14474460,ghostwhite:16316671,gold:16766720,goldenrod:14329120,gray:8421504,green:32768,greenyellow:11403055,grey:8421504,honeydew:15794160,hotpink:16738740,indianred:13458524,indigo:4915330,ivory:16777200,khaki:15787660,lavender:15132410,lavenderblush:16773365,lawngreen:8190976,lemonchiffon:16775885,lightblue:11393254,lightcoral:15761536,lightcyan:14745599,lightgoldenrodyellow:16448210,lightgray:13882323,lightgreen:9498256,lightgrey:13882323,lightpink:16758465,lightsalmon:16752762,lightseagreen:2142890,lightskyblue:8900346,lightslategray:7833753,lightslategrey:7833753,lightsteelblue:11584734,lightyellow:16777184,lime:65280,limegreen:3329330,linen:16445670,magenta:16711935,maroon:8388608,mediumaquamarine:6737322,mediumblue:205,mediumorchid:12211667,mediumpurple:9662683,mediumseagreen:3978097,mediumslateblue:8087790,mediumspringgreen:64154,mediumturquoise:4772300,mediumvioletred:13047173,midnightblue:1644912,mintcream:16121850,mistyrose:16770273,moccasin:16770229,navajowhite:16768685,navy:128,oldlace:16643558,olive:8421376,olivedrab:7048739,orange:16753920,orangered:16729344,orchid:14315734,palegoldenrod:15657130,palegreen:10025880,paleturquoise:11529966,palevioletred:14381203,papayawhip:16773077,peachpuff:16767673,peru:13468991,pink:16761035,plum:14524637,powderblue:11591910,purple:8388736,rebeccapurple:6697881,red:16711680,rosybrown:12357519,royalblue:4286945,saddlebrown:9127187,salmon:16416882,sandybrown:16032864,seagreen:3050327,seashell:16774638,sienna:10506797,silver:12632256,skyblue:8900331,slateblue:6970061,slategray:7372944,slategrey:7372944,snow:16775930,springgreen:65407,steelblue:4620980,tan:13808780,teal:32896,thistle:14204888,tomato:16737095,turquoise:4251856,violet:15631086,wheat:16113331,white:16777215,whitesmoke:16119285,yellow:16776960,yellowgreen:10145074});Ga.forEach(function(n,t){Ga.set(n,yt(t))}),ta.functor=Et,ta.xhr=At(y),ta.dsv=function(n,t){function e(n,e,i){arguments.length<3&&(i=e,e=null);var o=Nt(n,t,null==e?r:u(e),i);return o.row=function(n){return arguments.length?o.response(null==(e=n)?r:u(n)):e},o}function r(n){return e.parse(n.responseText)}function u(n){return function(t){return e.parse(t.responseText,n)}}function i(t){return t.map(o).join(n)}function o(n){return a.test(n)?'"'+n.replace(/\"/g,'""')+'"':n}var a=new RegExp('["'+n+"\n]"),c=n.charCodeAt(0);return e.parse=function(n,t){var r;return e.parseRows(n,function(n,e){if(r)return r(n,e-1);var u=new Function("d","return {"+n.map(function(n,t){return JSON.stringify(n)+": d["+t+"]"}).join(",")+"}");r=t?function(n,e){return t(u(n),e)}:u})},e.parseRows=function(n,t){function e(){if(s>=l)return o;if(u)return u=!1,i;var t=s;if(34===n.charCodeAt(t)){for(var e=t;e++<l;)if(34===n.charCodeAt(e)){if(34!==n.charCodeAt(e+1))break;++e}s=e+2;var r=n.charCodeAt(e+1);return 13===r?(u=!0,10===n.charCodeAt(e+2)&&++s):10===r&&(u=!0),n.slice(t+1,e).replace(/""/g,'"')}for(;l>s;){var r=n.charCodeAt(s++),a=1;if(10===r)u=!0;else if(13===r)u=!0,10===n.charCodeAt(s)&&(++s,++a);else if(r!==c)continue;return n.slice(t,s-a)}return n.slice(t)}for(var r,u,i={},o={},a=[],l=n.length,s=0,f=0;(r=e())!==o;){for(var h=[];r!==i&&r!==o;)h.push(r),r=e();t&&null==(h=t(h,f++))||a.push(h)}return a},e.format=function(t){if(Array.isArray(t[0]))return e.formatRows(t);var r=new m,u=[];return t.forEach(function(n){for(var t in n)r.has(t)||u.push(r.add(t))}),[u.map(o).join(n)].concat(t.map(function(t){return u.map(function(n){return o(t[n])}).join(n)})).join("\n")},e.formatRows=function(n){return n.map(i).join("\n")},e},ta.csv=ta.dsv(",","text/csv"),ta.tsv=ta.dsv("	","text/tab-separated-values");var Ka,Qa,nc,tc,ec,rc=this[x(this,"requestAnimationFrame")]||function(n){setTimeout(n,17)};ta.timer=function(n,t,e){var r=arguments.length;2>r&&(t=0),3>r&&(e=Date.now());var u=e+t,i={c:n,t:u,f:!1,n:null};Qa?Qa.n=i:Ka=i,Qa=i,nc||(tc=clearTimeout(tc),nc=1,rc(qt))},ta.timer.flush=function(){Lt(),Tt()},ta.round=function(n,t){return t?Math.round(n*(t=Math.pow(10,t)))/t:Math.round(n)};var uc=["y","z","a","f","p","n","\xb5","m","","k","M","G","T","P","E","Z","Y"].map(Dt);ta.formatPrefix=function(n,t){var e=0;return n&&(0>n&&(n*=-1),t&&(n=ta.round(n,Rt(n,t))),e=1+Math.floor(1e-12+Math.log(n)/Math.LN10),e=Math.max(-24,Math.min(24,3*Math.floor((e-1)/3)))),uc[8+e/3]};var ic=/(?:([^{])?([<>=^]))?([+\- ])?([$#])?(0)?(\d+)?(,)?(\.-?\d+)?([a-z%])?/i,oc=ta.map({b:function(n){return n.toString(2)},c:function(n){return String.fromCharCode(n)},o:function(n){return n.toString(8)},x:function(n){return n.toString(16)},X:function(n){return n.toString(16).toUpperCase()},g:function(n,t){return n.toPrecision(t)},e:function(n,t){return n.toExponential(t)},f:function(n,t){return n.toFixed(t)},r:function(n,t){return(n=ta.round(n,Rt(n,t))).toFixed(Math.max(0,Math.min(20,Rt(n*(1+1e-15),t))))}}),ac=ta.time={},cc=Date;jt.prototype={getDate:function(){return this._.getUTCDate()},getDay:function(){return this._.getUTCDay()},getFullYear:function(){return this._.getUTCFullYear()},getHours:function(){return this._.getUTCHours()},getMilliseconds:function(){return this._.getUTCMilliseconds()},getMinutes:function(){return this._.getUTCMinutes()},getMonth:function(){return this._.getUTCMonth()},getSeconds:function(){return this._.getUTCSeconds()},getTime:function(){return this._.getTime()},getTimezoneOffset:function(){return 0},valueOf:function(){return this._.valueOf()},setDate:function(){lc.setUTCDate.apply(this._,arguments)},setDay:function(){lc.setUTCDay.apply(this._,arguments)},setFullYear:function(){lc.setUTCFullYear.apply(this._,arguments)},setHours:function(){lc.setUTCHours.apply(this._,arguments)},setMilliseconds:function(){lc.setUTCMilliseconds.apply(this._,arguments)},setMinutes:function(){lc.setUTCMinutes.apply(this._,arguments)},setMonth:function(){lc.setUTCMonth.apply(this._,arguments)},setSeconds:function(){lc.setUTCSeconds.apply(this._,arguments)},setTime:function(){lc.setTime.apply(this._,arguments)}};var lc=Date.prototype;ac.year=Ft(function(n){return n=ac.day(n),n.setMonth(0,1),n},function(n,t){n.setFullYear(n.getFullYear()+t)},function(n){return n.getFullYear()}),ac.years=ac.year.range,ac.years.utc=ac.year.utc.range,ac.day=Ft(function(n){var t=new cc(2e3,0);return t.setFullYear(n.getFullYear(),n.getMonth(),n.getDate()),t},function(n,t){n.setDate(n.getDate()+t)},function(n){return n.getDate()-1}),ac.days=ac.day.range,ac.days.utc=ac.day.utc.range,ac.dayOfYear=function(n){var t=ac.year(n);return Math.floor((n-t-6e4*(n.getTimezoneOffset()-t.getTimezoneOffset()))/864e5)},["sunday","monday","tuesday","wednesday","thursday","friday","saturday"].forEach(function(n,t){t=7-t;var e=ac[n]=Ft(function(n){return(n=ac.day(n)).setDate(n.getDate()-(n.getDay()+t)%7),n},function(n,t){n.setDate(n.getDate()+7*Math.floor(t))},function(n){var e=ac.year(n).getDay();return Math.floor((ac.dayOfYear(n)+(e+t)%7)/7)-(e!==t)});ac[n+"s"]=e.range,ac[n+"s"].utc=e.utc.range,ac[n+"OfYear"]=function(n){var e=ac.year(n).getDay();return Math.floor((ac.dayOfYear(n)+(e+t)%7)/7)}}),ac.week=ac.sunday,ac.weeks=ac.sunday.range,ac.weeks.utc=ac.sunday.utc.range,ac.weekOfYear=ac.sundayOfYear;var sc={"-":"",_:" ",0:"0"},fc=/^\s*\d+/,hc=/^%/;ta.locale=function(n){return{numberFormat:Pt(n),timeFormat:Ot(n)}};var gc=ta.locale({decimal:".",thousands:",",grouping:[3],currency:["$",""],dateTime:"%a %b %e %X %Y",date:"%m/%d/%Y",time:"%H:%M:%S",periods:["AM","PM"],days:["Sunday","Monday","Tuesday","Wednesday","Thursday","Friday","Saturday"],shortDays:["Sun","Mon","Tue","Wed","Thu","Fri","Sat"],months:["January","February","March","April","May","June","July","August","September","October","November","December"],shortMonths:["Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"]});ta.format=gc.numberFormat,ta.geo={},ce.prototype={s:0,t:0,add:function(n){le(n,this.t,pc),le(pc.s,this.s,this),this.s?this.t+=pc.t:this.s=pc.t
			},reset:function(){this.s=this.t=0},valueOf:function(){return this.s}};var pc=new ce;ta.geo.stream=function(n,t){n&&vc.hasOwnProperty(n.type)?vc[n.type](n,t):se(n,t)};var vc={Feature:function(n,t){se(n.geometry,t)},FeatureCollection:function(n,t){for(var e=n.features,r=-1,u=e.length;++r<u;)se(e[r].geometry,t)}},dc={Sphere:function(n,t){t.sphere()},Point:function(n,t){n=n.coordinates,t.point(n[0],n[1],n[2])},MultiPoint:function(n,t){for(var e=n.coordinates,r=-1,u=e.length;++r<u;)n=e[r],t.point(n[0],n[1],n[2])},LineString:function(n,t){fe(n.coordinates,t,0)},MultiLineString:function(n,t){for(var e=n.coordinates,r=-1,u=e.length;++r<u;)fe(e[r],t,0)},Polygon:function(n,t){he(n.coordinates,t)},MultiPolygon:function(n,t){for(var e=n.coordinates,r=-1,u=e.length;++r<u;)he(e[r],t)},GeometryCollection:function(n,t){for(var e=n.geometries,r=-1,u=e.length;++r<u;)se(e[r],t)}};ta.geo.area=function(n){return mc=0,ta.geo.stream(n,Mc),mc};var mc,yc=new ce,Mc={sphere:function(){mc+=4*qa},point:b,lineStart:b,lineEnd:b,polygonStart:function(){yc.reset(),Mc.lineStart=ge},polygonEnd:function(){var n=2*yc;mc+=0>n?4*qa+n:n,Mc.lineStart=Mc.lineEnd=Mc.point=b}};ta.geo.bounds=function(){function n(n,t){M.push(x=[s=n,h=n]),f>t&&(f=t),t>g&&(g=t)}function t(t,e){var r=pe([t*Da,e*Da]);if(m){var u=de(m,r),i=[u[1],-u[0],0],o=de(i,u);Me(o),o=xe(o);var c=t-p,l=c>0?1:-1,v=o[0]*Pa*l,d=ga(c)>180;if(d^(v>l*p&&l*t>v)){var y=o[1]*Pa;y>g&&(g=y)}else if(v=(v+360)%360-180,d^(v>l*p&&l*t>v)){var y=-o[1]*Pa;f>y&&(f=y)}else f>e&&(f=e),e>g&&(g=e);d?p>t?a(s,t)>a(s,h)&&(h=t):a(t,h)>a(s,h)&&(s=t):h>=s?(s>t&&(s=t),t>h&&(h=t)):t>p?a(s,t)>a(s,h)&&(h=t):a(t,h)>a(s,h)&&(s=t)}else n(t,e);m=r,p=t}function e(){b.point=t}function r(){x[0]=s,x[1]=h,b.point=n,m=null}function u(n,e){if(m){var r=n-p;y+=ga(r)>180?r+(r>0?360:-360):r}else v=n,d=e;Mc.point(n,e),t(n,e)}function i(){Mc.lineStart()}function o(){u(v,d),Mc.lineEnd(),ga(y)>Ca&&(s=-(h=180)),x[0]=s,x[1]=h,m=null}function a(n,t){return(t-=n)<0?t+360:t}function c(n,t){return n[0]-t[0]}function l(n,t){return t[0]<=t[1]?t[0]<=n&&n<=t[1]:n<t[0]||t[1]<n}var s,f,h,g,p,v,d,m,y,M,x,b={point:n,lineStart:e,lineEnd:r,polygonStart:function(){b.point=u,b.lineStart=i,b.lineEnd=o,y=0,Mc.polygonStart()},polygonEnd:function(){Mc.polygonEnd(),b.point=n,b.lineStart=e,b.lineEnd=r,0>yc?(s=-(h=180),f=-(g=90)):y>Ca?g=90:-Ca>y&&(f=-90),x[0]=s,x[1]=h}};return function(n){g=h=-(s=f=1/0),M=[],ta.geo.stream(n,b);var t=M.length;if(t){M.sort(c);for(var e,r=1,u=M[0],i=[u];t>r;++r)e=M[r],l(e[0],u)||l(e[1],u)?(a(u[0],e[1])>a(u[0],u[1])&&(u[1]=e[1]),a(e[0],u[1])>a(u[0],u[1])&&(u[0]=e[0])):i.push(u=e);for(var o,e,p=-1/0,t=i.length-1,r=0,u=i[t];t>=r;u=e,++r)e=i[r],(o=a(u[1],e[0]))>p&&(p=o,s=e[0],h=u[1])}return M=x=null,1/0===s||1/0===f?[[0/0,0/0],[0/0,0/0]]:[[s,f],[h,g]]}}(),ta.geo.centroid=function(n){xc=bc=_c=wc=Sc=kc=Ec=Ac=Nc=Cc=zc=0,ta.geo.stream(n,qc);var t=Nc,e=Cc,r=zc,u=t*t+e*e+r*r;return za>u&&(t=kc,e=Ec,r=Ac,Ca>bc&&(t=_c,e=wc,r=Sc),u=t*t+e*e+r*r,za>u)?[0/0,0/0]:[Math.atan2(e,t)*Pa,tt(r/Math.sqrt(u))*Pa]};var xc,bc,_c,wc,Sc,kc,Ec,Ac,Nc,Cc,zc,qc={sphere:b,point:_e,lineStart:Se,lineEnd:ke,polygonStart:function(){qc.lineStart=Ee},polygonEnd:function(){qc.lineStart=Se}},Lc=Le(Ne,Pe,je,[-qa,-qa/2]),Tc=1e9;ta.geo.clipExtent=function(){var n,t,e,r,u,i,o={stream:function(n){return u&&(u.valid=!1),u=i(n),u.valid=!0,u},extent:function(a){return arguments.length?(i=Ie(n=+a[0][0],t=+a[0][1],e=+a[1][0],r=+a[1][1]),u&&(u.valid=!1,u=null),o):[[n,t],[e,r]]}};return o.extent([[0,0],[960,500]])},(ta.geo.conicEqualArea=function(){return Ye(Ze)}).raw=Ze,ta.geo.albers=function(){return ta.geo.conicEqualArea().rotate([96,0]).center([-.6,38.7]).parallels([29.5,45.5]).scale(1070)},ta.geo.albersUsa=function(){function n(n){var i=n[0],o=n[1];return t=null,e(i,o),t||(r(i,o),t)||u(i,o),t}var t,e,r,u,i=ta.geo.albers(),o=ta.geo.conicEqualArea().rotate([154,0]).center([-2,58.5]).parallels([55,65]),a=ta.geo.conicEqualArea().rotate([157,0]).center([-3,19.9]).parallels([8,18]),c={point:function(n,e){t=[n,e]}};return n.invert=function(n){var t=i.scale(),e=i.translate(),r=(n[0]-e[0])/t,u=(n[1]-e[1])/t;return(u>=.12&&.234>u&&r>=-.425&&-.214>r?o:u>=.166&&.234>u&&r>=-.214&&-.115>r?a:i).invert(n)},n.stream=function(n){var t=i.stream(n),e=o.stream(n),r=a.stream(n);return{point:function(n,u){t.point(n,u),e.point(n,u),r.point(n,u)},sphere:function(){t.sphere(),e.sphere(),r.sphere()},lineStart:function(){t.lineStart(),e.lineStart(),r.lineStart()},lineEnd:function(){t.lineEnd(),e.lineEnd(),r.lineEnd()},polygonStart:function(){t.polygonStart(),e.polygonStart(),r.polygonStart()},polygonEnd:function(){t.polygonEnd(),e.polygonEnd(),r.polygonEnd()}}},n.precision=function(t){return arguments.length?(i.precision(t),o.precision(t),a.precision(t),n):i.precision()},n.scale=function(t){return arguments.length?(i.scale(t),o.scale(.35*t),a.scale(t),n.translate(i.translate())):i.scale()},n.translate=function(t){if(!arguments.length)return i.translate();var l=i.scale(),s=+t[0],f=+t[1];return e=i.translate(t).clipExtent([[s-.455*l,f-.238*l],[s+.455*l,f+.238*l]]).stream(c).point,r=o.translate([s-.307*l,f+.201*l]).clipExtent([[s-.425*l+Ca,f+.12*l+Ca],[s-.214*l-Ca,f+.234*l-Ca]]).stream(c).point,u=a.translate([s-.205*l,f+.212*l]).clipExtent([[s-.214*l+Ca,f+.166*l+Ca],[s-.115*l-Ca,f+.234*l-Ca]]).stream(c).point,n},n.scale(1070)};var Rc,Dc,Pc,Uc,jc,Fc,Hc={point:b,lineStart:b,lineEnd:b,polygonStart:function(){Dc=0,Hc.lineStart=Ve},polygonEnd:function(){Hc.lineStart=Hc.lineEnd=Hc.point=b,Rc+=ga(Dc/2)}},Oc={point:Xe,lineStart:b,lineEnd:b,polygonStart:b,polygonEnd:b},Ic={point:We,lineStart:Je,lineEnd:Ge,polygonStart:function(){Ic.lineStart=Ke},polygonEnd:function(){Ic.point=We,Ic.lineStart=Je,Ic.lineEnd=Ge}};ta.geo.path=function(){function n(n){return n&&("function"==typeof a&&i.pointRadius(+a.apply(this,arguments)),o&&o.valid||(o=u(i)),ta.geo.stream(n,o)),i.result()}function t(){return o=null,n}var e,r,u,i,o,a=4.5;return n.area=function(n){return Rc=0,ta.geo.stream(n,u(Hc)),Rc},n.centroid=function(n){return _c=wc=Sc=kc=Ec=Ac=Nc=Cc=zc=0,ta.geo.stream(n,u(Ic)),zc?[Nc/zc,Cc/zc]:Ac?[kc/Ac,Ec/Ac]:Sc?[_c/Sc,wc/Sc]:[0/0,0/0]},n.bounds=function(n){return jc=Fc=-(Pc=Uc=1/0),ta.geo.stream(n,u(Oc)),[[Pc,Uc],[jc,Fc]]},n.projection=function(n){return arguments.length?(u=(e=n)?n.stream||tr(n):y,t()):e},n.context=function(n){return arguments.length?(i=null==(r=n)?new $e:new Qe(n),"function"!=typeof a&&i.pointRadius(a),t()):r},n.pointRadius=function(t){return arguments.length?(a="function"==typeof t?t:(i.pointRadius(+t),+t),n):a},n.projection(ta.geo.albersUsa()).context(null)},ta.geo.transform=function(n){return{stream:function(t){var e=new er(t);for(var r in n)e[r]=n[r];return e}}},er.prototype={point:function(n,t){this.stream.point(n,t)},sphere:function(){this.stream.sphere()},lineStart:function(){this.stream.lineStart()},lineEnd:function(){this.stream.lineEnd()},polygonStart:function(){this.stream.polygonStart()},polygonEnd:function(){this.stream.polygonEnd()}},ta.geo.projection=ur,ta.geo.projectionMutator=ir,(ta.geo.equirectangular=function(){return ur(ar)}).raw=ar.invert=ar,ta.geo.rotation=function(n){function t(t){return t=n(t[0]*Da,t[1]*Da),t[0]*=Pa,t[1]*=Pa,t}return n=lr(n[0]%360*Da,n[1]*Da,n.length>2?n[2]*Da:0),t.invert=function(t){return t=n.invert(t[0]*Da,t[1]*Da),t[0]*=Pa,t[1]*=Pa,t},t},cr.invert=ar,ta.geo.circle=function(){function n(){var n="function"==typeof r?r.apply(this,arguments):r,t=lr(-n[0]*Da,-n[1]*Da,0).invert,u=[];return e(null,null,1,{point:function(n,e){u.push(n=t(n,e)),n[0]*=Pa,n[1]*=Pa}}),{type:"Polygon",coordinates:[u]}}var t,e,r=[0,0],u=6;return n.origin=function(t){return arguments.length?(r=t,n):r},n.angle=function(r){return arguments.length?(e=gr((t=+r)*Da,u*Da),n):t},n.precision=function(r){return arguments.length?(e=gr(t*Da,(u=+r)*Da),n):u},n.angle(90)},ta.geo.distance=function(n,t){var e,r=(t[0]-n[0])*Da,u=n[1]*Da,i=t[1]*Da,o=Math.sin(r),a=Math.cos(r),c=Math.sin(u),l=Math.cos(u),s=Math.sin(i),f=Math.cos(i);return Math.atan2(Math.sqrt((e=f*o)*e+(e=l*s-c*f*a)*e),c*s+l*f*a)},ta.geo.graticule=function(){function n(){return{type:"MultiLineString",coordinates:t()}}function t(){return ta.range(Math.ceil(i/d)*d,u,d).map(h).concat(ta.range(Math.ceil(l/m)*m,c,m).map(g)).concat(ta.range(Math.ceil(r/p)*p,e,p).filter(function(n){return ga(n%d)>Ca}).map(s)).concat(ta.range(Math.ceil(a/v)*v,o,v).filter(function(n){return ga(n%m)>Ca}).map(f))}var e,r,u,i,o,a,c,l,s,f,h,g,p=10,v=p,d=90,m=360,y=2.5;return n.lines=function(){return t().map(function(n){return{type:"LineString",coordinates:n}})},n.outline=function(){return{type:"Polygon",coordinates:[h(i).concat(g(c).slice(1),h(u).reverse().slice(1),g(l).reverse().slice(1))]}},n.extent=function(t){return arguments.length?n.majorExtent(t).minorExtent(t):n.minorExtent()},n.majorExtent=function(t){return arguments.length?(i=+t[0][0],u=+t[1][0],l=+t[0][1],c=+t[1][1],i>u&&(t=i,i=u,u=t),l>c&&(t=l,l=c,c=t),n.precision(y)):[[i,l],[u,c]]},n.minorExtent=function(t){return arguments.length?(r=+t[0][0],e=+t[1][0],a=+t[0][1],o=+t[1][1],r>e&&(t=r,r=e,e=t),a>o&&(t=a,a=o,o=t),n.precision(y)):[[r,a],[e,o]]},n.step=function(t){return arguments.length?n.majorStep(t).minorStep(t):n.minorStep()},n.majorStep=function(t){return arguments.length?(d=+t[0],m=+t[1],n):[d,m]},n.minorStep=function(t){return arguments.length?(p=+t[0],v=+t[1],n):[p,v]},n.precision=function(t){return arguments.length?(y=+t,s=vr(a,o,90),f=dr(r,e,y),h=vr(l,c,90),g=dr(i,u,y),n):y},n.majorExtent([[-180,-90+Ca],[180,90-Ca]]).minorExtent([[-180,-80-Ca],[180,80+Ca]])},ta.geo.greatArc=function(){function n(){return{type:"LineString",coordinates:[t||r.apply(this,arguments),e||u.apply(this,arguments)]}}var t,e,r=mr,u=yr;return n.distance=function(){return ta.geo.distance(t||r.apply(this,arguments),e||u.apply(this,arguments))},n.source=function(e){return arguments.length?(r=e,t="function"==typeof e?null:e,n):r},n.target=function(t){return arguments.length?(u=t,e="function"==typeof t?null:t,n):u},n.precision=function(){return arguments.length?n:0},n},ta.geo.interpolate=function(n,t){return Mr(n[0]*Da,n[1]*Da,t[0]*Da,t[1]*Da)},ta.geo.length=function(n){return Yc=0,ta.geo.stream(n,Zc),Yc};var Yc,Zc={sphere:b,point:b,lineStart:xr,lineEnd:b,polygonStart:b,polygonEnd:b},Vc=br(function(n){return Math.sqrt(2/(1+n))},function(n){return 2*Math.asin(n/2)});(ta.geo.azimuthalEqualArea=function(){return ur(Vc)}).raw=Vc;var Xc=br(function(n){var t=Math.acos(n);return t&&t/Math.sin(t)},y);(ta.geo.azimuthalEquidistant=function(){return ur(Xc)}).raw=Xc,(ta.geo.conicConformal=function(){return Ye(_r)}).raw=_r,(ta.geo.conicEquidistant=function(){return Ye(wr)}).raw=wr;var $c=br(function(n){return 1/n},Math.atan);(ta.geo.gnomonic=function(){return ur($c)}).raw=$c,Sr.invert=function(n,t){return[n,2*Math.atan(Math.exp(t))-Ra]},(ta.geo.mercator=function(){return kr(Sr)}).raw=Sr;var Bc=br(function(){return 1},Math.asin);(ta.geo.orthographic=function(){return ur(Bc)}).raw=Bc;var Wc=br(function(n){return 1/(1+n)},function(n){return 2*Math.atan(n)});(ta.geo.stereographic=function(){return ur(Wc)}).raw=Wc,Er.invert=function(n,t){return[-t,2*Math.atan(Math.exp(n))-Ra]},(ta.geo.transverseMercator=function(){var n=kr(Er),t=n.center,e=n.rotate;return n.center=function(n){return n?t([-n[1],n[0]]):(n=t(),[n[1],-n[0]])},n.rotate=function(n){return n?e([n[0],n[1],n.length>2?n[2]+90:90]):(n=e(),[n[0],n[1],n[2]-90])},e([0,0,90])}).raw=Er,ta.geom={},ta.geom.hull=function(n){function t(n){if(n.length<3)return[];var t,u=Et(e),i=Et(r),o=n.length,a=[],c=[];for(t=0;o>t;t++)a.push([+u.call(this,n[t],t),+i.call(this,n[t],t),t]);for(a.sort(zr),t=0;o>t;t++)c.push([a[t][0],-a[t][1]]);var l=Cr(a),s=Cr(c),f=s[0]===l[0],h=s[s.length-1]===l[l.length-1],g=[];for(t=l.length-1;t>=0;--t)g.push(n[a[l[t]][2]]);for(t=+f;t<s.length-h;++t)g.push(n[a[s[t]][2]]);return g}var e=Ar,r=Nr;return arguments.length?t(n):(t.x=function(n){return arguments.length?(e=n,t):e},t.y=function(n){return arguments.length?(r=n,t):r},t)},ta.geom.polygon=function(n){return ya(n,Jc),n};var Jc=ta.geom.polygon.prototype=[];Jc.area=function(){for(var n,t=-1,e=this.length,r=this[e-1],u=0;++t<e;)n=r,r=this[t],u+=n[1]*r[0]-n[0]*r[1];return.5*u},Jc.centroid=function(n){var t,e,r=-1,u=this.length,i=0,o=0,a=this[u-1];for(arguments.length||(n=-1/(6*this.area()));++r<u;)t=a,a=this[r],e=t[0]*a[1]-a[0]*t[1],i+=(t[0]+a[0])*e,o+=(t[1]+a[1])*e;return[i*n,o*n]},Jc.clip=function(n){for(var t,e,r,u,i,o,a=Tr(n),c=-1,l=this.length-Tr(this),s=this[l-1];++c<l;){for(t=n.slice(),n.length=0,u=this[c],i=t[(r=t.length-a)-1],e=-1;++e<r;)o=t[e],qr(o,s,u)?(qr(i,s,u)||n.push(Lr(i,o,s,u)),n.push(o)):qr(i,s,u)&&n.push(Lr(i,o,s,u)),i=o;a&&n.push(n[0]),s=u}return n};var Gc,Kc,Qc,nl,tl,el=[],rl=[];Or.prototype.prepare=function(){for(var n,t=this.edges,e=t.length;e--;)n=t[e].edge,n.b&&n.a||t.splice(e,1);return t.sort(Yr),t.length},Qr.prototype={start:function(){return this.edge.l===this.site?this.edge.a:this.edge.b},end:function(){return this.edge.l===this.site?this.edge.b:this.edge.a}},nu.prototype={insert:function(n,t){var e,r,u;if(n){if(t.P=n,t.N=n.N,n.N&&(n.N.P=t),n.N=t,n.R){for(n=n.R;n.L;)n=n.L;n.L=t}else n.R=t;e=n}else this._?(n=uu(this._),t.P=null,t.N=n,n.P=n.L=t,e=n):(t.P=t.N=null,this._=t,e=null);for(t.L=t.R=null,t.U=e,t.C=!0,n=t;e&&e.C;)r=e.U,e===r.L?(u=r.R,u&&u.C?(e.C=u.C=!1,r.C=!0,n=r):(n===e.R&&(eu(this,e),n=e,e=n.U),e.C=!1,r.C=!0,ru(this,r))):(u=r.L,u&&u.C?(e.C=u.C=!1,r.C=!0,n=r):(n===e.L&&(ru(this,e),n=e,e=n.U),e.C=!1,r.C=!0,eu(this,r))),e=n.U;this._.C=!1},remove:function(n){n.N&&(n.N.P=n.P),n.P&&(n.P.N=n.N),n.N=n.P=null;var t,e,r,u=n.U,i=n.L,o=n.R;if(e=i?o?uu(o):i:o,u?u.L===n?u.L=e:u.R=e:this._=e,i&&o?(r=e.C,e.C=n.C,e.L=i,i.U=e,e!==o?(u=e.U,e.U=n.U,n=e.R,u.L=n,e.R=o,o.U=e):(e.U=u,u=e,n=e.R)):(r=n.C,n=e),n&&(n.U=u),!r){if(n&&n.C)return void(n.C=!1);do{if(n===this._)break;if(n===u.L){if(t=u.R,t.C&&(t.C=!1,u.C=!0,eu(this,u),t=u.R),t.L&&t.L.C||t.R&&t.R.C){t.R&&t.R.C||(t.L.C=!1,t.C=!0,ru(this,t),t=u.R),t.C=u.C,u.C=t.R.C=!1,eu(this,u),n=this._;break}}else if(t=u.L,t.C&&(t.C=!1,u.C=!0,ru(this,u),t=u.L),t.L&&t.L.C||t.R&&t.R.C){t.L&&t.L.C||(t.R.C=!1,t.C=!0,eu(this,t),t=u.L),t.C=u.C,u.C=t.L.C=!1,ru(this,u),n=this._;break}t.C=!0,n=u,u=u.U}while(!n.C);n&&(n.C=!1)}}},ta.geom.voronoi=function(n){function t(n){var t=new Array(n.length),r=a[0][0],u=a[0][1],i=a[1][0],o=a[1][1];return iu(e(n),a).cells.forEach(function(e,a){var c=e.edges,l=e.site,s=t[a]=c.length?c.map(function(n){var t=n.start();return[t.x,t.y]}):l.x>=r&&l.x<=i&&l.y>=u&&l.y<=o?[[r,o],[i,o],[i,u],[r,u]]:[];s.point=n[a]}),t}function e(n){return n.map(function(n,t){return{x:Math.round(i(n,t)/Ca)*Ca,y:Math.round(o(n,t)/Ca)*Ca,i:t}})}var r=Ar,u=Nr,i=r,o=u,a=ul;return n?t(n):(t.links=function(n){return iu(e(n)).edges.filter(function(n){return n.l&&n.r}).map(function(t){return{source:n[t.l.i],target:n[t.r.i]}})},t.triangles=function(n){var t=[];return iu(e(n)).cells.forEach(function(e,r){for(var u,i,o=e.site,a=e.edges.sort(Yr),c=-1,l=a.length,s=a[l-1].edge,f=s.l===o?s.r:s.l;++c<l;)u=s,i=f,s=a[c].edge,f=s.l===o?s.r:s.l,r<i.i&&r<f.i&&au(o,i,f)<0&&t.push([n[r],n[i.i],n[f.i]])}),t},t.x=function(n){return arguments.length?(i=Et(r=n),t):r},t.y=function(n){return arguments.length?(o=Et(u=n),t):u},t.clipExtent=function(n){return arguments.length?(a=null==n?ul:n,t):a===ul?null:a},t.size=function(n){return arguments.length?t.clipExtent(n&&[[0,0],n]):a===ul?null:a&&a[1]},t)};var ul=[[-1e6,-1e6],[1e6,1e6]];ta.geom.delaunay=function(n){return ta.geom.voronoi().triangles(n)},ta.geom.quadtree=function(n,t,e,r,u){function i(n){function i(n,t,e,r,u,i,o,a){if(!isNaN(e)&&!isNaN(r))if(n.leaf){var c=n.x,s=n.y;if(null!=c)if(ga(c-e)+ga(s-r)<.01)l(n,t,e,r,u,i,o,a);else{var f=n.point;n.x=n.y=n.point=null,l(n,f,c,s,u,i,o,a),l(n,t,e,r,u,i,o,a)}else n.x=e,n.y=r,n.point=t}else l(n,t,e,r,u,i,o,a)}function l(n,t,e,r,u,o,a,c){var l=.5*(u+a),s=.5*(o+c),f=e>=l,h=r>=s,g=h<<1|f;n.leaf=!1,n=n.nodes[g]||(n.nodes[g]=su()),f?u=l:a=l,h?o=s:c=s,i(n,t,e,r,u,o,a,c)}var s,f,h,g,p,v,d,m,y,M=Et(a),x=Et(c);if(null!=t)v=t,d=e,m=r,y=u;else if(m=y=-(v=d=1/0),f=[],h=[],p=n.length,o)for(g=0;p>g;++g)s=n[g],s.x<v&&(v=s.x),s.y<d&&(d=s.y),s.x>m&&(m=s.x),s.y>y&&(y=s.y),f.push(s.x),h.push(s.y);else for(g=0;p>g;++g){var b=+M(s=n[g],g),_=+x(s,g);v>b&&(v=b),d>_&&(d=_),b>m&&(m=b),_>y&&(y=_),f.push(b),h.push(_)}var w=m-v,S=y-d;w>S?y=d+w:m=v+S;var k=su();if(k.add=function(n){i(k,n,+M(n,++g),+x(n,g),v,d,m,y)},k.visit=function(n){fu(n,k,v,d,m,y)},k.find=function(n){return hu(k,n[0],n[1],v,d,m,y)},g=-1,null==t){for(;++g<p;)i(k,n[g],f[g],h[g],v,d,m,y);--g}else n.forEach(k.add);return f=h=n=s=null,k}var o,a=Ar,c=Nr;return(o=arguments.length)?(a=cu,c=lu,3===o&&(u=e,r=t,e=t=0),i(n)):(i.x=function(n){return arguments.length?(a=n,i):a},i.y=function(n){return arguments.length?(c=n,i):c},i.extent=function(n){return arguments.length?(null==n?t=e=r=u=null:(t=+n[0][0],e=+n[0][1],r=+n[1][0],u=+n[1][1]),i):null==t?null:[[t,e],[r,u]]},i.size=function(n){return arguments.length?(null==n?t=e=r=u=null:(t=e=0,r=+n[0],u=+n[1]),i):null==t?null:[r-t,u-e]},i)},ta.interpolateRgb=gu,ta.interpolateObject=pu,ta.interpolateNumber=vu,ta.interpolateString=du;var il=/[-+]?(?:\d+\.?\d*|\.?\d+)(?:[eE][-+]?\d+)?/g,ol=new RegExp(il.source,"g");ta.interpolate=mu,ta.interpolators=[function(n,t){var e=typeof t;return("string"===e?Ga.has(t)||/^(#|rgb\(|hsl\()/.test(t)?gu:du:t instanceof ot?gu:Array.isArray(t)?yu:"object"===e&&isNaN(t)?pu:vu)(n,t)}],ta.interpolateArray=yu;var al=function(){return y},cl=ta.map({linear:al,poly:ku,quad:function(){return _u},cubic:function(){return wu},sin:function(){return Eu},exp:function(){return Au},circle:function(){return Nu},elastic:Cu,back:zu,bounce:function(){return qu}}),ll=ta.map({"in":y,out:xu,"in-out":bu,"out-in":function(n){return bu(xu(n))}});ta.ease=function(n){var t=n.indexOf("-"),e=t>=0?n.slice(0,t):n,r=t>=0?n.slice(t+1):"in";return e=cl.get(e)||al,r=ll.get(r)||y,Mu(r(e.apply(null,ea.call(arguments,1))))},ta.interpolateHcl=Lu,ta.interpolateHsl=Tu,ta.interpolateLab=Ru,ta.interpolateRound=Du,ta.transform=function(n){var t=ua.createElementNS(ta.ns.prefix.svg,"g");return(ta.transform=function(n){if(null!=n){t.setAttribute("transform",n);var e=t.transform.baseVal.consolidate()}return new Pu(e?e.matrix:sl)})(n)},Pu.prototype.toString=function(){return"translate("+this.translate+")rotate("+this.rotate+")skewX("+this.skew+")scale("+this.scale+")"};var sl={a:1,b:0,c:0,d:1,e:0,f:0};ta.interpolateTransform=Hu,ta.layout={},ta.layout.bundle=function(){return function(n){for(var t=[],e=-1,r=n.length;++e<r;)t.push(Yu(n[e]));return t}},ta.layout.chord=function(){function n(){var n,l,f,h,g,p={},v=[],d=ta.range(i),m=[];for(e=[],r=[],n=0,h=-1;++h<i;){for(l=0,g=-1;++g<i;)l+=u[h][g];v.push(l),m.push(ta.range(i)),n+=l}for(o&&d.sort(function(n,t){return o(v[n],v[t])}),a&&m.forEach(function(n,t){n.sort(function(n,e){return a(u[t][n],u[t][e])})}),n=(La-s*i)/n,l=0,h=-1;++h<i;){for(f=l,g=-1;++g<i;){var y=d[h],M=m[y][g],x=u[y][M],b=l,_=l+=x*n;p[y+"-"+M]={index:y,subindex:M,startAngle:b,endAngle:_,value:x}}r[y]={index:y,startAngle:f,endAngle:l,value:(l-f)/n},l+=s}for(h=-1;++h<i;)for(g=h-1;++g<i;){var w=p[h+"-"+g],S=p[g+"-"+h];(w.value||S.value)&&e.push(w.value<S.value?{source:S,target:w}:{source:w,target:S})}c&&t()}function t(){e.sort(function(n,t){return c((n.source.value+n.target.value)/2,(t.source.value+t.target.value)/2)})}var e,r,u,i,o,a,c,l={},s=0;return l.matrix=function(n){return arguments.length?(i=(u=n)&&u.length,e=r=null,l):u},l.padding=function(n){return arguments.length?(s=n,e=r=null,l):s},l.sortGroups=function(n){return arguments.length?(o=n,e=r=null,l):o},l.sortSubgroups=function(n){return arguments.length?(a=n,e=null,l):a},l.sortChords=function(n){return arguments.length?(c=n,e&&t(),l):c},l.chords=function(){return e||n(),e},l.groups=function(){return r||n(),r},l},ta.layout.force=function(){function n(n){return function(t,e,r,u){if(t.point!==n){var i=t.cx-n.x,o=t.cy-n.y,a=u-e,c=i*i+o*o;if(c>a*a/d){if(p>c){var l=t.charge/c;n.px-=i*l,n.py-=o*l}return!0}if(t.point&&c&&p>c){var l=t.pointCharge/c;n.px-=i*l,n.py-=o*l}}return!t.charge}}function t(n){n.px=ta.event.x,n.py=ta.event.y,a.resume()}var e,r,u,i,o,a={},c=ta.dispatch("start","tick","end"),l=[1,1],s=.9,f=fl,h=hl,g=-30,p=gl,v=.1,d=.64,m=[],M=[];return a.tick=function(){if((r*=.99)<.005)return c.end({type:"end",alpha:r=0}),!0;var t,e,a,f,h,p,d,y,x,b=m.length,_=M.length;for(e=0;_>e;++e)a=M[e],f=a.source,h=a.target,y=h.x-f.x,x=h.y-f.y,(p=y*y+x*x)&&(p=r*i[e]*((p=Math.sqrt(p))-u[e])/p,y*=p,x*=p,h.x-=y*(d=f.weight/(h.weight+f.weight)),h.y-=x*d,f.x+=y*(d=1-d),f.y+=x*d);if((d=r*v)&&(y=l[0]/2,x=l[1]/2,e=-1,d))for(;++e<b;)a=m[e],a.x+=(y-a.x)*d,a.y+=(x-a.y)*d;if(g)for(Ju(t=ta.geom.quadtree(m),r,o),e=-1;++e<b;)(a=m[e]).fixed||t.visit(n(a));for(e=-1;++e<b;)a=m[e],a.fixed?(a.x=a.px,a.y=a.py):(a.x-=(a.px-(a.px=a.x))*s,a.y-=(a.py-(a.py=a.y))*s);c.tick({type:"tick",alpha:r})},a.nodes=function(n){return arguments.length?(m=n,a):m},a.links=function(n){return arguments.length?(M=n,a):M},a.size=function(n){return arguments.length?(l=n,a):l},a.linkDistance=function(n){return arguments.length?(f="function"==typeof n?n:+n,a):f},a.distance=a.linkDistance,a.linkStrength=function(n){return arguments.length?(h="function"==typeof n?n:+n,a):h},a.friction=function(n){return arguments.length?(s=+n,a):s},a.charge=function(n){return arguments.length?(g="function"==typeof n?n:+n,a):g},a.chargeDistance=function(n){return arguments.length?(p=n*n,a):Math.sqrt(p)},a.gravity=function(n){return arguments.length?(v=+n,a):v},a.theta=function(n){return arguments.length?(d=n*n,a):Math.sqrt(d)},a.alpha=function(n){return arguments.length?(n=+n,r?r=n>0?n:0:n>0&&(c.start({type:"start",alpha:r=n}),ta.timer(a.tick)),a):r},a.start=function(){function n(n,r){if(!e){for(e=new Array(c),a=0;c>a;++a)e[a]=[];for(a=0;s>a;++a){var u=M[a];e[u.source.index].push(u.target),e[u.target.index].push(u.source)}}for(var i,o=e[t],a=-1,l=o.length;++a<l;)if(!isNaN(i=o[a][n]))return i;return Math.random()*r}var t,e,r,c=m.length,s=M.length,p=l[0],v=l[1];for(t=0;c>t;++t)(r=m[t]).index=t,r.weight=0;for(t=0;s>t;++t)r=M[t],"number"==typeof r.source&&(r.source=m[r.source]),"number"==typeof r.target&&(r.target=m[r.target]),++r.source.weight,++r.target.weight;for(t=0;c>t;++t)r=m[t],isNaN(r.x)&&(r.x=n("x",p)),isNaN(r.y)&&(r.y=n("y",v)),isNaN(r.px)&&(r.px=r.x),isNaN(r.py)&&(r.py=r.y);if(u=[],"function"==typeof f)for(t=0;s>t;++t)u[t]=+f.call(this,M[t],t);else for(t=0;s>t;++t)u[t]=f;if(i=[],"function"==typeof h)for(t=0;s>t;++t)i[t]=+h.call(this,M[t],t);else for(t=0;s>t;++t)i[t]=h;if(o=[],"function"==typeof g)for(t=0;c>t;++t)o[t]=+g.call(this,m[t],t);else for(t=0;c>t;++t)o[t]=g;return a.resume()},a.resume=function(){return a.alpha(.1)},a.stop=function(){return a.alpha(0)},a.drag=function(){return e||(e=ta.behavior.drag().origin(y).on("dragstart.force",Xu).on("drag.force",t).on("dragend.force",$u)),arguments.length?void this.on("mouseover.force",Bu).on("mouseout.force",Wu).call(e):e},ta.rebind(a,c,"on")};var fl=20,hl=1,gl=1/0;ta.layout.hierarchy=function(){function n(u){var i,o=[u],a=[];for(u.depth=0;null!=(i=o.pop());)if(a.push(i),(l=e.call(n,i,i.depth))&&(c=l.length)){for(var c,l,s;--c>=0;)o.push(s=l[c]),s.parent=i,s.depth=i.depth+1;r&&(i.value=0),i.children=l}else r&&(i.value=+r.call(n,i,i.depth)||0),delete i.children;return Qu(u,function(n){var e,u;t&&(e=n.children)&&e.sort(t),r&&(u=n.parent)&&(u.value+=n.value)}),a}var t=ei,e=ni,r=ti;return n.sort=function(e){return arguments.length?(t=e,n):t},n.children=function(t){return arguments.length?(e=t,n):e},n.value=function(t){return arguments.length?(r=t,n):r},n.revalue=function(t){return r&&(Ku(t,function(n){n.children&&(n.value=0)}),Qu(t,function(t){var e;t.children||(t.value=+r.call(n,t,t.depth)||0),(e=t.parent)&&(e.value+=t.value)})),t},n},ta.layout.partition=function(){function n(t,e,r,u){var i=t.children;if(t.x=e,t.y=t.depth*u,t.dx=r,t.dy=u,i&&(o=i.length)){var o,a,c,l=-1;for(r=t.value?r/t.value:0;++l<o;)n(a=i[l],e,c=a.value*r,u),e+=c}}function t(n){var e=n.children,r=0;if(e&&(u=e.length))for(var u,i=-1;++i<u;)r=Math.max(r,t(e[i]));return 1+r}function e(e,i){var o=r.call(this,e,i);return n(o[0],0,u[0],u[1]/t(o[0])),o}var r=ta.layout.hierarchy(),u=[1,1];return e.size=function(n){return arguments.length?(u=n,e):u},Gu(e,r)},ta.layout.pie=function(){function n(o){var a,c=o.length,l=o.map(function(e,r){return+t.call(n,e,r)}),s=+("function"==typeof r?r.apply(this,arguments):r),f=("function"==typeof u?u.apply(this,arguments):u)-s,h=Math.min(Math.abs(f)/c,+("function"==typeof i?i.apply(this,arguments):i)),g=h*(0>f?-1:1),p=(f-c*g)/ta.sum(l),v=ta.range(c),d=[];return null!=e&&v.sort(e===pl?function(n,t){return l[t]-l[n]}:function(n,t){return e(o[n],o[t])}),v.forEach(function(n){d[n]={data:o[n],value:a=l[n],startAngle:s,endAngle:s+=a*p+g,padAngle:h}}),d}var t=Number,e=pl,r=0,u=La,i=0;return n.value=function(e){return arguments.length?(t=e,n):t},n.sort=function(t){return arguments.length?(e=t,n):e},n.startAngle=function(t){return arguments.length?(r=t,n):r},n.endAngle=function(t){return arguments.length?(u=t,n):u},n.padAngle=function(t){return arguments.length?(i=t,n):i},n};var pl={};ta.layout.stack=function(){function n(a,c){if(!(h=a.length))return a;var l=a.map(function(e,r){return t.call(n,e,r)}),s=l.map(function(t){return t.map(function(t,e){return[i.call(n,t,e),o.call(n,t,e)]})}),f=e.call(n,s,c);l=ta.permute(l,f),s=ta.permute(s,f);var h,g,p,v,d=r.call(n,s,c),m=l[0].length;for(p=0;m>p;++p)for(u.call(n,l[0][p],v=d[p],s[0][p][1]),g=1;h>g;++g)u.call(n,l[g][p],v+=s[g-1][p][1],s[g][p][1]);return a}var t=y,e=ai,r=ci,u=oi,i=ui,o=ii;return n.values=function(e){return arguments.length?(t=e,n):t},n.order=function(t){return arguments.length?(e="function"==typeof t?t:vl.get(t)||ai,n):e},n.offset=function(t){return arguments.length?(r="function"==typeof t?t:dl.get(t)||ci,n):r},n.x=function(t){return arguments.length?(i=t,n):i},n.y=function(t){return arguments.length?(o=t,n):o},n.out=function(t){return arguments.length?(u=t,n):u},n};var vl=ta.map({"inside-out":function(n){var t,e,r=n.length,u=n.map(li),i=n.map(si),o=ta.range(r).sort(function(n,t){return u[n]-u[t]}),a=0,c=0,l=[],s=[];for(t=0;r>t;++t)e=o[t],c>a?(a+=i[e],l.push(e)):(c+=i[e],s.push(e));return s.reverse().concat(l)},reverse:function(n){return ta.range(n.length).reverse()},"default":ai}),dl=ta.map({silhouette:function(n){var t,e,r,u=n.length,i=n[0].length,o=[],a=0,c=[];for(e=0;i>e;++e){for(t=0,r=0;u>t;t++)r+=n[t][e][1];r>a&&(a=r),o.push(r)}for(e=0;i>e;++e)c[e]=(a-o[e])/2;return c},wiggle:function(n){var t,e,r,u,i,o,a,c,l,s=n.length,f=n[0],h=f.length,g=[];for(g[0]=c=l=0,e=1;h>e;++e){for(t=0,u=0;s>t;++t)u+=n[t][e][1];for(t=0,i=0,a=f[e][0]-f[e-1][0];s>t;++t){for(r=0,o=(n[t][e][1]-n[t][e-1][1])/(2*a);t>r;++r)o+=(n[r][e][1]-n[r][e-1][1])/a;i+=o*n[t][e][1]}g[e]=c-=u?i/u*a:0,l>c&&(l=c)}for(e=0;h>e;++e)g[e]-=l;return g},expand:function(n){var t,e,r,u=n.length,i=n[0].length,o=1/u,a=[];for(e=0;i>e;++e){for(t=0,r=0;u>t;t++)r+=n[t][e][1];if(r)for(t=0;u>t;t++)n[t][e][1]/=r;else for(t=0;u>t;t++)n[t][e][1]=o}for(e=0;i>e;++e)a[e]=0;return a},zero:ci});ta.layout.histogram=function(){function n(n,i){for(var o,a,c=[],l=n.map(e,this),s=r.call(this,l,i),f=u.call(this,s,l,i),i=-1,h=l.length,g=f.length-1,p=t?1:1/h;++i<g;)o=c[i]=[],o.dx=f[i+1]-(o.x=f[i]),o.y=0;if(g>0)for(i=-1;++i<h;)a=l[i],a>=s[0]&&a<=s[1]&&(o=c[ta.bisect(f,a,1,g)-1],o.y+=p,o.push(n[i]));return c}var t=!0,e=Number,r=pi,u=hi;return n.value=function(t){return arguments.length?(e=t,n):e},n.range=function(t){return arguments.length?(r=Et(t),n):r},n.bins=function(t){return arguments.length?(u="number"==typeof t?function(n){return gi(n,t)}:Et(t),n):u},n.frequency=function(e){return arguments.length?(t=!!e,n):t},n},ta.layout.pack=function(){function n(n,i){var o=e.call(this,n,i),a=o[0],c=u[0],l=u[1],s=null==t?Math.sqrt:"function"==typeof t?t:function(){return t};if(a.x=a.y=0,Qu(a,function(n){n.r=+s(n.value)}),Qu(a,Mi),r){var f=r*(t?1:Math.max(2*a.r/c,2*a.r/l))/2;Qu(a,function(n){n.r+=f}),Qu(a,Mi),Qu(a,function(n){n.r-=f})}return _i(a,c/2,l/2,t?1:1/Math.max(2*a.r/c,2*a.r/l)),o}var t,e=ta.layout.hierarchy().sort(vi),r=0,u=[1,1];return n.size=function(t){return arguments.length?(u=t,n):u},n.radius=function(e){return arguments.length?(t=null==e||"function"==typeof e?e:+e,n):t},n.padding=function(t){return arguments.length?(r=+t,n):r},Gu(n,e)},ta.layout.tree=function(){function n(n,u){var s=o.call(this,n,u),f=s[0],h=t(f);if(Qu(h,e),h.parent.m=-h.z,Ku(h,r),l)Ku(f,i);else{var g=f,p=f,v=f;Ku(f,function(n){n.x<g.x&&(g=n),n.x>p.x&&(p=n),n.depth>v.depth&&(v=n)});var d=a(g,p)/2-g.x,m=c[0]/(p.x+a(p,g)/2+d),y=c[1]/(v.depth||1);Ku(f,function(n){n.x=(n.x+d)*m,n.y=n.depth*y})}return s}function t(n){for(var t,e={A:null,children:[n]},r=[e];null!=(t=r.pop());)for(var u,i=t.children,o=0,a=i.length;a>o;++o)r.push((i[o]=u={_:i[o],parent:t,children:(u=i[o].children)&&u.slice()||[],A:null,a:null,z:0,m:0,c:0,s:0,t:null,i:o}).a=u);return e.children[0]}function e(n){var t=n.children,e=n.parent.children,r=n.i?e[n.i-1]:null;if(t.length){Ni(n);var i=(t[0].z+t[t.length-1].z)/2;r?(n.z=r.z+a(n._,r._),n.m=n.z-i):n.z=i}else r&&(n.z=r.z+a(n._,r._));n.parent.A=u(n,r,n.parent.A||e[0])}function r(n){n._.x=n.z+n.parent.m,n.m+=n.parent.m}function u(n,t,e){if(t){for(var r,u=n,i=n,o=t,c=u.parent.children[0],l=u.m,s=i.m,f=o.m,h=c.m;o=Ei(o),u=ki(u),o&&u;)c=ki(c),i=Ei(i),i.a=n,r=o.z+f-u.z-l+a(o._,u._),r>0&&(Ai(Ci(o,n,e),n,r),l+=r,s+=r),f+=o.m,l+=u.m,h+=c.m,s+=i.m;o&&!Ei(i)&&(i.t=o,i.m+=f-s),u&&!ki(c)&&(c.t=u,c.m+=l-h,e=n)}return e}function i(n){n.x*=c[0],n.y=n.depth*c[1]}var o=ta.layout.hierarchy().sort(null).value(null),a=Si,c=[1,1],l=null;return n.separation=function(t){return arguments.length?(a=t,n):a},n.size=function(t){return arguments.length?(l=null==(c=t)?i:null,n):l?null:c},n.nodeSize=function(t){return arguments.length?(l=null==(c=t)?null:i,n):l?c:null},Gu(n,o)},ta.layout.cluster=function(){function n(n,i){var o,a=t.call(this,n,i),c=a[0],l=0;Qu(c,function(n){var t=n.children;t&&t.length?(n.x=qi(t),n.y=zi(t)):(n.x=o?l+=e(n,o):0,n.y=0,o=n)});var s=Li(c),f=Ti(c),h=s.x-e(s,f)/2,g=f.x+e(f,s)/2;return Qu(c,u?function(n){n.x=(n.x-c.x)*r[0],n.y=(c.y-n.y)*r[1]}:function(n){n.x=(n.x-h)/(g-h)*r[0],n.y=(1-(c.y?n.y/c.y:1))*r[1]}),a}var t=ta.layout.hierarchy().sort(null).value(null),e=Si,r=[1,1],u=!1;return n.separation=function(t){return arguments.length?(e=t,n):e},n.size=function(t){return arguments.length?(u=null==(r=t),n):u?null:r},n.nodeSize=function(t){return arguments.length?(u=null!=(r=t),n):u?r:null},Gu(n,t)},ta.layout.treemap=function(){function n(n,t){for(var e,r,u=-1,i=n.length;++u<i;)r=(e=n[u]).value*(0>t?0:t),e.area=isNaN(r)||0>=r?0:r}function t(e){var i=e.children;if(i&&i.length){var o,a,c,l=f(e),s=[],h=i.slice(),p=1/0,v="slice"===g?l.dx:"dice"===g?l.dy:"slice-dice"===g?1&e.depth?l.dy:l.dx:Math.min(l.dx,l.dy);for(n(h,l.dx*l.dy/e.value),s.area=0;(c=h.length)>0;)s.push(o=h[c-1]),s.area+=o.area,"squarify"!==g||(a=r(s,v))<=p?(h.pop(),p=a):(s.area-=s.pop().area,u(s,v,l,!1),v=Math.min(l.dx,l.dy),s.length=s.area=0,p=1/0);s.length&&(u(s,v,l,!0),s.length=s.area=0),i.forEach(t)}}function e(t){var r=t.children;if(r&&r.length){var i,o=f(t),a=r.slice(),c=[];for(n(a,o.dx*o.dy/t.value),c.area=0;i=a.pop();)c.push(i),c.area+=i.area,null!=i.z&&(u(c,i.z?o.dx:o.dy,o,!a.length),c.length=c.area=0);r.forEach(e)}}function r(n,t){for(var e,r=n.area,u=0,i=1/0,o=-1,a=n.length;++o<a;)(e=n[o].area)&&(i>e&&(i=e),e>u&&(u=e));return r*=r,t*=t,r?Math.max(t*u*p/r,r/(t*i*p)):1/0}function u(n,t,e,r){var u,i=-1,o=n.length,a=e.x,l=e.y,s=t?c(n.area/t):0;if(t==e.dx){for((r||s>e.dy)&&(s=e.dy);++i<o;)u=n[i],u.x=a,u.y=l,u.dy=s,a+=u.dx=Math.min(e.x+e.dx-a,s?c(u.area/s):0);u.z=!0,u.dx+=e.x+e.dx-a,e.y+=s,e.dy-=s}else{for((r||s>e.dx)&&(s=e.dx);++i<o;)u=n[i],u.x=a,u.y=l,u.dx=s,l+=u.dy=Math.min(e.y+e.dy-l,s?c(u.area/s):0);u.z=!1,u.dy+=e.y+e.dy-l,e.x+=s,e.dx-=s}}function i(r){var u=o||a(r),i=u[0];return i.x=0,i.y=0,i.dx=l[0],i.dy=l[1],o&&a.revalue(i),n([i],i.dx*i.dy/i.value),(o?e:t)(i),h&&(o=u),u}var o,a=ta.layout.hierarchy(),c=Math.round,l=[1,1],s=null,f=Ri,h=!1,g="squarify",p=.5*(1+Math.sqrt(5));
			return i.size=function(n){return arguments.length?(l=n,i):l},i.padding=function(n){function t(t){var e=n.call(i,t,t.depth);return null==e?Ri(t):Di(t,"number"==typeof e?[e,e,e,e]:e)}function e(t){return Di(t,n)}if(!arguments.length)return s;var r;return f=null==(s=n)?Ri:"function"==(r=typeof n)?t:"number"===r?(n=[n,n,n,n],e):e,i},i.round=function(n){return arguments.length?(c=n?Math.round:Number,i):c!=Number},i.sticky=function(n){return arguments.length?(h=n,o=null,i):h},i.ratio=function(n){return arguments.length?(p=n,i):p},i.mode=function(n){return arguments.length?(g=n+"",i):g},Gu(i,a)},ta.random={normal:function(n,t){var e=arguments.length;return 2>e&&(t=1),1>e&&(n=0),function(){var e,r,u;do e=2*Math.random()-1,r=2*Math.random()-1,u=e*e+r*r;while(!u||u>1);return n+t*e*Math.sqrt(-2*Math.log(u)/u)}},logNormal:function(){var n=ta.random.normal.apply(ta,arguments);return function(){return Math.exp(n())}},bates:function(n){var t=ta.random.irwinHall(n);return function(){return t()/n}},irwinHall:function(n){return function(){for(var t=0,e=0;n>e;e++)t+=Math.random();return t}}},ta.scale={};var ml={floor:y,ceil:y};ta.scale.linear=function(){return Ii([0,1],[0,1],mu,!1)};var yl={s:1,g:1,p:1,r:1,e:1};ta.scale.log=function(){return Ji(ta.scale.linear().domain([0,1]),10,!0,[1,10])};var Ml=ta.format(".0e"),xl={floor:function(n){return-Math.ceil(-n)},ceil:function(n){return-Math.floor(-n)}};ta.scale.pow=function(){return Gi(ta.scale.linear(),1,[0,1])},ta.scale.sqrt=function(){return ta.scale.pow().exponent(.5)},ta.scale.ordinal=function(){return Qi([],{t:"range",a:[[]]})},ta.scale.category10=function(){return ta.scale.ordinal().range(bl)},ta.scale.category20=function(){return ta.scale.ordinal().range(_l)},ta.scale.category20b=function(){return ta.scale.ordinal().range(wl)},ta.scale.category20c=function(){return ta.scale.ordinal().range(Sl)};var bl=[2062260,16744206,2924588,14034728,9725885,9197131,14907330,8355711,12369186,1556175].map(Mt),_l=[2062260,11454440,16744206,16759672,2924588,10018698,14034728,16750742,9725885,12955861,9197131,12885140,14907330,16234194,8355711,13092807,12369186,14408589,1556175,10410725].map(Mt),wl=[3750777,5395619,7040719,10264286,6519097,9216594,11915115,13556636,9202993,12426809,15186514,15190932,8666169,11356490,14049643,15177372,8077683,10834324,13528509,14589654].map(Mt),Sl=[3244733,7057110,10406625,13032431,15095053,16616764,16625259,16634018,3253076,7652470,10607003,13101504,7695281,10394312,12369372,14342891,6513507,9868950,12434877,14277081].map(Mt);ta.scale.quantile=function(){return no([],[])},ta.scale.quantize=function(){return to(0,1,[0,1])},ta.scale.threshold=function(){return eo([.5],[0,1])},ta.scale.identity=function(){return ro([0,1])},ta.svg={},ta.svg.arc=function(){function n(){var n=Math.max(0,+e.apply(this,arguments)),l=Math.max(0,+r.apply(this,arguments)),s=o.apply(this,arguments)-Ra,f=a.apply(this,arguments)-Ra,h=Math.abs(f-s),g=s>f?0:1;if(n>l&&(p=l,l=n,n=p),h>=Ta)return t(l,g)+(n?t(n,1-g):"")+"Z";var p,v,d,m,y,M,x,b,_,w,S,k,E=0,A=0,N=[];if((m=(+c.apply(this,arguments)||0)/2)&&(d=i===kl?Math.sqrt(n*n+l*l):+i.apply(this,arguments),g||(A*=-1),l&&(A=tt(d/l*Math.sin(m))),n&&(E=tt(d/n*Math.sin(m)))),l){y=l*Math.cos(s+A),M=l*Math.sin(s+A),x=l*Math.cos(f-A),b=l*Math.sin(f-A);var C=Math.abs(f-s-2*A)<=qa?0:1;if(A&&so(y,M,x,b)===g^C){var z=(s+f)/2;y=l*Math.cos(z),M=l*Math.sin(z),x=b=null}}else y=M=0;if(n){_=n*Math.cos(f-E),w=n*Math.sin(f-E),S=n*Math.cos(s+E),k=n*Math.sin(s+E);var q=Math.abs(s-f+2*E)<=qa?0:1;if(E&&so(_,w,S,k)===1-g^q){var L=(s+f)/2;_=n*Math.cos(L),w=n*Math.sin(L),S=k=null}}else _=w=0;if((p=Math.min(Math.abs(l-n)/2,+u.apply(this,arguments)))>.001){v=l>n^g?0:1;var T=null==S?[_,w]:null==x?[y,M]:Lr([y,M],[S,k],[x,b],[_,w]),R=y-T[0],D=M-T[1],P=x-T[0],U=b-T[1],j=1/Math.sin(Math.acos((R*P+D*U)/(Math.sqrt(R*R+D*D)*Math.sqrt(P*P+U*U)))/2),F=Math.sqrt(T[0]*T[0]+T[1]*T[1]);if(null!=x){var H=Math.min(p,(l-F)/(j+1)),O=fo(null==S?[_,w]:[S,k],[y,M],l,H,g),I=fo([x,b],[_,w],l,H,g);p===H?N.push("M",O[0],"A",H,",",H," 0 0,",v," ",O[1],"A",l,",",l," 0 ",1-g^so(O[1][0],O[1][1],I[1][0],I[1][1]),",",g," ",I[1],"A",H,",",H," 0 0,",v," ",I[0]):N.push("M",O[0],"A",H,",",H," 0 1,",v," ",I[0])}else N.push("M",y,",",M);if(null!=S){var Y=Math.min(p,(n-F)/(j-1)),Z=fo([y,M],[S,k],n,-Y,g),V=fo([_,w],null==x?[y,M]:[x,b],n,-Y,g);p===Y?N.push("L",V[0],"A",Y,",",Y," 0 0,",v," ",V[1],"A",n,",",n," 0 ",g^so(V[1][0],V[1][1],Z[1][0],Z[1][1]),",",1-g," ",Z[1],"A",Y,",",Y," 0 0,",v," ",Z[0]):N.push("L",V[0],"A",Y,",",Y," 0 0,",v," ",Z[0])}else N.push("L",_,",",w)}else N.push("M",y,",",M),null!=x&&N.push("A",l,",",l," 0 ",C,",",g," ",x,",",b),N.push("L",_,",",w),null!=S&&N.push("A",n,",",n," 0 ",q,",",1-g," ",S,",",k);return N.push("Z"),N.join("")}function t(n,t){return"M0,"+n+"A"+n+","+n+" 0 1,"+t+" 0,"+-n+"A"+n+","+n+" 0 1,"+t+" 0,"+n}var e=io,r=oo,u=uo,i=kl,o=ao,a=co,c=lo;return n.innerRadius=function(t){return arguments.length?(e=Et(t),n):e},n.outerRadius=function(t){return arguments.length?(r=Et(t),n):r},n.cornerRadius=function(t){return arguments.length?(u=Et(t),n):u},n.padRadius=function(t){return arguments.length?(i=t==kl?kl:Et(t),n):i},n.startAngle=function(t){return arguments.length?(o=Et(t),n):o},n.endAngle=function(t){return arguments.length?(a=Et(t),n):a},n.padAngle=function(t){return arguments.length?(c=Et(t),n):c},n.centroid=function(){var n=(+e.apply(this,arguments)+ +r.apply(this,arguments))/2,t=(+o.apply(this,arguments)+ +a.apply(this,arguments))/2-Ra;return[Math.cos(t)*n,Math.sin(t)*n]},n};var kl="auto";ta.svg.line=function(){return ho(y)};var El=ta.map({linear:go,"linear-closed":po,step:vo,"step-before":mo,"step-after":yo,basis:So,"basis-open":ko,"basis-closed":Eo,bundle:Ao,cardinal:bo,"cardinal-open":Mo,"cardinal-closed":xo,monotone:To});El.forEach(function(n,t){t.key=n,t.closed=/-closed$/.test(n)});var Al=[0,2/3,1/3,0],Nl=[0,1/3,2/3,0],Cl=[0,1/6,2/3,1/6];ta.svg.line.radial=function(){var n=ho(Ro);return n.radius=n.x,delete n.x,n.angle=n.y,delete n.y,n},mo.reverse=yo,yo.reverse=mo,ta.svg.area=function(){return Do(y)},ta.svg.area.radial=function(){var n=Do(Ro);return n.radius=n.x,delete n.x,n.innerRadius=n.x0,delete n.x0,n.outerRadius=n.x1,delete n.x1,n.angle=n.y,delete n.y,n.startAngle=n.y0,delete n.y0,n.endAngle=n.y1,delete n.y1,n},ta.svg.chord=function(){function n(n,a){var c=t(this,i,n,a),l=t(this,o,n,a);return"M"+c.p0+r(c.r,c.p1,c.a1-c.a0)+(e(c,l)?u(c.r,c.p1,c.r,c.p0):u(c.r,c.p1,l.r,l.p0)+r(l.r,l.p1,l.a1-l.a0)+u(l.r,l.p1,c.r,c.p0))+"Z"}function t(n,t,e,r){var u=t.call(n,e,r),i=a.call(n,u,r),o=c.call(n,u,r)-Ra,s=l.call(n,u,r)-Ra;return{r:i,a0:o,a1:s,p0:[i*Math.cos(o),i*Math.sin(o)],p1:[i*Math.cos(s),i*Math.sin(s)]}}function e(n,t){return n.a0==t.a0&&n.a1==t.a1}function r(n,t,e){return"A"+n+","+n+" 0 "+ +(e>qa)+",1 "+t}function u(n,t,e,r){return"Q 0,0 "+r}var i=mr,o=yr,a=Po,c=ao,l=co;return n.radius=function(t){return arguments.length?(a=Et(t),n):a},n.source=function(t){return arguments.length?(i=Et(t),n):i},n.target=function(t){return arguments.length?(o=Et(t),n):o},n.startAngle=function(t){return arguments.length?(c=Et(t),n):c},n.endAngle=function(t){return arguments.length?(l=Et(t),n):l},n},ta.svg.diagonal=function(){function n(n,u){var i=t.call(this,n,u),o=e.call(this,n,u),a=(i.y+o.y)/2,c=[i,{x:i.x,y:a},{x:o.x,y:a},o];return c=c.map(r),"M"+c[0]+"C"+c[1]+" "+c[2]+" "+c[3]}var t=mr,e=yr,r=Uo;return n.source=function(e){return arguments.length?(t=Et(e),n):t},n.target=function(t){return arguments.length?(e=Et(t),n):e},n.projection=function(t){return arguments.length?(r=t,n):r},n},ta.svg.diagonal.radial=function(){var n=ta.svg.diagonal(),t=Uo,e=n.projection;return n.projection=function(n){return arguments.length?e(jo(t=n)):t},n},ta.svg.symbol=function(){function n(n,r){return(zl.get(t.call(this,n,r))||Oo)(e.call(this,n,r))}var t=Ho,e=Fo;return n.type=function(e){return arguments.length?(t=Et(e),n):t},n.size=function(t){return arguments.length?(e=Et(t),n):e},n};var zl=ta.map({circle:Oo,cross:function(n){var t=Math.sqrt(n/5)/2;return"M"+-3*t+","+-t+"H"+-t+"V"+-3*t+"H"+t+"V"+-t+"H"+3*t+"V"+t+"H"+t+"V"+3*t+"H"+-t+"V"+t+"H"+-3*t+"Z"},diamond:function(n){var t=Math.sqrt(n/(2*Ll)),e=t*Ll;return"M0,"+-t+"L"+e+",0 0,"+t+" "+-e+",0Z"},square:function(n){var t=Math.sqrt(n)/2;return"M"+-t+","+-t+"L"+t+","+-t+" "+t+","+t+" "+-t+","+t+"Z"},"triangle-down":function(n){var t=Math.sqrt(n/ql),e=t*ql/2;return"M0,"+e+"L"+t+","+-e+" "+-t+","+-e+"Z"},"triangle-up":function(n){var t=Math.sqrt(n/ql),e=t*ql/2;return"M0,"+-e+"L"+t+","+e+" "+-t+","+e+"Z"}});ta.svg.symbolTypes=zl.keys();var ql=Math.sqrt(3),Ll=Math.tan(30*Da);_a.transition=function(n){for(var t,e,r=Tl||++Ul,u=Xo(n),i=[],o=Rl||{time:Date.now(),ease:Su,delay:0,duration:250},a=-1,c=this.length;++a<c;){i.push(t=[]);for(var l=this[a],s=-1,f=l.length;++s<f;)(e=l[s])&&$o(e,s,u,r,o),t.push(e)}return Yo(i,u,r)},_a.interrupt=function(n){return this.each(null==n?Dl:Io(Xo(n)))};var Tl,Rl,Dl=Io(Xo()),Pl=[],Ul=0;Pl.call=_a.call,Pl.empty=_a.empty,Pl.node=_a.node,Pl.size=_a.size,ta.transition=function(n,t){return n&&n.transition?Tl?n.transition(t):n:ta.selection().transition(n)},ta.transition.prototype=Pl,Pl.select=function(n){var t,e,r,u=this.id,i=this.namespace,o=[];n=N(n);for(var a=-1,c=this.length;++a<c;){o.push(t=[]);for(var l=this[a],s=-1,f=l.length;++s<f;)(r=l[s])&&(e=n.call(r,r.__data__,s,a))?("__data__"in r&&(e.__data__=r.__data__),$o(e,s,i,u,r[i][u]),t.push(e)):t.push(null)}return Yo(o,i,u)},Pl.selectAll=function(n){var t,e,r,u,i,o=this.id,a=this.namespace,c=[];n=C(n);for(var l=-1,s=this.length;++l<s;)for(var f=this[l],h=-1,g=f.length;++h<g;)if(r=f[h]){i=r[a][o],e=n.call(r,r.__data__,h,l),c.push(t=[]);for(var p=-1,v=e.length;++p<v;)(u=e[p])&&$o(u,p,a,o,i),t.push(u)}return Yo(c,a,o)},Pl.filter=function(n){var t,e,r,u=[];"function"!=typeof n&&(n=O(n));for(var i=0,o=this.length;o>i;i++){u.push(t=[]);for(var e=this[i],a=0,c=e.length;c>a;a++)(r=e[a])&&n.call(r,r.__data__,a,i)&&t.push(r)}return Yo(u,this.namespace,this.id)},Pl.tween=function(n,t){var e=this.id,r=this.namespace;return arguments.length<2?this.node()[r][e].tween.get(n):Y(this,null==t?function(t){t[r][e].tween.remove(n)}:function(u){u[r][e].tween.set(n,t)})},Pl.attr=function(n,t){function e(){this.removeAttribute(a)}function r(){this.removeAttributeNS(a.space,a.local)}function u(n){return null==n?e:(n+="",function(){var t,e=this.getAttribute(a);return e!==n&&(t=o(e,n),function(n){this.setAttribute(a,t(n))})})}function i(n){return null==n?r:(n+="",function(){var t,e=this.getAttributeNS(a.space,a.local);return e!==n&&(t=o(e,n),function(n){this.setAttributeNS(a.space,a.local,t(n))})})}if(arguments.length<2){for(t in n)this.attr(t,n[t]);return this}var o="transform"==n?Hu:mu,a=ta.ns.qualify(n);return Zo(this,"attr."+n,t,a.local?i:u)},Pl.attrTween=function(n,t){function e(n,e){var r=t.call(this,n,e,this.getAttribute(u));return r&&function(n){this.setAttribute(u,r(n))}}function r(n,e){var r=t.call(this,n,e,this.getAttributeNS(u.space,u.local));return r&&function(n){this.setAttributeNS(u.space,u.local,r(n))}}var u=ta.ns.qualify(n);return this.tween("attr."+n,u.local?r:e)},Pl.style=function(n,e,r){function u(){this.style.removeProperty(n)}function i(e){return null==e?u:(e+="",function(){var u,i=t(this).getComputedStyle(this,null).getPropertyValue(n);return i!==e&&(u=mu(i,e),function(t){this.style.setProperty(n,u(t),r)})})}var o=arguments.length;if(3>o){if("string"!=typeof n){2>o&&(e="");for(r in n)this.style(r,n[r],e);return this}r=""}return Zo(this,"style."+n,e,i)},Pl.styleTween=function(n,e,r){function u(u,i){var o=e.call(this,u,i,t(this).getComputedStyle(this,null).getPropertyValue(n));return o&&function(t){this.style.setProperty(n,o(t),r)}}return arguments.length<3&&(r=""),this.tween("style."+n,u)},Pl.text=function(n){return Zo(this,"text",n,Vo)},Pl.remove=function(){var n=this.namespace;return this.each("end.transition",function(){var t;this[n].count<2&&(t=this.parentNode)&&t.removeChild(this)})},Pl.ease=function(n){var t=this.id,e=this.namespace;return arguments.length<1?this.node()[e][t].ease:("function"!=typeof n&&(n=ta.ease.apply(ta,arguments)),Y(this,function(r){r[e][t].ease=n}))},Pl.delay=function(n){var t=this.id,e=this.namespace;return arguments.length<1?this.node()[e][t].delay:Y(this,"function"==typeof n?function(r,u,i){r[e][t].delay=+n.call(r,r.__data__,u,i)}:(n=+n,function(r){r[e][t].delay=n}))},Pl.duration=function(n){var t=this.id,e=this.namespace;return arguments.length<1?this.node()[e][t].duration:Y(this,"function"==typeof n?function(r,u,i){r[e][t].duration=Math.max(1,n.call(r,r.__data__,u,i))}:(n=Math.max(1,n),function(r){r[e][t].duration=n}))},Pl.each=function(n,t){var e=this.id,r=this.namespace;if(arguments.length<2){var u=Rl,i=Tl;try{Tl=e,Y(this,function(t,u,i){Rl=t[r][e],n.call(t,t.__data__,u,i)})}finally{Rl=u,Tl=i}}else Y(this,function(u){var i=u[r][e];(i.event||(i.event=ta.dispatch("start","end","interrupt"))).on(n,t)});return this},Pl.transition=function(){for(var n,t,e,r,u=this.id,i=++Ul,o=this.namespace,a=[],c=0,l=this.length;l>c;c++){a.push(n=[]);for(var t=this[c],s=0,f=t.length;f>s;s++)(e=t[s])&&(r=e[o][u],$o(e,s,o,i,{time:r.time,ease:r.ease,delay:r.delay+r.duration,duration:r.duration})),n.push(e)}return Yo(a,o,i)},ta.svg.axis=function(){function n(n){n.each(function(){var n,l=ta.select(this),s=this.__chart__||e,f=this.__chart__=e.copy(),h=null==c?f.ticks?f.ticks.apply(f,a):f.domain():c,g=null==t?f.tickFormat?f.tickFormat.apply(f,a):y:t,p=l.selectAll(".tick").data(h,f),v=p.enter().insert("g",".domain").attr("class","tick").style("opacity",Ca),d=ta.transition(p.exit()).style("opacity",Ca).remove(),m=ta.transition(p.order()).style("opacity",1),M=Math.max(u,0)+o,x=Ui(f),b=l.selectAll(".domain").data([0]),_=(b.enter().append("path").attr("class","domain"),ta.transition(b));v.append("line"),v.append("text");var w,S,k,E,A=v.select("line"),N=m.select("line"),C=p.select("text").text(g),z=v.select("text"),q=m.select("text"),L="top"===r||"left"===r?-1:1;if("bottom"===r||"top"===r?(n=Bo,w="x",k="y",S="x2",E="y2",C.attr("dy",0>L?"0em":".71em").style("text-anchor","middle"),_.attr("d","M"+x[0]+","+L*i+"V0H"+x[1]+"V"+L*i)):(n=Wo,w="y",k="x",S="y2",E="x2",C.attr("dy",".32em").style("text-anchor",0>L?"end":"start"),_.attr("d","M"+L*i+","+x[0]+"H0V"+x[1]+"H"+L*i)),A.attr(E,L*u),z.attr(k,L*M),N.attr(S,0).attr(E,L*u),q.attr(w,0).attr(k,L*M),f.rangeBand){var T=f,R=T.rangeBand()/2;s=f=function(n){return T(n)+R}}else s.rangeBand?s=f:d.call(n,f,s);v.call(n,s,f),m.call(n,f,f)})}var t,e=ta.scale.linear(),r=jl,u=6,i=6,o=3,a=[10],c=null;return n.scale=function(t){return arguments.length?(e=t,n):e},n.orient=function(t){return arguments.length?(r=t in Fl?t+"":jl,n):r},n.ticks=function(){return arguments.length?(a=arguments,n):a},n.tickValues=function(t){return arguments.length?(c=t,n):c},n.tickFormat=function(e){return arguments.length?(t=e,n):t},n.tickSize=function(t){var e=arguments.length;return e?(u=+t,i=+arguments[e-1],n):u},n.innerTickSize=function(t){return arguments.length?(u=+t,n):u},n.outerTickSize=function(t){return arguments.length?(i=+t,n):i},n.tickPadding=function(t){return arguments.length?(o=+t,n):o},n.tickSubdivide=function(){return arguments.length&&n},n};var jl="bottom",Fl={top:1,right:1,bottom:1,left:1};ta.svg.brush=function(){function n(t){t.each(function(){var t=ta.select(this).style("pointer-events","all").style("-webkit-tap-highlight-color","rgba(0,0,0,0)").on("mousedown.brush",i).on("touchstart.brush",i),o=t.selectAll(".background").data([0]);o.enter().append("rect").attr("class","background").style("visibility","hidden").style("cursor","crosshair"),t.selectAll(".extent").data([0]).enter().append("rect").attr("class","extent").style("cursor","move");var a=t.selectAll(".resize").data(v,y);a.exit().remove(),a.enter().append("g").attr("class",function(n){return"resize "+n}).style("cursor",function(n){return Hl[n]}).append("rect").attr("x",function(n){return/[ew]$/.test(n)?-3:null}).attr("y",function(n){return/^[ns]/.test(n)?-3:null}).attr("width",6).attr("height",6).style("visibility","hidden"),a.style("display",n.empty()?"none":null);var c,f=ta.transition(t),h=ta.transition(o);l&&(c=Ui(l),h.attr("x",c[0]).attr("width",c[1]-c[0]),r(f)),s&&(c=Ui(s),h.attr("y",c[0]).attr("height",c[1]-c[0]),u(f)),e(f)})}function e(n){n.selectAll(".resize").attr("transform",function(n){return"translate("+f[+/e$/.test(n)]+","+h[+/^s/.test(n)]+")"})}function r(n){n.select(".extent").attr("x",f[0]),n.selectAll(".extent,.n>rect,.s>rect").attr("width",f[1]-f[0])}function u(n){n.select(".extent").attr("y",h[0]),n.selectAll(".extent,.e>rect,.w>rect").attr("height",h[1]-h[0])}function i(){function i(){32==ta.event.keyCode&&(C||(M=null,q[0]-=f[1],q[1]-=h[1],C=2),S())}function v(){32==ta.event.keyCode&&2==C&&(q[0]+=f[1],q[1]+=h[1],C=0,S())}function d(){var n=ta.mouse(b),t=!1;x&&(n[0]+=x[0],n[1]+=x[1]),C||(ta.event.altKey?(M||(M=[(f[0]+f[1])/2,(h[0]+h[1])/2]),q[0]=f[+(n[0]<M[0])],q[1]=h[+(n[1]<M[1])]):M=null),A&&m(n,l,0)&&(r(k),t=!0),N&&m(n,s,1)&&(u(k),t=!0),t&&(e(k),w({type:"brush",mode:C?"move":"resize"}))}function m(n,t,e){var r,u,i=Ui(t),c=i[0],l=i[1],s=q[e],v=e?h:f,d=v[1]-v[0];return C&&(c-=s,l-=d+s),r=(e?p:g)?Math.max(c,Math.min(l,n[e])):n[e],C?u=(r+=s)+d:(M&&(s=Math.max(c,Math.min(l,2*M[e]-r))),r>s?(u=r,r=s):u=s),v[0]!=r||v[1]!=u?(e?a=null:o=null,v[0]=r,v[1]=u,!0):void 0}function y(){d(),k.style("pointer-events","all").selectAll(".resize").style("display",n.empty()?"none":null),ta.select("body").style("cursor",null),L.on("mousemove.brush",null).on("mouseup.brush",null).on("touchmove.brush",null).on("touchend.brush",null).on("keydown.brush",null).on("keyup.brush",null),z(),w({type:"brushend"})}var M,x,b=this,_=ta.select(ta.event.target),w=c.of(b,arguments),k=ta.select(b),E=_.datum(),A=!/^(n|s)$/.test(E)&&l,N=!/^(e|w)$/.test(E)&&s,C=_.classed("extent"),z=W(b),q=ta.mouse(b),L=ta.select(t(b)).on("keydown.brush",i).on("keyup.brush",v);if(ta.event.changedTouches?L.on("touchmove.brush",d).on("touchend.brush",y):L.on("mousemove.brush",d).on("mouseup.brush",y),k.interrupt().selectAll("*").interrupt(),C)q[0]=f[0]-q[0],q[1]=h[0]-q[1];else if(E){var T=+/w$/.test(E),R=+/^n/.test(E);x=[f[1-T]-q[0],h[1-R]-q[1]],q[0]=f[T],q[1]=h[R]}else ta.event.altKey&&(M=q.slice());k.style("pointer-events","none").selectAll(".resize").style("display",null),ta.select("body").style("cursor",_.style("cursor")),w({type:"brushstart"}),d()}var o,a,c=E(n,"brushstart","brush","brushend"),l=null,s=null,f=[0,0],h=[0,0],g=!0,p=!0,v=Ol[0];return n.event=function(n){n.each(function(){var n=c.of(this,arguments),t={x:f,y:h,i:o,j:a},e=this.__chart__||t;this.__chart__=t,Tl?ta.select(this).transition().each("start.brush",function(){o=e.i,a=e.j,f=e.x,h=e.y,n({type:"brushstart"})}).tween("brush:brush",function(){var e=yu(f,t.x),r=yu(h,t.y);return o=a=null,function(u){f=t.x=e(u),h=t.y=r(u),n({type:"brush",mode:"resize"})}}).each("end.brush",function(){o=t.i,a=t.j,n({type:"brush",mode:"resize"}),n({type:"brushend"})}):(n({type:"brushstart"}),n({type:"brush",mode:"resize"}),n({type:"brushend"}))})},n.x=function(t){return arguments.length?(l=t,v=Ol[!l<<1|!s],n):l},n.y=function(t){return arguments.length?(s=t,v=Ol[!l<<1|!s],n):s},n.clamp=function(t){return arguments.length?(l&&s?(g=!!t[0],p=!!t[1]):l?g=!!t:s&&(p=!!t),n):l&&s?[g,p]:l?g:s?p:null},n.extent=function(t){var e,r,u,i,c;return arguments.length?(l&&(e=t[0],r=t[1],s&&(e=e[0],r=r[0]),o=[e,r],l.invert&&(e=l(e),r=l(r)),e>r&&(c=e,e=r,r=c),(e!=f[0]||r!=f[1])&&(f=[e,r])),s&&(u=t[0],i=t[1],l&&(u=u[1],i=i[1]),a=[u,i],s.invert&&(u=s(u),i=s(i)),u>i&&(c=u,u=i,i=c),(u!=h[0]||i!=h[1])&&(h=[u,i])),n):(l&&(o?(e=o[0],r=o[1]):(e=f[0],r=f[1],l.invert&&(e=l.invert(e),r=l.invert(r)),e>r&&(c=e,e=r,r=c))),s&&(a?(u=a[0],i=a[1]):(u=h[0],i=h[1],s.invert&&(u=s.invert(u),i=s.invert(i)),u>i&&(c=u,u=i,i=c))),l&&s?[[e,u],[r,i]]:l?[e,r]:s&&[u,i])},n.clear=function(){return n.empty()||(f=[0,0],h=[0,0],o=a=null),n},n.empty=function(){return!!l&&f[0]==f[1]||!!s&&h[0]==h[1]},ta.rebind(n,c,"on")};var Hl={n:"ns-resize",e:"ew-resize",s:"ns-resize",w:"ew-resize",nw:"nwse-resize",ne:"nesw-resize",se:"nwse-resize",sw:"nesw-resize"},Ol=[["n","e","s","w","nw","ne","se","sw"],["e","w"],["n","s"],[]],Il=ac.format=gc.timeFormat,Yl=Il.utc,Zl=Yl("%Y-%m-%dT%H:%M:%S.%LZ");Il.iso=Date.prototype.toISOString&&+new Date("2000-01-01T00:00:00.000Z")?Jo:Zl,Jo.parse=function(n){var t=new Date(n);return isNaN(t)?null:t},Jo.toString=Zl.toString,ac.second=Ft(function(n){return new cc(1e3*Math.floor(n/1e3))},function(n,t){n.setTime(n.getTime()+1e3*Math.floor(t))},function(n){return n.getSeconds()}),ac.seconds=ac.second.range,ac.seconds.utc=ac.second.utc.range,ac.minute=Ft(function(n){return new cc(6e4*Math.floor(n/6e4))},function(n,t){n.setTime(n.getTime()+6e4*Math.floor(t))},function(n){return n.getMinutes()}),ac.minutes=ac.minute.range,ac.minutes.utc=ac.minute.utc.range,ac.hour=Ft(function(n){var t=n.getTimezoneOffset()/60;return new cc(36e5*(Math.floor(n/36e5-t)+t))},function(n,t){n.setTime(n.getTime()+36e5*Math.floor(t))},function(n){return n.getHours()}),ac.hours=ac.hour.range,ac.hours.utc=ac.hour.utc.range,ac.month=Ft(function(n){return n=ac.day(n),n.setDate(1),n},function(n,t){n.setMonth(n.getMonth()+t)},function(n){return n.getMonth()}),ac.months=ac.month.range,ac.months.utc=ac.month.utc.range;var Vl=[1e3,5e3,15e3,3e4,6e4,3e5,9e5,18e5,36e5,108e5,216e5,432e5,864e5,1728e5,6048e5,2592e6,7776e6,31536e6],Xl=[[ac.second,1],[ac.second,5],[ac.second,15],[ac.second,30],[ac.minute,1],[ac.minute,5],[ac.minute,15],[ac.minute,30],[ac.hour,1],[ac.hour,3],[ac.hour,6],[ac.hour,12],[ac.day,1],[ac.day,2],[ac.week,1],[ac.month,1],[ac.month,3],[ac.year,1]],$l=Il.multi([[".%L",function(n){return n.getMilliseconds()}],[":%S",function(n){return n.getSeconds()}],["%I:%M",function(n){return n.getMinutes()}],["%I %p",function(n){return n.getHours()}],["%a %d",function(n){return n.getDay()&&1!=n.getDate()}],["%b %d",function(n){return 1!=n.getDate()}],["%B",function(n){return n.getMonth()}],["%Y",Ne]]),Bl={range:function(n,t,e){return ta.range(Math.ceil(n/e)*e,+t,e).map(Ko)},floor:y,ceil:y};Xl.year=ac.year,ac.scale=function(){return Go(ta.scale.linear(),Xl,$l)};var Wl=Xl.map(function(n){return[n[0].utc,n[1]]}),Jl=Yl.multi([[".%L",function(n){return n.getUTCMilliseconds()}],[":%S",function(n){return n.getUTCSeconds()}],["%I:%M",function(n){return n.getUTCMinutes()}],["%I %p",function(n){return n.getUTCHours()}],["%a %d",function(n){return n.getUTCDay()&&1!=n.getUTCDate()}],["%b %d",function(n){return 1!=n.getUTCDate()}],["%B",function(n){return n.getUTCMonth()}],["%Y",Ne]]);Wl.year=ac.year.utc,ac.scale.utc=function(){return Go(ta.scale.linear(),Wl,Jl)},ta.text=At(function(n){return n.responseText}),ta.json=function(n,t){return Nt(n,"application/json",Qo,t)},ta.html=function(n,t){return Nt(n,"text/html",na,t)},ta.xml=At(function(n){return n.responseXML}),"function"==typeof define&&define.amd?define(ta):"object"==typeof module&&module.exports&&(module.exports=ta),this.d3=ta}();
		</script>
		<!-- jDistrib -->
		<script type="text/javascript">
			/*
			 * jDistrib alpha version - JavaScript jDistrib Library
			 *
			 * Copyright (c) 2015 Escudie Frederic
			 * Licensed under the MIT (http://www.opensource.org/licenses/mit-license.php) license.
			 */
			 var frogsSunburstPalette = [];
			var jDistrib={pg_selector:{sunburst:null,walktrace:null,menu:null,detail:null},access:{graph:null,tooltip:null},graph:{sunburst:{padding:30,width:null,height:null,_radius:null,_arc:null,_x:null,_y:null},labels:{padding:7,font_size:15},colors:{set:frogsSunburstPalette,neutral:"#dadaeb",radialization:15,start_depth:1}},tree:{current_root:null,root_size:0}},cJDistrib=function(t,e){Object.deepExtend(jDistrib,e),null==jDistrib.pg_selector.menu||d3.select(jDistrib.pg_selector.menu).empty()||_setMenu(),null==jDistrib.pg_selector.detail||d3.select(jDistrib.pg_selector.detail).empty()||(jQuery(jDistrib.pg_selector.sunburst).on("jd.walk",function(){clearDetails()}),jQuery(jDistrib.pg_selector.sunburst).on("jd.displayDetails",function(t,e){displayDetails(e)})),null==jDistrib.pg_selector.walktrace||d3.select(jDistrib.pg_selector.walktrace).empty()||jQuery(jDistrib.pg_selector.sunburst).on("jd.walk",function(t,e){walkTraceUpdate(e)}),_setSVG(),_load(t),walkTo(jDistrib.tree.current_root,0)},_setSVG=function(){var t=d3.select(jDistrib.pg_selector.sunburst).append("svg").attr("width",jDistrib.graph.sunburst.width).attr("height",jDistrib.graph.sunburst.height).append("g").attr("transform","translate("+jDistrib.graph.sunburst.width/2+","+jDistrib.graph.sunburst.height/2+")");jDistrib.access.graph=t,jDistrib.graph._radius=Math.min(jDistrib.graph.sunburst.width,jDistrib.graph.sunburst.height)/2-jDistrib.graph.sunburst.padding,(jDistrib.graph.sunburst.padding>=jDistrib.graph.sunburst.width+10||jDistrib.graph.sunburst.padding>=jDistrib.graph.sunburst.height+10)&&(jDistrib.graph._radius=Math.min(jDistrib.graph.sunburst.width,jDistrib.graph.sunburst.height)/2),jDistrib.graph._x=d3.scale.linear().range([0,2*Math.PI]),jDistrib.graph._y=d3.scale.pow().exponent(1.3).domain([0,1]).range([0,jDistrib.graph._radius]),jDistrib.graph._arc=d3.svg.arc().startAngle(function(t){return getStartAngle(t)}).endAngle(function(t){return getEndAngle(t)}).innerRadius(function(t){return getInnerRadius(t)}).outerRadius(function(t){return getOuterRadius(t)}),jDistrib.access.tooltip=d3.select(jDistrib.pg_selector.sunburst).append("div").attr("class","jDistrib-tooltip").style("opacity",0)},_load=function(t){jDistrib.tree.current_root=t,jDistrib.tree.root_size=getSize(t);var e=d3.layout.partition().value(function(t){return t.size});addID(t,0),addDepth(t,0);d3.select(jDistrib.pg_selector.sunburst+" g").datum(t).selectAll("path").data(e.nodes).enter().append("path").attr("d",jDistrib.graph._arc).attr("class","jDistrib-arc").attr("id",function(t){return"sb-arc-"+t.sunburst_id}).on("click",click).on("dblclick",dblclick).on("mousemove",hover).on("mouseout",function(){hideTooltip()}).each(stash),getColorsByFirstNodes(t);changeColorDepth(jDistrib.graph.colors.start_depth)},hover=function(t){displayTooltip(t)},click=function(t){jQuery(jDistrib.pg_selector.sunburst).trigger("jd.displayDetails",[t])},dblclick=function(t){walkTo(t)};Object.deepExtend=function(t,e){for(var r in e)"object"==typeof e[r]&&null!==e[r]?(t[r]=t[r]||{},arguments.callee(t[r],e[r])):t[r]=e[r];return t};var getStartAngle=function(t){return Math.max(0,Math.min(2*Math.PI,jDistrib.graph._x(t.x)))},getEndAngle=function(t){return Math.max(0,Math.min(2*Math.PI,jDistrib.graph._x(t.x+t.dx)))},getInnerRadius=function(t){return Math.max(0,t.y?jDistrib.graph._y(t.y):t.y)},getOuterRadius=function(t){return Math.max(0,jDistrib.graph._y(t.y+t.dy))},stash=function(t){t.x0=t.x,t.dx0=t.dx},brancheSizes=function(t){var e=new Array,r=t;for(e.unshift({name:r.name,size:getSize(r),node:r});r.hasOwnProperty("parent")&&null!=r.parent;)r=r.parent,e.unshift({name:r.name,size:getSize(r),node:r});return e},sunburstUpdate=function(t,e){e=null==e?1e3:e,removeLabels(),d3.selectAll(jDistrib.pg_selector.sunburst+" path").transition().duration(e).attrTween("d",arcTweenZoom(t)),setTimeout(function(){addLabels()},e)},walkTo=function(t,e){jQuery(jDistrib.pg_selector.sunburst).trigger("jd.walk",[t]),jDistrib.tree.current_root=t,sunburstUpdate(t,e)},arcTweenData=function(t,e){function r(e){var r=i(e);return t.x0=r.x,t.dx0=r.dx,jDistrib.graph._arc(r)}var i=d3.interpolate({x:t.x0,dx:t.dx0},t);if(0==e){var n=d3.interpolate(x.domain(),[jDistrib.tree.current_root.x,jDistrib.tree.current_root.x+jDistrib.tree.current_root.dx]);return function(t){return x.domain(n(t)),r(t)}}return r},arcTweenZoom=function(t){var e=d3.interpolate(jDistrib.graph._x.domain(),[t.x,t.x+t.dx]),r=d3.interpolate(jDistrib.graph._y.domain(),[t.y,1]),i=d3.interpolate(jDistrib.graph._y.range(),[t.y?20:0,jDistrib.graph._radius]);return function(t,n){return n?function(){return jDistrib.graph._arc(t)}:function(n){return jDistrib.graph._x.domain(e(n)),jDistrib.graph._y.domain(r(n)).range(i(n)),jDistrib.graph._arc(t)}}},colorComponentToHexa=function(t){var e=t.toString(16);return e.length<2&&(e="0"+e),e},RGBToHexa=function(t,e,r){return colorComponentToHexa(t)+colorComponentToHexa(e)+colorComponentToHexa(r)},hexa2RGB=function(t){return[parseInt(t.substring(0,2),16),parseInt(t.substring(2,4),16),parseInt(t.substring(4,6),16)]},colorToWhite=function(t,e){var r=new Array;if(0===t.indexOf("#"))r=hexa2RGB(t.substr(1));else if(0===t.indexOf("rgb(")){r=t.substr(4,t.length-1).split(",");for(var i=0;3>i;i++)r[i]=parseInt(r[i])}for(var n="#",i=0;3>i;i++)n+=colorComponentToHexa(Math.min(255,r[i]+e));return n},getNodeByDepthSorted=function(t,e){var r=new Array;if(t.depth==e)r.push(t);else if(t.depth<e&&t.hasOwnProperty("children")&&0!=t.children.length)for(var i=t.children.sort(function(t,e){return getSize(e)-getSize(t)}),n=0;n<i.length;n++)for(var s=getNodeByDepth(i[n],e),a=0;a<s.length;a++)r.push(s[a]);return r},getColorsByFirstNodes=function(t){for(var e=getNodeByDepthSorted(t,t.depth+jDistrib.graph.colors.start_depth),r=new Array,i=0;i<e.length;i++)r["sb-arc-"+e[i].sunburst_id]=jDistrib.graph.colors.set[i%jDistrib.graph.colors.set.length];return r},getColorToApply=function(t,e){return t.depth<jDistrib.graph.colors.start_depth?jDistrib.graph.colors.neutral:t.depth==jDistrib.graph.colors.start_depth?e["sb-arc-"+t.sunburst_id]:colorToWhite(d3.select("#sb-arc-"+t.parent.sunburst_id).style("fill"),jDistrib.graph.colors.radialization)},getNodeByDepth=function(t,e){var r=new Array;if(t.depth==e)r.push(t);else if(t.depth<e&&t.hasOwnProperty("children")&&0!=t.children.length)for(var i=0;i<t.children.length;i++)for(var n=getNodeByDepth(t.children[i],e),s=0;s<n.length;s++)r.push(n[s]);return r},addDepth=function(t,e){if(t.depth=e,t.hasOwnProperty("children")&&0!=t.children.length)for(var r=0;r<t.children.length;r++)addDepth(t.children[r],e+1)},addID=function(t,e){if(e+=1,t.sunburst_id=e,t.hasOwnProperty("children")&&0!=t.children.length)for(var r=0;r<t.children.length;r++)e=addID(t.children[r],e);return e},getSize=function(t){if(t.hasOwnProperty("size"))return t.size;if(t.hasOwnProperty("children")&&0!=t.children.length){for(var e=0,r=0;r<t.children.length;r++)e+=getSize(t.children[r]);return e}},getRoot=function(t){for(var e=t;e.hasOwnProperty("parent")&&null!=e.parent;)e=e.parent;return e},addLabels=function(){0!=jDistrib.tree.current_root.depth&&d3.select(jDistrib.pg_selector.sunburst+" g").append("text").text(jDistrib.tree.current_root.depth).attr("class","jDistrib-root-label").attr("text-anchor","middle").attr("x",0).attr("y",0).on("dblclick",function(){walkTo(jDistrib.tree.current_root.parent)}),d3.selectAll(jDistrib.pg_selector.sunburst+" path").each(function(t){if(t==jDistrib.tree.current_root||isChildOf(t,jDistrib.tree.current_root)){var e=getEndAngle(t)-getStartAngle(t),r=getInnerRadius(t),i=Math.sin(e/2)*r*2,n=getOuterRadius(t)-r,s=r+(getOuterRadius(t)-r)/2,a=s*e;a>=n?setLabelArcMode(t,a,n):setLabelLineMode(t,n,i,r,e)}})},setLabelArcMode=function(t,e,r){if(r>=jDistrib.graph.labels.font_size){var i=d3.select(jDistrib.pg_selector.sunburst+" g"),n=t.name;"root"==t.name&&(n=""),i.append("text").text(n).attr("id","evaluate-size").attr("white-space","nowrap").attr("visibility","hidden").style("font-size",jDistrib.graph.labels.font_size+"px");var s=d3.select("#evaluate-size")[0][0].getBBox().width+jDistrib.graph.labels.padding;if(jDistrib.graph.labels.padding>e-3)n="";else for(;s>e-3;)n=n.substring(0,n.length-1),d3.select("#evaluate-size").text(n),s=d3.select("#evaluate-size")[0][0].getBBox().width+jDistrib.graph.labels.padding;d3.select("#evaluate-size").remove(),0!=n.length&&n.length<t.name.length&&(n=n.length>1?n.substring(0,n.length-1)+".":""),n.length>0&&i.append("text").attr("class","jDistrib-arc-label").attr("dy",(getOuterRadius(t)-getInnerRadius(t))/2).style("font-size",jDistrib.graph.labels.font_size+"px").attr("text-rendering","optimizeLegibility").append("textPath").attr("xlink:href",function(){return"#sb-arc-"+t.sunburst_id}).attr("startOffset",jDistrib.graph.labels.padding).text(function(){return n}).on("click",function(){click(t)}).on("dblclick",function(){walkTo(t)}).on("mousemove",function(){displayTooltip(t)}).on("mouseout",function(){hideTooltip()})}},setLabelLineMode=function(t,e,r,i,n){var s=d3.select(jDistrib.pg_selector.sunburst+" g"),a=!1;if(n>=Math.PI&&2*i>jDistrib.graph.labels.font_size?a=!0:r>jDistrib.graph.labels.font_size&&(a=!0),a){var l=t.name;if("root"==t.name&&(l=""),t.hasOwnProperty("children")&&0!=t.children.length){s.append("text").text(l).attr("id","evaluate-size").attr("white-space","nowrap").attr("visibility","hidden").style("font-size",jDistrib.graph.labels.font_size+"px");var o=d3.select("#evaluate-size")[0][0].getBBox().width+jDistrib.graph.labels.padding;if(jDistrib.graph.labels.padding>e-3)l="";else for(;o>e-3;)l=l.substring(0,l.length-1),d3.select("#evaluate-size").text(l),o=d3.select("#evaluate-size")[0][0].getBBox().width+jDistrib.graph.labels.padding;d3.select("#evaluate-size").remove(),0!=l.length&&l.length<t.name.length&&(l=l.length>1?l.substring(0,l.length-1)+".":"")}l.length>0&&s.append("text").text(function(){return l}).attr("class","jDistrib-arc-label").style("font-size",jDistrib.graph.labels.font_size+"px").attr("dy",".35em").attr("text-anchor",function(){return jDistrib.graph._x(t.x+t.dx/2)>Math.PI?"end":"start"}).attr("transform",function(){var e=180*jDistrib.graph._x(t.x+t.dx/2)/Math.PI-90;return"rotate("+e+")translate("+(jDistrib.graph._y(t.y)+jDistrib.graph.labels.padding)+")rotate("+(e>90?-180:0)+")"}).on("click",function(){click(t)}).on("dblclick",function(){walkTo(t)}).on("mousemove",function(){displayTooltip(t)}).on("mouseout",function(){hideTooltip()})}},removeLabels=function(){d3.selectAll(jDistrib.pg_selector.sunburst+" .jDistrib-arc-label").remove(),d3.selectAll(jDistrib.pg_selector.sunburst+" .jDistrib-root-label").remove()},isChildOf=function(t,e){return t.depth<=e.depth?!1:t.depth-1==e.depth?t.parent==e:isChildOf(t.parent,e)},hideTooltip=function(){jDistrib.access.tooltip.transition().duration(500).style("opacity",0)},displayTooltip=function(t){jDistrib.access.tooltip.html(getTooltipContent(t)),jDistrib.access.tooltip.transition().duration(200).style("opacity",.9)},getTooltipContent=function(t){return 0==jDistrib.tree.current_root.depth?t.name+": <b>"+(getSize(t)/jDistrib.tree.root_size*100).toFixed(3)+"%</b>":t.name+":<br />Total <b>"+(getSize(t)/jDistrib.tree.root_size*100).toFixed(3)+"%</b><br />"+jDistrib.tree.current_root.name+" <b>"+(getSize(t)/getSize(jDistrib.tree.current_root)*100).toFixed(3)+"%</b>"},walkTraceUpdate=function(t){var e=brancheSizes(t),r=d3.select(jDistrib.pg_selector.walktrace);r.selectAll(".jDistrib-walk-path").remove();for(var i=r.append("div").attr("class","jDistrib-walk-path"),n=0;n<e.length;n++){var s=i.append("div").attr("class","jDistrib-walk-rank").attr("style","background-color:var(--frogsColor);color:#fff");s.append("span").attr("class","jDistrib-walk-rank-name").html(e[n].name),0!=n&&s.append("span").attr("class","jDistrib-walk-rank-size").html((parseInt(e[n].size)/parseInt(e[n-1].size)*100).toFixed(1)),s.data([e[n].node]),s.on("click",function(){walkTo(d3.select(this)[0][0].__data__)})}i.append("div").attr("style","clear:both")},_setMenu=function(){d3.select(jDistrib.pg_selector.menu).append("label").attr("for","in-label-size").text("Font size: "),d3.select(jDistrib.pg_selector.menu).append("input").attr("id","in-label-size").attr("type","number").attr("min",1).attr("value",jDistrib.graph.labels.font_size).on("change",function(){d3.select("#in-color-depth")[0][0].value<1&&(d3.select("#in-color-depth")[0][0].value=1),changeLabelSize(d3.select("#in-label-size")[0][0].value)});var t=7;d3.select(jDistrib.pg_selector.menu).append("label").attr("for","in-color-depth").text("Colors start depth: "),d3.select(jDistrib.pg_selector.menu).append("input").attr("id","in-color-depth").attr("type","number").attr("min",1).attr("max",t).attr("value",jDistrib.graph.colors.start_depth).on("change",function(){d3.select("#in-color-depth")[0][0].value<1?d3.select("#in-color-depth")[0][0].value=1:d3.select("#in-color-depth")[0][0].value>t&&(d3.select("#in-color-depth")[0][0].value=t),changeColorDepth(d3.select("#in-color-depth")[0][0].value)})},changeLabelSize=function(t){jDistrib.graph.labels.font_size=t,removeLabels(),addLabels()},changeColorDepth=function(t){jDistrib.graph.colors.start_depth=t;var e=getColorsByFirstNodes(getRoot(jDistrib.tree.current_root));d3.select(jDistrib.pg_selector.sunburst+" g").selectAll("path").style("fill",function(t){return getColorToApply(t,e)})},clearDetails=function(){d3.select(jDistrib.pg_selector.detail).html(""),d3.select(jDistrib.pg_selector.detail).append("div").attr("class","jDistrib-empty-details").text("Click on an element to see more details.")},displayDetails=function(t){for(var e=brancheSizes(t),r="",i=0;i<e.length;i++){var n="";n+="<td>"+e[i].name+"</td>",n+='<td class="number">'+e[i].size+"</td>",0!=i?(n+='<td class="number">'+(parseInt(e[i].size)/parseInt(e[0].size)*100).toFixed(3)+"</td>",n+='<td class="number">'+(parseInt(e[i].size)/parseInt(e[i-1].size)*100).toFixed(3)+"</td>"):(n+="<td></td>",n+="<td></td>"),r+="<tr>"+n+"</tr>"}d3.select(jDistrib.pg_selector.detail).html('<table class="jDistrib-table-details">	<thead>		<tr>			<th>Name</th>			<th>Size</th>			<th>Global %</th>			<th>Parent %</th>		</tr>	</thead>	<tbody>'+r+"</tbody></table><p>"+t.name+" nb children: "+(void 0==t.children?0:t.children.length)+"</p>")},exportSVG=function(){console.log("export"),d3.select(jDistrib.pg_selector.sunburst+" .jDistrib-data-export").empty()&&d3.select(jDistrib.pg_selector.sunburst).append("a").attr("class","jDistrib-data-export").attr("href","").attr("download","").attr("style","display:none;");var t=d3.select(jDistrib.pg_selector.sunburst+" svg");console.log(t[0][0]),xml=(new XMLSerializer).serializeToString(t[0][0]),svg_data="data:application/octet-stream;base64,"+btoa(xml),d3.select(jDistrib.pg_selector.sunburst+" .jDistrib-data-export").attr("href",svg_data).attr("download","jDistribChart.svg"),jQuery(jDistrib.pg_selector.sunburst+" .jDistrib-data-export")[0].click()};
		</script>
		<script type="text/javascript">
			/*
			* ExtendedNode 1.0.0 - JavaScript ExtendedNode Library
			*
			* Copyright (c) 2015 INRA
			* 
			* @author: Escudié Frédéric
			* @license: MIT (http://www.opensource.org/licenses/mit-license.php) license.
			*/
			var ExtendedNode=function(e,t,n,r){if(this.name=e,this.parent=t,this.children=new Array,null!=n)for(var a=0;a<n.length;a++)this.addChild(n[a]);this.metadata=new Array,null!=r&&(this.metadata=r)};ExtendedNode.prototype.hasChild=function(e){if(null==e)return this.children.length>0;for(var t=!1,n=0;n<this.children.length&&!t;n++)e==this.children[n]&&(t=!0);return t},ExtendedNode.prototype.getChild=function(e){if(!this.hasChild(e))throw this.name+" doesn't have child named '"+e+"'.";return this.children[e]},ExtendedNode.prototype.getParent=function(){return this.parent},ExtendedNode.prototype.getNodeByDepth=function(e){var t=new Array;if(0==e)t.push(this);else if(this.hasChild())for(var n=0;n<this.children.length;n++)for(var r=this.children[n].getNodeByDepth(e-1),a=0;a<r.length;a++)t.push(r[a]);return t},ExtendedNode.prototype.addChild=function(e){null==e.parent&&(e.parent=this),this.children.push(e)},ExtendedNode.fromNewick=function(e){for(var t=new Array,n=0;n<e.length;n++){var r=e[n];if("("==r)t.push("(");else if(")"==r){for(var a=new ExtendedNode(null,null,null,null);"("!=t[t.length-1];)a.addChild(t.pop());t.pop(),t.push(a)}else if(","==r);else if(";"==r);else if(" "==r);else if(":"==r)if("{"==e[n+1]){for(metadata_json="{",n++,nb_open=1,nb_closed=0;nb_open!=nb_closed;)n++,metadata_json+=e[n],"{"==e[n]?nb_open++:"}"==e[n]&&nb_closed++;t[t.length-1].metadata=JSON.parse(metadata_json)}else{for(var h="";","!=e[n+1]&&")"!=e[n+1]&&";"!=e[n+1];)n++,h+=e[n];t[t.length-1].metadata.dist=h}else{var i=null;0!=n&&(i=e[n-1]),'"'==r?(stop_markers=['"'],n++):stop_markers=[",",")",":",";"];for(var d=e[n];-1==stop_markers.indexOf(e[n+1]);)n++,d+=e[n];if(-1!=stop_markers.indexOf('"')&&n++,")"==i)t[t.length-1].name=d;else{var l=new ExtendedNode(d,null,null,null);t.push(l)}}}return t[0]},ExtendedNode.prototype.keepOnlySamples=function(e){var t=!1;if(this.hasChild()){for(var n=new Array,r=0;r<this.children.length;r++)this.children[r].keepOnlySamples(e)&&n.push(r);for(var a=0,h=0;h<n.length;h++)this.children.splice(n[h]-a,1),a++;0==this.children.length&&(t=!0)}else{for(var i=!1,d={},l=0;l<e.length;l++)this.metadata.hasOwnProperty(e[l])&&(d[e[l]]=this.metadata[e[l]],i=!0);i?this.metadata=d:t=!0}return t},ExtendedNode.prototype.toJson=function(){var e={name:null!=this.name?this.name:"",metadata:this.metadata};if(this.hasChild()){for(var t=new Array,n=0;n<this.children.length;n++)t.push(this.children[n].toJson());e.children=t}var r=Object.keys(this.metadata);if(0!=r.length){for(var a=0,h=0;h<r.length;h++)a+=this.metadata[r[h]];e.size=a}return e};
		</script>

		<script type="text/javascript">
			
			var pieChart_Clusters;
			var pieChart_Abundance;
			var radarChart;
			var pieChart_Clusters_options;
			var pieChart_Abundance_options;
			var radarChart_options;
			
		
			
			/**
			 Data from HTML
			*/
			var frogs_version = "5.1.0" ;
			var frogs_tool = "frogsfunc_pathways.py" ;
			var taxonomic_ranks = ["Level1", "Level2", "Level3", "Pathway"] ;
			/* Example:
				["LevelA", "LevelB", "LevelC", "Pathway"]
			*/
			var samples_names = ["SC1703-104_TTGCCC-B6TML_L001_R", "SC1703-105_CAGTCT-B6TML_L001_R", "SC1703-106_TTAAAT-B6TML_L001_R", "SC1703-107_AATTGC-B6TML_L001_R", "SC1703-108_ACTCGA-B6TML_L001_R", "SC1703-109_GTTACC-B6TML_L001_R", "SC1703-110_CAGATG-B6TML_L001_R", "SC1703-125_TCGCGC-B6TML_L001_R", "SC1703-126_TAACTT-B6TML_L001_R", "SC1703-127_CTGTAA-B6TML_L001_R", "SC1703-128_CCATTG-B6TML_L001_R", "SC1703-129_TAGGCT-B6TML_L001_R", "SC1703-130_TTCTTG-B6TML_L001_R", "SC1703-131_CCGACC-B6TML_L001_R", "SC1703-132_TTAGCT-B6TML_L001_R", "SC1703-133_CAGAGC-B6TML_L001_R", "SC1703-134_AATATG-B6TML_L001_R", "SC1703-135_TGAGCA-B6TML_L001_R", "SC1703-136_AATCAC-B6TML_L001_R", "SC1703-137_GGTAGC-B6TML_L001_R", "SC1703-138_CTCTCG-B6TML_L001_R", "SC1703-145_AGCGAC-B6TML_L001_R", "SC1703-146_GCCAAG-B6TML_L001_R", "SC1703-147_AGGTTC-B6TML_L001_R", "SC1703-148_TTTTTC-B6TML_L001_R", "SC1703-149_GTCGTG-B6TML_L001_R", "SC1703-150_GCTATC-B6TML_L001_R", "SC1703-151_TATGCG-B6TML_L001_R", "SC1703-41_TCGTTC-B6TML_L001_R", "SC1703-42_GCGATG-B6TML_L001_R", "SC1703-43_ATATAA-B6TML_L001_R", "SC1703-44_ATACTG-B6TML_L001_R", "SC1703-45_GGAGAG-B6TML_L001_R", "SC1703-46_ACGAGA-B6TML_L001_R", "SC1703-47_ATTACA-B6TML_L001_R", "SC1703-48_TGATTT-B6TML_L001_R", "SC1703-49_GGGGTG-B6TML_L001_R", "SC1703-50_ACAAAA-B6TML_L001_R", "SC1703-51_CTCCAG-B6TML_L001_R", "SC1703-52_GGTGTT-B6TML_L001_R", "SC1703-53_CGGGAG-B6TML_L001_R", "SC1703-54_TGGTAG-B6TML_L001_R", "SC1703-62_TGCGGG-B6TML_L001_R", "SC1703-63_TCTATG-B6TML_L001_R", "SC1703-64_GGACGG-B6TML_L001_R", "SC1703-65_AGAGGG-B6TML_L001_R", "SC1703-66_ATGAAC-B6TML_L001_R", "SC1703-67_TACCTG-B6TML_L001_R", "SC1703-68_CTAGAG-B6TML_L001_R", "SC1703-83_CTTGCA-B6TML_L001_R", "SC1703-84_CATGTT-B6TML_L001_R", "SC1703-85_TGGATT-B6TML_L001_R", "SC1703-86_AACGCA-B6TML_L001_R", "SC1703-87_TTCGAG-B6TML_L001_R", "SC1703-88_AAGCTA-B6TML_L001_R", "SC1703-89_AGTTTG-B6TML_L001_R", "SC1703-90_TCCCCA-B6TML_L001_R", "SC1703-91_AACTAG-B6TML_L001_R", "SC1703-92_GTTCGC-B6TML_L001_R", "SC1703-93_TGCCTT-B6TML_L001_R", "SC1703-94_ATAAGA-B6TML_L001_R", "SC1703-95_CACACT-B6TML_L001_R", "SC1703-96_ACAGTT-B6TML_L001_R"] ;
			/* Example:
				["Surface-01", "Surface-02", "Surface-03", "Middle-01", "Middle-02", "Middle-03"]
			*/
			var tree_distribution = "((((\"N10-formyl-tetrahydrofolate biosynthesis\":{\"0\": 7322, \"1\": 14325, \"2\": 13731, \"3\": 18401, \"4\": 9165, \"5\": 5130, \"6\": 10367, \"7\": 6498, \"8\": 14613, \"9\": 23242, \"10\": 21991, \"11\": 23517, \"12\": 9825, \"13\": 23196, \"14\": 19358, \"15\": 13470, \"16\": 13598, \"17\": 27558, \"18\": 17603, \"19\": 15737, \"20\": 22658, \"21\": 8514, \"22\": 5772, \"23\": 6614, \"24\": 10149, \"25\": 5239, \"26\": 8655, \"27\": 4718, \"28\": 9228, \"29\": 4889, \"30\": 10618, \"31\": 11911, \"32\": 7524, \"33\": 6446, \"34\": 13740, \"35\": 15330, \"36\": 12684, \"37\": 9102, \"38\": 12374, \"39\": 15912, \"40\": 11605, \"41\": 16114, \"42\": 11837, \"43\": 12584, \"44\": 8987, \"45\": 12401, \"46\": 17749, \"47\": 9635, \"48\": 15002, \"49\": 9971, \"50\": 10515, \"51\": 14576, \"52\": 12758, \"53\": 16484, \"54\": 9472, \"55\": 12386, \"56\": 24040, \"57\": 25946, \"58\": 30949, \"59\": 22210, \"60\": 19344, \"61\": 24072, \"62\": 19012},\"coenzyme A biosynthesis I\":{\"0\": 7308, \"1\": 13390, \"2\": 12564, \"3\": 17074, \"4\": 8552, \"5\": 4956, \"6\": 10457, \"7\": 4171, \"8\": 13295, \"9\": 34093, \"10\": 24993, \"11\": 25577, \"12\": 15682, \"13\": 28520, \"14\": 17888, \"15\": 11623, \"16\": 13706, \"17\": 27110, \"18\": 17647, \"19\": 13786, \"20\": 20472, \"21\": 8652, \"22\": 5152, \"23\": 6233, \"24\": 9818, \"25\": 4920, \"26\": 8391, \"27\": 4615, \"28\": 6328, \"29\": 4277, \"30\": 8654, \"31\": 9515, \"32\": 4901, \"33\": 4958, \"34\": 8467, \"35\": 13723, \"36\": 10862, \"37\": 8736, \"38\": 9639, \"39\": 14404, \"40\": 10760, \"41\": 13825, \"42\": 11713, \"43\": 12113, \"44\": 9869, \"45\": 12039, \"46\": 17393, \"47\": 9633, \"48\": 15425, \"49\": 6783, \"50\": 7025, \"51\": 9009, \"52\": 13594, \"53\": 8938, \"54\": 6110, \"55\": 7015, \"56\": 27120, \"57\": 21298, \"58\": 28154, \"59\": 16258, \"60\": 14436, \"61\": 18564, \"62\": 16422},\"superpathway of tetrahydrofolate biosynthesis and salvage\":{\"0\": 5764, \"1\": 10422, \"2\": 9862, \"3\": 13279, \"4\": 6432, \"5\": 3815, \"6\": 9462, \"7\": 1700, \"8\": 5045, \"9\": 5688, \"10\": 6126, \"11\": 4841, \"12\": 3017, \"13\": 6410, \"14\": 17379, \"15\": 9460, \"16\": 12756, \"17\": 20044, \"18\": 17065, \"19\": 11761, \"20\": 17589, \"21\": 6354, \"22\": 4357, \"23\": 1847, \"24\": 6418, \"25\": 2500, \"26\": 6356, \"27\": 2895, \"28\": 5670, \"29\": 3790, \"30\": 7528, \"31\": 7523, \"32\": 4975, \"33\": 6266, \"34\": 7093, \"35\": 12078, \"36\": 9414, \"37\": 9526, \"38\": 6744, \"39\": 10453, \"40\": 7689, \"41\": 4906, \"42\": 9806, \"43\": 10460, \"44\": 9152, \"45\": 8873, \"46\": 13319, \"47\": 9096, \"48\": 14078, \"49\": 5710, \"50\": 5541, \"51\": 5188, \"52\": 7298, \"53\": 7793, \"54\": 4345, \"55\": 3909, \"56\": 24793, \"57\": 19768, \"58\": 19001, \"59\": 15774, \"60\": 12454, \"61\": 12321, \"62\": 15376},\"NAD salvage pathway II\":{\"0\": 191, \"1\": 630, \"2\": 1205, \"3\": 1625, \"4\": 936, \"5\": 256, \"6\": 1235, \"7\": 324, \"8\": 1156, \"9\": 1397, \"10\": 1386, \"11\": 1123, \"12\": 671, \"13\": 1594, \"14\": 4003, \"15\": 1758, \"16\": 924, \"17\": 573, \"18\": 878, \"19\": 1725, \"20\": 2228, \"21\": 335, \"22\": 908, \"23\": 126, \"24\": 453, \"25\": 412, \"26\": 486, \"27\": 79, \"28\": 2051, \"29\": 1444, \"30\": 3332, \"31\": 2993, \"32\": 1450, \"33\": 3783, \"34\": 2188, \"35\": 1001, \"36\": 1679, \"37\": 3401, \"38\": 695, \"39\": 885, \"40\": 704, \"41\": 344, \"42\": 655, \"43\": 1565, \"44\": 885, \"45\": 485, \"46\": 1241, \"47\": 1558, \"48\": 805, \"49\": 1938, \"50\": 2095, \"51\": 1359, \"52\": 2616, \"53\": 2384, \"54\": 1372, \"55\": 1252, \"56\": 437, \"57\": 2176, \"58\": 1474, \"59\": 3218, \"60\": 1960, \"61\": 2244, \"62\": 1721},\"phosphopantothenate biosynthesis I\":{\"0\": 5277, \"1\": 11285, \"2\": 11001, \"3\": 14674, \"4\": 7036, \"5\": 3291, \"6\": 7265, \"7\": 669, \"8\": 1742, \"9\": 2098, \"10\": 2180, \"11\": 2668, \"12\": 951, \"13\": 2641, \"14\": 11046, \"15\": 6534, \"16\": 8078, \"17\": 7672, \"18\": 13330, \"19\": 6994, \"20\": 13132, \"21\": 4254, \"22\": 4374, \"23\": 4460, \"24\": 6128, \"25\": 3569, \"26\": 6950, \"27\": 3121, \"28\": 3080, \"29\": 2555, \"30\": 4260, \"31\": 3449, \"32\": 2960, \"33\": 4353, \"34\": 3042, \"35\": 8618, \"36\": 4214, \"37\": 6182, \"38\": 3589, \"39\": 6975, \"40\": 4842, \"41\": 1993, \"42\": 9873, \"43\": 10815, \"44\": 6578, \"45\": 8800, \"46\": 11709, \"47\": 6975, \"48\": 12310, \"49\": 2640, \"50\": 4050, \"51\": 2164, \"52\": 3844, \"53\": 3478, \"54\": 2281, \"55\": 2046, \"56\": 19060, \"57\": 11757, \"58\": 10478, \"59\": 9362, \"60\": 4840, \"61\": 4231, \"62\": 8403},\"pantothenate and coenzyme A biosynthesis I\":{\"0\": 5984, \"1\": 12145, \"2\": 11501, \"3\": 15496, \"4\": 7579, \"5\": 3897, \"6\": 8445, \"7\": 918, \"8\": 2440, \"9\": 3079, \"10\": 3142, \"11\": 3809, \"12\": 1400, \"13\": 3809, \"14\": 12651, \"15\": 7579, \"16\": 9356, \"17\": 10057, \"18\": 14518, \"19\": 8271, \"20\": 14853, \"21\": 5188, \"22\": 4604, \"23\": 5080, \"24\": 7201, \"25\": 4007, \"26\": 7483, \"27\": 3602, \"28\": 3598, \"29\": 2907, \"30\": 5009, \"31\": 4328, \"32\": 3254, \"33\": 4418, \"34\": 3754, \"35\": 9734, \"36\": 5203, \"37\": 6880, \"38\": 4459, \"39\": 8477, \"40\": 5944, \"41\": 2774, \"42\": 10608, \"43\": 11212, \"44\": 7871, \"45\": 10230, \"46\": 13778, \"47\": 8105, \"48\": 13571, \"49\": 3241, \"50\": 4580, \"51\": 2833, \"52\": 5100, \"53\": 4218, \"54\": 2807, \"55\": 2621, \"56\": 21432, \"57\": 13491, \"58\": 13145, \"59\": 10546, \"60\": 6095, \"61\": 5618, \"62\": 9833},\"1,4-dihydroxy-2-naphthoate biosynthesis I\":{\"0\": 110, \"1\": 376, \"2\": 752, \"3\": 1022, \"4\": 598, \"5\": 151, \"6\": 770, \"7\": 197, \"8\": 788, \"9\": 914, \"10\": 941, \"11\": 794, \"12\": 427, \"13\": 1114, \"14\": 2703, \"15\": 1139, \"16\": 549, \"17\": 329, \"18\": 524, \"19\": 1083, \"20\": 1396, \"21\": 199, \"22\": 603, \"23\": 77, \"24\": 272, \"25\": 268, \"26\": 295, \"27\": 46, \"28\": 1534, \"29\": 1052, \"30\": 2739, \"31\": 2176, \"32\": 1033, \"33\": 3156, \"34\": 1569, \"35\": 639, \"36\": 1101, \"37\": 2612, \"38\": 445, \"39\": 598, \"40\": 453, \"41\": 209, \"42\": 389, \"43\": 985, \"44\": 536, \"45\": 286, \"46\": 757, \"47\": 999, \"48\": 471, \"49\": 1372, \"50\": 1547, \"51\": 966, \"52\": 1891, \"53\": 1693, \"54\": 985, \"55\": 859, \"56\": 248, \"57\": 1350, \"58\": 882, \"59\": 2212, \"60\": 1253, \"61\": 1472, \"62\": 1068},\"superpathway of menaquinol-8 biosynthesis I\":{\"0\": 159, \"1\": 509, \"2\": 913, \"3\": 1239, \"4\": 692, \"5\": 206, \"6\": 995, \"7\": 188, \"8\": 738, \"9\": 857, \"10\": 889, \"11\": 743, \"12\": 407, \"13\": 1045, \"14\": 3149, \"15\": 1262, \"16\": 782, \"17\": 474, \"18\": 771, \"19\": 1325, \"20\": 1736, \"21\": 274, \"22\": 665, \"23\": 93, \"24\": 355, \"25\": 264, \"26\": 388, \"27\": 65, \"28\": 1428, \"29\": 979, \"30\": 2551, \"31\": 2028, \"32\": 964, \"33\": 2940, \"34\": 1462, \"35\": 911, \"36\": 1324, \"37\": 3014, \"38\": 594, \"39\": 845, \"40\": 632, \"41\": 268, \"42\": 536, \"43\": 1232, \"44\": 746, \"45\": 392, \"46\": 999, \"47\": 1248, \"48\": 669, \"49\": 1292, \"50\": 1447, \"51\": 912, \"52\": 1789, \"53\": 1589, \"54\": 925, \"55\": 804, \"56\": 372, \"57\": 1805, \"58\": 1164, \"59\": 2676, \"60\": 1482, \"61\": 1565, \"62\": 1436},\"superpathway of menaquinol-7 biosynthesis\":{\"0\": 159, \"1\": 514, \"2\": 930, \"3\": 1263, \"4\": 708, \"5\": 208, \"6\": 1006, \"7\": 196, \"8\": 770, \"9\": 894, \"10\": 927, \"11\": 775, \"12\": 424, \"13\": 1089, \"14\": 3203, \"15\": 1295, \"16\": 785, \"17\": 476, \"18\": 772, \"19\": 1348, \"20\": 1765, \"21\": 276, \"22\": 682, \"23\": 95, \"24\": 360, \"25\": 274, \"26\": 393, \"27\": 66, \"28\": 1481, \"29\": 1011, \"30\": 2631, \"31\": 2097, \"32\": 1002, \"33\": 2949, \"34\": 1521, \"35\": 914, \"36\": 1349, \"37\": 3021, \"38\": 600, \"39\": 849, \"40\": 636, \"41\": 273, \"42\": 540, \"43\": 1250, \"44\": 750, \"45\": 395, \"46\": 1011, \"47\": 1264, \"48\": 672, \"49\": 1340, \"50\": 1500, \"51\": 949, \"52\": 1854, \"53\": 1653, \"54\": 962, \"55\": 836, \"56\": 372, \"57\": 1823, \"58\": 1179, \"59\": 2724, \"60\": 1514, \"61\": 1614, \"62\": 1449},\"superpathway of menaquinol-9 biosynthesis\":{\"0\": 150, \"1\": 484, \"2\": 883, \"3\": 1199, \"4\": 674, \"5\": 196, \"6\": 954, \"7\": 188, \"8\": 738, \"9\": 856, \"10\": 888, \"11\": 742, \"12\": 406, \"13\": 1044, \"14\": 3063, \"15\": 1236, \"16\": 738, \"17\": 446, \"18\": 724, \"19\": 1280, \"20\": 1674, \"21\": 260, \"22\": 652, \"23\": 90, \"24\": 340, \"25\": 263, \"26\": 371, \"27\": 62, \"28\": 1428, \"29\": 979, \"30\": 2551, \"31\": 2028, \"32\": 963, \"33\": 2939, \"34\": 1461, \"35\": 860, \"36\": 1282, \"37\": 2936, \"38\": 566, \"39\": 799, \"40\": 599, \"41\": 257, \"42\": 509, \"43\": 1187, \"44\": 707, \"45\": 372, \"46\": 955, \"47\": 1202, \"48\": 632, \"49\": 1291, \"50\": 1446, \"51\": 910, \"52\": 1786, \"53\": 1587, \"54\": 924, \"55\": 803, \"56\": 348, \"57\": 1721, \"58\": 1112, \"59\": 2590, \"60\": 1439, \"61\": 1541, \"62\": 1368},\"superpathway of menaquinol-6 biosynthesis I\":{\"0\": 150, \"1\": 484, \"2\": 883, \"3\": 1199, \"4\": 674, \"5\": 196, \"6\": 954, \"7\": 188, \"8\": 738, \"9\": 856, \"10\": 888, \"11\": 742, \"12\": 406, \"13\": 1044, \"14\": 3063, \"15\": 1236, \"16\": 738, \"17\": 446, \"18\": 724, \"19\": 1280, \"20\": 1674, \"21\": 260, \"22\": 652, \"23\": 90, \"24\": 340, \"25\": 263, \"26\": 371, \"27\": 62, \"28\": 1428, \"29\": 979, \"30\": 2551, \"31\": 2028, \"32\": 963, \"33\": 2939, \"34\": 1461, \"35\": 860, \"36\": 1282, \"37\": 2936, \"38\": 566, \"39\": 799, \"40\": 599, \"41\": 257, \"42\": 509, \"43\": 1187, \"44\": 707, \"45\": 372, \"46\": 955, \"47\": 1202, \"48\": 632, \"49\": 1291, \"50\": 1446, \"51\": 910, \"52\": 1786, \"53\": 1587, \"54\": 924, \"55\": 803, \"56\": 348, \"57\": 1721, \"58\": 1112, \"59\": 2590, \"60\": 1439, \"61\": 1541, \"62\": 1368},\"ubiquinol-7 biosynthesis (prokaryotic)\":{\"0\": 227, \"1\": 696, \"2\": 1167, \"3\": 1580, \"4\": 859, \"5\": 281, \"6\": 1309, \"7\": 228, \"8\": 882, \"9\": 964, \"10\": 1061, \"11\": 891, \"12\": 460, \"13\": 1237, \"14\": 3930, \"15\": 1556, \"16\": 1109, \"17\": 678, \"18\": 1123, \"19\": 1712, \"20\": 2264, \"21\": 377, \"22\": 811, \"23\": 118, \"24\": 469, \"25\": 304, \"26\": 517, \"27\": 93, \"28\": 1669, \"29\": 1112, \"30\": 2925, \"31\": 2314, \"32\": 1142, \"33\": 3333, \"34\": 1732, \"35\": 1296, \"36\": 1702, \"37\": 3724, \"38\": 816, \"39\": 1194, \"40\": 886, \"41\": 364, \"42\": 738, \"43\": 1598, \"44\": 1036, \"45\": 537, \"46\": 1334, \"47\": 1607, \"48\": 943, \"49\": 1512, \"50\": 1684, \"51\": 1095, \"52\": 2020, \"53\": 1894, \"54\": 1095, \"55\": 954, \"56\": 550, \"57\": 2470, \"58\": 1574, \"59\": 3474, \"60\": 1911, \"61\": 1938, \"62\": 1968},\"ubiquinol-9 biosynthesis (prokaryotic)\":{\"0\": 227, \"1\": 696, \"2\": 1167, \"3\": 1580, \"4\": 859, \"5\": 281, \"6\": 1309, \"7\": 228, \"8\": 882, \"9\": 964, \"10\": 1061, \"11\": 891, \"12\": 460, \"13\": 1237, \"14\": 3930, \"15\": 1556, \"16\": 1109, \"17\": 678, \"18\": 1123, \"19\": 1712, \"20\": 2264, \"21\": 377, \"22\": 811, \"23\": 118, \"24\": 469, \"25\": 304, \"26\": 517, \"27\": 93, \"28\": 1669, \"29\": 1112, \"30\": 2925, \"31\": 2314, \"32\": 1142, \"33\": 3333, \"34\": 1732, \"35\": 1296, \"36\": 1702, \"37\": 3724, \"38\": 816, \"39\": 1194, \"40\": 886, \"41\": 364, \"42\": 738, \"43\": 1598, \"44\": 1036, \"45\": 537, \"46\": 1334, \"47\": 1607, \"48\": 943, \"49\": 1512, \"50\": 1684, \"51\": 1095, \"52\": 2020, \"53\": 1894, \"54\": 1095, \"55\": 954, \"56\": 550, \"57\": 2470, \"58\": 1574, \"59\": 3474, \"60\": 1911, \"61\": 1938, \"62\": 1968},\"ubiquinol-10 biosynthesis (prokaryotic)\":{\"0\": 227, \"1\": 696, \"2\": 1167, \"3\": 1580, \"4\": 859, \"5\": 281, \"6\": 1309, \"7\": 228, \"8\": 882, \"9\": 964, \"10\": 1061, \"11\": 891, \"12\": 460, \"13\": 1237, \"14\": 3930, \"15\": 1556, \"16\": 1109, \"17\": 678, \"18\": 1123, \"19\": 1712, \"20\": 2264, \"21\": 377, \"22\": 811, \"23\": 118, \"24\": 469, \"25\": 304, \"26\": 517, \"27\": 93, \"28\": 1669, \"29\": 1112, \"30\": 2925, \"31\": 2314, \"32\": 1142, \"33\": 3333, \"34\": 1732, \"35\": 1296, \"36\": 1702, \"37\": 3724, \"38\": 816, \"39\": 1194, \"40\": 886, \"41\": 364, \"42\": 738, \"43\": 1598, \"44\": 1036, \"45\": 537, \"46\": 1334, \"47\": 1607, \"48\": 943, \"49\": 1512, \"50\": 1684, \"51\": 1095, \"52\": 2020, \"53\": 1894, \"54\": 1095, \"55\": 954, \"56\": 550, \"57\": 2470, \"58\": 1574, \"59\": 3474, \"60\": 1911, \"61\": 1938, \"62\": 1968},\"superpathway of demethylmenaquinol-6 biosynthesis I\":{\"0\": 104, \"1\": 355, \"2\": 710, \"3\": 965, \"4\": 565, \"5\": 143, \"6\": 727, \"7\": 186, \"8\": 744, \"9\": 863, \"10\": 888, \"11\": 750, \"12\": 404, \"13\": 1052, \"14\": 2552, \"15\": 1076, \"16\": 518, \"17\": 310, \"18\": 495, \"19\": 1023, \"20\": 1318, \"21\": 188, \"22\": 569, \"23\": 73, \"24\": 257, \"25\": 253, \"26\": 279, \"27\": 43, \"28\": 1448, \"29\": 993, \"30\": 2586, \"31\": 2055, \"32\": 975, \"33\": 2979, \"34\": 1481, \"35\": 603, \"36\": 1040, \"37\": 2466, \"38\": 420, \"39\": 564, \"40\": 428, \"41\": 197, \"42\": 367, \"43\": 930, \"44\": 506, \"45\": 270, \"46\": 715, \"47\": 943, \"48\": 445, \"49\": 1295, \"50\": 1460, \"51\": 912, \"52\": 1785, \"53\": 1598, \"54\": 930, \"55\": 811, \"56\": 234, \"57\": 1274, \"58\": 833, \"59\": 2088, \"60\": 1183, \"61\": 1389, \"62\": 1008},\"superpathway of demethylmenaquinol-8 biosynthesis\":{\"0\": 110, \"1\": 374, \"2\": 739, \"3\": 1005, \"4\": 584, \"5\": 151, \"6\": 763, \"7\": 187, \"8\": 745, \"9\": 864, \"10\": 891, \"11\": 751, \"12\": 405, \"13\": 1053, \"14\": 2641, \"15\": 1105, \"16\": 550, \"17\": 330, \"18\": 528, \"19\": 1066, \"20\": 1377, \"21\": 198, \"22\": 585, \"23\": 76, \"24\": 270, \"25\": 256, \"26\": 293, \"27\": 46, \"28\": 1448, \"29\": 993, \"30\": 2586, \"31\": 2055, \"32\": 976, \"33\": 2980, \"34\": 1481, \"35\": 641, \"36\": 1081, \"37\": 2550, \"38\": 442, \"39\": 599, \"40\": 453, \"41\": 207, \"42\": 389, \"43\": 972, \"44\": 536, \"45\": 285, \"46\": 752, \"47\": 985, \"48\": 472, \"49\": 1298, \"50\": 1461, \"51\": 914, \"52\": 1790, \"53\": 1600, \"54\": 931, \"55\": 812, \"56\": 250, \"57\": 1343, \"58\": 876, \"59\": 2173, \"60\": 1227, \"61\": 1419, \"62\": 1064},\"superpathway of demethylmenaquinol-9 biosynthesis\":{\"0\": 104, \"1\": 355, \"2\": 710, \"3\": 965, \"4\": 565, \"5\": 143, \"6\": 727, \"7\": 186, \"8\": 744, \"9\": 863, \"10\": 888, \"11\": 750, \"12\": 404, \"13\": 1052, \"14\": 2552, \"15\": 1076, \"16\": 518, \"17\": 310, \"18\": 495, \"19\": 1023, \"20\": 1318, \"21\": 188, \"22\": 569, \"23\": 73, \"24\": 257, \"25\": 253, \"26\": 279, \"27\": 43, \"28\": 1448, \"29\": 993, \"30\": 2586, \"31\": 2055, \"32\": 975, \"33\": 2979, \"34\": 1481, \"35\": 603, \"36\": 1040, \"37\": 2466, \"38\": 420, \"39\": 564, \"40\": 428, \"41\": 197, \"42\": 367, \"43\": 930, \"44\": 506, \"45\": 270, \"46\": 715, \"47\": 943, \"48\": 445, \"49\": 1295, \"50\": 1460, \"51\": 912, \"52\": 1785, \"53\": 1598, \"54\": 930, \"55\": 811, \"56\": 234, \"57\": 1274, \"58\": 833, \"59\": 2088, \"60\": 1183, \"61\": 1389, \"62\": 1008},\"superpathway of phylloquinol biosynthesis\":{\"0\": 125, \"1\": 427, \"2\": 851, \"3\": 1158, \"4\": 677, \"5\": 172, \"6\": 868, \"7\": 224, \"8\": 895, \"9\": 1041, \"10\": 1071, \"11\": 905, \"12\": 487, \"13\": 1267, \"14\": 3014, \"15\": 1285, \"16\": 623, \"17\": 375, \"18\": 596, \"19\": 1225, \"20\": 1581, \"21\": 226, \"22\": 678, \"23\": 88, \"24\": 310, \"25\": 304, \"26\": 336, \"27\": 52, \"28\": 1713, \"29\": 1157, \"30\": 2995, \"31\": 2419, \"32\": 1162, \"33\": 3206, \"34\": 1768, \"35\": 726, \"36\": 1243, \"37\": 2788, \"38\": 506, \"39\": 679, \"40\": 515, \"41\": 238, \"42\": 442, \"43\": 1112, \"44\": 605, \"45\": 326, \"46\": 859, \"47\": 1120, \"48\": 535, \"49\": 1537, \"50\": 1729, \"51\": 1096, \"52\": 2121, \"53\": 1912, \"54\": 1110, \"55\": 973, \"56\": 282, \"57\": 1532, \"58\": 1004, \"59\": 2496, \"60\": 1420, \"61\": 1669, \"62\": 1211},\"superpathway of menaquinol-10 biosynthesis\":{\"0\": 150, \"1\": 484, \"2\": 883, \"3\": 1199, \"4\": 674, \"5\": 196, \"6\": 954, \"7\": 188, \"8\": 738, \"9\": 856, \"10\": 888, \"11\": 742, \"12\": 406, \"13\": 1044, \"14\": 3063, \"15\": 1236, \"16\": 738, \"17\": 446, \"18\": 724, \"19\": 1280, \"20\": 1674, \"21\": 260, \"22\": 652, \"23\": 90, \"24\": 340, \"25\": 263, \"26\": 371, \"27\": 62, \"28\": 1428, \"29\": 979, \"30\": 2551, \"31\": 2028, \"32\": 963, \"33\": 2939, \"34\": 1461, \"35\": 860, \"36\": 1282, \"37\": 2936, \"38\": 566, \"39\": 799, \"40\": 599, \"41\": 257, \"42\": 509, \"43\": 1187, \"44\": 707, \"45\": 372, \"46\": 955, \"47\": 1202, \"48\": 632, \"49\": 1291, \"50\": 1446, \"51\": 910, \"52\": 1786, \"53\": 1587, \"54\": 924, \"55\": 803, \"56\": 348, \"57\": 1721, \"58\": 1112, \"59\": 2590, \"60\": 1439, \"61\": 1541, \"62\": 1368},\"superpathway of menaquinol-11 biosynthesis\":{\"0\": 150, \"1\": 487, \"2\": 887, \"3\": 1205, \"4\": 677, \"5\": 197, \"6\": 959, \"7\": 189, \"8\": 741, \"9\": 860, \"10\": 891, \"11\": 745, \"12\": 408, \"13\": 1048, \"14\": 3078, \"15\": 1241, \"16\": 743, \"17\": 449, \"18\": 729, \"19\": 1287, \"20\": 1683, \"21\": 262, \"22\": 655, \"23\": 90, \"24\": 341, \"25\": 264, \"26\": 373, \"27\": 62, \"28\": 1434, \"29\": 983, \"30\": 2562, \"31\": 2036, \"32\": 967, \"33\": 2951, \"34\": 1467, \"35\": 865, \"36\": 1289, \"37\": 2951, \"38\": 569, \"39\": 803, \"40\": 603, \"41\": 259, \"42\": 512, \"43\": 1193, \"44\": 711, \"45\": 374, \"46\": 960, \"47\": 1209, \"48\": 636, \"49\": 1296, \"50\": 1452, \"51\": 914, \"52\": 1793, \"53\": 1594, \"54\": 928, \"55\": 806, \"56\": 350, \"57\": 1731, \"58\": 1118, \"59\": 2603, \"60\": 1446, \"61\": 1548, \"62\": 1376},\"superpathway of menaquinol-12 biosynthesis\":{\"0\": 150, \"1\": 487, \"2\": 887, \"3\": 1205, \"4\": 677, \"5\": 197, \"6\": 959, \"7\": 189, \"8\": 741, \"9\": 860, \"10\": 891, \"11\": 745, \"12\": 408, \"13\": 1048, \"14\": 3078, \"15\": 1241, \"16\": 743, \"17\": 449, \"18\": 729, \"19\": 1287, \"20\": 1683, \"21\": 262, \"22\": 655, \"23\": 90, \"24\": 341, \"25\": 264, \"26\": 373, \"27\": 62, \"28\": 1434, \"29\": 983, \"30\": 2562, \"31\": 2036, \"32\": 967, \"33\": 2951, \"34\": 1467, \"35\": 865, \"36\": 1289, \"37\": 2951, \"38\": 569, \"39\": 803, \"40\": 603, \"41\": 259, \"42\": 512, \"43\": 1193, \"44\": 711, \"45\": 374, \"46\": 960, \"47\": 1209, \"48\": 636, \"49\": 1296, \"50\": 1452, \"51\": 914, \"52\": 1793, \"53\": 1594, \"54\": 928, \"55\": 806, \"56\": 350, \"57\": 1731, \"58\": 1118, \"59\": 2603, \"60\": 1446, \"61\": 1548, \"62\": 1376},\"superpathway of menaquinol-13 biosynthesis\":{\"0\": 150, \"1\": 487, \"2\": 887, \"3\": 1205, \"4\": 677, \"5\": 197, \"6\": 959, \"7\": 189, \"8\": 741, \"9\": 860, \"10\": 891, \"11\": 745, \"12\": 408, \"13\": 1048, \"14\": 3078, \"15\": 1241, \"16\": 743, \"17\": 449, \"18\": 729, \"19\": 1287, \"20\": 1683, \"21\": 262, \"22\": 655, \"23\": 90, \"24\": 341, \"25\": 264, \"26\": 373, \"27\": 62, \"28\": 1434, \"29\": 983, \"30\": 2562, \"31\": 2036, \"32\": 967, \"33\": 2951, \"34\": 1467, \"35\": 865, \"36\": 1289, \"37\": 2951, \"38\": 569, \"39\": 803, \"40\": 603, \"41\": 259, \"42\": 512, \"43\": 1193, \"44\": 711, \"45\": 374, \"46\": 960, \"47\": 1209, \"48\": 636, \"49\": 1296, \"50\": 1452, \"51\": 914, \"52\": 1793, \"53\": 1594, \"54\": 928, \"55\": 806, \"56\": 350, \"57\": 1731, \"58\": 1118, \"59\": 2603, \"60\": 1446, \"61\": 1548, \"62\": 1376},\"6-hydroxymethyl-dihydropterin diphosphate biosynthesis I\":{\"0\": 5880, \"1\": 12525, \"2\": 11103, \"3\": 15011, \"4\": 7268, \"5\": 4047, \"6\": 9362, \"7\": 2048, \"8\": 3626, \"9\": 3314, \"10\": 3919, \"11\": 2528, \"12\": 2315, \"13\": 3476, \"14\": 14511, \"15\": 9545, \"16\": 10982, \"17\": 25230, \"18\": 13456, \"19\": 11109, \"20\": 17389, \"21\": 7959, \"22\": 3876, \"23\": 5861, \"24\": 8976, \"25\": 4668, \"26\": 7679, \"27\": 3581, \"28\": 3369, \"29\": 2882, \"30\": 3794, \"31\": 4915, \"32\": 3692, \"33\": 4054, \"34\": 4456, \"35\": 7625, \"36\": 7100, \"37\": 6814, \"38\": 3705, \"39\": 5687, \"40\": 4387, \"41\": 3992, \"42\": 9988, \"43\": 9834, \"44\": 8508, \"45\": 10841, \"46\": 12443, \"47\": 8538, \"48\": 14159, \"49\": 3909, \"50\": 3205, \"51\": 2900, \"52\": 4233, \"53\": 4824, \"54\": 2523, \"55\": 2292, \"56\": 21234, \"57\": 14312, \"58\": 18812, \"59\": 9658, \"60\": 10190, \"61\": 10656, \"62\": 11436},\"superpathway of menaquinol-8 biosynthesis II\":{\"0\": 1296, \"1\": 1797, \"2\": 1504, \"3\": 2019, \"4\": 871, \"5\": 745, \"6\": 2380, \"7\": 35, \"8\": 38, \"9\": 44, \"10\": 98, \"11\": 26, \"12\": 65, \"13\": 61, \"14\": 4088, \"15\": 1255, \"16\": 4949, \"17\": 3776, \"18\": 10041, \"19\": 2267, \"20\": 3279, \"21\": 1159, \"22\": 646, \"23\": 144, \"24\": 904, \"25\": 100, \"26\": 1065, \"27\": 459, \"28\": 3, \"29\": 6, \"30\": 18, \"31\": 24, \"32\": 18, \"33\": 21, \"34\": 12, \"35\": 5830, \"36\": 2054, \"37\": 3581, \"38\": 1838, \"39\": 4767, \"40\": 3047, \"41\": 629, \"42\": 2231, \"43\": 2393, \"44\": 3449, \"45\": 1534, \"46\": 2810, \"47\": 2393, \"48\": 4096, \"49\": 116, \"50\": 59, \"51\": 90, \"52\": 212, \"53\": 98, \"54\": 63, \"55\": 32, \"56\": 15601, \"57\": 5627, \"58\": 3281, \"59\": 4301, \"60\": 2120, \"61\": 1217, \"62\": 4682},\"superpathway of tetrahydrofolate biosynthesis\":{\"0\": 5147, \"1\": 9116, \"2\": 8577, \"3\": 11589, \"4\": 5570, \"5\": 3330, \"6\": 8784, \"7\": 1232, \"8\": 3676, \"9\": 4005, \"10\": 4370, \"11\": 3387, \"12\": 2144, \"13\": 4560, \"14\": 15823, \"15\": 8051, \"16\": 11413, \"17\": 17232, \"18\": 14877, \"19\": 10108, \"20\": 15293, \"21\": 5577, \"22\": 3817, \"23\": 1363, \"24\": 5421, \"25\": 1993, \"26\": 5603, \"27\": 2429, \"28\": 4551, \"29\": 3339, \"30\": 6327, \"31\": 6263, \"32\": 3913, \"33\": 5802, \"34\": 5456, \"35\": 10022, \"36\": 7913, \"37\": 8921, \"38\": 5222, \"39\": 8481, \"40\": 6288, \"41\": 3594, \"42\": 8943, \"43\": 9298, \"44\": 8585, \"45\": 7732, \"46\": 11717, \"47\": 8521, \"48\": 13278, \"49\": 4610, \"50\": 4422, \"51\": 3788, \"52\": 5781, \"53\": 5897, \"54\": 3335, \"55\": 2894, \"56\": 21713, \"57\": 16442, \"58\": 15647, \"59\": 12762, \"60\": 10075, \"61\": 9599, \"62\": 12992},\"ubiquinol-8 biosynthesis (prokaryotic)\":{\"0\": 227, \"1\": 696, \"2\": 1167, \"3\": 1580, \"4\": 859, \"5\": 281, \"6\": 1309, \"7\": 228, \"8\": 882, \"9\": 964, \"10\": 1061, \"11\": 891, \"12\": 460, \"13\": 1237, \"14\": 3930, \"15\": 1556, \"16\": 1109, \"17\": 678, \"18\": 1123, \"19\": 1712, \"20\": 2264, \"21\": 377, \"22\": 811, \"23\": 118, \"24\": 469, \"25\": 304, \"26\": 517, \"27\": 93, \"28\": 1669, \"29\": 1112, \"30\": 2925, \"31\": 2314, \"32\": 1142, \"33\": 3333, \"34\": 1732, \"35\": 1296, \"36\": 1702, \"37\": 3724, \"38\": 816, \"39\": 1194, \"40\": 886, \"41\": 364, \"42\": 738, \"43\": 1598, \"44\": 1036, \"45\": 537, \"46\": 1334, \"47\": 1607, \"48\": 943, \"49\": 1512, \"50\": 1684, \"51\": 1095, \"52\": 2020, \"53\": 1894, \"54\": 1095, \"55\": 954, \"56\": 550, \"57\": 2470, \"58\": 1574, \"59\": 3474, \"60\": 1911, \"61\": 1938, \"62\": 1968},\"1,4-dihydroxy-6-naphthoate biosynthesis II\":{\"0\": 1148, \"1\": 1468, \"2\": 1044, \"3\": 1396, \"4\": 552, \"5\": 612, \"6\": 1846, \"7\": 13, \"8\": 13, \"9\": 15, \"10\": 35, \"11\": 9, \"12\": 24, \"13\": 21, \"14\": 2666, \"15\": 728, \"16\": 4407, \"17\": 3321, \"18\": 9514, \"19\": 1597, \"20\": 2373, \"21\": 969, \"22\": 372, \"23\": 97, \"24\": 697, \"25\": 42, \"26\": 836, \"27\": 399, \"28\": 1, \"29\": 2, \"30\": 6, \"31\": 8, \"32\": 6, \"33\": 7, \"34\": 4, \"35\": 5184, \"36\": 1406, \"37\": 2379, \"38\": 1471, \"39\": 4165, \"40\": 2616, \"41\": 473, \"42\": 1876, \"43\": 1757, \"44\": 3013, \"45\": 1270, \"46\": 2225, \"47\": 1771, \"48\": 3610, \"49\": 41, \"50\": 20, \"51\": 32, \"52\": 76, \"53\": 34, \"54\": 22, \"55\": 11, \"56\": 15266, \"57\": 4545, \"58\": 2580, \"59\": 2981, \"60\": 1403, \"61\": 638, \"62\": 3822},\"superpathway of demethylmenaquinol-6 biosynthesis II\":{\"0\": 1148, \"1\": 1468, \"2\": 1044, \"3\": 1396, \"4\": 552, \"5\": 612, \"6\": 1846, \"7\": 13, \"8\": 13, \"9\": 15, \"10\": 35, \"11\": 9, \"12\": 24, \"13\": 21, \"14\": 2666, \"15\": 728, \"16\": 4407, \"17\": 3321, \"18\": 9514, \"19\": 1597, \"20\": 2373, \"21\": 969, \"22\": 372, \"23\": 97, \"24\": 697, \"25\": 42, \"26\": 836, \"27\": 399, \"28\": 1, \"29\": 2, \"30\": 6, \"31\": 8, \"32\": 6, \"33\": 7, \"34\": 4, \"35\": 5184, \"36\": 1406, \"37\": 2379, \"38\": 1471, \"39\": 4165, \"40\": 2616, \"41\": 473, \"42\": 1876, \"43\": 1757, \"44\": 3013, \"45\": 1270, \"46\": 2225, \"47\": 1771, \"48\": 3610, \"49\": 41, \"50\": 20, \"51\": 32, \"52\": 76, \"53\": 34, \"54\": 22, \"55\": 11, \"56\": 15266, \"57\": 4545, \"58\": 2580, \"59\": 2981, \"60\": 1403, \"61\": 638, \"62\": 3822},\"6-hydroxymethyl-dihydropterin diphosphate biosynthesis III (Chlamydia)\":{\"0\": 5766, \"1\": 12117, \"2\": 11202, \"3\": 15011, \"4\": 7079, \"5\": 3735, \"6\": 8165, \"7\": 2242, \"8\": 4196, \"9\": 1439, \"10\": 4485, \"11\": 3125, \"12\": 771, \"13\": 3968, \"14\": 14051, \"15\": 8468, \"16\": 11373, \"17\": 14875, \"18\": 15409, \"19\": 9688, \"20\": 16785, \"21\": 5064, \"22\": 4074, \"23\": 4617, \"24\": 6784, \"25\": 3690, \"26\": 7183, \"27\": 3274, \"28\": 3786, \"29\": 1937, \"30\": 4084, \"31\": 4116, \"32\": 4202, \"33\": 4093, \"34\": 5224, \"35\": 8933, \"36\": 7352, \"37\": 7196, \"38\": 4429, \"39\": 6717, \"40\": 5046, \"41\": 4392, \"42\": 10028, \"43\": 7807, \"44\": 8338, \"45\": 9355, \"46\": 12160, \"47\": 7771, \"48\": 13990, \"49\": 4127, \"50\": 3572, \"51\": 3589, \"52\": 2711, \"53\": 5788, \"54\": 2935, \"55\": 2714, \"56\": 24002, \"57\": 15929, \"58\": 15910, \"59\": 11252, \"60\": 10873, \"61\": 11240, \"62\": 12479},\"NAD salvage pathway I\":{\"0\": 6266, \"1\": 12960, \"2\": 12121, \"3\": 16266, \"4\": 8051, \"5\": 4470, \"6\": 9083, \"7\": 4274, \"8\": 9214, \"9\": 10232, \"10\": 11226, \"11\": 8219, \"12\": 6370, \"13\": 10510, \"14\": 16130, \"15\": 11776, \"16\": 11001, \"17\": 26305, \"18\": 9729, \"19\": 13536, \"20\": 20308, \"21\": 7928, \"22\": 4770, \"23\": 6155, \"24\": 9268, \"25\": 4808, \"26\": 7776, \"27\": 4086, \"28\": 6649, \"29\": 3833, \"30\": 7076, \"31\": 8025, \"32\": 7032, \"33\": 4472, \"34\": 9803, \"35\": 6889, \"36\": 10111, \"37\": 6450, \"38\": 6207, \"39\": 4816, \"40\": 4958, \"41\": 8833, \"42\": 10132, \"43\": 10865, \"44\": 7599, \"45\": 11170, \"46\": 14454, \"47\": 8246, \"48\": 12951, \"49\": 6973, \"50\": 6380, \"51\": 7902, \"52\": 8525, \"53\": 11200, \"54\": 5730, \"55\": 5777, \"56\": 14246, \"57\": 19755, \"58\": 25392, \"59\": 15242, \"60\": 15927, \"61\": 18938, \"62\": 14817},\"NAD biosynthesis I (from aspartate)\":{\"0\": 4038, \"1\": 7493, \"2\": 5780, \"3\": 9215, \"4\": 5142, \"5\": 2921, \"6\": 6247, \"7\": 709, \"8\": 1792, \"9\": 2514, \"10\": 2315, \"11\": 2837, \"12\": 1099, \"13\": 2961, \"14\": 8049, \"15\": 4284, \"16\": 3449, \"17\": 2206, \"18\": 4184, \"19\": 4773, \"20\": 8197, \"21\": 2571, \"22\": 3235, \"23\": 2972, \"24\": 3874, \"25\": 2032, \"26\": 4421, \"27\": 2657, \"28\": 3171, \"29\": 2499, \"30\": 4362, \"31\": 3749, \"32\": 2694, \"33\": 3703, \"34\": 3248, \"35\": 6473, \"36\": 2412, \"37\": 4643, \"38\": 4671, \"39\": 8330, \"40\": 5583, \"41\": 2559, \"42\": 6983, \"43\": 9755, \"44\": 5849, \"45\": 8828, \"46\": 12043, \"47\": 6796, \"48\": 8288, \"49\": 2738, \"50\": 3790, \"51\": 2381, \"52\": 4220, \"53\": 3662, \"54\": 2435, \"55\": 2322, \"56\": 4740, \"57\": 6247, \"58\": 7022, \"59\": 7685, \"60\": 4224, \"61\": 4687, \"62\": 3912},\"flavin biosynthesis I (bacteria and plants)\":{\"0\": 5467, \"1\": 11729, \"2\": 11817, \"3\": 15325, \"4\": 7282, \"5\": 3614, \"6\": 6895, \"7\": 4185, \"8\": 10464, \"9\": 1487, \"10\": 11298, \"11\": 14786, \"12\": 722, \"13\": 10151, \"14\": 13646, \"15\": 8828, \"16\": 10709, \"17\": 10553, \"18\": 20421, \"19\": 9421, \"20\": 17059, \"21\": 3828, \"22\": 5000, \"23\": 4465, \"24\": 6103, \"25\": 3586, \"26\": 6796, \"27\": 3195, \"28\": 7410, \"29\": 2041, \"30\": 6737, \"31\": 5115, \"32\": 8225, \"33\": 5006, \"34\": 12927, \"35\": 15845, \"36\": 8868, \"37\": 7473, \"38\": 11243, \"39\": 13123, \"40\": 8484, \"41\": 8027, \"42\": 9638, \"43\": 6564, \"44\": 6618, \"45\": 8596, \"46\": 12101, \"47\": 6753, \"48\": 12226, \"49\": 6477, \"50\": 7100, \"51\": 14763, \"52\": 3003, \"53\": 17034, \"54\": 7248, \"55\": 8207, \"56\": 28552, \"57\": 24024, \"58\": 15575, \"59\": 22926, \"60\": 15425, \"61\": 16548, \"62\": 16729},\"superpathway of ubiquinol-8 biosynthesis (prokaryotic)\":{\"0\": 218, \"1\": 672, \"2\": 1130, \"3\": 1530, \"4\": 833, \"5\": 272, \"6\": 1267, \"7\": 219, \"8\": 850, \"9\": 940, \"10\": 1023, \"11\": 858, \"12\": 449, \"13\": 1194, \"14\": 3810, \"15\": 1506, \"16\": 1068, \"17\": 653, \"18\": 1080, \"19\": 1655, \"20\": 2189, \"21\": 364, \"22\": 787, \"23\": 114, \"24\": 454, \"25\": 296, \"26\": 500, \"27\": 89, \"28\": 1615, \"29\": 1082, \"30\": 2840, \"31\": 2249, \"32\": 1102, \"33\": 3244, \"34\": 1671, \"35\": 1248, \"36\": 1645, \"37\": 3615, \"38\": 786, \"39\": 1150, \"40\": 854, \"41\": 350, \"42\": 712, \"43\": 1547, \"44\": 1000, \"45\": 519, \"46\": 1290, \"47\": 1558, \"48\": 909, \"49\": 1464, \"50\": 1631, \"51\": 1055, \"52\": 1969, \"53\": 1826, \"54\": 1057, \"55\": 920, \"56\": 529, \"57\": 2381, \"58\": 1519, \"59\": 3353, \"60\": 1844, \"61\": 1869, \"62\": 1897})\"Carrier Biosynthesis\",(\"biotin biosynthesis I\":{\"0\": 566, \"1\": 1581, \"2\": 2365, \"3\": 3201, \"4\": 1693, \"5\": 639, \"6\": 2705, \"7\": 420, \"8\": 1622, \"9\": 1904, \"10\": 1979, \"11\": 1655, \"12\": 912, \"13\": 2311, \"14\": 7199, \"15\": 2938, \"16\": 2611, \"17\": 1696, \"18\": 2825, \"19\": 3414, \"20\": 4596, \"21\": 881, \"22\": 1511, \"23\": 251, \"24\": 1034, \"25\": 591, \"26\": 1137, \"27\": 231, \"28\": 2817, \"29\": 1867, \"30\": 4576, \"31\": 3863, \"32\": 2004, \"33\": 4678, \"34\": 3003, \"35\": 3047, \"36\": 3281, \"37\": 6015, \"38\": 1787, \"39\": 2785, \"40\": 2029, \"41\": 786, \"42\": 1692, \"43\": 3232, \"44\": 2323, \"45\": 1245, \"46\": 2905, \"47\": 3159, \"48\": 2243, \"49\": 2598, \"50\": 2843, \"51\": 1933, \"52\": 3640, \"53\": 3298, \"54\": 1900, \"55\": 1673, \"56\": 1486, \"57\": 5319, \"58\": 3450, \"59\": 6638, \"60\": 3727, \"61\": 3626, \"62\": 4243},\"adenosylcobalamin salvage from cobinamide I\":{\"0\": 6254, \"1\": 11781, \"2\": 11681, \"3\": 15601, \"4\": 7992, \"5\": 4537, \"6\": 8806, \"7\": 4583, \"8\": 12212, \"9\": 34869, \"10\": 23810, \"11\": 23825, \"12\": 15957, \"13\": 27578, \"14\": 14932, \"15\": 10974, \"16\": 9312, \"17\": 23532, \"18\": 7539, \"19\": 12590, \"20\": 17778, \"21\": 7680, \"22\": 4809, \"23\": 6124, \"24\": 9276, \"25\": 4903, \"26\": 7562, \"27\": 4210, \"28\": 6205, \"29\": 4429, \"30\": 8457, \"31\": 11323, \"32\": 4277, \"33\": 5230, \"34\": 8187, \"35\": 8228, \"36\": 9243, \"37\": 6210, \"38\": 7343, \"39\": 9522, \"40\": 7829, \"41\": 12634, \"42\": 10104, \"43\": 10809, \"44\": 7021, \"45\": 10978, \"46\": 15561, \"47\": 8111, \"48\": 12296, \"49\": 7381, \"50\": 7977, \"51\": 8283, \"52\": 14413, \"53\": 8987, \"54\": 6312, \"55\": 8761, \"56\": 11756, \"57\": 16505, \"58\": 26131, \"59\": 12920, \"60\": 12819, \"61\": 17063, \"62\": 12476},\"heme biosynthesis I (aerobic)\":{\"0\": 191, \"1\": 604, \"2\": 1091, \"3\": 1490, \"4\": 839, \"5\": 250, \"6\": 1179, \"7\": 237, \"8\": 805, \"9\": 1061, \"10\": 1010, \"11\": 802, \"12\": 503, \"13\": 1181, \"14\": 3665, \"15\": 1494, \"16\": 933, \"17\": 564, \"18\": 920, \"19\": 1591, \"20\": 2060, \"21\": 329, \"22\": 809, \"23\": 116, \"24\": 429, \"25\": 302, \"26\": 467, \"27\": 79, \"28\": 1496, \"29\": 1008, \"30\": 2548, \"31\": 2306, \"32\": 956, \"33\": 2977, \"34\": 1573, \"35\": 1096, \"36\": 1548, \"37\": 3466, \"38\": 736, \"39\": 1026, \"40\": 769, \"41\": 343, \"42\": 646, \"43\": 1483, \"44\": 890, \"45\": 472, \"46\": 1232, \"47\": 1472, \"48\": 797, \"49\": 1459, \"50\": 1643, \"51\": 998, \"52\": 2096, \"53\": 1773, \"54\": 1042, \"55\": 981, \"56\": 444, \"57\": 2173, \"58\": 1411, \"59\": 3231, \"60\": 1801, \"61\": 1881, \"62\": 1720},\"heme biosynthesis II (anaerobic)\":{\"0\": 3096, \"1\": 3322, \"2\": 3554, \"3\": 4889, \"4\": 2307, \"5\": 1769, \"6\": 4660, \"7\": 375, \"8\": 1128, \"9\": 1578, \"10\": 1475, \"11\": 1118, \"12\": 782, \"13\": 1688, \"14\": 9062, \"15\": 3406, \"16\": 9041, \"17\": 6523, \"18\": 17069, \"19\": 5382, \"20\": 7001, \"21\": 2453, \"22\": 1870, \"23\": 413, \"24\": 2143, \"25\": 489, \"26\": 2333, \"27\": 1259, \"28\": 2002, \"29\": 1327, \"30\": 3317, \"31\": 3157, \"32\": 1272, \"33\": 3775, \"34\": 2147, \"35\": 12798, \"36\": 4323, \"37\": 7690, \"38\": 5033, \"39\": 11756, \"40\": 7513, \"41\": 2001, \"42\": 4916, \"43\": 5578, \"44\": 6358, \"45\": 3378, \"46\": 7284, \"47\": 4806, \"48\": 7196, \"49\": 2067, \"50\": 2288, \"51\": 1422, \"52\": 3048, \"53\": 2501, \"54\": 1474, \"55\": 1430, \"56\": 26508, \"57\": 12333, \"58\": 7802, \"59\": 10484, \"60\": 5462, \"61\": 3899, \"62\": 9584},\"adenosylcobalamin biosynthesis from cobyrinate a,c-diamide I\":{\"0\": 5179, \"1\": 8848, \"2\": 8187, \"3\": 11375, \"4\": 6118, \"5\": 3910, \"6\": 8053, \"7\": 4537, \"8\": 8424, \"9\": 27692, \"10\": 13691, \"11\": 10678, \"12\": 11373, \"13\": 15507, \"14\": 14038, \"15\": 10216, \"16\": 9179, \"17\": 23381, \"18\": 7368, \"19\": 12244, \"20\": 16090, \"21\": 7305, \"22\": 3612, \"23\": 4888, \"24\": 8138, \"25\": 3924, \"26\": 5707, \"27\": 3500, \"28\": 5972, \"29\": 4277, \"30\": 8048, \"31\": 10938, \"32\": 4138, \"33\": 4449, \"34\": 7952, \"35\": 8112, \"36\": 9095, \"37\": 5789, \"38\": 7283, \"39\": 9445, \"40\": 7755, \"41\": 12605, \"42\": 7676, \"43\": 10550, \"44\": 6667, \"45\": 9238, \"46\": 13500, \"47\": 7383, \"48\": 10048, \"49\": 7145, \"50\": 7540, \"51\": 8147, \"52\": 14150, \"53\": 8710, \"54\": 6152, \"55\": 8597, \"56\": 11659, \"57\": 16049, \"58\": 25385, \"59\": 12501, \"60\": 12625, \"61\": 16842, \"62\": 12269},\"superpathay of heme biosynthesis from glutamate\":{\"0\": 444, \"1\": 1282, \"2\": 2105, \"3\": 2822, \"4\": 1526, \"5\": 543, \"6\": 2298, \"7\": 537, \"8\": 1683, \"9\": 2350, \"10\": 2122, \"11\": 1562, \"12\": 1121, \"13\": 2388, \"14\": 6685, \"15\": 3024, \"16\": 2099, \"17\": 1367, \"18\": 2118, \"19\": 3322, \"20\": 4310, \"21\": 770, \"22\": 1301, \"23\": 274, \"24\": 977, \"25\": 644, \"26\": 978, \"27\": 188, \"28\": 2473, \"29\": 1648, \"30\": 3648, \"31\": 4108, \"32\": 1709, \"33\": 3783, \"34\": 2857, \"35\": 2384, \"36\": 3082, \"37\": 5214, \"38\": 1535, \"39\": 2179, \"40\": 1637, \"41\": 788, \"42\": 1341, \"43\": 2525, \"44\": 1818, \"45\": 978, \"46\": 2416, \"47\": 2508, \"48\": 1752, \"49\": 2662, \"50\": 2750, \"51\": 1857, \"52\": 3908, \"53\": 3241, \"54\": 1868, \"55\": 1972, \"56\": 1082, \"57\": 4608, \"58\": 3217, \"59\": 5940, \"60\": 3745, \"61\": 3915, \"62\": 3661},\"S-adenosyl-L-methionine cycle I\":{\"0\": 6328, \"1\": 13274, \"2\": 11780, \"3\": 15905, \"4\": 7673, \"5\": 4347, \"6\": 9747, \"7\": 3309, \"8\": 6202, \"9\": 4293, \"10\": 6744, \"11\": 4661, \"12\": 2947, \"13\": 6004, \"14\": 17097, \"15\": 11491, \"16\": 13665, \"17\": 28080, \"18\": 23972, \"19\": 13881, \"20\": 20476, \"21\": 7395, \"22\": 4392, \"23\": 5126, \"24\": 7336, \"25\": 3885, \"26\": 7813, \"27\": 3622, \"28\": 5452, \"29\": 3580, \"30\": 5795, \"31\": 6572, \"32\": 6038, \"33\": 5137, \"34\": 7578, \"35\": 15279, \"36\": 10192, \"37\": 8687, \"38\": 6287, \"39\": 12475, \"40\": 8175, \"41\": 6586, \"42\": 10850, \"43\": 12302, \"44\": 9463, \"45\": 11548, \"46\": 14059, \"47\": 9277, \"48\": 15029, \"49\": 5935, \"50\": 4999, \"51\": 5285, \"52\": 5100, \"53\": 8394, \"54\": 4275, \"55\": 3961, \"56\": 35040, \"57\": 21292, \"58\": 23900, \"59\": 15534, \"60\": 15293, \"61\": 16462, \"62\": 16550},\"adenosylcobalamin salvage from cobinamide II\":{\"0\": 5143, \"1\": 8762, \"2\": 8094, \"3\": 11264, \"4\": 6069, \"5\": 3887, \"6\": 8042, \"7\": 4513, \"8\": 8373, \"9\": 27527, \"10\": 13564, \"11\": 10549, \"12\": 11290, \"13\": 15358, \"14\": 14088, \"15\": 10209, \"16\": 9174, \"17\": 23377, \"18\": 7360, \"19\": 12239, \"20\": 16055, \"21\": 7296, \"22\": 3584, \"23\": 4849, \"24\": 8100, \"25\": 3897, \"26\": 5655, \"27\": 3477, \"28\": 5990, \"29\": 4295, \"30\": 8108, \"31\": 10891, \"32\": 4161, \"33\": 4496, \"34\": 7963, \"35\": 8101, \"36\": 9105, \"37\": 5856, \"38\": 7288, \"39\": 9451, \"40\": 7757, \"41\": 12605, \"42\": 7603, \"43\": 10552, \"44\": 6665, \"45\": 9179, \"46\": 13437, \"47\": 7378, \"48\": 9975, \"49\": 7130, \"50\": 7512, \"51\": 8154, \"52\": 14108, \"53\": 8700, \"54\": 6145, \"55\": 8505, \"56\": 11621, \"57\": 16032, \"58\": 25348, \"59\": 12503, \"60\": 12620, \"61\": 16855, \"62\": 12258},\"thiazole biosynthesis II (Bacillus)\":{\"0\": 3916, \"1\": 5801, \"2\": 3934, \"3\": 6503, \"4\": 3645, \"5\": 2584, \"6\": 6857, \"7\": 404, \"8\": 1176, \"9\": 1426, \"10\": 1435, \"11\": 1809, \"12\": 660, \"13\": 1839, \"14\": 8396, \"15\": 3245, \"16\": 7661, \"17\": 5358, \"18\": 13903, \"19\": 5023, \"20\": 6283, \"21\": 2740, \"22\": 2400, \"23\": 1559, \"24\": 2788, \"25\": 962, \"26\": 3362, \"27\": 2203, \"28\": 2235, \"29\": 2057, \"30\": 3176, \"31\": 2561, \"32\": 2142, \"33\": 3767, \"34\": 2129, \"35\": 10923, \"36\": 3291, \"37\": 6924, \"38\": 7189, \"39\": 12581, \"40\": 7927, \"41\": 6094, \"42\": 6482, \"43\": 11649, \"44\": 8556, \"45\": 7897, \"46\": 12313, \"47\": 7751, \"48\": 8870, \"49\": 1866, \"50\": 2372, \"51\": 1457, \"52\": 2877, \"53\": 2417, \"54\": 1582, \"55\": 1420, \"56\": 20654, \"57\": 9751, \"58\": 5905, \"59\": 9195, \"60\": 4651, \"61\": 4357, \"62\": 7250},\"thiazole biosynthesis I (E. coli)\":{\"0\": 4895, \"1\": 7450, \"2\": 5252, \"3\": 8541, \"4\": 4732, \"5\": 3192, \"6\": 8034, \"7\": 514, \"8\": 1690, \"9\": 2093, \"10\": 2097, \"11\": 2635, \"12\": 969, \"13\": 2680, \"14\": 10089, \"15\": 4127, \"16\": 8683, \"17\": 6236, \"18\": 15483, \"19\": 5901, \"20\": 8037, \"21\": 3429, \"22\": 3105, \"23\": 2113, \"24\": 3656, \"25\": 1326, \"26\": 4369, \"27\": 2822, \"28\": 2486, \"29\": 2259, \"30\": 3515, \"31\": 2849, \"32\": 2385, \"33\": 4079, \"34\": 2385, \"35\": 12596, \"36\": 3707, \"37\": 7680, \"38\": 8628, \"39\": 14644, \"40\": 9292, \"41\": 7477, \"42\": 8089, \"43\": 12742, \"44\": 9523, \"45\": 9532, \"46\": 14882, \"47\": 8856, \"48\": 10743, \"49\": 2090, \"50\": 2794, \"51\": 1644, \"52\": 3833, \"53\": 2711, \"54\": 1780, \"55\": 1596, \"56\": 22779, \"57\": 11492, \"58\": 7335, \"59\": 10790, \"60\": 5482, \"61\": 5233, \"62\": 8334},\"superpathway of thiamin diphosphate biosynthesis II\":{\"0\": 2154, \"1\": 3169, \"2\": 2794, \"3\": 3925, \"4\": 1913, \"5\": 1331, \"6\": 4150, \"7\": 371, \"8\": 1340, \"9\": 1583, \"10\": 1650, \"11\": 1485, \"12\": 763, \"13\": 1954, \"14\": 7551, \"15\": 2851, \"16\": 7344, \"17\": 5505, \"18\": 14474, \"19\": 4225, \"20\": 5777, \"21\": 1871, \"22\": 1529, \"23\": 359, \"24\": 1622, \"25\": 490, \"26\": 1868, \"27\": 848, \"28\": 2289, \"29\": 1452, \"30\": 3416, \"31\": 2616, \"32\": 1761, \"33\": 3584, \"34\": 2442, \"35\": 9376, \"36\": 3680, \"37\": 6508, \"38\": 3727, \"39\": 8304, \"40\": 5303, \"41\": 1487, \"42\": 3658, \"43\": 4844, \"44\": 5549, \"45\": 2835, \"46\": 5319, \"47\": 4342, \"48\": 6154, \"49\": 2028, \"50\": 2278, \"51\": 1643, \"52\": 2911, \"53\": 2744, \"54\": 1594, \"55\": 1409, \"56\": 21891, \"57\": 9469, \"58\": 5507, \"59\": 8449, \"60\": 4412, \"61\": 3647, \"62\": 7529},\"thiamin salvage II\":{\"0\": 2292, \"1\": 3166, \"2\": 3549, \"3\": 5211, \"4\": 2780, \"5\": 1405, \"6\": 3873, \"7\": 3641, \"8\": 16045, \"9\": 24133, \"10\": 26143, \"11\": 30495, \"12\": 11956, \"13\": 28370, \"14\": 9793, \"15\": 5598, \"16\": 7700, \"17\": 6295, \"18\": 15095, \"19\": 6990, \"20\": 9634, \"21\": 1912, \"22\": 2515, \"23\": 854, \"24\": 1628, \"25\": 719, \"26\": 1758, \"27\": 1545, \"28\": 6666, \"29\": 1917, \"30\": 5964, \"31\": 4035, \"32\": 7854, \"33\": 4493, \"34\": 11657, \"35\": 15025, \"36\": 7378, \"37\": 6887, \"38\": 13287, \"39\": 15788, \"40\": 9794, \"41\": 10741, \"42\": 3301, \"43\": 4870, \"44\": 5077, \"45\": 2416, \"46\": 7276, \"47\": 3843, \"48\": 5683, \"49\": 5404, \"50\": 5319, \"51\": 13473, \"52\": 7740, \"53\": 15272, \"54\": 6292, \"55\": 6461, \"56\": 22808, \"57\": 20097, \"58\": 10135, \"59\": 21343, \"60\": 14062, \"61\": 15470, \"62\": 13807},\"superpathway of heme biosynthesis from uroporphyrinogen-III\":{\"0\": 193, \"1\": 625, \"2\": 1160, \"3\": 1582, \"4\": 900, \"5\": 256, \"6\": 1231, \"7\": 265, \"8\": 937, \"9\": 1201, \"10\": 1165, \"11\": 939, \"12\": 567, \"13\": 1365, \"14\": 3938, \"15\": 1629, \"16\": 947, \"17\": 573, \"18\": 926, \"19\": 1683, \"20\": 2179, \"21\": 338, \"22\": 875, \"23\": 123, \"24\": 447, \"25\": 343, \"26\": 485, \"27\": 80, \"28\": 1744, \"29\": 1172, \"30\": 2978, \"31\": 2623, \"32\": 1132, \"33\": 3406, \"34\": 1831, \"35\": 1111, \"36\": 1657, \"37\": 3699, \"38\": 754, \"39\": 1039, \"40\": 782, \"41\": 353, \"42\": 661, \"43\": 1556, \"44\": 908, \"45\": 484, \"46\": 1267, \"47\": 1549, \"48\": 811, \"49\": 1668, \"50\": 1877, \"51\": 1159, \"52\": 2373, \"53\": 2046, \"54\": 1198, \"55\": 1110, \"56\": 445, \"57\": 2243, \"58\": 1462, \"59\": 3419, \"60\": 1920, \"61\": 2072, \"62\": 1774},\"superpathway of pyridoxal 5'-phosphate biosynthesis and salvage\":{\"0\": 281, \"1\": 911, \"2\": 1636, \"3\": 2216, \"4\": 1241, \"5\": 366, \"6\": 1699, \"7\": 371, \"8\": 1447, \"9\": 1701, \"10\": 1755, \"11\": 1481, \"12\": 804, \"13\": 2061, \"14\": 5229, \"15\": 2262, \"16\": 1344, \"17\": 848, \"18\": 1326, \"19\": 2332, \"20\": 3072, \"21\": 489, \"22\": 1160, \"23\": 176, \"24\": 642, \"25\": 506, \"26\": 694, \"27\": 117, \"28\": 2570, \"29\": 1678, \"30\": 4294, \"31\": 3499, \"32\": 1801, \"33\": 4333, \"34\": 2742, \"35\": 1556, \"36\": 2317, \"37\": 4356, \"38\": 1052, \"39\": 1433, \"40\": 1082, \"41\": 496, \"42\": 941, \"43\": 2123, \"44\": 1251, \"45\": 701, \"46\": 1739, \"47\": 2086, \"48\": 1166, \"49\": 2329, \"50\": 2586, \"51\": 1769, \"52\": 3213, \"53\": 3001, \"54\": 1728, \"55\": 1528, \"56\": 655, \"57\": 3158, \"58\": 2095, \"59\": 4634, \"60\": 2667, \"61\": 2921, \"62\": 2493},\"pyridoxal 5'-phosphate biosynthesis I\":{\"0\": 210, \"1\": 666, \"2\": 1167, \"3\": 1584, \"4\": 877, \"5\": 269, \"6\": 1276, \"7\": 234, \"8\": 914, \"9\": 1064, \"10\": 1104, \"11\": 923, \"12\": 506, \"13\": 1296, \"14\": 3904, \"15\": 1578, \"16\": 1024, \"17\": 628, \"18\": 1021, \"19\": 1681, \"20\": 2220, \"21\": 359, \"22\": 832, \"23\": 120, \"24\": 461, \"25\": 330, \"26\": 505, \"27\": 86, \"28\": 1720, \"29\": 1163, \"30\": 2995, \"31\": 2405, \"32\": 1176, \"33\": 3247, \"34\": 1784, \"35\": 1194, \"36\": 1666, \"37\": 3566, \"38\": 771, \"39\": 1106, \"40\": 826, \"41\": 349, \"42\": 702, \"43\": 1571, \"44\": 972, \"45\": 514, \"46\": 1296, \"47\": 1583, \"48\": 882, \"49\": 1560, \"50\": 1745, \"51\": 1127, \"52\": 2161, \"53\": 1946, \"54\": 1130, \"55\": 986, \"56\": 497, \"57\": 2334, \"58\": 1511, \"59\": 3370, \"60\": 1875, \"61\": 1957, \"62\": 1855},\"superpathway of thiamin diphosphate biosynthesis I\":{\"0\": 3841, \"1\": 5740, \"2\": 4095, \"3\": 6508, \"4\": 3527, \"5\": 2527, \"6\": 6526, \"7\": 555, \"8\": 1691, \"9\": 2070, \"10\": 2088, \"11\": 2628, \"12\": 961, \"13\": 2664, \"14\": 9146, \"15\": 3726, \"16\": 8715, \"17\": 6174, \"18\": 16279, \"19\": 5680, \"20\": 7259, \"21\": 2802, \"22\": 2439, \"23\": 1457, \"24\": 2778, \"25\": 892, \"26\": 3222, \"27\": 2092, \"28\": 2713, \"29\": 2003, \"30\": 3522, \"31\": 2701, \"32\": 2685, \"33\": 3852, \"34\": 2757, \"35\": 12791, \"36\": 3949, \"37\": 7542, \"38\": 8498, \"39\": 14310, \"40\": 8927, \"41\": 6938, \"42\": 5339, \"43\": 7941, \"44\": 7616, \"45\": 4541, \"46\": 10284, \"47\": 5831, \"48\": 8175, \"49\": 2249, \"50\": 2780, \"51\": 1952, \"52\": 3574, \"53\": 3169, \"54\": 1991, \"55\": 1809, \"56\": 24081, \"57\": 11809, \"58\": 6945, \"59\": 11213, \"60\": 5799, \"61\": 5492, \"62\": 8714})\"Enzyme Cofactor Biosynthesis\")\"Cofactor, Carrier, and Vitamin Biosynthesis\",((\"L-arginine biosynthesis I (via L-ornithine)\":{\"0\": 8122, \"1\": 16252, \"2\": 15457, \"3\": 20707, \"4\": 10194, \"5\": 5653, \"6\": 11321, \"7\": 7255, \"8\": 21100, \"9\": 33858, \"10\": 32595, \"11\": 36443, \"12\": 15679, \"13\": 34980, \"14\": 21847, \"15\": 15210, \"16\": 16447, \"17\": 30632, \"18\": 23578, \"19\": 17627, \"20\": 26863, \"21\": 9204, \"22\": 6544, \"23\": 7208, \"24\": 10911, \"25\": 5623, \"26\": 9557, \"27\": 5167, \"28\": 11355, \"29\": 4852, \"30\": 11730, \"31\": 10930, \"32\": 11791, \"33\": 6391, \"34\": 18733, \"35\": 20654, \"36\": 15468, \"37\": 10087, \"38\": 17394, \"39\": 19991, \"40\": 14116, \"41\": 19409, \"42\": 12960, \"43\": 13639, \"44\": 10258, \"45\": 13538, \"46\": 19231, \"47\": 10467, \"48\": 16501, \"49\": 10601, \"50\": 10738, \"51\": 21694, \"52\": 13308, \"53\": 23106, \"54\": 11269, \"55\": 12528, \"56\": 32661, \"57\": 34523, \"58\": 34334, \"59\": 31000, \"60\": 24669, \"61\": 30192, \"62\": 24835},\"L-arginine biosynthesis II (acetyl cycle)\":{\"0\": 8106, \"1\": 16301, \"2\": 15540, \"3\": 20841, \"4\": 10297, \"5\": 5680, \"6\": 11325, \"7\": 7416, \"8\": 21554, \"9\": 34964, \"10\": 33390, \"11\": 37205, \"12\": 16211, \"13\": 35872, \"14\": 21987, \"15\": 15481, \"16\": 16123, \"17\": 31279, \"18\": 22132, \"19\": 17886, \"20\": 27078, \"21\": 9376, \"22\": 6577, \"23\": 7368, \"24\": 11109, \"25\": 5759, \"26\": 9620, \"27\": 5223, \"28\": 11586, \"29\": 5019, \"30\": 12015, \"31\": 11277, \"32\": 12006, \"33\": 6560, \"34\": 19065, \"35\": 20085, \"36\": 15654, \"37\": 9963, \"38\": 17459, \"39\": 19660, \"40\": 13986, \"41\": 19816, \"42\": 12895, \"43\": 13767, \"44\": 10010, \"45\": 13638, \"46\": 19293, \"47\": 10439, \"48\": 16232, \"49\": 10852, \"50\": 10937, \"51\": 22010, \"52\": 13761, \"53\": 23464, \"54\": 11478, \"55\": 12758, \"56\": 30270, \"57\": 34446, \"58\": 34946, \"59\": 31034, \"60\": 25028, \"61\": 30831, \"62\": 24755},\"L-lysine biosynthesis I\":{\"0\": 6153, \"1\": 11252, \"2\": 10050, \"3\": 13730, \"4\": 7031, \"5\": 4513, \"6\": 9610, \"7\": 6533, \"8\": 19709, \"9\": 34150, \"10\": 31249, \"11\": 35055, \"12\": 15540, \"13\": 34001, \"14\": 18155, \"15\": 11404, \"16\": 14804, \"17\": 18988, \"18\": 23053, \"19\": 14575, \"20\": 19868, \"21\": 5484, \"22\": 4941, \"23\": 3606, \"24\": 6282, \"25\": 2413, \"26\": 6079, \"27\": 3575, \"28\": 10714, \"29\": 4632, \"30\": 11548, \"31\": 10486, \"32\": 10720, \"33\": 6474, \"34\": 17304, \"35\": 19641, \"36\": 13805, \"37\": 9971, \"38\": 16696, \"39\": 19492, \"40\": 13746, \"41\": 18409, \"42\": 9797, \"43\": 13403, \"44\": 9584, \"45\": 10826, \"46\": 16341, \"47\": 9498, \"48\": 13022, \"49\": 9807, \"50\": 10274, \"51\": 20254, \"52\": 13578, \"53\": 21416, \"54\": 10676, \"55\": 12159, \"56\": 32401, \"57\": 31159, \"58\": 27942, \"59\": 29115, \"60\": 21582, \"61\": 26676, \"62\": 22460},\"L-histidine biosynthesis\":{\"0\": 7863, \"1\": 15238, \"2\": 14530, \"3\": 19339, \"4\": 9543, \"5\": 5524, \"6\": 11156, \"7\": 7259, \"8\": 20163, \"9\": 34891, \"10\": 31608, \"11\": 34900, \"12\": 15983, \"13\": 34132, \"14\": 21119, \"15\": 14563, \"16\": 16800, \"17\": 30041, \"18\": 24766, \"19\": 17424, \"20\": 25549, \"21\": 8918, \"22\": 6132, \"23\": 6701, \"24\": 10432, \"25\": 5240, \"26\": 9020, \"27\": 4894, \"28\": 10927, \"29\": 4784, \"30\": 11312, \"31\": 11520, \"32\": 11017, \"33\": 6331, \"34\": 17899, \"35\": 20945, \"36\": 15140, \"37\": 10142, \"38\": 16713, \"39\": 19910, \"40\": 14062, \"41\": 18640, \"42\": 12564, \"43\": 13697, \"44\": 10493, \"45\": 13003, \"46\": 18688, \"47\": 10362, \"48\": 16424, \"49\": 10595, \"50\": 10817, \"51\": 20537, \"52\": 14171, \"53\": 22206, \"54\": 11019, \"55\": 13068, \"56\": 35427, \"57\": 33935, \"58\": 33679, \"59\": 30232, \"60\": 23980, \"61\": 28911, \"62\": 24672},\"L-methionine biosynthesis I\":{\"0\": 6638, \"1\": 12966, \"2\": 12111, \"3\": 16180, \"4\": 8013, \"5\": 4658, \"6\": 9667, \"7\": 971, \"8\": 2490, \"9\": 3188, \"10\": 3275, \"11\": 3879, \"12\": 1503, \"13\": 3935, \"14\": 14315, \"15\": 8397, \"16\": 11509, \"17\": 14647, \"18\": 14150, \"19\": 9999, \"20\": 16623, \"21\": 6046, \"22\": 4863, \"23\": 5471, \"24\": 8021, \"25\": 4207, \"26\": 7842, \"27\": 3956, \"28\": 3666, \"29\": 2920, \"30\": 4977, \"31\": 4507, \"32\": 3244, \"33\": 4573, \"34\": 3845, \"35\": 12019, \"36\": 6929, \"37\": 7519, \"38\": 7012, \"39\": 11267, \"40\": 8112, \"41\": 7879, \"42\": 11268, \"43\": 12010, \"44\": 9104, \"45\": 11846, \"46\": 15972, \"47\": 9367, \"48\": 14719, \"49\": 3437, \"50\": 4912, \"51\": 2926, \"52\": 5497, \"53\": 4466, \"54\": 2936, \"55\": 2805, \"56\": 22178, \"57\": 17506, \"58\": 16586, \"59\": 13511, \"60\": 8318, \"61\": 6866, \"62\": 13177},\"L-methionine biosynthesis III\":{\"0\": 7504, \"1\": 14863, \"2\": 13788, \"3\": 18355, \"4\": 9075, \"5\": 5313, \"6\": 10911, \"7\": 988, \"8\": 2529, \"9\": 3238, \"10\": 3325, \"11\": 3939, \"12\": 1527, \"13\": 4004, \"14\": 15343, \"15\": 9056, \"16\": 12372, \"17\": 15773, \"18\": 14592, \"19\": 10768, \"20\": 18119, \"21\": 6718, \"22\": 5338, \"23\": 6327, \"24\": 9119, \"25\": 4831, \"26\": 9023, \"27\": 4460, \"28\": 3763, \"29\": 3135, \"30\": 5151, \"31\": 4725, \"32\": 3306, \"33\": 4315, \"34\": 3908, \"35\": 12310, \"36\": 7290, \"37\": 7546, \"38\": 6363, \"39\": 11466, \"40\": 8412, \"41\": 3891, \"42\": 12902, \"43\": 13472, \"44\": 10073, \"45\": 13766, \"46\": 17839, \"47\": 10532, \"48\": 16856, \"49\": 3549, \"50\": 5140, \"51\": 2961, \"52\": 5844, \"53\": 4524, \"54\": 3011, \"55\": 2873, \"56\": 23103, \"57\": 18336, \"58\": 17831, \"59\": 13844, \"60\": 8601, \"61\": 7047, \"62\": 13860},\"L-isoleucine biosynthesis I (from threonine)\":{\"0\": 9349, \"1\": 18442, \"2\": 17595, \"3\": 23322, \"4\": 11469, \"5\": 6697, \"6\": 13560, \"7\": 9014, \"8\": 24889, \"9\": 41826, \"10\": 38557, \"11\": 42060, \"12\": 19107, \"13\": 41473, \"14\": 26869, \"15\": 18588, \"16\": 21311, \"17\": 38475, \"18\": 30443, \"19\": 22355, \"20\": 32391, \"21\": 10855, \"22\": 7498, \"23\": 7958, \"24\": 12545, \"25\": 6206, \"26\": 10646, \"27\": 5772, \"28\": 14129, \"29\": 6160, \"30\": 14862, \"31\": 14634, \"32\": 14046, \"33\": 8321, \"34\": 22571, \"35\": 25670, \"36\": 19657, \"37\": 13019, \"38\": 20772, \"39\": 24771, \"40\": 17691, \"41\": 24009, \"42\": 14784, \"43\": 17183, \"44\": 12796, \"45\": 15523, \"46\": 22296, \"47\": 12604, \"48\": 19485, \"49\": 13530, \"50\": 13556, \"51\": 25414, \"52\": 17450, \"53\": 27036, \"54\": 13918, \"55\": 15617, \"56\": 43525, \"57\": 42801, \"58\": 42946, \"59\": 37580, \"60\": 30760, \"61\": 37585, \"62\": 31383},\"L-lysine biosynthesis II\":{\"0\": 858, \"1\": 4156, \"2\": 4203, \"3\": 4870, \"4\": 2020, \"5\": 1174, \"6\": 1435, \"7\": 5338, \"8\": 14238, \"9\": 100, \"10\": 16968, \"11\": 21827, \"12\": 60, \"13\": 15620, \"14\": 9000, \"15\": 7229, \"16\": 8259, \"17\": 9511, \"18\": 16070, \"19\": 8978, \"20\": 12557, \"21\": 346, \"22\": 2260, \"23\": 590, \"24\": 776, \"25\": 243, \"26\": 765, \"27\": 276, \"28\": 8506, \"29\": 1548, \"30\": 6711, \"31\": 4496, \"32\": 9693, \"33\": 3452, \"34\": 15150, \"35\": 14907, \"36\": 9740, \"37\": 4381, \"38\": 13315, \"39\": 12988, \"40\": 8284, \"41\": 11626, \"42\": 854, \"43\": 4478, \"44\": 1654, \"45\": 1548, \"46\": 2122, \"47\": 1586, \"48\": 1034, \"49\": 7339, \"50\": 7160, \"51\": 17767, \"52\": 178, \"53\": 19453, \"54\": 8558, \"55\": 9606, \"56\": 20225, \"57\": 24651, \"58\": 14571, \"59\": 24394, \"60\": 18081, \"61\": 21010, \"62\": 17081},\"L-lysine biosynthesis III\":{\"0\": 8064, \"1\": 15299, \"2\": 14677, \"3\": 19675, \"4\": 9753, \"5\": 5630, \"6\": 11738, \"7\": 7474, \"8\": 21235, \"9\": 35612, \"10\": 32927, \"11\": 36319, \"12\": 16414, \"13\": 35433, \"14\": 23207, \"15\": 15536, \"16\": 18101, \"17\": 32398, \"18\": 26548, \"19\": 18620, \"20\": 27017, \"21\": 9561, \"22\": 6410, \"23\": 6703, \"24\": 10768, \"25\": 5327, \"26\": 9087, \"27\": 5016, \"28\": 11796, \"29\": 5278, \"30\": 12536, \"31\": 12244, \"32\": 11896, \"33\": 7232, \"34\": 19077, \"35\": 22703, \"36\": 16290, \"37\": 11720, \"38\": 18283, \"39\": 22019, \"40\": 15448, \"41\": 20133, \"42\": 12655, \"43\": 14502, \"44\": 11192, \"45\": 12977, \"46\": 19379, \"47\": 10886, \"48\": 16691, \"49\": 11248, \"50\": 11311, \"51\": 21669, \"52\": 14887, \"53\": 23468, \"54\": 11626, \"55\": 13282, \"56\": 37824, \"57\": 36097, \"58\": 35559, \"59\": 32553, \"60\": 25659, \"61\": 31013, \"62\": 26335},\"superpathway of L-isoleucine biosynthesis I\":{\"0\": 8703, \"1\": 17021, \"2\": 16348, \"3\": 21714, \"4\": 10736, \"5\": 6222, \"6\": 12612, \"7\": 8313, \"8\": 23359, \"9\": 39952, \"10\": 36334, \"11\": 40057, \"12\": 18118, \"13\": 39222, \"14\": 24660, \"15\": 16892, \"16\": 19162, \"17\": 33604, \"18\": 28016, \"19\": 20187, \"20\": 29398, \"21\": 9806, \"22\": 7066, \"23\": 7325, \"24\": 11490, \"25\": 5745, \"26\": 9908, \"27\": 5388, \"28\": 13179, \"29\": 5785, \"30\": 13950, \"31\": 13665, \"32\": 13170, \"33\": 7960, \"34\": 21145, \"35\": 23902, \"36\": 17757, \"37\": 12187, \"38\": 19342, \"39\": 22943, \"40\": 16254, \"41\": 21738, \"42\": 13872, \"43\": 16122, \"44\": 11921, \"45\": 14487, \"46\": 21056, \"47\": 11856, \"48\": 18096, \"49\": 12548, \"50\": 12909, \"51\": 23964, \"52\": 16767, \"53\": 25818, \"54\": 13014, \"55\": 15191, \"56\": 39660, \"57\": 39221, \"58\": 38603, \"59\": 35239, \"60\": 27918, \"61\": 33968, \"62\": 28500},\"L-lysine biosynthesis VI\":{\"0\": 8333, \"1\": 15979, \"2\": 15197, \"3\": 20448, \"4\": 10140, \"5\": 5792, \"6\": 12040, \"7\": 7318, \"8\": 20912, \"9\": 35228, \"10\": 32529, \"11\": 35897, \"12\": 16247, \"13\": 35045, \"14\": 22743, \"15\": 15616, \"16\": 17776, \"17\": 33632, \"18\": 26069, \"19\": 18455, \"20\": 27206, \"21\": 10035, \"22\": 6461, \"23\": 7138, \"24\": 11335, \"25\": 5655, \"26\": 9550, \"27\": 5250, \"28\": 11537, \"29\": 5170, \"30\": 12265, \"31\": 11922, \"32\": 11655, \"33\": 7015, \"34\": 18678, \"35\": 22215, \"36\": 15984, \"37\": 11421, \"38\": 17888, \"39\": 21545, \"40\": 15132, \"41\": 19785, \"42\": 13110, \"43\": 14607, \"44\": 11150, \"45\": 13613, \"46\": 19841, \"47\": 11063, \"48\": 17162, \"49\": 10980, \"50\": 11037, \"51\": 21271, \"52\": 14579, \"53\": 22961, \"54\": 11379, \"55\": 12946, \"56\": 37155, \"57\": 35381, \"58\": 34990, \"59\": 31824, \"60\": 25129, \"61\": 30429, \"62\": 25820},\"L-isoleucine biosynthesis II\":{\"0\": 10162, \"1\": 20198, \"2\": 19260, \"3\": 25508, \"4\": 12519, \"5\": 7294, \"6\": 14735, \"7\": 10204, \"8\": 28179, \"9\": 45157, \"10\": 43093, \"11\": 47430, \"12\": 20666, \"13\": 46101, \"14\": 29617, \"15\": 20561, \"16\": 23609, \"17\": 42123, \"18\": 34279, \"19\": 24748, \"20\": 35862, \"21\": 11765, \"22\": 8247, \"23\": 8642, \"24\": 13597, \"25\": 6726, \"26\": 11566, \"27\": 6267, \"28\": 16012, \"29\": 6731, \"30\": 16538, \"31\": 15977, \"32\": 16124, \"33\": 9199, \"34\": 25834, \"35\": 29050, \"36\": 21996, \"37\": 14356, \"38\": 23675, \"39\": 27862, \"40\": 19772, \"41\": 26864, \"42\": 16038, \"43\": 18827, \"44\": 13941, \"45\": 16870, \"46\": 24232, \"47\": 13709, \"48\": 21119, \"49\": 15199, \"50\": 15198, \"51\": 29222, \"52\": 18685, \"53\": 31138, \"54\": 15805, \"55\": 17712, \"56\": 48680, \"57\": 48382, \"58\": 47304, \"59\": 42861, \"60\": 34807, \"61\": 42388, \"62\": 35333},\"L-isoleucine biosynthesis III\":{\"0\": 8893, \"1\": 17449, \"2\": 16585, \"3\": 22068, \"4\": 10866, \"5\": 6317, \"6\": 12867, \"7\": 8368, \"8\": 23485, \"9\": 39729, \"10\": 36572, \"11\": 40032, \"12\": 18205, \"13\": 39414, \"14\": 25237, \"15\": 17350, \"16\": 19999, \"17\": 36223, \"18\": 28751, \"19\": 20832, \"20\": 30322, \"21\": 10347, \"22\": 7056, \"23\": 7573, \"24\": 11915, \"25\": 5909, \"26\": 10144, \"27\": 5511, \"28\": 13117, \"29\": 5770, \"30\": 13841, \"31\": 13496, \"32\": 13124, \"33\": 7705, \"34\": 21053, \"35\": 24197, \"36\": 18309, \"37\": 12248, \"38\": 19553, \"39\": 23377, \"40\": 16650, \"41\": 22483, \"42\": 14071, \"43\": 16164, \"44\": 12163, \"45\": 14745, \"46\": 21194, \"47\": 11948, \"48\": 18527, \"49\": 12509, \"50\": 12535, \"51\": 23857, \"52\": 16321, \"53\": 25361, \"54\": 12938, \"55\": 14488, \"56\": 41095, \"57\": 39973, \"58\": 40172, \"59\": 35189, \"60\": 28610, \"61\": 34964, \"62\": 29286},\"L-isoleucine biosynthesis IV\":{\"0\": 9740, \"1\": 19768, \"2\": 18981, \"3\": 24962, \"4\": 12166, \"5\": 7121, \"6\": 14123, \"7\": 10589, \"8\": 29030, \"9\": 41453, \"10\": 43813, \"11\": 48482, \"12\": 19066, \"13\": 46413, \"14\": 30057, \"15\": 21066, \"16\": 24129, \"17\": 42839, \"18\": 35227, \"19\": 25424, \"20\": 36637, \"21\": 11506, \"22\": 8250, \"23\": 8249, \"24\": 13138, \"25\": 6386, \"26\": 10900, \"27\": 5989, \"28\": 16578, \"29\": 6718, \"30\": 16908, \"31\": 16295, \"32\": 16702, \"33\": 9394, \"34\": 26769, \"35\": 29993, \"36\": 22698, \"37\": 14507, \"38\": 24513, \"39\": 28712, \"40\": 20314, \"41\": 27676, \"42\": 14929, \"43\": 18625, \"44\": 13377, \"45\": 15833, \"46\": 23209, \"47\": 13039, \"48\": 19672, \"49\": 15748, \"50\": 15703, \"51\": 30235, \"52\": 17638, \"53\": 32244, \"54\": 16369, \"55\": 18380, \"56\": 49836, \"57\": 50070, \"58\": 48214, \"59\": 44390, \"60\": 36108, \"61\": 43903, \"62\": 36540},\"L-arginine biosynthesis III (via N-acetyl-L-citrulline)\":{\"0\": 245, \"1\": 826, \"2\": 1605, \"3\": 2182, \"4\": 1264, \"5\": 332, \"6\": 1608, \"7\": 430, \"8\": 1696, \"9\": 2000, \"10\": 2050, \"11\": 1746, \"12\": 935, \"13\": 2418, \"14\": 5285, \"15\": 2352, \"16\": 1190, \"17\": 734, \"18\": 1152, \"19\": 2270, \"20\": 2963, \"21\": 438, \"22\": 1225, \"23\": 173, \"24\": 598, \"25\": 574, \"26\": 644, \"27\": 102, \"28\": 2929, \"29\": 1862, \"30\": 4727, \"31\": 3914, \"32\": 2083, \"33\": 4322, \"34\": 3180, \"35\": 1388, \"36\": 2277, \"37\": 4434, \"38\": 972, \"39\": 1300, \"40\": 983, \"41\": 466, \"42\": 850, \"43\": 2041, \"44\": 1138, \"45\": 631, \"46\": 1634, \"47\": 2022, \"48\": 1030, \"49\": 2643, \"50\": 2931, \"51\": 2058, \"52\": 3629, \"53\": 3473, \"54\": 1990, \"55\": 1775, \"56\": 555, \"57\": 2901, \"58\": 1932, \"59\": 4559, \"60\": 2652, \"61\": 3124, \"62\": 2285},\"superpathway of L-methionine biosynthesis (by sulfhydrylation)\":{\"0\": 402, \"1\": 1260, \"2\": 2181, \"3\": 2956, \"4\": 1641, \"5\": 507, \"6\": 2305, \"7\": 484, \"8\": 1874, \"9\": 2223, \"10\": 2286, \"11\": 1928, \"12\": 1052, \"13\": 2684, \"14\": 6802, \"15\": 2948, \"16\": 1900, \"17\": 1205, \"18\": 1928, \"19\": 3107, \"20\": 4104, \"21\": 681, \"22\": 1521, \"23\": 235, \"24\": 876, \"25\": 657, \"26\": 949, \"27\": 167, \"28\": 3215, \"29\": 2099, \"30\": 5277, \"31\": 4474, \"32\": 2244, \"33\": 4859, \"34\": 3467, \"35\": 2215, \"36\": 3049, \"37\": 5580, \"38\": 1448, \"39\": 2053, \"40\": 1536, \"41\": 678, \"42\": 1316, \"43\": 2860, \"44\": 1776, \"45\": 975, \"46\": 2413, \"47\": 2808, \"48\": 1652, \"49\": 2965, \"50\": 3296, \"51\": 2266, \"52\": 4170, \"53\": 3804, \"54\": 2207, \"55\": 1983, \"56\": 960, \"57\": 4313, \"58\": 2871, \"59\": 6073, \"60\": 3515, \"61\": 3799, \"62\": 3412},\"superpathway of L-methionine biosynthesis (transsulfuration)\":{\"0\": 7681, \"1\": 14921, \"2\": 14208, \"3\": 18962, \"4\": 9425, \"5\": 5433, \"6\": 11167, \"7\": 1945, \"8\": 5062, \"9\": 6725, \"10\": 6806, \"11\": 7996, \"12\": 3161, \"13\": 8089, \"14\": 18669, \"15\": 11612, \"16\": 14510, \"17\": 20959, \"18\": 19256, \"19\": 13779, \"20\": 21736, \"21\": 7614, \"22\": 5964, \"23\": 6362, \"24\": 9615, \"25\": 4965, \"26\": 8916, \"27\": 4677, \"28\": 6190, \"29\": 4111, \"30\": 7894, \"31\": 7307, \"32\": 5630, \"33\": 6166, \"34\": 7155, \"35\": 16444, \"36\": 10425, \"37\": 9661, \"38\": 10828, \"39\": 15602, \"40\": 11163, \"41\": 12163, \"42\": 12704, \"43\": 14121, \"44\": 10515, \"45\": 13263, \"46\": 18727, \"47\": 10741, \"48\": 16451, \"49\": 5826, \"50\": 7578, \"51\": 5828, \"52\": 8974, \"53\": 8402, \"54\": 5222, \"55\": 5205, \"56\": 28811, \"57\": 25035, \"58\": 24149, \"59\": 20539, \"60\": 13617, \"61\": 12442, \"62\": 18550},\"L-glutamate and L-glutamine biosynthesis\":{\"0\": 4632, \"1\": 10661, \"2\": 9177, \"3\": 10844, \"4\": 5291, \"5\": 4692, \"6\": 9685, \"7\": 10721, \"8\": 21034, \"9\": 22666, \"10\": 24517, \"11\": 26583, \"12\": 10404, \"13\": 22822, \"14\": 20035, \"15\": 16660, \"16\": 18442, \"17\": 38961, \"18\": 23796, \"19\": 22273, \"20\": 26618, \"21\": 8992, \"22\": 3142, \"23\": 4920, \"24\": 9104, \"25\": 3680, \"26\": 4954, \"27\": 2511, \"28\": 13868, \"29\": 5113, \"30\": 9611, \"31\": 14614, \"32\": 16079, \"33\": 6725, \"34\": 24828, \"35\": 21600, \"36\": 18307, \"37\": 7895, \"38\": 18564, \"39\": 15930, \"40\": 11397, \"41\": 17526, \"42\": 6362, \"43\": 15703, \"44\": 8773, \"45\": 10197, \"46\": 10879, \"47\": 8758, \"48\": 11187, \"49\": 14644, \"50\": 13654, \"51\": 26710, \"52\": 13723, \"53\": 32769, \"54\": 14424, \"55\": 19744, \"56\": 33788, \"57\": 42509, \"58\": 37529, \"59\": 38832, \"60\": 33695, \"61\": 37008, \"62\": 30890},\"superpathway of L-phenylalanine biosynthesis\":{\"0\": 902, \"1\": 2871, \"2\": 4896, \"3\": 6638, \"4\": 3701, \"5\": 1140, \"6\": 4665, \"7\": 1471, \"8\": 5466, \"9\": 6956, \"10\": 6949, \"11\": 6104, \"12\": 3247, \"13\": 8099, \"14\": 12749, \"15\": 6577, \"16\": 4000, \"17\": 2762, \"18\": 4060, \"19\": 6757, \"20\": 9018, \"21\": 1557, \"22\": 3136, \"23\": 646, \"24\": 2078, \"25\": 1772, \"26\": 2153, \"27\": 386, \"28\": 6651, \"29\": 3781, \"30\": 8922, \"31\": 8319, \"32\": 5330, \"33\": 6301, \"34\": 8298, \"35\": 4662, \"36\": 6462, \"37\": 8334, \"38\": 3330, \"39\": 4402, \"40\": 3301, \"41\": 1745, \"42\": 2859, \"43\": 5902, \"44\": 3545, \"45\": 2228, \"46\": 5288, \"47\": 5335, \"48\": 3515, \"49\": 6271, \"50\": 6651, \"51\": 6236, \"52\": 8768, \"53\": 9349, \"54\": 5216, \"55\": 5085, \"56\": 2124, \"57\": 9330, \"58\": 6711, \"59\": 12639, \"60\": 8098, \"61\": 9614, \"62\": 7254},\"superpathway of L-tryptophan biosynthesis\":{\"0\": 1058, \"1\": 3307, \"2\": 5422, \"3\": 7394, \"4\": 4090, \"5\": 1301, \"6\": 5142, \"7\": 1462, \"8\": 4466, \"9\": 5212, \"10\": 5381, \"11\": 4251, \"12\": 2695, \"13\": 5719, \"14\": 13008, \"15\": 6852, \"16\": 4454, \"17\": 3239, \"18\": 4571, \"19\": 7114, \"20\": 9729, \"21\": 1805, \"22\": 3306, \"23\": 761, \"24\": 2394, \"25\": 1995, \"26\": 2471, \"27\": 457, \"28\": 5225, \"29\": 3491, \"30\": 6781, \"31\": 6949, \"32\": 4526, \"33\": 5470, \"34\": 6551, \"35\": 5043, \"36\": 6341, \"37\": 8128, \"38\": 3575, \"39\": 4842, \"40\": 3605, \"41\": 1986, \"42\": 3284, \"43\": 6363, \"44\": 3975, \"45\": 2587, \"46\": 5987, \"47\": 5772, \"48\": 4045, \"49\": 5234, \"50\": 5107, \"51\": 4746, \"52\": 6525, \"53\": 7141, \"54\": 4017, \"55\": 3665, \"56\": 2495, \"57\": 9699, \"58\": 7459, \"59\": 11678, \"60\": 8122, \"61\": 9538, \"62\": 7555},\"superpathway of L-tyrosine biosynthesis\":{\"0\": 902, \"1\": 2871, \"2\": 4896, \"3\": 6638, \"4\": 3701, \"5\": 1140, \"6\": 4665, \"7\": 1471, \"8\": 5466, \"9\": 6956, \"10\": 6949, \"11\": 6104, \"12\": 3247, \"13\": 8099, \"14\": 12749, \"15\": 6577, \"16\": 4000, \"17\": 2762, \"18\": 4060, \"19\": 6757, \"20\": 9018, \"21\": 1557, \"22\": 3136, \"23\": 646, \"24\": 2078, \"25\": 1772, \"26\": 2153, \"27\": 386, \"28\": 6651, \"29\": 3781, \"30\": 8922, \"31\": 8319, \"32\": 5330, \"33\": 6301, \"34\": 8298, \"35\": 4662, \"36\": 6462, \"37\": 8334, \"38\": 3330, \"39\": 4402, \"40\": 3301, \"41\": 1745, \"42\": 2859, \"43\": 5902, \"44\": 3545, \"45\": 2228, \"46\": 5288, \"47\": 5335, \"48\": 3515, \"49\": 6271, \"50\": 6651, \"51\": 6236, \"52\": 8768, \"53\": 9349, \"54\": 5216, \"55\": 5085, \"56\": 2124, \"57\": 9330, \"58\": 6711, \"59\": 12639, \"60\": 8098, \"61\": 9614, \"62\": 7254},\"L-arginine biosynthesis IV (archaebacteria)\":{\"0\": 8098, \"1\": 16194, \"2\": 15399, \"3\": 20629, \"4\": 10155, \"5\": 5634, \"6\": 11290, \"7\": 7225, \"8\": 21023, \"9\": 33748, \"10\": 32482, \"11\": 36321, \"12\": 15627, \"13\": 34862, \"14\": 21778, \"15\": 15149, \"16\": 16422, \"17\": 30522, \"18\": 23595, \"19\": 17565, \"20\": 26766, \"21\": 9171, \"22\": 6520, \"23\": 7175, \"24\": 10867, \"25\": 5598, \"26\": 9522, \"27\": 5148, \"28\": 11312, \"29\": 4833, \"30\": 11689, \"31\": 10888, \"32\": 11744, \"33\": 6367, \"34\": 18660, \"35\": 20630, \"36\": 15417, \"37\": 10071, \"38\": 17344, \"39\": 19961, \"40\": 14090, \"41\": 19341, \"42\": 12923, \"43\": 13601, \"44\": 10246, \"45\": 13492, \"46\": 19174, \"47\": 10441, \"48\": 16467, \"49\": 10560, \"50\": 10699, \"51\": 21615, \"52\": 13262, \"53\": 23018, \"54\": 11227, \"55\": 12482, \"56\": 32711, \"57\": 34427, \"58\": 34211, \"59\": 30909, \"60\": 24579, \"61\": 30074, \"62\": 24770},\"superpathway of L-alanine biosynthesis\":{\"0\": 2388, \"1\": 6954, \"2\": 5239, \"3\": 7636, \"4\": 4353, \"5\": 2737, \"6\": 7537, \"7\": 1280, \"8\": 4288, \"9\": 5266, \"10\": 5243, \"11\": 5770, \"12\": 2397, \"13\": 6522, \"14\": 11333, \"15\": 5613, \"16\": 4032, \"17\": 2440, \"18\": 3516, \"19\": 7078, \"20\": 7565, \"21\": 1920, \"22\": 2745, \"23\": 2167, \"24\": 3085, \"25\": 1816, \"26\": 3460, \"27\": 1046, \"28\": 6822, \"29\": 4502, \"30\": 9490, \"31\": 8042, \"32\": 5967, \"33\": 7848, \"34\": 7472, \"35\": 3340, \"36\": 5123, \"37\": 8684, \"38\": 2661, \"39\": 3086, \"40\": 2390, \"41\": 2144, \"42\": 5517, \"43\": 12652, \"44\": 7304, \"45\": 8678, \"46\": 9583, \"47\": 8411, \"48\": 7817, \"49\": 5938, \"50\": 6847, \"51\": 5202, \"52\": 8373, \"53\": 8377, \"54\": 4999, \"55\": 4634, \"56\": 2079, \"57\": 7329, \"58\": 5211, \"59\": 10561, \"60\": 6182, \"61\": 7442, \"62\": 5396},\"superpathway of L-threonine biosynthesis\":{\"0\": 8320, \"1\": 16189, \"2\": 15610, \"3\": 20760, \"4\": 10298, \"5\": 5941, \"6\": 12051, \"7\": 7903, \"8\": 22440, \"9\": 39038, \"10\": 34988, \"11\": 38825, \"12\": 17514, \"13\": 37852, \"14\": 23379, \"15\": 15923, \"16\": 17955, \"17\": 30989, \"18\": 26602, \"19\": 18962, \"20\": 27693, \"21\": 9212, \"22\": 6804, \"23\": 6956, \"24\": 10880, \"25\": 5474, \"26\": 9470, \"27\": 5159, \"28\": 12614, \"29\": 5560, \"30\": 13401, \"31\": 13087, \"32\": 12644, \"33\": 7737, \"34\": 20290, \"35\": 22853, \"36\": 16683, \"37\": 11690, \"38\": 18493, \"39\": 21867, \"40\": 15419, \"41\": 20448, \"42\": 13324, \"43\": 15485, \"44\": 11401, \"45\": 13870, \"46\": 20303, \"47\": 11405, \"48\": 17274, \"49\": 11969, \"50\": 12631, \"51\": 23086, \"52\": 16621, \"53\": 25065, \"54\": 12474, \"55\": 15217, \"56\": 37444, \"57\": 37149, \"58\": 36164, \"59\": 33834, \"60\": 26298, \"61\": 31919, \"62\": 26856},\"L-tryptophan biosynthesis\":{\"0\": 7800, \"1\": 14293, \"2\": 12913, \"3\": 18202, \"4\": 9097, \"5\": 4886, \"6\": 11026, \"7\": 2350, \"8\": 4130, \"9\": 4127, \"10\": 4567, \"11\": 3079, \"12\": 2629, \"13\": 4178, \"14\": 17955, \"15\": 11249, \"16\": 13239, \"17\": 28408, \"18\": 16722, \"19\": 12865, \"20\": 20353, \"21\": 9572, \"22\": 5269, \"23\": 6846, \"24\": 10537, \"25\": 5406, \"26\": 9199, \"27\": 5092, \"28\": 4039, \"29\": 3392, \"30\": 4759, \"31\": 5726, \"32\": 4196, \"33\": 4513, \"34\": 5312, \"35\": 12330, \"36\": 8490, \"37\": 8908, \"38\": 8594, \"39\": 13407, \"40\": 9285, \"41\": 9509, \"42\": 12438, \"43\": 11931, \"44\": 10437, \"45\": 12785, \"46\": 18364, \"47\": 10082, \"48\": 16202, \"49\": 4503, \"50\": 3798, \"51\": 3711, \"52\": 4760, \"53\": 5607, \"54\": 3097, \"55\": 2664, \"56\": 25790, \"57\": 18053, \"58\": 22967, \"59\": 13321, \"60\": 12516, \"61\": 14004, \"62\": 13980},\"L-valine biosynthesis\":{\"0\": 9349, \"1\": 18442, \"2\": 17595, \"3\": 23322, \"4\": 11469, \"5\": 6697, \"6\": 13560, \"7\": 9014, \"8\": 24889, \"9\": 41826, \"10\": 38557, \"11\": 42060, \"12\": 19107, \"13\": 41473, \"14\": 26869, \"15\": 18588, \"16\": 21311, \"17\": 38475, \"18\": 30443, \"19\": 22355, \"20\": 32391, \"21\": 10855, \"22\": 7498, \"23\": 7958, \"24\": 12545, \"25\": 6206, \"26\": 10646, \"27\": 5772, \"28\": 14129, \"29\": 6160, \"30\": 14862, \"31\": 14634, \"32\": 14046, \"33\": 8321, \"34\": 22571, \"35\": 25670, \"36\": 19657, \"37\": 13019, \"38\": 20772, \"39\": 24771, \"40\": 17691, \"41\": 24009, \"42\": 14784, \"43\": 17183, \"44\": 12796, \"45\": 15523, \"46\": 22296, \"47\": 12604, \"48\": 19485, \"49\": 13530, \"50\": 13556, \"51\": 25414, \"52\": 17450, \"53\": 27036, \"54\": 13918, \"55\": 15617, \"56\": 43525, \"57\": 42801, \"58\": 42946, \"59\": 37580, \"60\": 30760, \"61\": 37585, \"62\": 31383})\"Proteinogenic Amino Acid Biosynthesis\",(\"superpathway of L-aspartate and L-asparagine biosynthesis\":{\"0\": 4060, \"1\": 7369, \"2\": 8365, \"3\": 9974, \"4\": 4812, \"5\": 3452, \"6\": 7691, \"7\": 7640, \"8\": 21921, \"9\": 39399, \"10\": 34879, \"11\": 38326, \"12\": 18004, \"13\": 37940, \"14\": 19553, \"15\": 13622, \"16\": 14206, \"17\": 28434, \"18\": 18506, \"19\": 16631, \"20\": 22188, \"21\": 7306, \"22\": 3799, \"23\": 3087, \"24\": 7162, \"25\": 2994, \"26\": 4103, \"27\": 2255, \"28\": 11835, \"29\": 5112, \"30\": 12783, \"31\": 12647, \"32\": 11610, \"33\": 7042, \"34\": 19236, \"35\": 17781, \"36\": 15231, \"37\": 9247, \"38\": 15046, \"39\": 16489, \"40\": 12244, \"41\": 17402, \"42\": 6107, \"43\": 9095, \"44\": 7094, \"45\": 4823, \"46\": 11362, \"47\": 6637, \"48\": 9779, \"49\": 11360, \"50\": 11468, \"51\": 22064, \"52\": 15789, \"53\": 23701, \"54\": 11824, \"55\": 13879, \"56\": 27499, \"57\": 31966, \"58\": 32819, \"59\": 29602, \"60\": 24159, \"61\": 30108, \"62\": 23175},\"superpathway of branched amino acid biosynthesis\":{\"0\": 9166, \"1\": 17709, \"2\": 16860, \"3\": 22458, \"4\": 11070, \"5\": 6477, \"6\": 13189, \"7\": 8524, \"8\": 23561, \"9\": 40311, \"10\": 36721, \"11\": 40097, \"12\": 18421, \"13\": 39583, \"14\": 25815, \"15\": 17629, \"16\": 20708, \"17\": 36783, \"18\": 29980, \"19\": 21285, \"20\": 30865, \"21\": 10545, \"22\": 7236, \"23\": 7630, \"24\": 12097, \"25\": 5946, \"26\": 10326, \"27\": 5666, \"28\": 13206, \"29\": 5810, \"30\": 13887, \"31\": 13872, \"32\": 13137, \"33\": 7788, \"34\": 21190, \"35\": 25215, \"36\": 18622, \"37\": 12667, \"38\": 20208, \"39\": 24453, \"40\": 17359, \"41\": 23074, \"42\": 14460, \"43\": 16601, \"44\": 12605, \"45\": 15027, \"46\": 21930, \"47\": 12263, \"48\": 19054, \"49\": 12723, \"50\": 12800, \"51\": 23955, \"52\": 16741, \"53\": 25586, \"54\": 13090, \"55\": 14914, \"56\": 43001, \"57\": 41044, \"58\": 40916, \"59\": 36076, \"60\": 29151, \"61\": 35387, \"62\": 30090},\"superpathway of aromatic amino acid biosynthesis\":{\"0\": 9219, \"1\": 17684, \"2\": 16515, \"3\": 22298, \"4\": 11094, \"5\": 6428, \"6\": 13428, \"7\": 7737, \"8\": 21372, \"9\": 40281, \"10\": 34579, \"11\": 36848, \"12\": 18667, \"13\": 37723, \"14\": 24527, \"15\": 16759, \"16\": 18887, \"17\": 35602, \"18\": 25661, \"19\": 20081, \"20\": 29001, \"21\": 10876, \"22\": 6871, \"23\": 8009, \"24\": 12507, \"25\": 6271, \"26\": 10638, \"27\": 5811, \"28\": 11683, \"29\": 5810, \"30\": 12795, \"31\": 13401, \"32\": 11270, \"33\": 7486, \"34\": 18166, \"35\": 21925, \"36\": 16861, \"37\": 11837, \"38\": 17631, \"39\": 21625, \"40\": 15532, \"41\": 20914, \"42\": 14659, \"43\": 16502, \"44\": 12587, \"45\": 15567, \"46\": 22072, \"47\": 12471, \"48\": 19282, \"49\": 11681, \"50\": 11677, \"51\": 19624, \"52\": 16702, \"53\": 21773, \"54\": 11490, \"55\": 13547, \"56\": 37234, \"57\": 36149, \"58\": 38892, \"59\": 31266, \"60\": 25979, \"61\": 31682, \"62\": 26636},\"superpathway of L-lysine, L-threonine and L-methionine biosynthesis I\":{\"0\": 4530, \"1\": 9090, \"2\": 8525, \"3\": 10993, \"4\": 5276, \"5\": 3429, \"6\": 7791, \"7\": 3149, \"8\": 8412, \"9\": 5947, \"10\": 11378, \"11\": 13442, \"12\": 2886, \"13\": 12887, \"14\": 16294, \"15\": 10281, \"16\": 13649, \"17\": 17039, \"18\": 20834, \"19\": 13162, \"20\": 18100, \"21\": 4010, \"22\": 4125, \"23\": 1820, \"24\": 4344, \"25\": 1685, \"26\": 4408, \"27\": 2554, \"28\": 7909, \"29\": 3781, \"30\": 9041, \"31\": 8094, \"32\": 7604, \"33\": 6100, \"34\": 10564, \"35\": 17878, \"36\": 11523, \"37\": 9329, \"38\": 12915, \"39\": 16704, \"40\": 11663, \"41\": 13429, \"42\": 7490, \"43\": 10775, \"44\": 8556, \"45\": 7208, \"46\": 12700, \"47\": 7866, \"48\": 11130, \"49\": 7299, \"50\": 8517, \"51\": 9656, \"52\": 7875, \"53\": 12723, \"54\": 7161, \"55\": 7525, \"56\": 29942, \"57\": 27367, \"58\": 23100, \"59\": 24190, \"60\": 16685, \"61\": 17078, \"62\": 19949},\"superpathway of L-serine and glycine biosynthesis I\":{\"0\": 7684, \"1\": 15229, \"2\": 14474, \"3\": 19205, \"4\": 9429, \"5\": 5503, \"6\": 11096, \"7\": 7727, \"8\": 22628, \"9\": 37918, \"10\": 35431, \"11\": 39537, \"12\": 17448, \"13\": 38264, \"14\": 22257, \"15\": 15300, \"16\": 17888, \"17\": 31411, \"18\": 26927, \"19\": 18416, \"20\": 26853, \"21\": 8787, \"22\": 6208, \"23\": 6470, \"24\": 10167, \"25\": 5021, \"26\": 8700, \"27\": 4724, \"28\": 12066, \"29\": 5107, \"30\": 12567, \"31\": 11829, \"32\": 12408, \"33\": 6719, \"34\": 19850, \"35\": 23643, \"36\": 16585, \"37\": 10824, \"38\": 19370, \"39\": 23330, \"40\": 16114, \"41\": 21067, \"42\": 12122, \"43\": 14494, \"44\": 10588, \"45\": 12720, \"46\": 18341, \"47\": 10334, \"48\": 15951, \"49\": 11296, \"50\": 11517, \"51\": 23055, \"52\": 14733, \"53\": 24467, \"54\": 12023, \"55\": 14124, \"56\": 38005, \"57\": 36927, \"58\": 35823, \"59\": 33193, \"60\": 26196, \"61\": 31970, \"62\": 26828})\"Superpathways\",(\"L-ornithine biosynthesis\":{\"0\": 6709, \"1\": 13437, \"2\": 12842, \"3\": 17298, \"4\": 8637, \"5\": 4763, \"6\": 9494, \"7\": 6495, \"8\": 19153, \"9\": 33083, \"10\": 30306, \"11\": 33554, \"12\": 15299, \"13\": 32872, \"14\": 18615, \"15\": 13254, \"16\": 13078, \"17\": 27264, \"18\": 16710, \"19\": 15375, \"20\": 22671, \"21\": 8108, \"22\": 5480, \"23\": 6287, \"24\": 9489, \"25\": 4935, \"26\": 8011, \"27\": 4419, \"28\": 10195, \"29\": 4605, \"30\": 10855, \"31\": 10290, \"32\": 10391, \"33\": 5940, \"34\": 16589, \"35\": 16203, \"36\": 13488, \"37\": 8324, \"38\": 14920, \"39\": 16343, \"40\": 11776, \"41\": 17640, \"42\": 10595, \"43\": 11950, \"44\": 8103, \"45\": 11485, \"46\": 16288, \"47\": 8742, \"48\": 13092, \"49\": 9584, \"50\": 9621, \"51\": 19141, \"52\": 12921, \"53\": 20302, \"54\": 10080, \"55\": 11232, \"56\": 22397, \"57\": 28724, \"58\": 30326, \"59\": 26183, \"60\": 21495, \"61\": 26952, \"62\": 20653})\"Other Amino Acid Biosynthesis\")\"Amino Acid Biosynthesis\",((\"chorismate biosynthesis I\":{\"0\": 8788, \"1\": 16928, \"2\": 15859, \"3\": 21326, \"4\": 10606, \"5\": 6190, \"6\": 12835, \"7\": 7322, \"8\": 20110, \"9\": 38162, \"10\": 32591, \"11\": 34644, \"12\": 17687, \"13\": 35574, \"14\": 23516, \"15\": 16060, \"16\": 18118, \"17\": 33918, \"18\": 24599, \"19\": 19217, \"20\": 27896, \"21\": 10332, \"22\": 6611, \"23\": 7628, \"24\": 11926, \"25\": 5968, \"26\": 10121, \"27\": 5522, \"28\": 11027, \"29\": 5560, \"30\": 12088, \"31\": 12766, \"32\": 10607, \"33\": 7129, \"34\": 17072, \"35\": 20865, \"36\": 15988, \"37\": 11329, \"38\": 16649, \"39\": 20558, \"40\": 14776, \"41\": 19777, \"42\": 13970, \"43\": 15974, \"44\": 12020, \"45\": 14879, \"46\": 21072, \"47\": 11938, \"48\": 18391, \"49\": 11074, \"50\": 11107, \"51\": 18354, \"52\": 15928, \"53\": 20430, \"54\": 10839, \"55\": 12835, \"56\": 35821, \"57\": 34340, \"58\": 37119, \"59\": 29556, \"60\": 24580, \"61\": 29927, \"62\": 25309},\"chorismate biosynthesis from 3-dehydroquinate\":{\"0\": 8534, \"1\": 16415, \"2\": 15269, \"3\": 20556, \"4\": 10211, \"5\": 6008, \"6\": 12560, \"7\": 7053, \"8\": 19032, \"9\": 35802, \"10\": 30633, \"11\": 32275, \"12\": 16685, \"13\": 33326, \"14\": 23097, \"15\": 15851, \"16\": 18041, \"17\": 35244, \"18\": 24008, \"19\": 19070, \"20\": 27528, \"21\": 10487, \"22\": 6298, \"23\": 7473, \"24\": 11811, \"25\": 5843, \"26\": 9817, \"27\": 5368, \"28\": 10490, \"29\": 5373, \"30\": 11399, \"31\": 12242, \"32\": 10198, \"33\": 6755, \"34\": 16213, \"35\": 20110, \"36\": 15657, \"37\": 10951, \"38\": 16018, \"39\": 19761, \"40\": 14224, \"41\": 19047, \"42\": 13453, \"43\": 15509, \"44\": 11755, \"45\": 14414, \"46\": 20285, \"47\": 11568, \"48\": 17899, \"49\": 10642, \"50\": 10490, \"51\": 17107, \"52\": 15106, \"53\": 19281, \"54\": 10250, \"55\": 12100, \"56\": 35229, \"57\": 33441, \"58\": 36651, \"59\": 28338, \"60\": 24179, \"61\": 29224, \"62\": 24801})\"Chorismate Biosynthesis\")\"Aromatic Compound Biosynthesis\",((\"Calvin-Benson-Bassham cycle\":{\"0\": 8409, \"1\": 17064, \"2\": 16484, \"3\": 21631, \"4\": 10584, \"5\": 6166, \"6\": 12975, \"7\": 7033, \"8\": 15355, \"9\": 16842, \"10\": 18578, \"11\": 14653, \"12\": 9685, \"13\": 18058, \"14\": 26566, \"15\": 18392, \"16\": 20546, \"17\": 39092, \"18\": 28367, \"19\": 22117, \"20\": 31639, \"21\": 10852, \"22\": 6864, \"23\": 7577, \"24\": 12266, \"25\": 6066, \"26\": 9887, \"27\": 5166, \"28\": 12418, \"29\": 6041, \"30\": 13255, \"31\": 14270, \"32\": 12756, \"33\": 9278, \"34\": 18223, \"35\": 21407, \"36\": 17998, \"37\": 13117, \"38\": 13909, \"39\": 17773, \"40\": 13001, \"41\": 14195, \"42\": 13180, \"43\": 15830, \"44\": 11826, \"45\": 13889, \"46\": 19318, \"47\": 11815, \"48\": 18096, \"49\": 12606, \"50\": 11905, \"51\": 14787, \"52\": 14231, \"53\": 21274, \"54\": 10646, \"55\": 10971, \"56\": 40952, \"57\": 38441, \"58\": 39152, \"59\": 32513, \"60\": 28316, \"61\": 31707, \"62\": 28880},\"dTDP-L-rhamnose biosynthesis I\":{\"0\": 2350, \"1\": 2213, \"2\": 2216, \"3\": 3693, \"4\": 2116, \"5\": 1329, \"6\": 3396, \"7\": 2067, \"8\": 10639, \"9\": 24911, \"10\": 20815, \"11\": 20824, \"12\": 13143, \"13\": 23344, \"14\": 9154, \"15\": 6328, \"16\": 6729, \"17\": 21447, \"18\": 4601, \"19\": 7992, \"20\": 9606, \"21\": 5860, \"22\": 1201, \"23\": 2204, \"24\": 4645, \"25\": 1880, \"26\": 2072, \"27\": 1887, \"28\": 2187, \"29\": 1697, \"30\": 1900, \"31\": 3676, \"32\": 2612, \"33\": 1400, \"34\": 3458, \"35\": 5413, \"36\": 5298, \"37\": 3917, \"38\": 5821, \"39\": 7376, \"40\": 5110, \"41\": 7064, \"42\": 1958, \"43\": 1776, \"44\": 2570, \"45\": 1317, \"46\": 5600, \"47\": 1472, \"48\": 2777, \"49\": 2973, \"50\": 1179, \"51\": 2187, \"52\": 8233, \"53\": 3663, \"54\": 1687, \"55\": 1572, \"56\": 7488, \"57\": 9537, \"58\": 14035, \"59\": 7241, \"60\": 9134, \"61\": 10347, \"62\": 7756},\"gluconeogenesis I\":{\"0\": 6121, \"1\": 10990, \"2\": 10549, \"3\": 14064, \"4\": 6811, \"5\": 4161, \"6\": 9893, \"7\": 2300, \"8\": 7908, \"9\": 8704, \"10\": 10084, \"11\": 8966, \"12\": 4415, \"13\": 11242, \"14\": 19930, \"15\": 11166, \"16\": 15990, \"17\": 22979, \"18\": 23864, \"19\": 14372, \"20\": 20606, \"21\": 6828, \"22\": 4857, \"23\": 1998, \"24\": 6835, \"25\": 2641, \"26\": 6524, \"27\": 3103, \"28\": 8729, \"29\": 4359, \"30\": 10529, \"31\": 9804, \"32\": 7530, \"33\": 7225, \"34\": 11646, \"35\": 19560, \"36\": 12830, \"37\": 10715, \"38\": 12302, \"39\": 17613, \"40\": 12160, \"41\": 7165, \"42\": 9982, \"43\": 11744, \"44\": 9722, \"45\": 9163, \"46\": 14368, \"47\": 9381, \"48\": 14249, \"49\": 8218, \"50\": 8474, \"51\": 9419, \"52\": 9877, \"53\": 13592, \"54\": 7190, \"55\": 7090, \"56\": 33749, \"57\": 29210, \"58\": 23447, \"59\": 26120, \"60\": 17695, \"61\": 17127, \"62\": 22040},\"O-antigen building blocks biosynthesis (E. coli)\":{\"0\": 3454, \"1\": 3893, \"2\": 3992, \"3\": 6125, \"4\": 3348, \"5\": 2156, \"6\": 5029, \"7\": 3402, \"8\": 9339, \"9\": 22165, \"10\": 14176, \"11\": 12329, \"12\": 9500, \"13\": 15512, \"14\": 12247, \"15\": 8439, \"16\": 9374, \"17\": 24141, \"18\": 7720, \"19\": 10641, \"20\": 13441, \"21\": 6485, \"22\": 2082, \"23\": 2747, \"24\": 5722, \"25\": 2387, \"26\": 3073, \"27\": 2358, \"28\": 3934, \"29\": 2614, \"30\": 3667, \"31\": 6159, \"32\": 4251, \"33\": 2389, \"34\": 6168, \"35\": 7047, \"36\": 8013, \"37\": 5013, \"38\": 6425, \"39\": 6682, \"40\": 6470, \"41\": 10268, \"42\": 3503, \"43\": 3475, \"44\": 4223, \"45\": 2519, \"46\": 8335, \"47\": 2780, \"48\": 4958, \"49\": 4944, \"50\": 2474, \"51\": 4477, \"52\": 9941, \"53\": 6696, \"54\": 3274, \"55\": 3244, \"56\": 12344, \"57\": 15054, \"58\": 19881, \"59\": 11523, \"60\": 12919, \"61\": 15350, \"62\": 11876},\"CMP-3-deoxy-D-manno-octulosonate biosynthesis I\":{\"0\": 1317, \"1\": 2026, \"2\": 2105, \"3\": 2838, \"4\": 1379, \"5\": 837, \"6\": 2964, \"7\": 267, \"8\": 1022, \"9\": 1186, \"10\": 1243, \"11\": 1025, \"12\": 574, \"13\": 1447, \"14\": 6414, \"15\": 2276, \"16\": 5245, \"17\": 3826, \"18\": 10329, \"19\": 3131, \"20\": 4365, \"21\": 1267, \"22\": 1190, \"23\": 206, \"24\": 1094, \"25\": 391, \"26\": 1269, \"27\": 469, \"28\": 1960, \"29\": 1346, \"30\": 3506, \"31\": 2789, \"32\": 1326, \"33\": 4039, \"34\": 2009, \"35\": 6160, \"36\": 2954, \"37\": 5988, \"38\": 2127, \"39\": 5074, \"40\": 3300, \"41\": 776, \"42\": 2460, \"43\": 3166, \"44\": 3821, \"45\": 1698, \"46\": 3335, \"47\": 3199, \"48\": 4328, \"49\": 1800, \"50\": 1999, \"51\": 1272, \"52\": 2505, \"53\": 2202, \"54\": 1284, \"55\": 1110, \"56\": 15656, \"57\": 6538, \"58\": 3874, \"59\": 6098, \"60\": 3152, \"61\": 2607, \"62\": 5404},\"GDP-mannose biosynthesis\":{\"0\": 3325, \"1\": 2937, \"2\": 3662, \"3\": 5373, \"4\": 2959, \"5\": 1872, \"6\": 4319, \"7\": 1981, \"8\": 2099, \"9\": 8126, \"10\": 3178, \"11\": 2020, \"12\": 3151, \"13\": 3656, \"14\": 9669, \"15\": 4660, \"16\": 8352, \"17\": 7551, \"18\": 10252, \"19\": 6417, \"20\": 7883, \"21\": 2917, \"22\": 2560, \"23\": 860, \"24\": 2695, \"25\": 876, \"26\": 2425, \"27\": 2051, \"28\": 3063, \"29\": 1874, \"30\": 4277, \"31\": 6565, \"32\": 1696, \"33\": 4133, \"34\": 3760, \"35\": 11825, \"36\": 4948, \"37\": 6928, \"38\": 8245, \"39\": 13601, \"40\": 8999, \"41\": 7474, \"42\": 4208, \"43\": 4760, \"44\": 4447, \"45\": 2743, \"46\": 9508, \"47\": 3562, \"48\": 4725, \"49\": 3988, \"50\": 4500, \"51\": 2672, \"52\": 6659, \"53\": 4799, \"54\": 2988, \"55\": 5429, \"56\": 15676, \"57\": 12994, \"58\": 10095, \"59\": 11888, \"60\": 7586, \"61\": 6953, \"62\": 9878},\"CMP-pseudaminate biosynthesis\":{\"0\": 1235, \"1\": 1583, \"2\": 1144, \"3\": 1527, \"4\": 607, \"5\": 665, \"6\": 2013, \"7\": 16, \"8\": 16, \"9\": 18, \"10\": 42, \"11\": 11, \"12\": 29, \"13\": 25, \"14\": 3024, \"15\": 853, \"16\": 4847, \"17\": 3878, \"18\": 9881, \"19\": 1845, \"20\": 2722, \"21\": 1126, \"22\": 384, \"23\": 115, \"24\": 811, \"25\": 50, \"26\": 921, \"27\": 447, \"28\": 1, \"29\": 2, \"30\": 7, \"31\": 10, \"32\": 7, \"33\": 8, \"34\": 5, \"35\": 5407, \"36\": 1613, \"37\": 2569, \"38\": 1614, \"39\": 4297, \"40\": 2763, \"41\": 552, \"42\": 1901, \"43\": 1771, \"44\": 3125, \"45\": 1284, \"46\": 2254, \"47\": 1818, \"48\": 3795, \"49\": 49, \"50\": 24, \"51\": 38, \"52\": 91, \"53\": 41, \"54\": 26, \"55\": 13, \"56\": 15946, \"57\": 5060, \"58\": 2994, \"59\": 3300, \"60\": 1632, \"61\": 755, \"62\": 4265},\"GDP-D-glycero-&alpha,-D-manno-heptose biosynthesis\":{\"0\": 1402, \"1\": 1867, \"2\": 1454, \"3\": 1946, \"4\": 805, \"5\": 781, \"6\": 2442, \"7\": 25, \"8\": 26, \"9\": 30, \"10\": 68, \"11\": 18, \"12\": 46, \"13\": 41, \"14\": 3939, \"15\": 1161, \"16\": 5507, \"17\": 4373, \"18\": 11257, \"19\": 2309, \"20\": 3363, \"21\": 1300, \"22\": 556, \"23\": 147, \"24\": 972, \"25\": 77, \"26\": 1100, \"27\": 505, \"28\": 2, \"29\": 4, \"30\": 12, \"31\": 16, \"32\": 12, \"33\": 14, \"34\": 8, \"35\": 6266, \"36\": 2044, \"37\": 3441, \"38\": 1911, \"39\": 5034, \"40\": 3224, \"41\": 668, \"42\": 2286, \"43\": 2301, \"44\": 3683, \"45\": 1553, \"46\": 2796, \"47\": 2335, \"48\": 4390, \"49\": 80, \"50\": 40, \"51\": 63, \"52\": 147, \"53\": 67, \"54\": 43, \"55\": 22, \"56\": 17910, \"57\": 5963, \"58\": 3555, \"59\": 4191, \"60\": 2097, \"61\": 1071, \"62\": 5006},\"CMP-legionaminate biosynthesis I\":{\"0\": 1997, \"1\": 2669, \"2\": 1946, \"3\": 2600, \"4\": 1043, \"5\": 1102, \"6\": 3175, \"7\": 26, \"8\": 26, \"9\": 30, \"10\": 70, \"11\": 18, \"12\": 48, \"13\": 42, \"14\": 4751, \"15\": 1388, \"16\": 7004, \"17\": 5980, \"18\": 13718, \"19\": 2935, \"20\": 4342, \"21\": 1746, \"22\": 702, \"23\": 191, \"24\": 1305, \"25\": 83, \"26\": 1526, \"27\": 736, \"28\": 2, \"29\": 4, \"30\": 12, \"31\": 16, \"32\": 12, \"33\": 14, \"34\": 8, \"35\": 8313, \"36\": 2578, \"37\": 3917, \"38\": 2699, \"39\": 6878, \"40\": 4411, \"41\": 922, \"42\": 3256, \"43\": 3131, \"44\": 4701, \"45\": 2310, \"46\": 3975, \"47\": 3039, \"48\": 5912, \"49\": 82, \"50\": 40, \"51\": 64, \"52\": 151, \"53\": 68, \"54\": 44, \"55\": 22, \"56\": 21347, \"57\": 8022, \"58\": 4798, \"59\": 5434, \"60\": 2653, \"61\": 1248, \"62\": 6629},\"dTDP-N-acetylthomosamine biosynthesis\":{\"0\": 1416, \"1\": 2197, \"2\": 2335, \"3\": 3295, \"4\": 1719, \"5\": 1051, \"6\": 3487, \"7\": 2034, \"8\": 5230, \"9\": 5414, \"10\": 6191, \"11\": 3378, \"12\": 3768, \"13\": 5448, \"14\": 9756, \"15\": 6610, \"16\": 6432, \"17\": 21408, \"18\": 3910, \"19\": 8309, \"20\": 9821, \"21\": 5588, \"22\": 910, \"23\": 2036, \"24\": 4482, \"25\": 1909, \"26\": 1783, \"27\": 1118, \"28\": 3175, \"29\": 2462, \"30\": 3766, \"31\": 4902, \"32\": 3279, \"33\": 3865, \"34\": 4341, \"35\": 3269, \"36\": 5760, \"37\": 4822, \"38\": 3083, \"39\": 2478, \"40\": 2505, \"41\": 4389, \"42\": 893, \"43\": 1755, \"44\": 2089, \"45\": 649, \"46\": 1573, \"47\": 1979, \"48\": 2780, \"49\": 3747, \"50\": 2355, \"51\": 2741, \"52\": 5233, \"53\": 4631, \"54\": 2308, \"55\": 2110, \"56\": 6416, \"57\": 9235, \"58\": 13966, \"59\": 7106, \"60\": 9172, \"61\": 10379, \"62\": 7766},\"superpathway of GDP-mannose-derived O-antigen building blocks biosynthesis\":{\"0\": 2218, \"1\": 1651, \"2\": 2667, \"3\": 3902, \"4\": 2216, \"5\": 1296, \"6\": 2810, \"7\": 1785, \"8\": 1983, \"9\": 5219, \"10\": 2890, \"11\": 1774, \"12\": 2706, \"13\": 3198, \"14\": 7261, \"15\": 3865, \"16\": 4448, \"17\": 2780, \"18\": 5765, \"19\": 4814, \"20\": 5408, \"21\": 1792, \"22\": 1636, \"23\": 727, \"24\": 1905, \"25\": 807, \"26\": 1609, \"27\": 1493, \"28\": 2788, \"29\": 1753, \"30\": 3834, \"31\": 5826, \"32\": 1625, \"33\": 3912, \"34\": 3459, \"35\": 7760, \"36\": 3403, \"37\": 5373, \"38\": 5431, \"39\": 8560, \"40\": 6013, \"41\": 5388, \"42\": 2840, \"43\": 3565, \"44\": 2948, \"45\": 1902, \"46\": 5350, \"47\": 2742, \"48\": 2874, \"49\": 3617, \"50\": 3314, \"51\": 2349, \"52\": 5239, \"53\": 4325, \"54\": 2568, \"55\": 3432, \"56\": 8462, \"57\": 8722, \"58\": 7047, \"59\": 8891, \"60\": 6054, \"61\": 5997, \"62\": 6268},\"superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis\":{\"0\": 241, \"1\": 780, \"2\": 1473, \"3\": 2010, \"4\": 1162, \"5\": 320, \"6\": 1507, \"7\": 409, \"8\": 1597, \"9\": 1963, \"10\": 1960, \"11\": 1661, \"12\": 914, \"13\": 2308, \"14\": 4796, \"15\": 2127, \"16\": 1155, \"17\": 714, \"18\": 1118, \"19\": 2111, \"20\": 2731, \"21\": 422, \"22\": 1113, \"23\": 163, \"24\": 566, \"25\": 502, \"26\": 608, \"27\": 101, \"28\": 2465, \"29\": 1649, \"30\": 4055, \"31\": 3620, \"32\": 1675, \"33\": 3277, \"34\": 2669, \"35\": 1323, \"36\": 2068, \"37\": 3991, \"38\": 933, \"39\": 1260, \"40\": 947, \"41\": 457, \"42\": 818, \"43\": 1914, \"44\": 1096, \"45\": 605, \"46\": 1574, \"47\": 1873, \"48\": 997, \"49\": 2341, \"50\": 2597, \"51\": 1734, \"52\": 3449, \"53\": 2933, \"54\": 1729, \"55\": 1645, \"56\": 550, \"57\": 2739, \"58\": 1841, \"59\": 4076, \"60\": 2436, \"61\": 2812, \"62\": 2160},\"superpathway of UDP-N-acetylglucosamine-derived O-antigen building blocks biosynthesis\":{\"0\": 625, \"1\": 1897, \"2\": 3257, \"3\": 4339, \"4\": 2411, \"5\": 789, \"6\": 2111, \"7\": 90, \"8\": 91, \"9\": 105, \"10\": 243, \"11\": 63, \"12\": 104, \"13\": 146, \"14\": 9328, \"15\": 3708, \"16\": 2881, \"17\": 1915, \"18\": 2927, \"19\": 4910, \"20\": 6378, \"21\": 566, \"22\": 551, \"23\": 416, \"24\": 1182, \"25\": 262, \"26\": 1128, \"27\": 267, \"28\": 7, \"29\": 14, \"30\": 42, \"31\": 56, \"32\": 42, \"33\": 49, \"34\": 28, \"35\": 3429, \"36\": 4867, \"37\": 5397, \"38\": 2437, \"39\": 3220, \"40\": 2416, \"41\": 1242, \"42\": 994, \"43\": 592, \"44\": 2402, \"45\": 564, \"46\": 1201, \"47\": 1790, \"48\": 1644, \"49\": 280, \"50\": 138, \"51\": 222, \"52\": 310, \"53\": 236, \"54\": 152, \"55\": 77, \"56\": 1501, \"57\": 6906, \"58\": 4793, \"59\": 9847, \"60\": 6050, \"61\": 3899, \"62\": 5374},\"ADP-L-glycero-&beta,-D-manno-heptose biosynthesis\":{\"0\": 1422, \"1\": 2050, \"2\": 1942, \"3\": 2610, \"4\": 1222, \"5\": 853, \"6\": 2883, \"7\": 233, \"8\": 862, \"9\": 985, \"10\": 1045, \"11\": 828, \"12\": 491, \"13\": 1188, \"14\": 5866, \"15\": 2080, \"16\": 5654, \"17\": 4380, \"18\": 11224, \"19\": 3041, \"20\": 4267, \"21\": 1380, \"22\": 983, \"23\": 204, \"24\": 1130, \"25\": 342, \"26\": 1262, \"27\": 514, \"28\": 1556, \"29\": 1073, \"30\": 2665, \"31\": 2245, \"32\": 1089, \"33\": 2999, \"34\": 1642, \"35\": 6467, \"36\": 2805, \"37\": 5239, \"38\": 2141, \"39\": 5252, \"40\": 3407, \"41\": 795, \"42\": 2463, \"43\": 2886, \"44\": 3906, \"45\": 1687, \"46\": 3200, \"47\": 2932, \"48\": 4544, \"49\": 1476, \"50\": 1527, \"51\": 1045, \"52\": 1997, \"53\": 1802, \"54\": 1035, \"55\": 896, \"56\": 17482, \"57\": 6657, \"58\": 4039, \"59\": 5645, \"60\": 3004, \"61\": 2356, \"62\": 5541},\"UDP-N-acetyl-D-glucosamine biosynthesis I\":{\"0\": 5485, \"1\": 8218, \"2\": 9013, \"3\": 11457, \"4\": 5705, \"5\": 3973, \"6\": 8363, \"7\": 7500, \"8\": 19811, \"9\": 38093, \"10\": 31588, \"11\": 33958, \"12\": 16997, \"13\": 34346, \"14\": 19849, \"15\": 13516, \"16\": 16717, \"17\": 29689, \"18\": 24303, \"19\": 17198, \"20\": 22470, \"21\": 7904, \"22\": 4363, \"23\": 3684, \"24\": 7872, \"25\": 3216, \"26\": 4983, \"27\": 3281, \"28\": 10975, \"29\": 4751, \"30\": 11618, \"31\": 13557, \"32\": 10340, \"33\": 6884, \"34\": 17825, \"35\": 20880, \"36\": 15285, \"37\": 10354, \"38\": 16168, \"39\": 19615, \"40\": 13960, \"41\": 18128, \"42\": 7340, \"43\": 10014, \"44\": 8342, \"45\": 6086, \"46\": 13010, \"47\": 7093, \"48\": 11112, \"49\": 11385, \"50\": 11520, \"51\": 19974, \"52\": 16424, \"53\": 22277, \"54\": 11277, \"55\": 14725, \"56\": 35375, \"57\": 33563, \"58\": 33080, \"59\": 30177, \"60\": 24114, \"61\": 28569, \"62\": 24815})\"Sugar Biosynthesis\",(\"colanic acid building blocks biosynthesis\":{\"0\": 2620, \"1\": 2228, \"2\": 3294, \"3\": 4728, \"4\": 2587, \"5\": 1567, \"6\": 3596, \"7\": 2069, \"8\": 2823, \"9\": 6356, \"10\": 4048, \"11\": 2473, \"12\": 3490, \"13\": 4337, \"14\": 9006, \"15\": 4809, \"16\": 5868, \"17\": 4060, \"18\": 7735, \"19\": 6035, \"20\": 7005, \"21\": 2380, \"22\": 1841, \"23\": 918, \"24\": 2462, \"25\": 1032, \"26\": 2034, \"27\": 1681, \"28\": 3309, \"29\": 2104, \"30\": 4502, \"31\": 6375, \"32\": 2083, \"33\": 4318, \"34\": 4169, \"35\": 8913, \"36\": 4382, \"37\": 6307, \"38\": 5867, \"39\": 9209, \"40\": 6537, \"41\": 5842, \"42\": 3329, \"43\": 3916, \"44\": 3768, \"45\": 2223, \"46\": 5953, \"47\": 3377, \"48\": 3884, \"49\": 4154, \"50\": 3654, \"51\": 2854, \"52\": 6067, \"53\": 5075, \"54\": 2939, \"55\": 3714, \"56\": 11481, \"57\": 10762, \"58\": 8978, \"59\": 10335, \"60\": 7414, \"61\": 7376, \"62\": 7930})\"Superpathways\",(\"glycogen biosynthesis I (from ADP-D-Glucose)\":{\"0\": 8392, \"1\": 15990, \"2\": 15589, \"3\": 21058, \"4\": 10529, \"5\": 5903, \"6\": 11617, \"7\": 7833, \"8\": 21992, \"9\": 38292, \"10\": 34548, \"11\": 37704, \"12\": 17791, \"13\": 37290, \"14\": 22782, \"15\": 16412, \"16\": 15990, \"17\": 33628, \"18\": 19307, \"19\": 19195, \"20\": 27890, \"21\": 10336, \"22\": 6553, \"23\": 7770, \"24\": 11999, \"25\": 6105, \"26\": 9813, \"27\": 5597, \"28\": 11779, \"29\": 5465, \"30\": 12246, \"31\": 12474, \"32\": 12033, \"33\": 6743, \"34\": 19203, \"35\": 19092, \"36\": 16028, \"37\": 9762, \"38\": 18016, \"39\": 19288, \"40\": 14161, \"41\": 21267, \"42\": 12529, \"43\": 14032, \"44\": 9712, \"45\": 13525, \"46\": 19657, \"47\": 10271, \"48\": 15680, \"49\": 11430, \"50\": 11314, \"51\": 21804, \"52\": 15437, \"53\": 23526, \"54\": 11711, \"55\": 13415, \"56\": 26427, \"57\": 34759, \"58\": 37505, \"59\": 31165, \"60\": 26074, \"61\": 32202, \"62\": 24890},\"protein N-glycosylation (bacterial)\":{\"0\": 1148, \"1\": 1468, \"2\": 1044, \"3\": 1396, \"4\": 552, \"5\": 612, \"6\": 1846, \"7\": 13, \"8\": 13, \"9\": 15, \"10\": 35, \"11\": 9, \"12\": 24, \"13\": 21, \"14\": 2666, \"15\": 728, \"16\": 4407, \"17\": 3321, \"18\": 9514, \"19\": 1597, \"20\": 2373, \"21\": 969, \"22\": 372, \"23\": 97, \"24\": 697, \"25\": 42, \"26\": 836, \"27\": 399, \"28\": 1, \"29\": 2, \"30\": 6, \"31\": 8, \"32\": 6, \"33\": 7, \"34\": 4, \"35\": 5184, \"36\": 1406, \"37\": 2379, \"38\": 1471, \"39\": 4165, \"40\": 2616, \"41\": 473, \"42\": 1876, \"43\": 1757, \"44\": 3013, \"45\": 1270, \"46\": 2225, \"47\": 1771, \"48\": 3610, \"49\": 41, \"50\": 20, \"51\": 32, \"52\": 76, \"53\": 34, \"54\": 22, \"55\": 11, \"56\": 15266, \"57\": 4545, \"58\": 2580, \"59\": 2981, \"60\": 1403, \"61\": 638, \"62\": 3822})\"Glycan Biosynthesis\")\"Carbohydrate Biosynthesis\",((\"superpathway of purine nucleotides de novo biosynthesis II\":{\"0\": 4271, \"1\": 6889, \"2\": 6580, \"3\": 8835, \"4\": 4222, \"5\": 2701, \"6\": 7371, \"7\": 958, \"8\": 3542, \"9\": 4357, \"10\": 4497, \"11\": 3803, \"12\": 2112, \"13\": 5183, \"14\": 14430, \"15\": 6551, \"16\": 12238, \"17\": 12772, \"18\": 20573, \"19\": 8739, \"20\": 12849, \"21\": 4211, \"22\": 3215, \"23\": 867, \"24\": 3904, \"25\": 1329, \"26\": 4178, \"27\": 1829, \"28\": 4977, \"29\": 2918, \"30\": 7274, \"31\": 6332, \"32\": 3716, \"33\": 5563, \"34\": 5814, \"35\": 14666, \"36\": 7922, \"37\": 9196, \"38\": 6953, \"39\": 13060, \"40\": 8830, \"41\": 3247, \"42\": 7270, \"43\": 8007, \"44\": 8172, \"45\": 5794, \"46\": 9969, \"47\": 7238, \"48\": 11304, \"49\": 4652, \"50\": 5041, \"51\": 4223, \"52\": 6512, \"53\": 6530, \"54\": 3723, \"55\": 3440, \"56\": 30303, \"57\": 18331, \"58\": 13247, \"59\": 15988, \"60\": 9432, \"61\": 8413, \"62\": 14360},\"5-aminoimidazole ribonucleotide biosynthesis I\":{\"0\": 8682, \"1\": 16608, \"2\": 15869, \"3\": 20947, \"4\": 10324, \"5\": 6152, \"6\": 12861, \"7\": 7688, \"8\": 20389, \"9\": 37739, \"10\": 32210, \"11\": 34792, \"12\": 17106, \"13\": 35016, \"14\": 23768, \"15\": 16125, \"16\": 19223, \"17\": 33983, \"18\": 27537, \"19\": 19638, \"20\": 28209, \"21\": 10012, \"22\": 6661, \"23\": 7106, \"24\": 11498, \"25\": 5593, \"26\": 9827, \"27\": 5266, \"28\": 11621, \"29\": 5470, \"30\": 12414, \"31\": 13771, \"32\": 11173, \"33\": 7191, \"34\": 18576, \"35\": 22653, \"36\": 16862, \"37\": 11692, \"38\": 17206, \"39\": 21281, \"40\": 15331, \"41\": 19613, \"42\": 13984, \"43\": 15846, \"44\": 12303, \"45\": 14365, \"46\": 20680, \"47\": 12035, \"48\": 18763, \"49\": 11760, \"50\": 12098, \"51\": 20970, \"52\": 16493, \"53\": 22912, \"54\": 11791, \"55\": 14147, \"56\": 39892, \"57\": 36847, \"58\": 37536, \"59\": 32247, \"60\": 25713, \"61\": 30777, \"62\": 27203},\"5-aminoimidazole ribonucleotide biosynthesis II\":{\"0\": 9109, \"1\": 17166, \"2\": 16468, \"3\": 21469, \"4\": 10547, \"5\": 6600, \"6\": 13293, \"7\": 8284, \"8\": 20522, \"9\": 39957, \"10\": 32540, \"11\": 34923, \"12\": 17881, \"13\": 35369, \"14\": 24037, \"15\": 16618, \"16\": 20400, \"17\": 35523, \"18\": 29005, \"19\": 20786, \"20\": 29056, \"21\": 10336, \"22\": 6771, \"23\": 7302, \"24\": 11955, \"25\": 5700, \"26\": 10122, \"27\": 5427, \"28\": 11630, \"29\": 5449, \"30\": 12203, \"31\": 14431, \"32\": 11134, \"33\": 6877, \"34\": 18722, \"35\": 23806, \"36\": 17355, \"37\": 11556, \"38\": 17505, \"39\": 21802, \"40\": 15851, \"41\": 20133, \"42\": 14661, \"43\": 16682, \"44\": 12842, \"45\": 15058, \"46\": 21510, \"47\": 12392, \"48\": 19950, \"49\": 12079, \"50\": 12532, \"51\": 21218, \"52\": 17512, \"53\": 23203, \"54\": 12050, \"55\": 15609, \"56\": 43014, \"57\": 38856, \"58\": 39961, \"59\": 33226, \"60\": 26808, \"61\": 31498, \"62\": 28720},\"inosine-5'-phosphate biosynthesis I\":{\"0\": 7613, \"1\": 14581, \"2\": 13652, \"3\": 18381, \"4\": 9065, \"5\": 5242, \"6\": 10952, \"7\": 6505, \"8\": 19163, \"9\": 33094, \"10\": 30333, \"11\": 33561, \"12\": 15317, \"13\": 32888, \"14\": 20704, \"15\": 13817, \"16\": 16646, \"17\": 29857, \"18\": 24706, \"19\": 16619, \"20\": 24518, \"21\": 8864, \"22\": 5768, \"23\": 6362, \"24\": 10029, \"25\": 4967, \"26\": 8662, \"27\": 4729, \"28\": 10195, \"29\": 4606, \"30\": 10859, \"31\": 10296, \"32\": 10395, \"33\": 5945, \"34\": 16592, \"35\": 20388, \"36\": 14583, \"37\": 10234, \"38\": 16064, \"39\": 19668, \"40\": 13853, \"41\": 18004, \"42\": 12074, \"43\": 13327, \"44\": 10557, \"45\": 12475, \"46\": 18029, \"47\": 10144, \"48\": 15985, \"49\": 9615, \"50\": 9637, \"51\": 19166, \"52\": 12980, \"53\": 20328, \"54\": 10097, \"55\": 11240, \"56\": 35437, \"57\": 32294, \"58\": 32328, \"59\": 28507, \"60\": 22580, \"61\": 27443, \"62\": 23668},\"superpathway of guanosine nucleotides de novo biosynthesis II\":{\"0\": 3178, \"1\": 4965, \"2\": 4755, \"3\": 6396, \"4\": 3041, \"5\": 1969, \"6\": 5729, \"7\": 612, \"8\": 2306, \"9\": 2772, \"10\": 2887, \"11\": 2412, \"12\": 1348, \"13\": 3339, \"14\": 11408, \"15\": 4726, \"16\": 9721, \"17\": 9038, \"18\": 17093, \"19\": 6404, \"20\": 9451, \"21\": 3038, \"22\": 2401, \"23\": 553, \"24\": 2724, \"25\": 889, \"26\": 3024, \"27\": 1278, \"28\": 3631, \"29\": 2249, \"30\": 5738, \"31\": 4732, \"32\": 2587, \"33\": 4934, \"34\": 4021, \"35\": 11676, \"36\": 5872, \"37\": 7958, \"38\": 4975, \"39\": 10236, \"40\": 6816, \"41\": 2107, \"42\": 5491, \"43\": 6040, \"44\": 6597, \"45\": 4156, \"46\": 7408, \"47\": 5718, \"48\": 8858, \"49\": 3355, \"50\": 3676, \"51\": 2783, \"52\": 4687, \"53\": 4463, \"54\": 2583, \"55\": 2308, \"56\": 25232, \"57\": 13701, \"58\": 9297, \"59\": 11976, \"60\": 6667, \"61\": 5714, \"62\": 10883},\"superpathway of adenosine nucleotides de novo biosynthesis II\":{\"0\": 9338, \"1\": 18165, \"2\": 17592, \"3\": 23481, \"4\": 11542, \"5\": 6376, \"6\": 12995, \"7\": 4959, \"8\": 18198, \"9\": 38000, \"10\": 31750, \"11\": 34146, \"12\": 17318, \"13\": 35528, \"14\": 25087, \"15\": 15819, \"16\": 17985, \"17\": 21424, \"18\": 27759, \"19\": 16775, \"20\": 28951, \"21\": 9460, \"22\": 7421, \"23\": 8030, \"24\": 12331, \"25\": 6411, \"26\": 10943, \"27\": 5873, \"28\": 10916, \"29\": 5488, \"30\": 13197, \"31\": 12660, \"32\": 8238, \"33\": 7637, \"34\": 14881, \"35\": 22367, \"36\": 14761, \"37\": 12317, \"38\": 15149, \"39\": 21755, \"40\": 15399, \"41\": 17002, \"42\": 14587, \"43\": 13674, \"44\": 11513, \"45\": 14791, \"46\": 21540, \"47\": 11774, \"48\": 19043, \"49\": 10364, \"50\": 11628, \"51\": 15744, \"52\": 15756, \"53\": 16820, \"54\": 10085, \"55\": 11130, \"56\": 39659, \"57\": 32455, \"58\": 33051, \"59\": 28999, \"60\": 18972, \"61\": 23646, \"62\": 23741},\"superpathway of 5-aminoimidazole ribonucleotide biosynthesis\":{\"0\": 9109, \"1\": 17166, \"2\": 16468, \"3\": 21469, \"4\": 10547, \"5\": 6600, \"6\": 13293, \"7\": 8284, \"8\": 20522, \"9\": 39957, \"10\": 32540, \"11\": 34923, \"12\": 17881, \"13\": 35369, \"14\": 24037, \"15\": 16618, \"16\": 20400, \"17\": 35523, \"18\": 29005, \"19\": 20786, \"20\": 29056, \"21\": 10336, \"22\": 6771, \"23\": 7302, \"24\": 11955, \"25\": 5700, \"26\": 10122, \"27\": 5427, \"28\": 11630, \"29\": 5449, \"30\": 12203, \"31\": 14431, \"32\": 11134, \"33\": 6877, \"34\": 18722, \"35\": 23806, \"36\": 17355, \"37\": 11556, \"38\": 17505, \"39\": 21802, \"40\": 15851, \"41\": 20133, \"42\": 14661, \"43\": 16682, \"44\": 12842, \"45\": 15058, \"46\": 21510, \"47\": 12392, \"48\": 19950, \"49\": 12079, \"50\": 12532, \"51\": 21218, \"52\": 17512, \"53\": 23203, \"54\": 12050, \"55\": 15609, \"56\": 43014, \"57\": 38856, \"58\": 39961, \"59\": 33226, \"60\": 26808, \"61\": 31498, \"62\": 28720},\"adenine and adenosine salvage III\":{\"0\": 6600, \"1\": 14142, \"2\": 13855, \"3\": 18248, \"4\": 9044, \"5\": 5001, \"6\": 9358, \"7\": 8722, \"8\": 24488, \"9\": 35205, \"10\": 36250, \"11\": 41349, \"12\": 16084, \"13\": 38241, \"14\": 20442, \"15\": 15486, \"16\": 14346, \"17\": 28962, \"18\": 20068, \"19\": 18005, \"20\": 25960, \"21\": 7841, \"22\": 6083, \"23\": 6415, \"24\": 9529, \"25\": 4996, \"26\": 7919, \"27\": 4344, \"28\": 13902, \"29\": 5156, \"30\": 13168, \"31\": 12533, \"32\": 16910, \"33\": 7201, \"34\": 25889, \"35\": 20280, \"36\": 16420, \"37\": 8826, \"38\": 19906, \"39\": 19199, \"40\": 13596, \"41\": 21497, \"42\": 10310, \"43\": 12927, \"44\": 7706, \"45\": 11578, \"46\": 16293, \"47\": 8700, \"48\": 12428, \"49\": 12527, \"50\": 12588, \"51\": 30712, \"52\": 14325, \"53\": 34622, \"54\": 13863, \"55\": 15519, \"56\": 24527, \"57\": 36129, \"58\": 34466, \"59\": 38591, \"60\": 27845, \"61\": 34558, \"62\": 25433},\"adenosine ribonucleotides de novo biosynthesis\":{\"0\": 10940, \"1\": 20784, \"2\": 19481, \"3\": 26125, \"4\": 12748, \"5\": 7342, \"6\": 15260, \"7\": 7954, \"8\": 22960, \"9\": 40526, \"10\": 36515, \"11\": 40100, \"12\": 18701, \"13\": 39629, \"14\": 27665, \"15\": 18099, \"16\": 21082, \"17\": 37503, \"18\": 31263, \"19\": 21237, \"20\": 33071, \"21\": 11945, \"22\": 8070, \"23\": 8795, \"24\": 13859, \"25\": 6863, \"26\": 12448, \"27\": 6646, \"28\": 12321, \"29\": 5650, \"30\": 13242, \"31\": 12779, \"32\": 12366, \"33\": 7283, \"34\": 19927, \"35\": 25253, \"36\": 17935, \"37\": 12763, \"38\": 19356, \"39\": 24125, \"40\": 17130, \"41\": 21836, \"42\": 17675, \"43\": 16871, \"44\": 14194, \"45\": 17496, \"46\": 25244, \"47\": 14119, \"48\": 23638, \"49\": 11786, \"50\": 12040, \"51\": 22927, \"52\": 16126, \"53\": 24363, \"54\": 12256, \"55\": 13816, \"56\": 44900, \"57\": 40556, \"58\": 41944, \"59\": 34947, \"60\": 27560, \"61\": 33405, \"62\": 29405},\"guanosine ribonucleotides de novo biosynthesis\":{\"0\": 7921, \"1\": 15557, \"2\": 14491, \"3\": 19749, \"4\": 9731, \"5\": 5300, \"6\": 11031, \"7\": 5939, \"8\": 18922, \"9\": 30686, \"10\": 29835, \"11\": 33346, \"12\": 14446, \"13\": 32282, \"14\": 20738, \"15\": 13844, \"16\": 15721, \"17\": 29229, \"18\": 23196, \"19\": 15932, \"20\": 24913, \"21\": 9044, \"22\": 6096, \"23\": 6935, \"24\": 10498, \"25\": 5415, \"26\": 9322, \"27\": 5053, \"28\": 9909, \"29\": 4472, \"30\": 10717, \"31\": 8776, \"32\": 10360, \"33\": 5669, \"34\": 16145, \"35\": 19181, \"36\": 14055, \"37\": 9853, \"38\": 15706, \"39\": 18897, \"40\": 13305, \"41\": 17794, \"42\": 12644, \"43\": 12752, \"44\": 10271, \"45\": 13033, \"46\": 18577, \"47\": 10160, \"48\": 16260, \"49\": 8871, \"50\": 8755, \"51\": 18855, \"52\": 11198, \"53\": 19548, \"54\": 9587, \"55\": 9393, \"56\": 32688, \"57\": 30874, \"58\": 31521, \"59\": 27289, \"60\": 21679, \"61\": 26914, \"62\": 22437},\"superpathway of guanosine nucleotides de novo biosynthesis I\":{\"0\": 2899, \"1\": 4460, \"2\": 4263, \"3\": 5745, \"4\": 2727, \"5\": 1774, \"6\": 5291, \"7\": 528, \"8\": 1999, \"9\": 2400, \"10\": 2500, \"11\": 2084, \"12\": 1167, \"13\": 2895, \"14\": 10390, \"15\": 4181, \"16\": 8928, \"17\": 7950, \"18\": 16242, \"19\": 5688, \"20\": 8423, \"21\": 2695, \"22\": 2175, \"23\": 479, \"24\": 2405, \"25\": 778, \"26\": 2723, \"27\": 1136, \"28\": 3210, \"29\": 2027, \"30\": 5198, \"31\": 4220, \"32\": 2262, \"33\": 4604, \"34\": 3515, \"35\": 10737, \"36\": 5227, \"37\": 7605, \"38\": 4397, \"39\": 9397, \"40\": 6223, \"41\": 1827, \"42\": 5080, \"43\": 5524, \"44\": 6339, \"45\": 3750, \"46\": 6776, \"47\": 5375, \"48\": 8332, \"49\": 2959, \"50\": 3261, \"51\": 2414, \"52\": 4173, \"53\": 3892, \"54\": 2262, \"55\": 2010, \"56\": 24202, \"57\": 12235, \"58\": 8191, \"59\": 10673, \"60\": 5856, \"61\": 4985, \"62\": 9758},\"superpathway of adenosine nucleotides de novo biosynthesis I\":{\"0\": 9751, \"1\": 19005, \"2\": 18532, \"3\": 24685, \"4\": 12120, \"5\": 6640, \"6\": 13481, \"7\": 6008, \"8\": 20243, \"9\": 38964, \"10\": 33855, \"11\": 36702, \"12\": 17871, \"13\": 37288, \"14\": 26113, \"15\": 16821, \"16\": 19106, \"17\": 26439, \"18\": 28619, \"19\": 18548, \"20\": 30394, \"21\": 10305, \"22\": 7812, \"23\": 8402, \"24\": 12851, \"25\": 6739, \"26\": 11483, \"27\": 6138, \"28\": 11710, \"29\": 5669, \"30\": 13688, \"31\": 13164, \"32\": 9782, \"33\": 8017, \"34\": 17024, \"35\": 23422, \"36\": 16185, \"37\": 12838, \"38\": 16875, \"39\": 22516, \"40\": 15972, \"41\": 18935, \"42\": 15540, \"43\": 14540, \"44\": 12160, \"45\": 15423, \"46\": 22597, \"47\": 12334, \"48\": 20171, \"49\": 11172, \"50\": 12044, \"51\": 18478, \"52\": 16341, \"53\": 19769, \"54\": 11119, \"55\": 12415, \"56\": 40890, \"57\": 35722, \"58\": 36379, \"59\": 31689, \"60\": 22237, \"61\": 27433, \"62\": 26107},\"inosine-5'-phosphate biosynthesis III\":{\"0\": 291, \"1\": 974, \"2\": 1856, \"3\": 2523, \"4\": 1452, \"5\": 391, \"6\": 1856, \"7\": 507, \"8\": 1990, \"9\": 2364, \"10\": 2418, \"11\": 2068, \"12\": 1104, \"13\": 2849, \"14\": 5945, \"15\": 2692, \"16\": 1407, \"17\": 875, \"18\": 1371, \"19\": 2632, \"20\": 3438, \"21\": 518, \"22\": 1378, \"23\": 205, \"24\": 705, \"25\": 663, \"26\": 755, \"27\": 122, \"28\": 3272, \"29\": 2020, \"30\": 5105, \"31\": 4273, \"32\": 2376, \"33\": 4369, \"34\": 3636, \"35\": 1643, \"36\": 2632, \"37\": 4876, \"38\": 1150, \"39\": 1539, \"40\": 1161, \"41\": 555, \"42\": 998, \"43\": 2362, \"44\": 1334, \"45\": 746, \"46\": 1911, \"47\": 2305, \"48\": 1215, \"49\": 2959, \"50\": 3253, \"51\": 2404, \"52\": 4062, \"53\": 3993, \"54\": 2273, \"55\": 2048, \"56\": 664, \"57\": 3409, \"58\": 2282, \"59\": 5270, \"60\": 3092, \"61\": 3642, \"62\": 2682},\"superpathway of purine nucleotides de novo biosynthesis I\":{\"0\": 4188, \"1\": 6712, \"2\": 6402, \"3\": 8608, \"4\": 4113, \"5\": 2632, \"6\": 7255, \"7\": 917, \"8\": 3397, \"9\": 4184, \"10\": 4316, \"11\": 3647, \"12\": 2028, \"13\": 4978, \"14\": 14052, \"15\": 6311, \"16\": 11933, \"17\": 12258, \"18\": 20381, \"19\": 8419, \"20\": 12411, \"21\": 4060, \"22\": 3142, \"23\": 833, \"24\": 3767, \"25\": 1280, \"26\": 4077, \"27\": 1775, \"28\": 4793, \"29\": 2836, \"30\": 7084, \"31\": 6113, \"32\": 3565, \"33\": 5477, \"34\": 5578, \"35\": 14321, \"36\": 7638, \"37\": 9161, \"38\": 6697, \"39\": 12781, \"40\": 8624, \"41\": 3116, \"42\": 7193, \"43\": 7861, \"44\": 8211, \"45\": 5669, \"46\": 9810, \"47\": 7203, \"48\": 11240, \"49\": 4473, \"50\": 4862, \"51\": 4048, \"52\": 6306, \"53\": 6260, \"54\": 3576, \"55\": 3296, \"56\": 30155, \"57\": 17683, \"58\": 12746, \"59\": 15415, \"60\": 9052, \"61\": 8070, \"62\": 13866})\"Purine Nucleotide Biosynthesis\",(\"UMP biosynthesis\":{\"0\": 9429, \"1\": 18268, \"2\": 17005, \"3\": 22787, \"4\": 11227, \"5\": 6590, \"6\": 13663, \"7\": 7981, \"8\": 21883, \"9\": 38495, \"10\": 34334, \"11\": 37278, \"12\": 17876, \"13\": 37031, \"14\": 25101, \"15\": 17196, \"16\": 20066, \"17\": 37295, \"18\": 28391, \"19\": 20634, \"20\": 30361, \"21\": 11196, \"22\": 6950, \"23\": 8131, \"24\": 12821, \"25\": 6345, \"26\": 10867, \"27\": 5859, \"28\": 11859, \"29\": 5562, \"30\": 12320, \"31\": 12982, \"32\": 12033, \"33\": 6998, \"34\": 19255, \"35\": 23232, \"36\": 17356, \"37\": 11807, \"38\": 18165, \"39\": 21949, \"40\": 15689, \"41\": 20630, \"42\": 14964, \"43\": 16373, \"44\": 12850, \"45\": 15737, \"46\": 22029, \"47\": 12552, \"48\": 20027, \"49\": 11704, \"50\": 11621, \"51\": 21702, \"52\": 15955, \"53\": 23647, \"54\": 11825, \"55\": 13796, \"56\": 41197, \"57\": 38314, \"58\": 39783, \"59\": 33066, \"60\": 27100, \"61\": 32469, \"62\": 28172},\"superpathway of pyrimidine ribonucleosides salvage\":{\"0\": 3074, \"1\": 4788, \"2\": 4568, \"3\": 6129, \"4\": 2917, \"5\": 1937, \"6\": 5727, \"7\": 593, \"8\": 2210, \"9\": 2597, \"10\": 2723, \"11\": 2266, \"12\": 1261, \"13\": 3145, \"14\": 11483, \"15\": 4712, \"16\": 10051, \"17\": 9627, \"18\": 17324, \"19\": 6624, \"20\": 9408, \"21\": 2994, \"22\": 2331, \"23\": 516, \"24\": 2617, \"25\": 837, \"26\": 2884, \"27\": 1215, \"28\": 3737, \"29\": 2328, \"30\": 5914, \"31\": 4911, \"32\": 2690, \"33\": 5178, \"34\": 4093, \"35\": 12157, \"36\": 6125, \"37\": 7862, \"38\": 5089, \"39\": 10438, \"40\": 6951, \"41\": 2022, \"42\": 5314, \"43\": 6400, \"44\": 6683, \"45\": 4063, \"46\": 7252, \"47\": 5802, \"48\": 8654, \"49\": 3454, \"50\": 3765, \"51\": 2743, \"52\": 4654, \"53\": 4558, \"54\": 2607, \"55\": 2312, \"56\": 24949, \"57\": 14396, \"58\": 9326, \"59\": 12599, \"60\": 6978, \"61\": 5740, \"62\": 11525},\"pyrimidine deoxyribonucleotide phosphorylation\":{\"0\": 1952, \"1\": 2810, \"2\": 2722, \"3\": 3713, \"4\": 1776, \"5\": 1169, \"6\": 3584, \"7\": 370, \"8\": 1402, \"9\": 1639, \"10\": 1725, \"11\": 1428, \"12\": 798, \"13\": 1998, \"14\": 7751, \"15\": 2927, \"16\": 7108, \"17\": 5630, \"18\": 13728, \"19\": 4157, \"20\": 5927, \"21\": 1717, \"22\": 1507, \"23\": 293, \"24\": 1446, \"25\": 447, \"26\": 1676, \"27\": 754, \"28\": 2455, \"29\": 1515, \"30\": 4083, \"31\": 3097, \"32\": 1733, \"33\": 3814, \"34\": 2635, \"35\": 8918, \"36\": 4048, \"37\": 6254, \"38\": 3382, \"39\": 7585, \"40\": 4942, \"41\": 1278, \"42\": 3309, \"43\": 4033, \"44\": 4775, \"45\": 2321, \"46\": 4717, \"47\": 3733, \"48\": 5411, \"49\": 2221, \"50\": 2442, \"51\": 1741, \"52\": 3036, \"53\": 2922, \"54\": 1679, \"55\": 1457, \"56\": 20212, \"57\": 9654, \"58\": 5887, \"59\": 8509, \"60\": 4497, \"61\": 3658, \"62\": 7796},\"pyrimidine deoxyribonucleosides salvage\":{\"0\": 1206, \"1\": 3549, \"2\": 4237, \"3\": 4911, \"4\": 2439, \"5\": 1651, \"6\": 3022, \"7\": 5663, \"8\": 10473, \"9\": 9078, \"10\": 11419, \"11\": 13322, \"12\": 3467, \"13\": 10828, \"14\": 10178, \"15\": 7615, \"16\": 7596, \"17\": 8916, \"18\": 11760, \"19\": 9749, \"20\": 11618, \"21\": 773, \"22\": 2316, \"23\": 661, \"24\": 1675, \"25\": 806, \"26\": 1219, \"27\": 339, \"28\": 8807, \"29\": 2994, \"30\": 8319, \"31\": 9181, \"32\": 9097, \"33\": 5682, \"34\": 14862, \"35\": 12313, \"36\": 9519, \"37\": 5837, \"38\": 11435, \"39\": 10706, \"40\": 7221, \"41\": 10262, \"42\": 2060, \"43\": 6189, \"44\": 2695, \"45\": 2399, \"46\": 4137, \"47\": 3392, \"48\": 2927, \"49\": 8558, \"50\": 8770, \"51\": 16758, \"52\": 7270, \"53\": 19168, \"54\": 8919, \"55\": 11649, \"56\": 15183, \"57\": 22129, \"58\": 15366, \"59\": 22423, \"60\": 17215, \"61\": 19895, \"62\": 15559},\"superpathway of pyrimidine deoxyribonucleoside salvage\":{\"0\": 1302, \"1\": 2846, \"2\": 3063, \"3\": 3877, \"4\": 1870, \"5\": 1231, \"6\": 2930, \"7\": 614, \"8\": 2217, \"9\": 2472, \"10\": 2690, \"11\": 2304, \"12\": 1160, \"13\": 3038, \"14\": 8118, \"15\": 3830, \"16\": 6799, \"17\": 6049, \"18\": 12293, \"19\": 5286, \"20\": 7162, \"21\": 884, \"22\": 1707, \"23\": 351, \"24\": 1343, \"25\": 502, \"26\": 1239, \"27\": 390, \"28\": 3502, \"29\": 1827, \"30\": 5053, \"31\": 4215, \"32\": 2632, \"33\": 4361, \"34\": 4037, \"35\": 9781, \"36\": 5187, \"37\": 5769, \"38\": 4751, \"39\": 8244, \"40\": 5395, \"41\": 2010, \"42\": 2267, \"43\": 4406, \"44\": 3081, \"45\": 2071, \"46\": 3904, \"47\": 3230, \"48\": 3388, \"49\": 3202, \"50\": 3484, \"51\": 2811, \"52\": 3922, \"53\": 4563, \"54\": 2546, \"55\": 2316, \"56\": 16751, \"57\": 12421, \"58\": 7607, \"59\": 11413, \"60\": 6466, \"61\": 5535, \"62\": 9613},\"superpathway of pyrimidine nucleobases salvage\":{\"0\": 8940, \"1\": 17439, \"2\": 16353, \"3\": 22012, \"4\": 10891, \"5\": 6224, \"6\": 12823, \"7\": 7811, \"8\": 24618, \"9\": 42995, \"10\": 39619, \"11\": 43871, \"12\": 20088, \"13\": 43033, \"14\": 24024, \"15\": 16387, \"16\": 18772, \"17\": 34938, \"18\": 27042, \"19\": 19472, \"20\": 28909, \"21\": 10422, \"22\": 6872, \"23\": 7736, \"24\": 11977, \"25\": 6035, \"26\": 10346, \"27\": 5622, \"28\": 12092, \"29\": 5463, \"30\": 12701, \"31\": 12075, \"32\": 12445, \"33\": 6987, \"34\": 19739, \"35\": 22804, \"36\": 16931, \"37\": 11426, \"38\": 18628, \"39\": 22013, \"40\": 15581, \"41\": 21058, \"42\": 14230, \"43\": 15713, \"44\": 12029, \"45\": 14928, \"46\": 21214, \"47\": 11872, \"48\": 18574, \"49\": 11387, \"50\": 11407, \"51\": 22755, \"52\": 16434, \"53\": 24220, \"54\": 11962, \"55\": 13298, \"56\": 38353, \"57\": 37319, \"58\": 37822, \"59\": 33118, \"60\": 26560, \"61\": 32443, \"62\": 27185},\"superpathway of pyrimidine ribonucleotides de novo biosynthesis\":{\"0\": 3940, \"1\": 6184, \"2\": 5862, \"3\": 7884, \"4\": 3755, \"5\": 2470, \"6\": 7158, \"7\": 799, \"8\": 2950, \"9\": 3536, \"10\": 3680, \"11\": 3080, \"12\": 1719, \"13\": 4246, \"14\": 13866, \"15\": 5955, \"16\": 12272, \"17\": 12397, \"18\": 20836, \"19\": 8264, \"20\": 11813, \"21\": 3885, \"22\": 2904, \"23\": 705, \"24\": 3436, \"25\": 1120, \"26\": 3750, \"27\": 1597, \"28\": 4539, \"29\": 2763, \"30\": 6763, \"31\": 5946, \"32\": 3386, \"33\": 5542, \"34\": 5177, \"35\": 14324, \"36\": 7465, \"37\": 9211, \"38\": 6324, \"39\": 12451, \"40\": 8352, \"41\": 2699, \"42\": 6790, \"43\": 7850, \"44\": 8365, \"45\": 5253, \"46\": 9196, \"47\": 7147, \"48\": 11020, \"49\": 4262, \"50\": 4581, \"51\": 3596, \"52\": 5883, \"53\": 5811, \"54\": 3291, \"55\": 2993, \"56\": 31059, \"57\": 17450, \"58\": 11926, \"59\": 15083, \"60\": 8769, \"61\": 7414, \"62\": 13889})\"Pyrimidine Nucleotide Biosynthesis\",(\"pyrimidine deoxyribonucleotides de novo biosynthesis III\":{\"0\": 1851, \"1\": 2588, \"2\": 2207, \"3\": 2963, \"4\": 1341, \"5\": 1098, \"6\": 3219, \"7\": 342, \"8\": 1516, \"9\": 1828, \"10\": 1904, \"11\": 1581, \"12\": 890, \"13\": 2209, \"14\": 5714, \"15\": 1839, \"16\": 6424, \"17\": 5017, \"18\": 12576, \"19\": 3190, \"20\": 4757, \"21\": 1594, \"22\": 955, \"23\": 222, \"24\": 1295, \"25\": 149, \"26\": 1519, \"27\": 691, \"28\": 4, \"29\": 13, \"30\": 27, \"31\": 36, \"32\": 27, \"33\": 31, \"34\": 22, \"35\": 7836, \"36\": 2936, \"37\": 4833, \"38\": 2714, \"39\": 6658, \"40\": 4304, \"41\": 992, \"42\": 3110, \"43\": 3264, \"44\": 4409, \"45\": 2171, \"46\": 4075, \"47\": 3206, \"48\": 5342, \"49\": 178, \"50\": 96, \"51\": 140, \"52\": 3259, \"53\": 152, \"54\": 107, \"55\": 57, \"56\": 19014, \"57\": 7896, \"58\": 4841, \"59\": 6154, \"60\": 3101, \"61\": 1849, \"62\": 6443},\"pyrimidine deoxyribonucleotides de novo biosynthesis I\":{\"0\": 2194, \"1\": 3260, \"2\": 3152, \"3\": 4272, \"4\": 2037, \"5\": 1328, \"6\": 4010, \"7\": 403, \"8\": 1528, \"9\": 1811, \"10\": 1895, \"11\": 1576, \"12\": 877, \"13\": 2192, \"14\": 8355, \"15\": 3224, \"16\": 7216, \"17\": 5920, \"18\": 13295, \"19\": 4441, \"20\": 6503, \"21\": 1964, \"22\": 1687, \"23\": 344, \"24\": 1714, \"25\": 542, \"26\": 1970, \"27\": 854, \"28\": 2597, \"29\": 1655, \"30\": 4405, \"31\": 3461, \"32\": 1782, \"33\": 4210, \"34\": 2773, \"35\": 8953, \"36\": 4212, \"37\": 6592, \"38\": 3515, \"39\": 7819, \"40\": 5145, \"41\": 1403, \"42\": 3786, \"43\": 4316, \"44\": 4991, \"45\": 2713, \"46\": 5237, \"47\": 4138, \"48\": 6153, \"49\": 2378, \"50\": 2651, \"51\": 1868, \"52\": 3320, \"53\": 3058, \"54\": 1793, \"55\": 1579, \"56\": 19488, \"57\": 9886, \"58\": 6363, \"59\": 8714, \"60\": 4626, \"61\": 3884, \"62\": 7925},\"pyrimidine deoxyribonucleotides de novo biosynthesis II\":{\"0\": 3065, \"1\": 4712, \"2\": 4617, \"3\": 6313, \"4\": 3068, \"5\": 1914, \"6\": 5050, \"7\": 847, \"8\": 3099, \"9\": 3642, \"10\": 3840, \"11\": 3274, \"12\": 1738, \"13\": 4378, \"14\": 11372, \"15\": 5208, \"16\": 9378, \"17\": 9776, \"18\": 14922, \"19\": 7014, \"20\": 10031, \"21\": 2883, \"22\": 2484, \"23\": 623, \"24\": 2560, \"25\": 845, \"26\": 2775, \"27\": 1390, \"28\": 4522, \"29\": 2439, \"30\": 6574, \"31\": 5154, \"32\": 3469, \"33\": 4815, \"34\": 5344, \"35\": 12143, \"36\": 6896, \"37\": 7178, \"38\": 6344, \"39\": 11152, \"40\": 7546, \"41\": 2884, \"42\": 4921, \"43\": 6046, \"44\": 5638, \"45\": 3841, \"46\": 7525, \"47\": 4990, \"48\": 7166, \"49\": 4076, \"50\": 4377, \"51\": 3850, \"52\": 5202, \"53\": 6037, \"54\": 3366, \"55\": 3035, \"56\": 20680, \"57\": 15866, \"58\": 11037, \"59\": 14332, \"60\": 8474, \"61\": 7571, \"62\": 12275},\"superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis\":{\"0\": 2819, \"1\": 4270, \"2\": 4100, \"3\": 5541, \"4\": 2641, \"5\": 1728, \"6\": 5140, \"7\": 536, \"8\": 2013, \"9\": 2395, \"10\": 2502, \"11\": 2085, \"12\": 1161, \"13\": 2891, \"14\": 10427, \"15\": 4184, \"16\": 9088, \"17\": 8013, \"18\": 16232, \"19\": 5777, \"20\": 8389, \"21\": 2609, \"22\": 2134, \"23\": 463, \"24\": 2287, \"25\": 730, \"26\": 2583, \"27\": 1113, \"28\": 3304, \"29\": 2070, \"30\": 5335, \"31\": 4375, \"32\": 2335, \"33\": 4785, \"34\": 3612, \"35\": 11019, \"36\": 5385, \"37\": 7684, \"38\": 4518, \"39\": 9605, \"40\": 6368, \"41\": 1846, \"42\": 4861, \"43\": 5570, \"44\": 6252, \"45\": 3579, \"46\": 6673, \"47\": 5241, \"48\": 7897, \"49\": 3053, \"50\": 3358, \"51\": 2459, \"52\": 4245, \"53\": 4007, \"54\": 2321, \"55\": 2068, \"56\": 23949, \"57\": 12622, \"58\": 8298, \"59\": 11046, \"60\": 6056, \"61\": 5098, \"62\": 10092},\"adenosine deoxyribonucleotides de novo biosynthesis II\":{\"0\": 8236, \"1\": 16548, \"2\": 16869, \"3\": 22060, \"4\": 10844, \"5\": 5872, \"6\": 11669, \"7\": 3302, \"8\": 14258, \"9\": 35118, \"10\": 27054, \"11\": 28506, \"12\": 15768, \"13\": 31225, \"14\": 24427, \"15\": 13773, \"16\": 15123, \"17\": 13671, \"18\": 24638, \"19\": 13289, \"20\": 25611, \"21\": 7621, \"22\": 7175, \"23\": 7712, \"24\": 11176, \"25\": 6520, \"26\": 9933, \"27\": 5397, \"28\": 9476, \"29\": 5472, \"30\": 14513, \"31\": 13157, \"32\": 5701, \"33\": 9533, \"34\": 11125, \"35\": 19444, \"36\": 11944, \"37\": 12271, \"38\": 11749, \"39\": 19241, \"40\": 13600, \"41\": 13130, \"42\": 12400, \"43\": 11053, \"44\": 9499, \"45\": 12658, \"46\": 18725, \"47\": 10140, \"48\": 16115, \"49\": 8939, \"50\": 11225, \"51\": 11108, \"52\": 16507, \"53\": 11907, \"54\": 8163, \"55\": 8841, \"56\": 34496, \"57\": 25875, \"58\": 26293, \"59\": 23727, \"60\": 13413, \"61\": 17038, \"62\": 18945},\"guanosine deoxyribonucleotides de novo biosynthesis II\":{\"0\": 8236, \"1\": 16548, \"2\": 16869, \"3\": 22060, \"4\": 10844, \"5\": 5872, \"6\": 11669, \"7\": 3302, \"8\": 14258, \"9\": 35118, \"10\": 27054, \"11\": 28506, \"12\": 15768, \"13\": 31225, \"14\": 24427, \"15\": 13773, \"16\": 15123, \"17\": 13671, \"18\": 24638, \"19\": 13289, \"20\": 25611, \"21\": 7621, \"22\": 7175, \"23\": 7712, \"24\": 11176, \"25\": 6520, \"26\": 9933, \"27\": 5397, \"28\": 9476, \"29\": 5472, \"30\": 14513, \"31\": 13157, \"32\": 5701, \"33\": 9533, \"34\": 11125, \"35\": 19444, \"36\": 11944, \"37\": 12271, \"38\": 11749, \"39\": 19241, \"40\": 13600, \"41\": 13130, \"42\": 12400, \"43\": 11053, \"44\": 9499, \"45\": 12658, \"46\": 18725, \"47\": 10140, \"48\": 16115, \"49\": 8939, \"50\": 11225, \"51\": 11108, \"52\": 16507, \"53\": 11907, \"54\": 8163, \"55\": 8841, \"56\": 34496, \"57\": 25875, \"58\": 26293, \"59\": 23727, \"60\": 13413, \"61\": 17038, \"62\": 18945},\"superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E. coli)\":{\"0\": 3096, \"1\": 4739, \"2\": 4652, \"3\": 6369, \"4\": 3095, \"5\": 1916, \"6\": 5068, \"7\": 824, \"8\": 3048, \"9\": 3636, \"10\": 3812, \"11\": 3254, \"12\": 1733, \"13\": 4354, \"14\": 11279, \"15\": 5103, \"16\": 9145, \"17\": 9067, \"18\": 14906, \"19\": 6750, \"20\": 9872, \"21\": 2818, \"22\": 2517, \"23\": 622, \"24\": 2546, \"25\": 846, \"26\": 2799, \"27\": 1397, \"28\": 4383, \"29\": 2412, \"30\": 6554, \"31\": 5082, \"32\": 3262, \"33\": 4890, \"34\": 5114, \"35\": 11910, \"36\": 6624, \"37\": 7321, \"38\": 6096, \"39\": 11030, \"40\": 7455, \"41\": 2838, \"42\": 5019, \"43\": 5951, \"44\": 5728, \"45\": 3865, \"46\": 7629, \"47\": 5062, \"48\": 7293, \"49\": 3948, \"50\": 4307, \"51\": 3722, \"52\": 5182, \"53\": 5739, \"54\": 3261, \"55\": 2947, \"56\": 20747, \"57\": 15209, \"58\": 10723, \"59\": 13746, \"60\": 7976, \"61\": 7263, \"62\": 11745})\"2\\'-Deoxyribonucleotide Biosynthesis\")\"Nucleoside and Nucleotide Biosynthesis\",((\"enterobacterial common antigen biosynthesis\":{\"0\": 167, \"1\": 550, \"2\": 1040, \"3\": 1419, \"4\": 821, \"5\": 224, \"6\": 1066, \"7\": 297, \"8\": 1173, \"9\": 1365, \"10\": 1408, \"11\": 1173, \"12\": 645, \"13\": 1647, \"14\": 3673, \"15\": 1632, \"16\": 822, \"17\": 507, \"18\": 781, \"19\": 1583, \"20\": 2036, \"21\": 297, \"22\": 768, \"23\": 117, \"24\": 404, \"25\": 371, \"26\": 424, \"27\": 70, \"28\": 2009, \"29\": 1345, \"30\": 3275, \"31\": 2797, \"32\": 1437, \"33\": 3445, \"34\": 2154, \"35\": 939, \"36\": 1583, \"37\": 3177, \"38\": 665, \"39\": 874, \"40\": 669, \"41\": 322, \"42\": 535, \"43\": 1313, \"44\": 753, \"45\": 398, \"46\": 1041, \"47\": 1290, \"48\": 675, \"49\": 1849, \"50\": 1936, \"51\": 1347, \"52\": 2568, \"53\": 2330, \"54\": 1329, \"55\": 1172, \"56\": 382, \"57\": 1993, \"58\": 1337, \"59\": 3096, \"60\": 1848, \"61\": 2170, \"62\": 1577})\"Glycan Biosynthesis\",(\"superpathway of (Kdo)2-lipid A biosynthesis\":{\"0\": 513, \"1\": 1192, \"2\": 1487, \"3\": 2005, \"4\": 999, \"5\": 487, \"6\": 1938, \"7\": 201, \"8\": 768, \"9\": 869, \"10\": 934, \"11\": 771, \"12\": 421, \"13\": 1086, \"14\": 4634, \"15\": 1681, \"16\": 2345, \"17\": 1523, \"18\": 2860, \"19\": 2206, \"20\": 3029, \"21\": 691, \"22\": 876, \"23\": 147, \"24\": 708, \"25\": 288, \"26\": 804, \"27\": 200, \"28\": 1468, \"29\": 995, \"30\": 2606, \"31\": 2068, \"32\": 996, \"33\": 2984, \"34\": 1508, \"35\": 2747, \"36\": 2112, \"37\": 4327, \"38\": 1318, \"39\": 2426, \"40\": 1706, \"41\": 520, \"42\": 1348, \"43\": 2174, \"44\": 1982, \"45\": 958, \"46\": 2097, \"47\": 2187, \"48\": 1969, \"49\": 1347, \"50\": 1494, \"51\": 957, \"52\": 1837, \"53\": 1655, \"54\": 964, \"55\": 834, \"56\": 1629, \"57\": 4024, \"58\": 2460, \"59\": 4350, \"60\": 2283, \"61\": 1951, \"62\": 3270},\"lipid IVA biosynthesis\":{\"0\": 1288, \"1\": 1973, \"2\": 1889, \"3\": 2518, \"4\": 1177, \"5\": 800, \"6\": 2613, \"7\": 235, \"8\": 887, \"9\": 847, \"10\": 1077, \"11\": 894, \"12\": 414, \"13\": 1239, \"14\": 5535, \"15\": 2004, \"16\": 5319, \"17\": 3983, \"18\": 10914, \"19\": 2913, \"20\": 4104, \"21\": 1166, \"22\": 1010, \"23\": 185, \"24\": 978, \"25\": 295, \"26\": 1139, \"27\": 453, \"28\": 1641, \"29\": 1024, \"30\": 2779, \"31\": 2168, \"32\": 1138, \"33\": 3058, \"34\": 1723, \"35\": 6489, \"36\": 2760, \"37\": 4985, \"38\": 2228, \"39\": 5291, \"40\": 3387, \"41\": 805, \"42\": 2270, \"43\": 2851, \"44\": 3582, \"45\": 1598, \"46\": 3009, \"47\": 2753, \"48\": 4088, \"49\": 1504, \"50\": 1653, \"51\": 1113, \"52\": 1796, \"53\": 1905, \"54\": 1098, \"55\": 954, \"56\": 16666, \"57\": 6684, \"58\": 3846, \"59\": 5843, \"60\": 3013, \"61\": 2370, \"62\": 5484},\"Kdo transfer to lipid IVA III (Chlamydia)\":{\"0\": 1248, \"1\": 1808, \"2\": 1724, \"3\": 2321, \"4\": 1094, \"5\": 749, \"6\": 2542, \"7\": 191, \"8\": 726, \"9\": 842, \"10\": 886, \"11\": 728, \"12\": 411, \"13\": 1029, \"14\": 5111, \"15\": 1759, \"16\": 4904, \"17\": 3619, \"18\": 9988, \"19\": 2577, \"20\": 3636, \"21\": 1149, \"22\": 918, \"23\": 167, \"24\": 943, \"25\": 284, \"26\": 1103, \"27\": 440, \"28\": 1389, \"29\": 954, \"30\": 2484, \"31\": 1977, \"32\": 940, \"33\": 2862, \"34\": 1424, \"35\": 5762, \"36\": 2402, \"37\": 4742, \"38\": 1873, \"39\": 4706, \"40\": 3026, \"41\": 662, \"42\": 2228, \"43\": 2648, \"44\": 3498, \"45\": 1529, \"46\": 2910, \"47\": 2674, \"48\": 4036, \"49\": 1282, \"50\": 1419, \"51\": 906, \"52\": 1787, \"53\": 1566, \"54\": 913, \"55\": 788, \"56\": 15490, \"57\": 5766, \"58\": 3378, \"59\": 4982, \"60\": 2536, \"61\": 1969, \"62\": 4788},\"polymyxin resistance\":{\"0\": 121, \"1\": 402, \"2\": 778, \"3\": 1055, \"4\": 608, \"5\": 163, \"6\": 814, \"7\": 218, \"8\": 847, \"9\": 968, \"10\": 1005, \"11\": 818, \"12\": 463, \"13\": 1164, \"14\": 2862, \"15\": 1237, \"16\": 608, \"17\": 371, \"18\": 572, \"19\": 1187, \"20\": 1527, \"21\": 223, \"22\": 561, \"23\": 87, \"24\": 303, \"25\": 293, \"26\": 318, \"27\": 51, \"28\": 1555, \"29\": 1071, \"30\": 2658, \"31\": 2236, \"32\": 1083, \"33\": 2992, \"34\": 1637, \"35\": 680, \"36\": 1193, \"37\": 2594, \"38\": 479, \"39\": 619, \"40\": 482, \"41\": 233, \"42\": 375, \"43\": 908, \"44\": 554, \"45\": 272, \"46\": 715, \"47\": 954, \"48\": 505, \"49\": 1430, \"50\": 1505, \"51\": 1009, \"52\": 1913, \"53\": 1764, \"54\": 1010, \"55\": 884, \"56\": 277, \"57\": 1473, \"58\": 983, \"59\": 2312, \"60\": 1372, \"61\": 1609, \"62\": 1169})\"Lipopolysaccharide Biosynthesis\",(\"peptidoglycan biosynthesis I (meso-diaminopimelate containing)\":{\"0\": 7795, \"1\": 14751, \"2\": 14135, \"3\": 18855, \"4\": 9351, \"5\": 5486, \"6\": 11198, \"7\": 7420, \"8\": 20526, \"9\": 37499, \"10\": 32628, \"11\": 35777, \"12\": 17033, \"13\": 35509, \"14\": 21658, \"15\": 14781, \"16\": 17214, \"17\": 31104, \"18\": 24975, \"19\": 17860, \"20\": 25679, \"21\": 9125, \"22\": 6059, \"23\": 6544, \"24\": 10416, \"25\": 5146, \"26\": 8783, \"27\": 4859, \"28\": 11261, \"29\": 5100, \"30\": 12057, \"31\": 12314, \"32\": 11068, \"33\": 6608, \"34\": 18209, \"35\": 21278, \"36\": 15680, \"37\": 10597, \"38\": 16977, \"39\": 20494, \"40\": 14609, \"41\": 19533, \"42\": 12274, \"43\": 13916, \"44\": 10614, \"45\": 12672, \"46\": 18714, \"47\": 10342, \"48\": 16113, \"49\": 10956, \"50\": 11185, \"51\": 20934, \"52\": 15275, \"53\": 22398, \"54\": 11347, \"55\": 13447, \"56\": 35882, \"57\": 34380, \"58\": 34999, \"59\": 30574, \"60\": 24344, \"61\": 29750, \"62\": 25149},\"peptidoglycan biosynthesis III (mycobacteria)\":{\"0\": 7795, \"1\": 14751, \"2\": 14135, \"3\": 18855, \"4\": 9351, \"5\": 5486, \"6\": 11198, \"7\": 7420, \"8\": 20526, \"9\": 37499, \"10\": 32628, \"11\": 35777, \"12\": 17033, \"13\": 35509, \"14\": 21658, \"15\": 14781, \"16\": 17214, \"17\": 31104, \"18\": 24975, \"19\": 17860, \"20\": 25679, \"21\": 9125, \"22\": 6059, \"23\": 6544, \"24\": 10416, \"25\": 5146, \"26\": 8783, \"27\": 4859, \"28\": 11261, \"29\": 5100, \"30\": 12057, \"31\": 12314, \"32\": 11068, \"33\": 6608, \"34\": 18209, \"35\": 21278, \"36\": 15680, \"37\": 10597, \"38\": 16977, \"39\": 20494, \"40\": 14609, \"41\": 19533, \"42\": 12274, \"43\": 13916, \"44\": 10614, \"45\": 12672, \"46\": 18714, \"47\": 10342, \"48\": 16113, \"49\": 10956, \"50\": 11185, \"51\": 20934, \"52\": 15275, \"53\": 22398, \"54\": 11347, \"55\": 13447, \"56\": 35882, \"57\": 34380, \"58\": 34999, \"59\": 30574, \"60\": 24344, \"61\": 29750, \"62\": 25149},\"UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing)\":{\"0\": 7964, \"1\": 14929, \"2\": 14332, \"3\": 19155, \"4\": 9513, \"5\": 5579, \"6\": 11376, \"7\": 7621, \"8\": 21187, \"9\": 38405, \"10\": 33644, \"11\": 36850, \"12\": 17564, \"13\": 36531, \"14\": 22150, \"15\": 15173, \"16\": 17672, \"17\": 32101, \"18\": 25575, \"19\": 18355, \"20\": 26318, \"21\": 9398, \"22\": 6185, \"23\": 6665, \"24\": 10655, \"25\": 5242, \"26\": 8914, \"27\": 4988, \"28\": 11434, \"29\": 5131, \"30\": 12047, \"31\": 12508, \"32\": 11372, \"33\": 6703, \"34\": 18599, \"35\": 21926, \"36\": 15961, \"37\": 10813, \"38\": 17549, \"39\": 21137, \"40\": 14972, \"41\": 19854, \"42\": 12432, \"43\": 14108, \"44\": 10779, \"45\": 12785, \"46\": 19147, \"47\": 10445, \"48\": 16273, \"49\": 11192, \"50\": 11347, \"51\": 21252, \"52\": 15640, \"53\": 22987, \"54\": 11522, \"55\": 13762, \"56\": 36750, \"57\": 35321, \"58\": 35600, \"59\": 31466, \"60\": 25119, \"61\": 30383, \"62\": 25805},\"UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing)\":{\"0\": 7888, \"1\": 14853, \"2\": 14306, \"3\": 19036, \"4\": 9450, \"5\": 5577, \"6\": 11334, \"7\": 7691, \"8\": 20898, \"9\": 38790, \"10\": 33258, \"11\": 36378, \"12\": 17524, \"13\": 36232, \"14\": 22025, \"15\": 15078, \"16\": 17533, \"17\": 31575, \"18\": 25367, \"19\": 18275, \"20\": 26092, \"21\": 9234, \"22\": 6153, \"23\": 6595, \"24\": 10548, \"25\": 5194, \"26\": 8848, \"27\": 4910, \"28\": 11563, \"29\": 5241, \"30\": 12399, \"31\": 12949, \"32\": 11250, \"33\": 6798, \"34\": 18664, \"35\": 21719, \"36\": 16047, \"37\": 10785, \"38\": 17289, \"39\": 20880, \"40\": 14922, \"41\": 19981, \"42\": 12400, \"43\": 14147, \"44\": 10736, \"45\": 12773, \"46\": 18988, \"47\": 10463, \"48\": 16279, \"49\": 11354, \"50\": 11654, \"51\": 21431, \"52\": 15986, \"53\": 22985, \"54\": 11710, \"55\": 14142, \"56\": 36504, \"57\": 35148, \"58\": 35862, \"59\": 31278, \"60\": 24897, \"61\": 30421, \"62\": 25717},\"peptidoglycan biosynthesis IV (Enterococcus faecium)\":{\"0\": 2314, \"1\": 2629, \"2\": 5478, \"3\": 3963, \"4\": 2075, \"5\": 2992, \"6\": 4021, \"7\": 6257, \"8\": 8474, \"9\": 31401, \"10\": 16375, \"11\": 15314, \"12\": 12491, \"13\": 20426, \"14\": 8872, \"15\": 7736, \"16\": 8734, \"17\": 8787, \"18\": 11048, \"19\": 11038, \"20\": 10510, \"21\": 216, \"22\": 2287, \"23\": 471, \"24\": 3114, \"25\": 547, \"26\": 854, \"27\": 202, \"28\": 8784, \"29\": 4180, \"30\": 10538, \"31\": 11331, \"32\": 3726, \"33\": 4389, \"34\": 13274, \"35\": 11392, \"36\": 11469, \"37\": 3587, \"38\": 7158, \"39\": 9783, \"40\": 9456, \"41\": 15670, \"42\": 4249, \"43\": 8089, \"44\": 3743, \"45\": 4349, \"46\": 7030, \"47\": 4262, \"48\": 6556, \"49\": 9177, \"50\": 9891, \"51\": 16606, \"52\": 13494, \"53\": 15847, \"54\": 9638, \"55\": 12373, \"56\": 17992, \"57\": 21251, \"58\": 26858, \"59\": 18168, \"60\": 13994, \"61\": 21208, \"62\": 15998},\"peptidoglycan maturation (meso-diaminopimelate containing)\":{\"0\": 5898, \"1\": 10534, \"2\": 9319, \"3\": 12853, \"4\": 6904, \"5\": 4935, \"6\": 11112, \"7\": 10793, \"8\": 31290, \"9\": 51093, \"10\": 48314, \"11\": 53827, \"12\": 23614, \"13\": 52016, \"14\": 25513, \"15\": 18275, \"16\": 19033, \"17\": 42691, \"18\": 22950, \"19\": 23402, \"20\": 28540, \"21\": 10719, \"22\": 4694, \"23\": 5242, \"24\": 9993, \"25\": 4129, \"26\": 5717, \"27\": 3912, \"28\": 17041, \"29\": 7564, \"30\": 17850, \"31\": 16885, \"32\": 17557, \"33\": 9771, \"34\": 27904, \"35\": 24119, \"36\": 21624, \"37\": 12394, \"38\": 24028, \"39\": 24711, \"40\": 17834, \"41\": 28845, \"42\": 7558, \"43\": 17928, \"44\": 10140, \"45\": 10816, \"46\": 16474, \"47\": 10222, \"48\": 10818, \"49\": 15906, \"50\": 15134, \"51\": 32156, \"52\": 20281, \"53\": 34238, \"54\": 16796, \"55\": 18730, \"56\": 30455, \"57\": 43841, \"58\": 45128, \"59\": 41625, \"60\": 35118, \"61\": 44454, \"62\": 31997})\"Cell Wall Biosynthesis\")\"Cell Structure Biosynthesis\",((\"enterobactin biosynthesis\":{\"0\": 371, \"1\": 973, \"2\": 1349, \"3\": 1824, \"4\": 934, \"5\": 397, \"6\": 1683, \"7\": 196, \"8\": 754, \"9\": 875, \"10\": 917, \"11\": 757, \"12\": 423, \"13\": 1069, \"14\": 4312, \"15\": 1591, \"16\": 1747, \"17\": 1102, \"18\": 1944, \"19\": 1986, \"20\": 2694, \"21\": 552, \"22\": 834, \"23\": 134, \"24\": 610, \"25\": 286, \"26\": 685, \"27\": 148, \"28\": 1449, \"29\": 995, \"30\": 2591, \"31\": 2061, \"32\": 980, \"33\": 2985, \"34\": 1484, \"35\": 2039, \"36\": 1919, \"37\": 4060, \"38\": 1089, \"39\": 1836, \"40\": 1322, \"41\": 447, \"42\": 1077, \"43\": 1935, \"44\": 1552, \"45\": 772, \"46\": 1779, \"47\": 1957, \"48\": 1482, \"49\": 1328, \"50\": 1476, \"51\": 938, \"52\": 1847, \"53\": 1626, \"54\": 948, \"55\": 820, \"56\": 1022, \"57\": 3326, \"58\": 2070, \"59\": 3927, \"60\": 2086, \"61\": 1861, \"62\": 2686})\"Siderophore and Metallophore Biosynthesis\",(\"methylerythritol phosphate pathway I\":{\"0\": 8326, \"1\": 16145, \"2\": 15300, \"3\": 20425, \"4\": 10050, \"5\": 5824, \"6\": 12003, \"7\": 7333, \"8\": 20653, \"9\": 34815, \"10\": 32080, \"11\": 35173, \"12\": 16182, \"13\": 34453, \"14\": 22915, \"15\": 15859, \"16\": 17835, \"17\": 33786, \"18\": 25315, \"19\": 18729, \"20\": 27893, \"21\": 10183, \"22\": 6343, \"23\": 7354, \"24\": 11616, \"25\": 5787, \"26\": 9613, \"27\": 5248, \"28\": 11170, \"29\": 5099, \"30\": 11543, \"31\": 11552, \"32\": 11510, \"33\": 6457, \"34\": 18249, \"35\": 21108, \"36\": 15897, \"37\": 10581, \"38\": 17027, \"39\": 20052, \"40\": 14286, \"41\": 19281, \"42\": 12971, \"43\": 14278, \"44\": 11073, \"45\": 13508, \"46\": 19292, \"47\": 10829, \"48\": 17306, \"49\": 10750, \"50\": 10766, \"51\": 20776, \"52\": 14200, \"53\": 22421, \"54\": 11089, \"55\": 12626, \"56\": 36244, \"57\": 35161, \"58\": 36273, \"59\": 30757, \"60\": 25025, \"61\": 30341, \"62\": 25616},\"taxadiene biosynthesis (engineered)\":{\"0\": 562, \"1\": 1836, \"2\": 3312, \"3\": 4485, \"4\": 2535, \"5\": 733, \"6\": 3196, \"7\": 954, \"8\": 3637, \"9\": 4446, \"10\": 4504, \"11\": 3908, \"12\": 2075, \"13\": 5271, \"14\": 9340, \"15\": 4615, \"16\": 2595, \"17\": 1706, \"18\": 2583, \"19\": 4625, \"20\": 6117, \"21\": 986, \"22\": 2261, \"23\": 400, \"24\": 1330, \"25\": 1192, \"26\": 1399, \"27\": 238, \"28\": 5083, \"29\": 2898, \"30\": 7023, \"31\": 6426, \"32\": 3942, \"33\": 5061, \"34\": 6093, \"35\": 3035, \"36\": 4511, \"37\": 6324, \"38\": 2151, \"39\": 2845, \"40\": 2140, \"41\": 1080, \"42\": 1850, \"43\": 4046, \"44\": 2355, \"45\": 1412, \"46\": 3470, \"47\": 3765, \"48\": 2263, \"49\": 4710, \"50\": 5097, \"51\": 4318, \"52\": 6466, \"53\": 6822, \"54\": 3804, \"55\": 3592, \"56\": 1300, \"57\": 6210, \"58\": 4299, \"59\": 8990, \"60\": 5515, \"61\": 6516, \"62\": 4848},\"methylerythritol phosphate pathway II\":{\"0\": 8326, \"1\": 16145, \"2\": 15300, \"3\": 20425, \"4\": 10050, \"5\": 5824, \"6\": 12003, \"7\": 7333, \"8\": 20653, \"9\": 34815, \"10\": 32080, \"11\": 35173, \"12\": 16182, \"13\": 34453, \"14\": 22915, \"15\": 15859, \"16\": 17835, \"17\": 33786, \"18\": 25315, \"19\": 18729, \"20\": 27893, \"21\": 10183, \"22\": 6343, \"23\": 7354, \"24\": 11616, \"25\": 5787, \"26\": 9613, \"27\": 5248, \"28\": 11170, \"29\": 5099, \"30\": 11543, \"31\": 11552, \"32\": 11510, \"33\": 6457, \"34\": 18249, \"35\": 21108, \"36\": 15897, \"37\": 10581, \"38\": 17027, \"39\": 20052, \"40\": 14286, \"41\": 19281, \"42\": 12971, \"43\": 14278, \"44\": 11073, \"45\": 13508, \"46\": 19292, \"47\": 10829, \"48\": 17306, \"49\": 10750, \"50\": 10766, \"51\": 20776, \"52\": 14200, \"53\": 22421, \"54\": 11089, \"55\": 12626, \"56\": 36244, \"57\": 35161, \"58\": 36273, \"59\": 30757, \"60\": 25025, \"61\": 30341, \"62\": 25616})\"Terpenoid Biosynthesis\",(\"preQ0 biosynthesis\":{\"0\": 1553, \"1\": 2300, \"2\": 2186, \"3\": 2943, \"4\": 1388, \"5\": 941, \"6\": 3109, \"7\": 247, \"8\": 907, \"9\": 1035, \"10\": 1099, \"11\": 885, \"12\": 517, \"13\": 1248, \"14\": 6099, \"15\": 2209, \"16\": 5691, \"17\": 4605, \"18\": 10676, \"19\": 3189, \"20\": 4532, \"21\": 1461, \"22\": 1134, \"23\": 221, \"24\": 1215, \"25\": 372, \"26\": 1404, \"27\": 564, \"28\": 1628, \"29\": 1145, \"30\": 2719, \"31\": 2324, \"32\": 1156, \"33\": 3089, \"34\": 1715, \"35\": 6137, \"36\": 2879, \"37\": 5133, \"38\": 2137, \"39\": 4918, \"40\": 3280, \"41\": 836, \"42\": 2765, \"43\": 3240, \"44\": 4101, \"45\": 1947, \"46\": 3599, \"47\": 3229, \"48\": 4915, \"49\": 1541, \"50\": 1649, \"51\": 1094, \"52\": 2089, \"53\": 1884, \"54\": 1087, \"55\": 943, \"56\": 16614, \"57\": 6778, \"58\": 4250, \"59\": 5668, \"60\": 3123, \"61\": 2474, \"62\": 5602})\"unknow\")\"Secondary Metabolite Biosynthesis\",((\"fatty acid elongation -- saturated\":{\"0\": 3590, \"1\": 5639, \"2\": 5385, \"3\": 7223, \"4\": 3436, \"5\": 2264, \"6\": 6594, \"7\": 724, \"8\": 2695, \"9\": 3183, \"10\": 3334, \"11\": 2783, \"12\": 1547, \"13\": 3849, \"14\": 13233, \"15\": 5545, \"16\": 11783, \"17\": 11348, \"18\": 20913, \"19\": 7765, \"20\": 11016, \"21\": 3511, \"22\": 2724, \"23\": 630, \"24\": 3098, \"25\": 1006, \"26\": 3397, \"27\": 1441, \"28\": 4397, \"29\": 2650, \"30\": 6746, \"31\": 5738, \"32\": 3214, \"33\": 5857, \"34\": 4900, \"35\": 14365, \"36\": 7153, \"37\": 9241, \"38\": 6058, \"39\": 12307, \"40\": 8140, \"41\": 2455, \"42\": 6200, \"43\": 7355, \"44\": 7768, \"45\": 4761, \"46\": 8440, \"47\": 6646, \"48\": 10060, \"49\": 4081, \"50\": 4428, \"51\": 3327, \"52\": 5532, \"53\": 5482, \"54\": 3114, \"55\": 2793, \"56\": 30815, \"57\": 16903, \"58\": 11003, \"59\": 14827, \"60\": 8300, \"61\": 6885, \"62\": 13490},\"superpathway of fatty acid biosynthesis initiation (E. coli)\":{\"0\": 245, \"1\": 825, \"2\": 1600, \"3\": 2174, \"4\": 1258, \"5\": 332, \"6\": 1611, \"7\": 432, \"8\": 1707, \"9\": 2010, \"10\": 2060, \"11\": 1753, \"12\": 939, \"13\": 2432, \"14\": 5314, \"15\": 2355, \"16\": 1196, \"17\": 734, \"18\": 1158, \"19\": 2280, \"20\": 2965, \"21\": 437, \"22\": 1219, \"23\": 173, \"24\": 597, \"25\": 570, \"26\": 643, \"27\": 102, \"28\": 2987, \"29\": 1903, \"30\": 4882, \"31\": 4012, \"32\": 2109, \"33\": 4553, \"34\": 3222, \"35\": 1396, \"36\": 2298, \"37\": 4576, \"38\": 975, \"39\": 1305, \"40\": 987, \"41\": 466, \"42\": 849, \"43\": 2058, \"44\": 1144, \"45\": 630, \"46\": 1631, \"47\": 2032, \"48\": 1031, \"49\": 2689, \"50\": 2990, \"51\": 2074, \"52\": 3704, \"53\": 3516, \"54\": 2018, \"55\": 1798, \"56\": 556, \"57\": 2917, \"58\": 1935, \"59\": 4609, \"60\": 2668, \"61\": 3142, \"62\": 2299},\"cis-vaccenate biosynthesis\":{\"0\": 8603, \"1\": 16922, \"2\": 16079, \"3\": 21452, \"4\": 10582, \"5\": 6094, \"6\": 12486, \"7\": 8334, \"8\": 23717, \"9\": 38557, \"10\": 36440, \"11\": 40642, \"12\": 17748, \"13\": 39069, \"14\": 24374, \"15\": 16738, \"16\": 19219, \"17\": 34661, \"18\": 28379, \"19\": 20062, \"20\": 29253, \"21\": 10035, \"22\": 6859, \"23\": 7374, \"24\": 11552, \"25\": 5787, \"26\": 9893, \"27\": 5356, \"28\": 12961, \"29\": 5586, \"30\": 13347, \"31\": 12968, \"32\": 13378, \"33\": 7461, \"34\": 21340, \"35\": 24209, \"36\": 17717, \"37\": 11794, \"38\": 19784, \"39\": 23008, \"40\": 16165, \"41\": 21725, \"42\": 13667, \"43\": 15656, \"44\": 11737, \"45\": 14330, \"46\": 20553, \"47\": 11620, \"48\": 17919, \"49\": 12250, \"50\": 12307, \"51\": 24589, \"52\": 15739, \"53\": 26411, \"54\": 12892, \"55\": 14670, \"56\": 40069, \"57\": 39533, \"58\": 38421, \"59\": 35622, \"60\": 28222, \"61\": 34153, \"62\": 28701},\"stearate biosynthesis II (bacteria and plants)\":{\"0\": 291, \"1\": 938, \"2\": 1786, \"3\": 2488, \"4\": 1446, \"5\": 387, \"6\": 1821, \"7\": 499, \"8\": 1875, \"9\": 2131, \"10\": 2228, \"11\": 1772, \"12\": 1039, \"13\": 2525, \"14\": 6050, \"15\": 2713, \"16\": 1405, \"17\": 877, \"18\": 1359, \"19\": 2639, \"20\": 3428, \"21\": 521, \"22\": 1400, \"23\": 205, \"24\": 705, \"25\": 659, \"26\": 748, \"27\": 122, \"28\": 3057, \"29\": 1982, \"30\": 4747, \"31\": 4260, \"32\": 2257, \"33\": 4604, \"34\": 3415, \"35\": 1655, \"36\": 2600, \"37\": 5076, \"38\": 1164, \"39\": 1559, \"40\": 1176, \"41\": 558, \"42\": 989, \"43\": 2284, \"44\": 1315, \"45\": 727, \"46\": 1930, \"47\": 2191, \"48\": 1172, \"49\": 2880, \"50\": 2874, \"51\": 2172, \"52\": 3740, \"53\": 3709, \"54\": 2075, \"55\": 1854, \"56\": 662, \"57\": 3397, \"58\": 2279, \"59\": 5284, \"60\": 3108, \"61\": 3652, \"62\": 2669},\"palmitoleate biosynthesis I (from (5Z)-dodec-5-enoate)\":{\"0\": 292, \"1\": 984, \"2\": 1900, \"3\": 2579, \"4\": 1490, \"5\": 395, \"6\": 1901, \"7\": 517, \"8\": 2035, \"9\": 2390, \"10\": 2454, \"11\": 2093, \"12\": 1117, \"13\": 2893, \"14\": 6249, \"15\": 2799, \"16\": 1426, \"17\": 879, \"18\": 1383, \"19\": 2715, \"20\": 3528, \"21\": 522, \"22\": 1439, \"23\": 207, \"24\": 712, \"25\": 677, \"26\": 765, \"27\": 122, \"28\": 3542, \"29\": 2209, \"30\": 5655, \"31\": 4721, \"32\": 2519, \"33\": 5239, \"34\": 3845, \"35\": 1667, \"36\": 2730, \"37\": 5253, \"38\": 1167, \"39\": 1559, \"40\": 1177, \"41\": 559, \"42\": 1009, \"43\": 2434, \"44\": 1353, \"45\": 752, \"46\": 1939, \"47\": 2383, \"48\": 1227, \"49\": 3194, \"50\": 3541, \"51\": 2480, \"52\": 4326, \"53\": 4204, \"54\": 2403, \"55\": 2150, \"56\": 666, \"57\": 3484, \"58\": 2311, \"59\": 5497, \"60\": 3189, \"61\": 3751, \"62\": 2744},\"gondoate biosynthesis (anaerobic)\":{\"0\": 8952, \"1\": 17714, \"2\": 16890, \"3\": 22470, \"4\": 11078, \"5\": 6388, \"6\": 13035, \"7\": 8965, \"8\": 25215, \"9\": 40217, \"10\": 38373, \"11\": 42906, \"12\": 18483, \"13\": 40997, \"14\": 25660, \"15\": 17719, \"16\": 20217, \"17\": 36303, \"18\": 29925, \"19\": 21259, \"20\": 30884, \"21\": 10429, \"22\": 7223, \"23\": 7685, \"24\": 12048, \"25\": 6039, \"26\": 10303, \"27\": 5561, \"28\": 13905, \"29\": 5900, \"30\": 14158, \"31\": 13869, \"32\": 14413, \"33\": 7970, \"34\": 22984, \"35\": 25686, \"36\": 18814, \"37\": 12384, \"38\": 21099, \"39\": 24256, \"40\": 17013, \"41\": 22940, \"42\": 14231, \"43\": 16473, \"44\": 12213, \"45\": 14954, \"46\": 21418, \"47\": 12153, \"48\": 18653, \"49\": 13153, \"50\": 13225, \"51\": 26463, \"52\": 16627, \"53\": 28549, \"54\": 13852, \"55\": 15882, \"56\": 42098, \"57\": 42173, \"58\": 40480, \"59\": 38199, \"60\": 30203, \"61\": 36423, \"62\": 30549},\"oleate biosynthesis IV (anaerobic)\":{\"0\": 339, \"1\": 1138, \"2\": 2176, \"3\": 2953, \"4\": 1700, \"5\": 457, \"6\": 2165, \"7\": 598, \"8\": 2346, \"9\": 2762, \"10\": 2835, \"11\": 2423, \"12\": 1290, \"13\": 3337, \"14\": 7022, \"15\": 3186, \"16\": 1645, \"17\": 1022, \"18\": 1602, \"19\": 3106, \"20\": 4043, \"21\": 604, \"22\": 1627, \"23\": 240, \"24\": 823, \"25\": 775, \"26\": 881, \"27\": 142, \"28\": 3988, \"29\": 2437, \"30\": 6233, \"31\": 5251, \"32\": 2868, \"33\": 5610, \"34\": 4382, \"35\": 1926, \"36\": 3117, \"37\": 5760, \"38\": 1351, \"39\": 1801, \"40\": 1359, \"41\": 649, \"42\": 1164, \"43\": 2774, \"44\": 1550, \"45\": 870, \"46\": 2228, \"47\": 2694, \"48\": 1415, \"49\": 3602, \"50\": 3982, \"51\": 2855, \"52\": 4854, \"53\": 4807, \"54\": 2736, \"55\": 2462, \"56\": 775, \"57\": 4016, \"58\": 2672, \"59\": 6284, \"60\": 3664, \"61\": 4309, \"62\": 3159},\"(5Z)-dodec-5-enoate biosynthesis\":{\"0\": 292, \"1\": 983, \"2\": 1895, \"3\": 2572, \"4\": 1485, \"5\": 395, \"6\": 1894, \"7\": 517, \"8\": 2035, \"9\": 2388, \"10\": 2453, \"11\": 2092, \"12\": 1115, \"13\": 2890, \"14\": 6233, \"15\": 2793, \"16\": 1424, \"17\": 879, \"18\": 1383, \"19\": 2711, \"20\": 3522, \"21\": 521, \"22\": 1435, \"23\": 206, \"24\": 711, \"25\": 674, \"26\": 763, \"27\": 122, \"28\": 3549, \"29\": 2205, \"30\": 5669, \"31\": 4733, \"32\": 2523, \"33\": 5320, \"34\": 3851, \"35\": 1667, \"36\": 2728, \"37\": 5262, \"38\": 1167, \"39\": 1559, \"40\": 1177, \"41\": 558, \"42\": 1007, \"43\": 2428, \"44\": 1350, \"45\": 751, \"46\": 1934, \"47\": 2374, \"48\": 1224, \"49\": 3200, \"50\": 3551, \"51\": 2482, \"52\": 4322, \"53\": 4212, \"54\": 2406, \"55\": 2154, \"56\": 665, \"57\": 3484, \"58\": 2309, \"59\": 5503, \"60\": 3189, \"61\": 3750, \"62\": 2743})\"Fatty Acid Biosynthesis\",(\"superpathway of phospholipid biosynthesis I (bacteria)\":{\"0\": 9061, \"1\": 17663, \"2\": 16575, \"3\": 22297, \"4\": 11017, \"5\": 6298, \"6\": 13068, \"7\": 7678, \"8\": 22007, \"9\": 37662, \"10\": 34508, \"11\": 37788, \"12\": 17568, \"13\": 37245, \"14\": 24452, \"15\": 16675, \"16\": 19076, \"17\": 36066, \"18\": 26986, \"19\": 19842, \"20\": 29329, \"21\": 10745, \"22\": 6915, \"23\": 7887, \"24\": 12274, \"25\": 6173, \"26\": 10520, \"27\": 5698, \"28\": 11872, \"29\": 5554, \"30\": 12521, \"31\": 12295, \"32\": 12178, \"33\": 7590, \"34\": 19234, \"35\": 22394, \"36\": 16993, \"37\": 11592, \"38\": 18053, \"39\": 21490, \"40\": 15336, \"41\": 20667, \"42\": 14427, \"43\": 15879, \"44\": 12231, \"45\": 15136, \"46\": 21408, \"47\": 12065, \"48\": 18934, \"49\": 11370, \"50\": 11274, \"51\": 21837, \"52\": 15210, \"53\": 23483, \"54\": 11682, \"55\": 13046, \"56\": 38710, \"57\": 37081, \"58\": 38428, \"59\": 32417, \"60\": 26499, \"61\": 32245, \"62\": 27173},\"CDP-diacylglycerol biosynthesis I\":{\"0\": 9582, \"1\": 18742, \"2\": 17581, \"3\": 23642, \"4\": 11680, \"5\": 6671, \"6\": 13840, \"7\": 8042, \"8\": 22856, \"9\": 39009, \"10\": 35740, \"11\": 39017, \"12\": 18239, \"13\": 38522, \"14\": 25769, \"15\": 17632, \"16\": 20021, \"17\": 38254, \"18\": 28018, \"19\": 20952, \"20\": 30989, \"21\": 11409, \"22\": 7301, \"23\": 8396, \"24\": 13048, \"25\": 6575, \"26\": 11170, \"27\": 6031, \"28\": 12381, \"29\": 5855, \"30\": 13020, \"31\": 12923, \"32\": 12724, \"33\": 7378, \"34\": 20031, \"35\": 23194, \"36\": 17807, \"37\": 12108, \"38\": 18708, \"39\": 22191, \"40\": 15884, \"41\": 21489, \"42\": 15279, \"43\": 16783, \"44\": 12890, \"45\": 16070, \"46\": 22594, \"47\": 12768, \"48\": 20052, \"49\": 11917, \"50\": 11775, \"51\": 22628, \"52\": 15898, \"53\": 24432, \"54\": 12160, \"55\": 13593, \"56\": 40243, \"57\": 38755, \"58\": 40490, \"59\": 33730, \"60\": 27786, \"61\": 33760, \"62\": 28423},\"CDP-diacylglycerol biosynthesis II\":{\"0\": 9582, \"1\": 18742, \"2\": 17581, \"3\": 23642, \"4\": 11680, \"5\": 6671, \"6\": 13840, \"7\": 8042, \"8\": 22856, \"9\": 39009, \"10\": 35740, \"11\": 39017, \"12\": 18239, \"13\": 38522, \"14\": 25769, \"15\": 17632, \"16\": 20021, \"17\": 38254, \"18\": 28018, \"19\": 20952, \"20\": 30989, \"21\": 11409, \"22\": 7301, \"23\": 8396, \"24\": 13048, \"25\": 6575, \"26\": 11170, \"27\": 6031, \"28\": 12381, \"29\": 5855, \"30\": 13020, \"31\": 12923, \"32\": 12724, \"33\": 7378, \"34\": 20031, \"35\": 23194, \"36\": 17807, \"37\": 12108, \"38\": 18708, \"39\": 22191, \"40\": 15884, \"41\": 21489, \"42\": 15279, \"43\": 16783, \"44\": 12890, \"45\": 16070, \"46\": 22594, \"47\": 12768, \"48\": 20052, \"49\": 11917, \"50\": 11775, \"51\": 22628, \"52\": 15898, \"53\": 24432, \"54\": 12160, \"55\": 13593, \"56\": 40243, \"57\": 38755, \"58\": 40490, \"59\": 33730, \"60\": 27786, \"61\": 33760, \"62\": 28423},\"phosphatidylglycerol biosynthesis I (plastidic)\":{\"0\": 8744, \"1\": 17010, \"2\": 15966, \"3\": 21482, \"4\": 10615, \"5\": 6073, \"6\": 12599, \"7\": 7454, \"8\": 21475, \"9\": 36815, \"10\": 33733, \"11\": 37011, \"12\": 17147, \"13\": 36440, \"14\": 23647, \"15\": 16093, \"16\": 18494, \"17\": 34741, \"18\": 26339, \"19\": 19165, \"20\": 28317, \"21\": 10344, \"22\": 6680, \"23\": 7580, \"24\": 11807, \"25\": 5931, \"26\": 10127, \"27\": 5496, \"28\": 11555, \"29\": 5370, \"30\": 12209, \"31\": 11909, \"32\": 11840, \"33\": 7255, \"34\": 18736, \"35\": 21891, \"36\": 16490, \"37\": 11272, \"38\": 17642, \"39\": 21047, \"40\": 14991, \"41\": 20154, \"42\": 13910, \"43\": 15329, \"44\": 11828, \"45\": 14571, \"46\": 20684, \"47\": 11637, \"48\": 18255, \"49\": 11033, \"50\": 10963, \"51\": 21340, \"52\": 14784, \"53\": 22889, \"54\": 11383, \"55\": 12706, \"56\": 37751, \"57\": 36043, \"58\": 37166, \"59\": 31597, \"60\": 25706, \"61\": 31309, \"62\": 26399},\"phosphatidylglycerol biosynthesis II (non-plastidic)\":{\"0\": 8744, \"1\": 17010, \"2\": 15966, \"3\": 21482, \"4\": 10615, \"5\": 6073, \"6\": 12599, \"7\": 7454, \"8\": 21475, \"9\": 36815, \"10\": 33733, \"11\": 37011, \"12\": 17147, \"13\": 36440, \"14\": 23647, \"15\": 16093, \"16\": 18494, \"17\": 34741, \"18\": 26339, \"19\": 19165, \"20\": 28317, \"21\": 10344, \"22\": 6680, \"23\": 7580, \"24\": 11807, \"25\": 5931, \"26\": 10127, \"27\": 5496, \"28\": 11555, \"29\": 5370, \"30\": 12209, \"31\": 11909, \"32\": 11840, \"33\": 7255, \"34\": 18736, \"35\": 21891, \"36\": 16490, \"37\": 11272, \"38\": 17642, \"39\": 21047, \"40\": 14991, \"41\": 20154, \"42\": 13910, \"43\": 15329, \"44\": 11828, \"45\": 14571, \"46\": 20684, \"47\": 11637, \"48\": 18255, \"49\": 11033, \"50\": 10963, \"51\": 21340, \"52\": 14784, \"53\": 22889, \"54\": 11383, \"55\": 12706, \"56\": 37751, \"57\": 36043, \"58\": 37166, \"59\": 31597, \"60\": 25706, \"61\": 31309, \"62\": 26399})\"Phospholipid Biosynthesis\")\"Fatty Acid and Lipid Biosynthesis\",((\"superpathway of polyamine biosynthesis II\":{\"0\": 401, \"1\": 407, \"2\": 947, \"3\": 684, \"4\": 374, \"5\": 484, \"6\": 748, \"7\": 446, \"8\": 1102, \"9\": 3629, \"10\": 2127, \"11\": 1057, \"12\": 1665, \"13\": 2509, \"14\": 883, \"15\": 1178, \"16\": 1278, \"17\": 717, \"18\": 1463, \"19\": 1662, \"20\": 1407, \"21\": 34, \"22\": 473, \"23\": 71, \"24\": 470, \"25\": 85, \"26\": 145, \"27\": 34, \"28\": 963, \"29\": 526, \"30\": 643, \"31\": 2201, \"32\": 176, \"33\": 1113, \"34\": 1250, \"35\": 1997, \"36\": 982, \"37\": 311, \"38\": 714, \"39\": 1006, \"40\": 956, \"41\": 652, \"42\": 805, \"43\": 1661, \"44\": 718, \"45\": 713, \"46\": 1443, \"47\": 866, \"48\": 1038, \"49\": 1395, \"50\": 1653, \"51\": 838, \"52\": 4475, \"53\": 1697, \"54\": 1043, \"55\": 1015, \"56\": 1051, \"57\": 2739, \"58\": 1903, \"59\": 2931, \"60\": 1929, \"61\": 1646, \"62\": 1883},\"superpathway of polyamine biosynthesis I\":{\"0\": 480, \"1\": 957, \"2\": 1618, \"3\": 2478, \"4\": 1519, \"5\": 507, \"6\": 1822, \"7\": 441, \"8\": 2777, \"9\": 3633, \"10\": 3645, \"11\": 3145, \"12\": 1713, \"13\": 4303, \"14\": 4652, \"15\": 2034, \"16\": 1499, \"17\": 787, \"18\": 1631, \"19\": 2251, \"20\": 2747, \"21\": 635, \"22\": 1374, \"23\": 275, \"24\": 772, \"25\": 543, \"26\": 848, \"27\": 217, \"28\": 2192, \"29\": 1812, \"30\": 3399, \"31\": 2747, \"32\": 1671, \"33\": 4000, \"34\": 2132, \"35\": 2301, \"36\": 1579, \"37\": 4210, \"38\": 1794, \"39\": 2502, \"40\": 1807, \"41\": 974, \"42\": 1302, \"43\": 2508, \"44\": 1554, \"45\": 954, \"46\": 2840, \"47\": 2303, \"48\": 1233, \"49\": 1857, \"50\": 2306, \"51\": 1400, \"52\": 5111, \"53\": 2355, \"54\": 1501, \"55\": 1351, \"56\": 1025, \"57\": 3133, \"58\": 1987, \"59\": 4564, \"60\": 2485, \"61\": 2953, \"62\": 2197})\"Superpathways\")\"Amine and Polyamine Biosynthesis\",((\"polyisoprenoid biosynthesis (E. coli)\":{\"0\": 3338, \"1\": 5259, \"2\": 5018, \"3\": 6729, \"4\": 3212, \"5\": 2112, \"6\": 5981, \"7\": 708, \"8\": 2611, \"9\": 3148, \"10\": 3265, \"11\": 2735, \"12\": 1528, \"13\": 3769, \"14\": 11701, \"15\": 5124, \"16\": 10385, \"17\": 10599, \"18\": 17798, \"19\": 7108, \"20\": 10079, \"21\": 3294, \"22\": 2495, \"23\": 619, \"24\": 2946, \"25\": 972, \"26\": 3183, \"27\": 1373, \"28\": 3984, \"29\": 2386, \"30\": 5933, \"31\": 5281, \"32\": 2962, \"33\": 4838, \"34\": 4560, \"35\": 12462, \"36\": 6458, \"37\": 7817, \"38\": 5547, \"39\": 10877, \"40\": 7286, \"41\": 2386, \"42\": 5730, \"43\": 6693, \"44\": 6947, \"45\": 4475, \"46\": 7849, \"47\": 5970, \"48\": 9163, \"49\": 3752, \"50\": 4068, \"51\": 3183, \"52\": 5257, \"53\": 5131, \"54\": 2910, \"55\": 2672, \"56\": 26536, \"57\": 15115, \"58\": 10349, \"59\": 13171, \"60\": 7644, \"61\": 6503, \"62\": 11988})\"All-trans Polyprenyl Biosynthesis\",(\"superpathway of geranylgeranyl diphosphate biosynthesis II (via MEP)\":{\"0\": 7762, \"1\": 15098, \"2\": 14408, \"3\": 19114, \"4\": 9441, \"5\": 5531, \"6\": 10983, \"7\": 7291, \"8\": 20133, \"9\": 35291, \"10\": 31623, \"11\": 34599, \"12\": 16267, \"13\": 34104, \"14\": 20702, \"15\": 14888, \"16\": 16194, \"17\": 31395, \"18\": 22098, \"19\": 17729, \"20\": 25844, \"21\": 9318, \"22\": 5969, \"23\": 6927, \"24\": 10814, \"25\": 5405, \"26\": 8953, \"27\": 4925, \"28\": 10719, \"29\": 4795, \"30\": 10815, \"31\": 11593, \"32\": 10899, \"33\": 5648, \"34\": 17664, \"35\": 19569, \"36\": 15009, \"37\": 8861, \"38\": 16277, \"39\": 18722, \"40\": 13432, \"41\": 18739, \"42\": 12146, \"43\": 13563, \"44\": 9899, \"45\": 12839, \"46\": 18261, \"47\": 9953, \"48\": 15843, \"49\": 10575, \"50\": 10692, \"51\": 20217, \"52\": 14396, \"53\": 21887, \"54\": 10897, \"55\": 12858, \"56\": 31452, \"57\": 33273, \"58\": 34608, \"59\": 29270, \"60\": 23991, \"61\": 29130, \"62\": 24115})\"Geranylgeranyl Diphosphate Biosynthesis\")\"Polyprenyl Biosynthesis\",((\"ppGpp biosynthesis\":{\"0\": 245, \"1\": 819, \"2\": 1577, \"3\": 2148, \"4\": 1240, \"5\": 330, \"6\": 1626, \"7\": 431, \"8\": 1686, \"9\": 1837, \"10\": 2010, \"11\": 1716, \"12\": 886, \"13\": 2342, \"14\": 5489, \"15\": 2398, \"16\": 1208, \"17\": 738, \"18\": 1160, \"19\": 2321, \"20\": 2998, \"21\": 441, \"22\": 1200, \"23\": 172, \"24\": 599, \"25\": 566, \"26\": 638, \"27\": 102, \"28\": 2983, \"29\": 1944, \"30\": 4749, \"31\": 4036, \"32\": 2131, \"33\": 4822, \"34\": 3219, \"35\": 1397, \"36\": 2327, \"37\": 4800, \"38\": 975, \"39\": 1304, \"40\": 987, \"41\": 466, \"42\": 843, \"43\": 2056, \"44\": 1156, \"45\": 623, \"46\": 1627, \"47\": 2040, \"48\": 1031, \"49\": 2713, \"50\": 2912, \"51\": 2055, \"52\": 3451, \"53\": 3508, \"54\": 1996, \"55\": 1769, \"56\": 556, \"57\": 2934, \"58\": 1943, \"59\": 4626, \"60\": 2700, \"61\": 3163, \"62\": 2318})\"unknow\")\"Metabolic Regulator Biosynthesis\",((\"tetrapyrrole biosynthesis I (from glutamate)\":{\"0\": 3684, \"1\": 5091, \"2\": 5532, \"3\": 6984, \"4\": 3355, \"5\": 2504, \"6\": 6253, \"7\": 3538, \"8\": 6188, \"9\": 12417, \"10\": 7968, \"11\": 4245, \"12\": 6243, \"13\": 7498, \"14\": 14832, \"15\": 9526, \"16\": 12606, \"17\": 26736, \"18\": 16124, \"19\": 12114, \"20\": 15868, \"21\": 7233, \"22\": 2188, \"23\": 2797, \"24\": 6563, \"25\": 2652, \"26\": 3614, \"27\": 2072, \"28\": 4378, \"29\": 2858, \"30\": 5121, \"31\": 8576, \"32\": 3597, \"33\": 4615, \"34\": 6267, \"35\": 10984, \"36\": 9081, \"37\": 7855, \"38\": 5575, \"39\": 8713, \"40\": 6594, \"41\": 5890, \"42\": 4728, \"43\": 4746, \"44\": 5962, \"45\": 3446, \"46\": 6732, \"47\": 4729, \"48\": 8713, \"49\": 5910, \"50\": 4993, \"51\": 4361, \"52\": 9223, \"53\": 7236, \"54\": 3964, \"55\": 6040, \"56\": 26145, \"57\": 18198, \"58\": 22007, \"59\": 13473, \"60\": 13363, \"61\": 14028, \"62\": 14796},\"tetrapyrrole biosynthesis II (from glycine)\":{\"0\": 3259, \"1\": 4801, \"2\": 5191, \"3\": 6358, \"4\": 2980, \"5\": 2267, \"6\": 5743, \"7\": 3085, \"8\": 4728, \"9\": 9358, \"10\": 5855, \"11\": 2974, \"12\": 4754, \"13\": 5429, \"14\": 13604, \"15\": 8800, \"16\": 11343, \"17\": 25345, \"18\": 14176, \"19\": 11040, \"20\": 14702, \"21\": 6901, \"22\": 1886, \"23\": 2648, \"24\": 6254, \"25\": 2560, \"26\": 3339, \"27\": 1784, \"28\": 3871, \"29\": 2607, \"30\": 4604, \"31\": 7802, \"32\": 3125, \"33\": 4236, \"34\": 5491, \"35\": 9233, \"36\": 8150, \"37\": 7054, \"38\": 4408, \"39\": 6967, \"40\": 5378, \"41\": 4682, \"42\": 4223, \"43\": 4053, \"44\": 5303, \"45\": 3094, \"46\": 5584, \"47\": 4279, \"48\": 8196, \"49\": 5269, \"50\": 4472, \"51\": 3830, \"52\": 7730, \"53\": 6283, \"54\": 3494, \"55\": 5284, \"56\": 23193, \"57\": 15954, \"58\": 20118, \"59\": 11506, \"60\": 11724, \"61\": 12292, \"62\": 13084})\"unknow\")\"Tetrapyrrole Biosynthesis\",((\"8-amino-7-oxononanoate biosynthesis I\":{\"0\": 477, \"1\": 1416, \"2\": 2271, \"3\": 3074, \"4\": 1658, \"5\": 571, \"6\": 2504, \"7\": 441, \"8\": 1700, \"9\": 1989, \"10\": 2066, \"11\": 1733, \"12\": 949, \"13\": 2415, \"14\": 7075, \"15\": 2940, \"16\": 2248, \"17\": 1432, \"18\": 2343, \"19\": 3281, \"20\": 4376, \"21\": 777, \"22\": 1510, \"23\": 242, \"24\": 954, \"25\": 608, \"26\": 1041, \"27\": 196, \"28\": 3038, \"29\": 1948, \"30\": 5013, \"31\": 4130, \"32\": 2131, \"33\": 4908, \"34\": 3242, \"35\": 2636, \"36\": 3217, \"37\": 5937, \"38\": 1634, \"39\": 2423, \"40\": 1787, \"41\": 733, \"42\": 1495, \"43\": 3044, \"44\": 2034, \"45\": 1103, \"46\": 2653, \"47\": 2975, \"48\": 1926, \"49\": 2772, \"50\": 3064, \"51\": 2094, \"52\": 3792, \"53\": 3562, \"54\": 2049, \"55\": 1810, \"56\": 1189, \"57\": 4880, \"58\": 3167, \"59\": 6539, \"60\": 3666, \"61\": 3707, \"62\": 3878})\"8-Amino-7-oxononanoate Biosynthesis\")\"Other Biosynthesis\",((\"tRNA charging\":{\"0\": 7960, \"1\": 15267, \"2\": 14557, \"3\": 19492, \"4\": 9663, \"5\": 5582, \"6\": 11431, \"7\": 7291, \"8\": 20721, \"9\": 35627, \"10\": 32461, \"11\": 35812, \"12\": 16317, \"13\": 35102, \"14\": 22042, \"15\": 15043, \"16\": 17171, \"17\": 31289, \"18\": 24515, \"19\": 18015, \"20\": 26205, \"21\": 9251, \"22\": 6237, \"23\": 6759, \"24\": 10635, \"25\": 5308, \"26\": 9076, \"27\": 4992, \"28\": 11347, \"29\": 5106, \"30\": 12055, \"31\": 11794, \"32\": 11421, \"33\": 6712, \"34\": 18410, \"35\": 21354, \"36\": 15761, \"37\": 10677, \"38\": 17425, \"39\": 20693, \"40\": 14680, \"41\": 19724, \"42\": 12588, \"43\": 14213, \"44\": 10696, \"45\": 13095, \"46\": 19114, \"47\": 10602, \"48\": 16395, \"49\": 10848, \"50\": 10945, \"51\": 21069, \"52\": 14424, \"53\": 22630, \"54\": 11278, \"55\": 12883, \"56\": 34757, \"57\": 34746, \"58\": 34936, \"59\": 31102, \"60\": 24773, \"61\": 30140, \"62\": 25313})\"Metabolic Clusters\")\"Aminoacyl-tRNA Charging\")\"Biosynthesis\",(((\"superpathway of chorismate metabolism\":{\"0\": 248, \"1\": 790, \"2\": 1397, \"3\": 1896, \"4\": 1054, \"5\": 319, \"6\": 1508, \"7\": 296, \"8\": 1153, \"9\": 1326, \"10\": 1394, \"11\": 1170, \"12\": 630, \"13\": 1634, \"14\": 4656, \"15\": 1917, \"16\": 1208, \"17\": 742, \"18\": 1199, \"19\": 2021, \"20\": 2657, \"21\": 426, \"22\": 999, \"23\": 145, \"24\": 549, \"25\": 406, \"26\": 600, \"27\": 102, \"28\": 2130, \"29\": 1421, \"30\": 3659, \"31\": 2968, \"32\": 1467, \"33\": 3875, \"34\": 2231, \"35\": 1408, \"36\": 2010, \"37\": 4210, \"38\": 922, \"39\": 1307, \"40\": 978, \"41\": 422, \"42\": 829, \"43\": 1869, \"44\": 1142, \"45\": 609, \"46\": 1536, \"47\": 1868, \"48\": 1036, \"49\": 1937, \"50\": 2154, \"51\": 1417, \"52\": 2661, \"53\": 2435, \"54\": 1411, \"55\": 1239, \"56\": 584, \"57\": 2780, \"58\": 1808, \"59\": 4055, \"60\": 2278, \"61\": 2419, \"62\": 2207},\"superpathway of fucose and rhamnose degradation\":{\"0\": 144, \"1\": 476, \"2\": 902, \"3\": 1226, \"4\": 706, \"5\": 194, \"6\": 950, \"7\": 258, \"8\": 991, \"9\": 1127, \"10\": 1174, \"11\": 960, \"12\": 540, \"13\": 1352, \"14\": 3283, \"15\": 1444, \"16\": 719, \"17\": 443, \"18\": 675, \"19\": 1396, \"20\": 1791, \"21\": 265, \"22\": 629, \"23\": 103, \"24\": 360, \"25\": 342, \"26\": 373, \"27\": 61, \"28\": 1780, \"29\": 1220, \"30\": 2956, \"31\": 2533, \"32\": 1262, \"33\": 3217, \"34\": 1895, \"35\": 796, \"36\": 1395, \"37\": 2870, \"38\": 565, \"39\": 720, \"40\": 565, \"41\": 278, \"42\": 453, \"43\": 1108, \"44\": 656, \"45\": 335, \"46\": 872, \"47\": 1116, \"48\": 595, \"49\": 1644, \"50\": 1713, \"51\": 1177, \"52\": 2157, \"53\": 2045, \"54\": 1168, \"55\": 1027, \"56\": 331, \"57\": 1735, \"58\": 1168, \"59\": 2677, \"60\": 1615, \"61\": 1895, \"62\": 1377},\"superpathway of hexuronide and hexuronate degradation\":{\"0\": 1645, \"1\": 2356, \"2\": 3374, \"3\": 3935, \"4\": 2044, \"5\": 1556, \"6\": 3776, \"7\": 4138, \"8\": 9227, \"9\": 22596, \"10\": 13974, \"11\": 8755, \"12\": 10338, \"13\": 14278, \"14\": 11884, \"15\": 8777, \"16\": 8371, \"17\": 24385, \"18\": 5728, \"19\": 11167, \"20\": 12701, \"21\": 5846, \"22\": 1348, \"23\": 2072, \"24\": 5059, \"25\": 2120, \"26\": 1829, \"27\": 1062, \"28\": 4850, \"29\": 3141, \"30\": 5567, \"31\": 9878, \"32\": 3901, \"33\": 5190, \"34\": 6908, \"35\": 5204, \"36\": 8092, \"37\": 5626, \"38\": 3726, \"39\": 3273, \"40\": 3336, \"41\": 5211, \"42\": 1442, \"43\": 2867, \"44\": 2329, \"45\": 1153, \"46\": 2581, \"47\": 2297, \"48\": 3462, \"49\": 6676, \"50\": 5541, \"51\": 4712, \"52\": 12846, \"53\": 8099, \"54\": 4434, \"55\": 7134, \"56\": 10053, \"57\": 13905, \"58\": 19562, \"59\": 10933, \"60\": 12868, \"61\": 14038, \"62\": 11431},\"superpathway of D-glucarate and D-galactarate degradation\":{\"0\": 473, \"1\": 1098, \"2\": 2276, \"3\": 2152, \"4\": 1163, \"5\": 714, \"6\": 1471, \"7\": 2989, \"8\": 2924, \"9\": 1537, \"10\": 4511, \"11\": 2905, \"12\": 709, \"13\": 4989, \"14\": 4472, \"15\": 3362, \"16\": 2922, \"17\": 2060, \"18\": 3588, \"19\": 4515, \"20\": 4148, \"21\": 285, \"22\": 1307, \"23\": 191, \"24\": 661, \"25\": 396, \"26\": 518, \"27\": 98, \"28\": 3841, \"29\": 1727, \"30\": 4260, \"31\": 4945, \"32\": 1938, \"33\": 4663, \"34\": 5209, \"35\": 4221, \"36\": 3411, \"37\": 3449, \"38\": 1725, \"39\": 2232, \"40\": 1920, \"41\": 1328, \"42\": 886, \"43\": 3051, \"44\": 1253, \"45\": 984, \"46\": 1816, \"47\": 1811, \"48\": 1124, \"49\": 5034, \"50\": 5744, \"51\": 3732, \"52\": 2851, \"53\": 7356, \"54\": 4176, \"55\": 7454, \"56\": 5943, \"57\": 8085, \"58\": 6045, \"59\": 8534, \"60\": 6086, \"61\": 5283, \"62\": 5852},\"superpathway of S-adenosyl-L-methionine biosynthesis\":{\"0\": 7482, \"1\": 14740, \"2\": 13908, \"3\": 18642, \"4\": 9175, \"5\": 5233, \"6\": 10976, \"7\": 1425, \"8\": 3702, \"9\": 4713, \"10\": 4863, \"11\": 5769, \"12\": 2217, \"13\": 5803, \"14\": 17847, \"15\": 10532, \"16\": 14321, \"17\": 18472, \"18\": 17420, \"19\": 12477, \"20\": 20610, \"21\": 7085, \"22\": 5745, \"23\": 6136, \"24\": 9120, \"25\": 4755, \"26\": 8810, \"27\": 4461, \"28\": 5204, \"29\": 3674, \"30\": 6811, \"31\": 5866, \"32\": 4910, \"33\": 5741, \"34\": 5696, \"35\": 15869, \"36\": 9287, \"37\": 9392, \"38\": 9954, \"39\": 15151, \"40\": 10562, \"41\": 10522, \"42\": 12330, \"43\": 13816, \"44\": 10011, \"45\": 13008, \"46\": 17975, \"47\": 10421, \"48\": 15916, \"49\": 4718, \"50\": 6426, \"51\": 4444, \"52\": 7016, \"53\": 6661, \"54\": 4191, \"55\": 3955, \"56\": 26262, \"57\": 23537, \"58\": 21140, \"59\": 19047, \"60\": 11585, \"61\": 9882, \"62\": 17485},\"superpathway of histidine, purine, and pyrimidine biosynthesis\":{\"0\": 1254, \"1\": 3334, \"2\": 4554, \"3\": 6151, \"4\": 3170, \"5\": 1325, \"6\": 4878, \"7\": 814, \"8\": 3025, \"9\": 3634, \"10\": 3763, \"11\": 3157, \"12\": 1762, \"13\": 4327, \"14\": 11576, \"15\": 5235, \"16\": 5175, \"17\": 3770, \"18\": 5816, \"19\": 6213, \"20\": 8676, \"21\": 1872, \"22\": 2615, \"23\": 548, \"24\": 2171, \"25\": 1125, \"26\": 2331, \"27\": 526, \"28\": 4462, \"29\": 2711, \"30\": 6588, \"31\": 5803, \"32\": 3339, \"33\": 5349, \"34\": 5137, \"35\": 6023, \"36\": 5792, \"37\": 7919, \"38\": 3647, \"39\": 5580, \"40\": 4040, \"41\": 1733, \"42\": 3467, \"43\": 5672, \"44\": 4313, \"45\": 2648, \"46\": 5741, \"47\": 5310, \"48\": 4610, \"49\": 4174, \"50\": 4497, \"51\": 3589, \"52\": 5753, \"53\": 5726, \"54\": 3251, \"55\": 2973, \"56\": 3387, \"57\": 10242, \"58\": 7145, \"59\": 11560, \"60\": 6888, \"61\": 6759, \"62\": 8043},\"aspartate superpathway\":{\"0\": 4484, \"1\": 8257, \"2\": 7720, \"3\": 10138, \"4\": 5249, \"5\": 3213, \"6\": 7732, \"7\": 1901, \"8\": 6210, \"9\": 5340, \"10\": 8022, \"11\": 7676, \"12\": 2574, \"13\": 9080, \"14\": 14647, \"15\": 8416, \"16\": 9354, \"17\": 8285, \"18\": 13964, \"19\": 10857, \"20\": 14043, \"21\": 4022, \"22\": 4079, \"23\": 1818, \"24\": 4248, \"25\": 1643, \"26\": 4374, \"27\": 2334, \"28\": 6959, \"29\": 3438, \"30\": 8614, \"31\": 7482, \"32\": 6046, \"33\": 5933, \"34\": 8992, \"35\": 15700, \"36\": 8033, \"37\": 8775, \"38\": 12528, \"39\": 16368, \"40\": 11159, \"41\": 11213, \"42\": 7503, \"43\": 10071, \"44\": 8417, \"45\": 6957, \"46\": 12186, \"47\": 7750, \"48\": 10919, \"49\": 6392, \"50\": 7084, \"51\": 7383, \"52\": 7381, \"53\": 10531, \"54\": 5806, \"55\": 5736, \"56\": 17664, \"57\": 19399, \"58\": 14905, \"59\": 20489, \"60\": 13153, \"61\": 14843, \"62\": 13430},\"superpathway of glyoxylate bypass and TCA\":{\"0\": 598, \"1\": 1587, \"2\": 2477, \"3\": 3255, \"4\": 1725, \"5\": 708, \"6\": 2798, \"7\": 406, \"8\": 1449, \"9\": 1782, \"10\": 1789, \"11\": 1464, \"12\": 853, \"13\": 2076, \"14\": 7431, \"15\": 2986, \"16\": 2774, \"17\": 1785, \"18\": 2971, \"19\": 3680, \"20\": 4762, \"21\": 839, \"22\": 1519, \"23\": 252, \"24\": 1079, \"25\": 536, \"26\": 1125, \"27\": 219, \"28\": 2636, \"29\": 1753, \"30\": 4452, \"31\": 3798, \"32\": 1794, \"33\": 4690, \"34\": 2788, \"35\": 3271, \"36\": 3463, \"37\": 6414, \"38\": 1831, \"39\": 2808, \"40\": 2099, \"41\": 837, \"42\": 1764, \"43\": 3458, \"44\": 2372, \"45\": 1317, \"46\": 3040, \"47\": 3305, \"48\": 2374, \"49\": 2486, \"50\": 2761, \"51\": 1803, \"52\": 3446, \"53\": 3102, \"54\": 1805, \"55\": 1643, \"56\": 1753, \"57\": 5777, \"58\": 3821, \"59\": 7107, \"60\": 3994, \"61\": 3566, \"62\": 4587})\"unknow\")\"Superpathways\")\"Superpathways\",(((\"homolactic fermentation\":{\"0\": 609, \"1\": 1993, \"2\": 3603, \"3\": 4888, \"4\": 2766, \"5\": 794, \"6\": 3487, \"7\": 1006, \"8\": 3738, \"9\": 4474, \"10\": 4587, \"11\": 3887, \"12\": 2140, \"13\": 5280, \"14\": 10206, \"15\": 4983, \"16\": 2804, \"17\": 1848, \"18\": 2782, \"19\": 4982, \"20\": 6613, \"21\": 1069, \"22\": 2466, \"23\": 434, \"24\": 1443, \"25\": 1299, \"26\": 1522, \"27\": 258, \"28\": 5165, \"29\": 3173, \"30\": 7437, \"31\": 6814, \"32\": 3959, \"33\": 5861, \"34\": 6085, \"35\": 3230, \"36\": 4804, \"37\": 7146, \"38\": 2254, \"39\": 3014, \"40\": 2273, \"41\": 1152, \"42\": 2011, \"43\": 4381, \"44\": 2561, \"45\": 1533, \"46\": 3763, \"47\": 4132, \"48\": 2458, \"49\": 4882, \"50\": 5208, \"51\": 4271, \"52\": 6725, \"53\": 6689, \"54\": 3829, \"55\": 3581, \"56\": 1406, \"57\": 6604, \"58\": 4633, \"59\": 9275, \"60\": 5837, \"61\": 6879, \"62\": 5173},\"acetyl-CoA fermentation to butanoate II\":{\"0\": 1550, \"1\": 2275, \"2\": 5060, \"3\": 3594, \"4\": 1895, \"5\": 2565, \"6\": 3332, \"7\": 7340, \"8\": 7804, \"9\": 35186, \"10\": 14736, \"11\": 8508, \"12\": 14060, \"13\": 17072, \"14\": 5442, \"15\": 7287, \"16\": 7717, \"17\": 6159, \"18\": 9941, \"19\": 10883, \"20\": 8954, \"21\": 211, \"22\": 2295, \"23\": 368, \"24\": 2129, \"25\": 487, \"26\": 746, \"27\": 166, \"28\": 7196, \"29\": 3273, \"30\": 4905, \"31\": 15262, \"32\": 1495, \"33\": 5545, \"34\": 11201, \"35\": 10890, \"36\": 8195, \"37\": 2004, \"38\": 4525, \"39\": 5759, \"40\": 5487, \"41\": 5034, \"42\": 3109, \"43\": 7290, \"44\": 2968, \"45\": 3030, \"46\": 5260, \"47\": 3770, \"48\": 4967, \"49\": 10736, \"50\": 12278, \"51\": 9662, \"52\": 17868, \"53\": 16196, \"54\": 9615, \"55\": 16800, \"56\": 16990, \"57\": 20418, \"58\": 20710, \"59\": 18543, \"60\": 14388, \"61\": 13407, \"62\": 14907},\"succinate fermentation to butanoate\":{\"0\": 821, \"1\": 2089, \"2\": 2757, \"3\": 2603, \"4\": 1108, \"5\": 1520, \"6\": 1553, \"7\": 5665, \"8\": 11795, \"9\": 23108, \"10\": 13275, \"11\": 17019, \"12\": 8718, \"13\": 12047, \"14\": 5547, \"15\": 4938, \"16\": 5455, \"17\": 4956, \"18\": 11189, \"19\": 6710, \"20\": 7937, \"21\": 165, \"22\": 1407, \"23\": 267, \"24\": 1007, \"25\": 181, \"26\": 385, \"27\": 123, \"28\": 7860, \"29\": 1596, \"30\": 5470, \"31\": 11521, \"32\": 8562, \"33\": 3054, \"34\": 14762, \"35\": 11478, \"36\": 7632, \"37\": 2750, \"38\": 10169, \"39\": 8715, \"40\": 5752, \"41\": 8405, \"42\": 1526, \"43\": 4301, \"44\": 1476, \"45\": 1611, \"46\": 2663, \"47\": 1791, \"48\": 2478, \"49\": 7584, \"50\": 9378, \"51\": 17640, \"52\": 13566, \"53\": 20083, \"54\": 8483, \"55\": 15349, \"56\": 13933, \"57\": 20308, \"58\": 11071, \"59\": 21700, \"60\": 15088, \"61\": 17092, \"62\": 13715})\"Fermentation to Short-Chain Fatty Acids\",(\"pyruvate fermentation to butanoate\":{\"0\": 535, \"1\": 1451, \"2\": 2530, \"3\": 2825, \"4\": 1400, \"5\": 715, \"6\": 2364, \"7\": 1109, \"8\": 3487, \"9\": 4880, \"10\": 4322, \"11\": 3154, \"12\": 2242, \"13\": 4871, \"14\": 8182, \"15\": 4756, \"16\": 2814, \"17\": 1935, \"18\": 2638, \"19\": 5055, \"20\": 6177, \"21\": 566, \"22\": 888, \"23\": 379, \"24\": 1265, \"25\": 592, \"26\": 911, \"27\": 210, \"28\": 4776, \"29\": 2674, \"30\": 4281, \"31\": 7986, \"32\": 3380, \"33\": 3336, \"34\": 6033, \"35\": 2978, \"36\": 4881, \"37\": 3554, \"38\": 2048, \"39\": 2370, \"40\": 2050, \"41\": 1203, \"42\": 1167, \"43\": 2780, \"44\": 1648, \"45\": 967, \"46\": 2036, \"47\": 1718, \"48\": 1935, \"49\": 5332, \"50\": 5561, \"51\": 4150, \"52\": 7194, \"53\": 6839, \"54\": 3974, \"55\": 4281, \"56\": 1468, \"57\": 6667, \"58\": 4870, \"59\": 8581, \"60\": 6072, \"61\": 7108, \"62\": 5285},\"mixed acid fermentation\":{\"0\": 3365, \"1\": 5322, \"2\": 5087, \"3\": 6843, \"4\": 3278, \"5\": 2137, \"6\": 6197, \"7\": 710, \"8\": 2597, \"9\": 3077, \"10\": 3215, \"11\": 2703, \"12\": 1482, \"13\": 3691, \"14\": 12304, \"15\": 5267, \"16\": 7377, \"17\": 5899, \"18\": 9083, \"19\": 7318, \"20\": 10338, \"21\": 3398, \"22\": 2562, \"23\": 623, \"24\": 3001, \"25\": 985, \"26\": 3230, \"27\": 1385, \"28\": 4110, \"29\": 2541, \"30\": 6293, \"31\": 5472, \"32\": 3028, \"33\": 5677, \"34\": 4636, \"35\": 11123, \"36\": 6209, \"37\": 8550, \"38\": 5589, \"39\": 10862, \"40\": 7323, \"41\": 2396, \"42\": 5781, \"43\": 6880, \"44\": 7095, \"45\": 4532, \"46\": 7967, \"47\": 6198, \"48\": 9265, \"49\": 3854, \"50\": 4163, \"51\": 3202, \"52\": 5170, \"53\": 5196, \"54\": 2953, \"55\": 2683, \"56\": 9193, \"57\": 15052, \"58\": 10521, \"59\": 13443, \"60\": 7792, \"61\": 6596, \"62\": 9275},\"pyruvate fermentation to propanoate I\":{\"0\": 397, \"1\": 419, \"2\": 1111, \"3\": 664, \"4\": 357, \"5\": 649, \"6\": 777, \"7\": 481, \"8\": 942, \"9\": 2114, \"10\": 1562, \"11\": 886, \"12\": 986, \"13\": 1827, \"14\": 881, \"15\": 1451, \"16\": 1732, \"17\": 1160, \"18\": 1961, \"19\": 2419, \"20\": 1658, \"21\": 32, \"22\": 472, \"23\": 64, \"24\": 500, \"25\": 85, \"26\": 136, \"27\": 30, \"28\": 1222, \"29\": 621, \"30\": 751, \"31\": 3627, \"32\": 197, \"33\": 1319, \"34\": 1719, \"35\": 2254, \"36\": 1383, \"37\": 298, \"38\": 640, \"39\": 914, \"40\": 899, \"41\": 548, \"42\": 823, \"43\": 1842, \"44\": 730, \"45\": 763, \"46\": 1332, \"47\": 903, \"48\": 1417, \"49\": 2195, \"50\": 2563, \"51\": 1173, \"52\": 3554, \"53\": 2550, \"54\": 1566, \"55\": 1882, \"56\": 4086, \"57\": 4000, \"58\": 3488, \"59\": 3535, \"60\": 2617, \"61\": 1883, \"62\": 2971},\"heterolactic fermentation\":{\"0\": 301, \"1\": 952, \"2\": 1709, \"3\": 2184, \"4\": 1180, \"5\": 399, \"6\": 1555, \"7\": 542, \"8\": 1978, \"9\": 2278, \"10\": 2354, \"11\": 1925, \"12\": 1086, \"13\": 2669, \"14\": 5434, \"15\": 2742, \"16\": 1492, \"17\": 961, \"18\": 1442, \"19\": 2741, \"20\": 3553, \"21\": 292, \"22\": 1074, \"23\": 204, \"24\": 689, \"25\": 334, \"26\": 591, \"27\": 115, \"28\": 3155, \"29\": 1920, \"30\": 4765, \"31\": 4341, \"32\": 2369, \"33\": 3553, \"34\": 3578, \"35\": 1671, \"36\": 2667, \"37\": 3661, \"38\": 1211, \"39\": 1498, \"40\": 1185, \"41\": 625, \"42\": 787, \"43\": 1844, \"44\": 1138, \"45\": 597, \"46\": 1463, \"47\": 1686, \"48\": 1156, \"49\": 2960, \"50\": 3025, \"51\": 2328, \"52\": 3805, \"53\": 3914, \"54\": 2195, \"55\": 1985, \"56\": 745, \"57\": 3598, \"58\": 2512, \"59\": 5205, \"60\": 3249, \"61\": 3836, \"62\": 2806},\"pyruvate fermentation to acetone\":{\"0\": 1472, \"1\": 2358, \"2\": 5303, \"3\": 4750, \"4\": 2590, \"5\": 2458, \"6\": 4061, \"7\": 8191, \"8\": 7542, \"9\": 33100, \"10\": 13507, \"11\": 11737, \"12\": 11326, \"13\": 17626, \"14\": 12485, \"15\": 8416, \"16\": 7507, \"17\": 5643, \"18\": 8827, \"19\": 11464, \"20\": 10396, \"21\": 772, \"22\": 2848, \"23\": 460, \"24\": 2414, \"25\": 1039, \"26\": 1229, \"27\": 236, \"28\": 12871, \"29\": 6241, \"30\": 18497, \"31\": 20895, \"32\": 5334, \"33\": 10243, \"34\": 16794, \"35\": 10031, \"36\": 13622, \"37\": 8436, \"38\": 5720, \"39\": 7988, \"40\": 8800, \"41\": 16669, \"42\": 3088, \"43\": 7612, \"44\": 3257, \"45\": 2820, \"46\": 5323, \"47\": 4537, \"48\": 4940, \"49\": 14166, \"50\": 17378, \"51\": 20459, \"52\": 18675, \"53\": 19256, \"54\": 14268, \"55\": 22225, \"56\": 13822, \"57\": 20907, \"58\": 29160, \"59\": 20296, \"60\": 13989, \"61\": 23076, \"62\": 16159},\"superpathway of Clostridium acetobutylicum acidogenic fermentation\":{\"0\": 675, \"1\": 1816, \"2\": 3096, \"3\": 3484, \"4\": 1726, \"5\": 887, \"6\": 2873, \"7\": 1369, \"8\": 4277, \"9\": 6041, \"10\": 5351, \"11\": 3952, \"12\": 2777, \"13\": 6020, \"14\": 9558, \"15\": 5640, \"16\": 3468, \"17\": 2452, \"18\": 3293, \"19\": 6052, \"20\": 7468, \"21\": 717, \"22\": 1094, \"23\": 480, \"24\": 1577, \"25\": 739, \"26\": 1138, \"27\": 267, \"28\": 5472, \"29\": 3000, \"30\": 4978, \"31\": 8681, \"32\": 4005, \"33\": 3745, \"34\": 7088, \"35\": 3679, \"36\": 5789, \"37\": 4177, \"38\": 2544, \"39\": 2946, \"40\": 2532, \"41\": 1520, \"42\": 1460, \"43\": 3376, \"44\": 2029, \"45\": 1217, \"46\": 2536, \"47\": 2108, \"48\": 2407, \"49\": 6034, \"50\": 6230, \"51\": 5041, \"52\": 8140, \"53\": 8086, \"54\": 4635, \"55\": 5033, \"56\": 1867, \"57\": 8136, \"58\": 6039, \"59\": 10216, \"60\": 7319, \"61\": 8582, \"62\": 6428},\"pyruvate fermentation to isobutanol (engineered)\":{\"0\": 10762, \"1\": 22009, \"2\": 22107, \"3\": 28607, \"4\": 14031, \"5\": 8041, \"6\": 15353, \"7\": 10474, \"8\": 27037, \"9\": 47019, \"10\": 41359, \"11\": 44080, \"12\": 21147, \"13\": 44673, \"14\": 33065, \"15\": 23386, \"16\": 21311, \"17\": 38475, \"18\": 30443, \"19\": 25760, \"20\": 39147, \"21\": 11534, \"22\": 9837, \"23\": 9201, \"24\": 14289, \"25\": 7238, \"26\": 12321, \"27\": 6616, \"28\": 18104, \"29\": 7876, \"30\": 20251, \"31\": 21556, \"32\": 16455, \"33\": 12738, \"34\": 26905, \"35\": 26581, \"36\": 21762, \"37\": 16366, \"38\": 23882, \"39\": 27914, \"40\": 19903, \"41\": 27533, \"42\": 17193, \"43\": 19811, \"44\": 13428, \"45\": 17912, \"46\": 26392, \"47\": 14625, \"48\": 21773, \"49\": 17906, \"50\": 18973, \"51\": 28107, \"52\": 23022, \"53\": 31932, \"54\": 17054, \"55\": 20254, \"56\": 43525, \"57\": 46278, \"58\": 47405, \"59\": 43588, \"60\": 34745, \"61\": 42641, \"62\": 32903})\"Fermentation of Pyruvate\")\"Fermentation\",((\"glycolysis III (from glucose)\":{\"0\": 8721, \"1\": 17058, \"2\": 16472, \"3\": 21958, \"4\": 10866, \"5\": 6182, \"6\": 12610, \"7\": 8479, \"8\": 23260, \"9\": 38198, \"10\": 35623, \"11\": 39116, \"12\": 17645, \"13\": 38118, \"14\": 24992, \"15\": 17257, \"16\": 18824, \"17\": 35069, \"18\": 26179, \"19\": 20415, \"20\": 29878, \"21\": 10360, \"22\": 7066, \"23\": 7632, \"24\": 11994, \"25\": 6073, \"26\": 10119, \"27\": 5494, \"28\": 13044, \"29\": 5778, \"30\": 13614, \"31\": 13602, \"32\": 13218, \"33\": 8006, \"34\": 21190, \"35\": 23105, \"36\": 17707, \"37\": 11926, \"38\": 19216, \"39\": 22098, \"40\": 15752, \"41\": 21531, \"42\": 13717, \"43\": 15373, \"44\": 11353, \"45\": 14240, \"46\": 20714, \"47\": 11628, \"48\": 17918, \"49\": 12585, \"50\": 12666, \"51\": 23822, \"52\": 16157, \"53\": 26147, \"54\": 12900, \"55\": 15072, \"56\": 36152, \"57\": 39094, \"58\": 39005, \"59\": 35068, \"60\": 28351, \"61\": 34222, \"62\": 28363},\"glycolysis I (from glucose 6-phosphate)\":{\"0\": 825, \"1\": 2661, \"2\": 4673, \"3\": 6320, \"4\": 3543, \"5\": 1058, \"6\": 4451, \"7\": 1388, \"8\": 5228, \"9\": 6433, \"10\": 6517, \"11\": 5697, \"12\": 3002, \"13\": 7598, \"14\": 12723, \"15\": 6418, \"16\": 3746, \"17\": 2520, \"18\": 3767, \"19\": 6512, \"20\": 8640, \"21\": 1431, \"22\": 3106, \"23\": 589, \"24\": 1921, \"25\": 1674, \"26\": 2006, \"27\": 351, \"28\": 6978, \"29\": 3880, \"30\": 9499, \"31\": 8641, \"32\": 5500, \"33\": 7075, \"34\": 8522, \"35\": 4384, \"36\": 6335, \"37\": 8622, \"38\": 3127, \"39\": 4109, \"40\": 3086, \"41\": 1596, \"42\": 2659, \"43\": 5647, \"44\": 3333, \"45\": 2052, \"46\": 4940, \"47\": 5175, \"48\": 3262, \"49\": 6471, \"50\": 6950, \"51\": 6176, \"52\": 8724, \"53\": 9595, \"54\": 5308, \"55\": 5065, \"56\": 1931, \"57\": 8920, \"58\": 6236, \"59\": 12631, \"60\": 7862, \"61\": 9291, \"62\": 6945},\"glycolysis II (from fructose 6-phosphate)\":{\"0\": 432, \"1\": 1438, \"2\": 2705, \"3\": 3671, \"4\": 2103, \"5\": 576, \"6\": 2671, \"7\": 751, \"8\": 2927, \"9\": 3483, \"10\": 3564, \"11\": 3059, \"12\": 1627, \"13\": 4189, \"14\": 8422, \"15\": 3903, \"16\": 2064, \"17\": 1304, \"18\": 2019, \"19\": 3831, \"20\": 5016, \"21\": 767, \"22\": 1971, \"23\": 306, \"24\": 1041, \"25\": 968, \"26\": 1109, \"27\": 181, \"28\": 4683, \"29\": 2834, \"30\": 7123, \"31\": 6060, \"32\": 3446, \"33\": 6084, \"34\": 5275, \"35\": 2409, \"36\": 3814, \"37\": 6579, \"38\": 1697, \"39\": 2256, \"40\": 1702, \"41\": 828, \"42\": 1464, \"43\": 3399, \"44\": 1927, \"45\": 1101, \"46\": 2787, \"47\": 3271, \"48\": 1784, \"49\": 4254, \"50\": 4654, \"51\": 3527, \"52\": 5754, \"53\": 5814, \"54\": 3291, \"55\": 2993, \"56\": 989, \"57\": 5001, \"58\": 3373, \"59\": 7625, \"60\": 4529, \"61\": 5340, \"62\": 3926})\"unknow\")\"Glycolysis\",((\"superpathway of glycolysis and Entner-Doudoroff\":{\"0\": 403, \"1\": 1296, \"2\": 2367, \"3\": 3199, \"4\": 1808, \"5\": 526, \"6\": 2407, \"7\": 706, \"8\": 2655, \"9\": 3117, \"10\": 3213, \"11\": 2627, \"12\": 1498, \"13\": 3684, \"14\": 7636, \"15\": 3622, \"16\": 1939, \"17\": 1252, \"18\": 1847, \"19\": 3585, \"20\": 4663, \"21\": 733, \"22\": 1558, \"23\": 291, \"24\": 988, \"25\": 902, \"26\": 1010, \"27\": 172, \"28\": 4045, \"29\": 2548, \"30\": 6081, \"31\": 5571, \"32\": 2990, \"33\": 5372, \"34\": 4622, \"35\": 2146, \"36\": 3507, \"37\": 5686, \"38\": 1535, \"39\": 1950, \"40\": 1524, \"41\": 782, \"42\": 1169, \"43\": 2630, \"44\": 1682, \"45\": 861, \"46\": 2184, \"47\": 2661, \"48\": 1615, \"49\": 3835, \"50\": 3951, \"51\": 3069, \"52\": 5140, \"53\": 5073, \"54\": 2863, \"55\": 2631, \"56\": 939, \"57\": 4608, \"58\": 3202, \"59\": 6685, \"60\": 4199, \"61\": 4944, \"62\": 3636},\"superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass\":{\"0\": 581, \"1\": 1710, \"2\": 2860, \"3\": 3806, \"4\": 2074, \"5\": 724, \"6\": 3022, \"7\": 620, \"8\": 2262, \"9\": 2782, \"10\": 2787, \"11\": 2324, \"12\": 1314, \"13\": 3249, \"14\": 8479, \"15\": 3736, \"16\": 2705, \"17\": 1748, \"18\": 2781, \"19\": 4150, \"20\": 5409, \"21\": 909, \"22\": 1882, \"23\": 310, \"24\": 1196, \"25\": 790, \"26\": 1254, \"27\": 228, \"28\": 3826, \"29\": 2414, \"30\": 6061, \"31\": 5274, \"32\": 2703, \"33\": 5640, \"34\": 4199, \"35\": 3175, \"36\": 3981, \"37\": 6770, \"38\": 1992, \"39\": 2848, \"40\": 2137, \"41\": 946, \"42\": 1817, \"43\": 3783, \"44\": 2392, \"45\": 1368, \"46\": 3265, \"47\": 3589, \"48\": 2331, \"49\": 3574, \"50\": 3944, \"51\": 2774, \"52\": 4907, \"53\": 4671, \"54\": 2683, \"55\": 2475, \"56\": 1496, \"57\": 6048, \"58\": 4068, \"59\": 8076, \"60\": 4688, \"61\": 4818, \"62\": 4767})\"unknow\")\"Superpathways\",((\"glyoxylate cycle\":{\"0\": 365, \"1\": 1125, \"2\": 1890, \"3\": 2561, \"4\": 1399, \"5\": 456, \"6\": 2104, \"7\": 299, \"8\": 1141, \"9\": 1332, \"10\": 1391, \"11\": 1152, \"12\": 644, \"13\": 1621, \"14\": 6136, \"15\": 2370, \"16\": 1760, \"17\": 1090, \"18\": 1779, \"19\": 2742, \"20\": 3620, \"21\": 611, \"22\": 1228, \"23\": 196, \"24\": 768, \"25\": 431, \"26\": 842, \"27\": 150, \"28\": 2121, \"29\": 1432, \"30\": 3656, \"31\": 3008, \"32\": 1454, \"33\": 3960, \"34\": 2209, \"35\": 2053, \"36\": 2696, \"37\": 5471, \"38\": 1299, \"39\": 1894, \"40\": 1408, \"41\": 584, \"42\": 1191, \"43\": 2587, \"44\": 1651, \"45\": 874, \"46\": 2163, \"47\": 2576, \"48\": 1512, \"49\": 1958, \"50\": 2174, \"51\": 1415, \"52\": 2736, \"53\": 2430, \"54\": 1412, \"55\": 1236, \"56\": 878, \"57\": 3921, \"58\": 2537, \"59\": 5464, \"60\": 3039, \"61\": 2807, \"62\": 3120})\"unknow\")\"Generation of Precursor Metabolites and Energy\",((\"pentose phosphate pathway (non-oxidative branch)\":{\"0\": 10254, \"1\": 19973, \"2\": 19370, \"3\": 25826, \"4\": 12814, \"5\": 7309, \"6\": 15479, \"7\": 10180, \"8\": 28737, \"9\": 47568, \"10\": 44061, \"11\": 48023, \"12\": 22138, \"13\": 47269, \"14\": 32163, \"15\": 21709, \"16\": 23880, \"17\": 45847, \"18\": 32839, \"19\": 25829, \"20\": 37012, \"21\": 13317, \"22\": 8312, \"23\": 9151, \"24\": 14801, \"25\": 7421, \"26\": 11947, \"27\": 6496, \"28\": 16614, \"29\": 7720, \"30\": 17985, \"31\": 17918, \"32\": 16622, \"33\": 11344, \"34\": 26473, \"35\": 28308, \"36\": 22541, \"37\": 15986, \"38\": 23326, \"39\": 26835, \"40\": 19185, \"41\": 26140, \"42\": 15895, \"43\": 18570, \"44\": 13890, \"45\": 16608, \"46\": 24168, \"47\": 13977, \"48\": 21219, \"49\": 15989, \"50\": 15791, \"51\": 29311, \"52\": 20852, \"53\": 32368, \"54\": 15999, \"55\": 18073, \"56\": 46535, \"57\": 48044, \"58\": 48744, \"59\": 43475, \"60\": 35257, \"61\": 42661, \"62\": 35308})\"unknow\",(\"pentose phosphate pathway\":{\"0\": 250, \"1\": 812, \"2\": 1481, \"3\": 2012, \"4\": 1146, \"5\": 330, \"6\": 1585, \"7\": 406, \"8\": 1533, \"9\": 1763, \"10\": 1827, \"11\": 1523, \"12\": 845, \"13\": 2120, \"14\": 5169, \"15\": 2273, \"16\": 1232, \"17\": 767, \"18\": 1175, \"19\": 2279, \"20\": 2919, \"21\": 453, \"22\": 996, \"23\": 179, \"24\": 610, \"25\": 549, \"26\": 632, \"27\": 106, \"28\": 2695, \"29\": 1845, \"30\": 4384, \"31\": 3770, \"32\": 1958, \"33\": 4638, \"34\": 2885, \"35\": 1362, \"36\": 2227, \"37\": 4419, \"38\": 945, \"39\": 1228, \"40\": 957, \"41\": 468, \"42\": 736, \"43\": 1728, \"44\": 1097, \"45\": 540, \"46\": 1382, \"47\": 1789, \"48\": 1022, \"49\": 2484, \"50\": 2599, \"51\": 1817, \"52\": 3324, \"53\": 3131, \"54\": 1793, \"55\": 1586, \"56\": 584, \"57\": 2891, \"58\": 1946, \"59\": 4299, \"60\": 2580, \"61\": 2956, \"62\": 2295})\"Superpathways\")\"Pentose Phosphate Pathways\",((\"TCA cycle IV (2-oxoglutarate decarboxylase)\":{\"0\": 480, \"1\": 1311, \"2\": 2249, \"3\": 2905, \"4\": 1585, \"5\": 614, \"6\": 2397, \"7\": 504, \"8\": 1699, \"9\": 2250, \"10\": 2123, \"11\": 1724, \"12\": 1057, \"13\": 2480, \"14\": 6680, \"15\": 2932, \"16\": 2247, \"17\": 1435, \"18\": 2327, \"19\": 3373, \"20\": 4216, \"21\": 668, \"22\": 1475, \"23\": 229, \"24\": 938, \"25\": 585, \"26\": 941, \"27\": 169, \"28\": 2997, \"29\": 1967, \"30\": 4898, \"31\": 4444, \"32\": 2022, \"33\": 5183, \"34\": 3227, \"35\": 2659, \"36\": 3137, \"37\": 5691, \"38\": 1541, \"39\": 2238, \"40\": 1707, \"41\": 748, \"42\": 1460, \"43\": 3103, \"44\": 1915, \"45\": 1108, \"46\": 2603, \"47\": 2897, \"48\": 1927, \"49\": 2881, \"50\": 3230, \"51\": 2093, \"52\": 4091, \"53\": 3622, \"54\": 2111, \"55\": 2033, \"56\": 1416, \"57\": 4981, \"58\": 3396, \"59\": 6452, \"60\": 3736, \"61\": 3690, \"62\": 3921},\"TCA cycle VI (obligate autotrophs)\":{\"0\": 2197, \"1\": 3270, \"2\": 3120, \"3\": 4191, \"4\": 1986, \"5\": 1349, \"6\": 4297, \"7\": 377, \"8\": 1422, \"9\": 1664, \"10\": 1746, \"11\": 1439, \"12\": 810, \"13\": 2025, \"14\": 8565, \"15\": 3213, \"16\": 8012, \"17\": 6541, \"18\": 15484, \"19\": 4632, \"20\": 6523, \"21\": 2049, \"22\": 1641, \"23\": 326, \"24\": 1739, \"25\": 540, \"26\": 1978, \"27\": 818, \"28\": 2574, \"29\": 1666, \"30\": 4372, \"31\": 3569, \"32\": 1783, \"33\": 4264, \"34\": 2716, \"35\": 9800, \"36\": 4337, \"37\": 6963, \"38\": 3513, \"39\": 8232, \"40\": 5347, \"41\": 1297, \"42\": 3855, \"43\": 4711, \"44\": 5575, \"45\": 2808, \"46\": 5179, \"47\": 4487, \"48\": 6686, \"49\": 2381, \"50\": 2630, \"51\": 1768, \"52\": 3334, \"53\": 3005, \"54\": 1741, \"55\": 1525, \"56\": 23399, \"57\": 10358, \"58\": 6302, \"59\": 9029, \"60\": 4738, \"61\": 3774, \"62\": 8458},\"TCA cycle VII (acetate-producers)\":{\"0\": 1216, \"1\": 1949, \"2\": 3205, \"3\": 3970, \"4\": 2060, \"5\": 1466, \"6\": 3378, \"7\": 2884, \"8\": 2935, \"9\": 11392, \"10\": 5018, \"11\": 2814, \"12\": 4454, \"13\": 5834, \"14\": 8519, \"15\": 3957, \"16\": 4908, \"17\": 3596, \"18\": 5963, \"19\": 5776, \"20\": 6029, \"21\": 916, \"22\": 1778, \"23\": 326, \"24\": 1467, \"25\": 635, \"26\": 1302, \"27\": 248, \"28\": 3477, \"29\": 1977, \"30\": 4935, \"31\": 9628, \"32\": 2078, \"33\": 4920, \"34\": 5087, \"35\": 6284, \"36\": 4325, \"37\": 6859, \"38\": 2342, \"39\": 3478, \"40\": 2748, \"41\": 1366, \"42\": 2392, \"43\": 4643, \"44\": 2868, \"45\": 2182, \"46\": 4010, \"47\": 3960, \"48\": 4108, \"49\": 6079, \"50\": 7154, \"51\": 3648, \"52\": 9687, \"53\": 7655, \"54\": 4633, \"55\": 8473, \"56\": 12015, \"57\": 10073, \"58\": 7268, \"59\": 9005, \"60\": 6610, \"61\": 5441, \"62\": 7631},\"TCA cycle VIII (helicobacter)\":{\"0\": 2694, \"1\": 4164, \"2\": 4260, \"3\": 5663, \"4\": 2740, \"5\": 2172, \"6\": 5467, \"7\": 3800, \"8\": 3812, \"9\": 15031, \"10\": 6842, \"11\": 3664, \"12\": 6026, \"13\": 7920, \"14\": 11284, \"15\": 5059, \"16\": 9620, \"17\": 8040, \"18\": 17238, \"19\": 8070, \"20\": 8727, \"21\": 2537, \"22\": 2276, \"23\": 459, \"24\": 2305, \"25\": 759, \"26\": 2542, \"27\": 1003, \"28\": 4305, \"29\": 2362, \"30\": 6043, \"31\": 11930, \"32\": 2621, \"33\": 5491, \"34\": 6461, \"35\": 11515, \"36\": 5839, \"37\": 8781, \"38\": 4519, \"39\": 9665, \"40\": 6446, \"41\": 2131, \"42\": 4869, \"43\": 6212, \"44\": 6725, \"45\": 3575, \"46\": 6790, \"47\": 5721, \"48\": 8102, \"49\": 7687, \"50\": 9180, \"51\": 4736, \"52\": 12197, \"53\": 9841, \"54\": 6017, \"55\": 11095, \"56\": 25901, \"57\": 13488, \"58\": 12184, \"59\": 12062, \"60\": 9246, \"61\": 7122, \"62\": 10765},\"TCA cycle I (prokaryotic)\":{\"0\": 2580, \"1\": 3876, \"2\": 3792, \"3\": 4960, \"4\": 2444, \"5\": 1589, \"6\": 5017, \"7\": 674, \"8\": 2179, \"9\": 2897, \"10\": 2743, \"11\": 2218, \"12\": 1369, \"13\": 3167, \"14\": 9893, \"15\": 4312, \"16\": 9041, \"17\": 7731, \"18\": 16586, \"19\": 5786, \"20\": 7601, \"21\": 2438, \"22\": 2121, \"23\": 391, \"24\": 2076, \"25\": 780, \"26\": 2355, \"27\": 967, \"28\": 3719, \"29\": 2390, \"30\": 5914, \"31\": 5434, \"32\": 2547, \"33\": 5742, \"34\": 4078, \"35\": 10661, \"36\": 5088, \"37\": 7800, \"38\": 4002, \"39\": 8996, \"40\": 5916, \"41\": 1532, \"42\": 4546, \"43\": 5437, \"44\": 6386, \"45\": 3304, \"46\": 6066, \"47\": 5188, \"48\": 7803, \"49\": 3620, \"50\": 4019, \"51\": 2712, \"52\": 5000, \"53\": 4625, \"54\": 2685, \"55\": 2614, \"56\": 25210, \"57\": 11730, \"58\": 7444, \"59\": 10602, \"60\": 6141, \"61\": 5297, \"62\": 9544})\"unknow\",(\"TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)\":{\"0\": 1298, \"1\": 2562, \"2\": 3715, \"3\": 4641, \"4\": 2400, \"5\": 1424, \"6\": 4122, \"7\": 728, \"8\": 2275, \"9\": 3160, \"10\": 2894, \"11\": 2317, \"12\": 1490, \"13\": 3352, \"14\": 9692, \"15\": 4331, \"16\": 5403, \"17\": 3869, \"18\": 6532, \"19\": 5747, \"20\": 7077, \"21\": 1269, \"22\": 2117, \"23\": 380, \"24\": 1776, \"25\": 774, \"26\": 1672, \"27\": 365, \"28\": 3836, \"29\": 2445, \"30\": 6050, \"31\": 5698, \"32\": 2607, \"33\": 5795, \"34\": 4227, \"35\": 6567, \"36\": 5022, \"37\": 7679, \"38\": 2995, \"39\": 4805, \"40\": 3676, \"41\": 1489, \"42\": 3089, \"43\": 5340, \"44\": 3843, \"45\": 2434, \"46\": 4960, \"47\": 4665, \"48\": 4610, \"49\": 3777, \"50\": 4214, \"51\": 2815, \"52\": 5367, \"53\": 4821, \"54\": 2805, \"55\": 2806, \"56\": 8777, \"57\": 10252, \"58\": 7317, \"59\": 10509, \"60\": 6162, \"61\": 5390, \"62\": 8031})\"CO2 Fixation\")\"TCA cycle\",((\"aerobic respiration I (cytochrome c)\":{\"0\": 1500, \"1\": 1924, \"2\": 1607, \"3\": 2068, \"4\": 889, \"5\": 803, \"6\": 2418, \"7\": 26, \"8\": 26, \"9\": 30, \"10\": 70, \"11\": 18, \"12\": 48, \"13\": 42, \"14\": 4182, \"15\": 1272, \"16\": 5748, \"17\": 4331, \"18\": 12387, \"19\": 2519, \"20\": 3421, \"21\": 1264, \"22\": 643, \"23\": 149, \"24\": 923, \"25\": 80, \"26\": 1095, \"27\": 524, \"28\": 2, \"29\": 4, \"30\": 12, \"31\": 16, \"32\": 12, \"33\": 14, \"34\": 8, \"35\": 6788, \"36\": 2188, \"37\": 3755, \"38\": 1944, \"39\": 5467, \"40\": 3436, \"41\": 691, \"42\": 2453, \"43\": 2605, \"44\": 3932, \"45\": 1668, \"46\": 2925, \"47\": 2476, \"48\": 4701, \"49\": 82, \"50\": 40, \"51\": 64, \"52\": 151, \"53\": 68, \"54\": 44, \"55\": 22, \"56\": 19835, \"57\": 5979, \"58\": 3719, \"59\": 4667, \"60\": 2329, \"61\": 1167, \"62\": 5020})\"unknown\")\"Electron Transfer Chains\")\"Generation of Precursor Metabolites and Energy\",(((\"superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation\":{\"0\": 151, \"1\": 479, \"2\": 945, \"3\": 1288, \"4\": 756, \"5\": 203, \"6\": 967, \"7\": 248, \"8\": 985, \"9\": 1154, \"10\": 1186, \"11\": 1001, \"12\": 541, \"13\": 1402, \"14\": 3276, \"15\": 1403, \"16\": 734, \"17\": 440, \"18\": 713, \"19\": 1374, \"20\": 1754, \"21\": 262, \"22\": 759, \"23\": 102, \"24\": 356, \"25\": 319, \"26\": 381, \"27\": 63, \"28\": 1821, \"29\": 1236, \"30\": 3241, \"31\": 2636, \"32\": 1162, \"33\": 3490, \"34\": 1883, \"35\": 870, \"36\": 1394, \"37\": 3079, \"38\": 607, \"39\": 821, \"40\": 621, \"41\": 290, \"42\": 519, \"43\": 1260, \"44\": 700, \"45\": 380, \"46\": 1019, \"47\": 1232, \"48\": 623, \"49\": 1654, \"50\": 1876, \"51\": 1193, \"52\": 2342, \"53\": 2037, \"54\": 1204, \"55\": 1067, \"56\": 345, \"57\": 1783, \"58\": 1180, \"59\": 2822, \"60\": 1598, \"61\": 1882, \"62\": 1405},\"L-arginine degradation II (AST pathway)\":{\"0\": 100, \"1\": 340, \"2\": 680, \"3\": 925, \"4\": 542, \"5\": 137, \"6\": 696, \"7\": 178, \"8\": 713, \"9\": 827, \"10\": 851, \"11\": 719, \"12\": 387, \"13\": 1008, \"14\": 2445, \"15\": 1031, \"16\": 496, \"17\": 297, \"18\": 474, \"19\": 980, \"20\": 1263, \"21\": 180, \"22\": 546, \"23\": 70, \"24\": 246, \"25\": 242, \"26\": 267, \"27\": 41, \"28\": 1388, \"29\": 952, \"30\": 2478, \"31\": 1969, \"32\": 934, \"33\": 2855, \"34\": 1420, \"35\": 578, \"36\": 996, \"37\": 2364, \"38\": 402, \"39\": 541, \"40\": 410, \"41\": 189, \"42\": 352, \"43\": 892, \"44\": 484, \"45\": 259, \"46\": 685, \"47\": 904, \"48\": 426, \"49\": 1241, \"50\": 1399, \"51\": 874, \"52\": 1711, \"53\": 1532, \"54\": 891, \"55\": 777, \"56\": 224, \"57\": 1221, \"58\": 798, \"59\": 2001, \"60\": 1134, \"61\": 1332, \"62\": 966},\"superpathway of L-arginine and L-ornithine degradation\":{\"0\": 151, \"1\": 479, \"2\": 945, \"3\": 1288, \"4\": 756, \"5\": 203, \"6\": 967, \"7\": 248, \"8\": 985, \"9\": 1154, \"10\": 1186, \"11\": 1001, \"12\": 541, \"13\": 1402, \"14\": 3276, \"15\": 1403, \"16\": 734, \"17\": 440, \"18\": 713, \"19\": 1374, \"20\": 1754, \"21\": 262, \"22\": 759, \"23\": 102, \"24\": 356, \"25\": 319, \"26\": 381, \"27\": 63, \"28\": 1821, \"29\": 1236, \"30\": 3241, \"31\": 2636, \"32\": 1162, \"33\": 3490, \"34\": 1883, \"35\": 870, \"36\": 1394, \"37\": 3079, \"38\": 607, \"39\": 821, \"40\": 621, \"41\": 290, \"42\": 519, \"43\": 1260, \"44\": 700, \"45\": 380, \"46\": 1019, \"47\": 1232, \"48\": 623, \"49\": 1654, \"50\": 1876, \"51\": 1193, \"52\": 2342, \"53\": 2037, \"54\": 1204, \"55\": 1067, \"56\": 345, \"57\": 1783, \"58\": 1180, \"59\": 2822, \"60\": 1598, \"61\": 1882, \"62\": 1405},\"L-lysine fermentation to acetate and butanoate\":{\"0\": 496, \"1\": 488, \"2\": 1438, \"3\": 759, \"4\": 408, \"5\": 938, \"6\": 909, \"7\": 2866, \"8\": 1424, \"9\": 12330, \"10\": 2899, \"11\": 1318, \"12\": 4534, \"13\": 3437, \"14\": 954, \"15\": 1951, \"16\": 2188, \"17\": 1471, \"18\": 2396, \"19\": 3463, \"20\": 2048, \"21\": 33, \"22\": 570, \"23\": 76, \"24\": 643, \"25\": 95, \"26\": 147, \"27\": 32, \"28\": 1618, \"29\": 762, \"30\": 830, \"31\": 7037, \"32\": 211, \"33\": 1502, \"34\": 2526, \"35\": 2894, \"36\": 1779, \"37\": 306, \"38\": 788, \"39\": 1085, \"40\": 1115, \"41\": 803, \"42\": 1010, \"43\": 2430, \"44\": 846, \"45\": 980, \"46\": 1657, \"47\": 1053, \"48\": 1760, \"49\": 3821, \"50\": 4885, \"51\": 1797, \"52\": 8287, \"53\": 4256, \"54\": 2764, \"55\": 8284, \"56\": 5201, \"57\": 5531, \"58\": 5419, \"59\": 4714, \"60\": 3841, \"61\": 2661, \"62\": 4024})\"Proteinogenic Amino Acid Degradation\")\"Amino Acid Degradation\",((\"fatty acid &beta,-oxidation I\":{\"0\": 417, \"1\": 1099, \"2\": 2210, \"3\": 2753, \"4\": 1587, \"5\": 583, \"6\": 2128, \"7\": 853, \"8\": 2347, \"9\": 3431, \"10\": 2985, \"11\": 2135, \"12\": 1673, \"13\": 3343, \"14\": 6805, \"15\": 3454, \"16\": 2016, \"17\": 1282, \"18\": 1983, \"19\": 3681, \"20\": 4224, \"21\": 540, \"22\": 1624, \"23\": 235, \"24\": 918, \"25\": 699, \"26\": 790, \"27\": 135, \"28\": 3710, \"29\": 2428, \"30\": 5575, \"31\": 6140, \"32\": 2442, \"33\": 6054, \"34\": 4267, \"35\": 2434, \"36\": 3281, \"37\": 5883, \"38\": 1469, \"39\": 1972, \"40\": 1562, \"41\": 794, \"42\": 1238, \"43\": 2938, \"44\": 1573, \"45\": 958, \"46\": 2377, \"47\": 2495, \"48\": 1582, \"49\": 3959, \"50\": 3888, \"51\": 2704, \"52\": 5382, \"53\": 4879, \"54\": 2769, \"55\": 2876, \"56\": 1187, \"57\": 4904, \"58\": 3510, \"59\": 6946, \"60\": 4309, \"61\": 4659, \"62\": 3803})\"Fatty Acid Degradation\")\"Fatty Acid and Lipid Degradation\",((\"fucose degradation\":{\"0\": 131, \"1\": 438, \"2\": 860, \"3\": 1168, \"4\": 679, \"5\": 178, \"6\": 875, \"7\": 235, \"8\": 931, \"9\": 1075, \"10\": 1110, \"11\": 942, \"12\": 500, \"13\": 1307, \"14\": 3090, \"15\": 1330, \"16\": 652, \"17\": 395, \"18\": 625, \"19\": 1274, \"20\": 1641, \"21\": 237, \"22\": 678, \"23\": 92, \"24\": 323, \"25\": 311, \"26\": 342, \"27\": 55, \"28\": 1767, \"29\": 1173, \"30\": 3070, \"31\": 2467, \"32\": 1207, \"33\": 3253, \"34\": 1839, \"35\": 761, \"36\": 1295, \"37\": 2846, \"38\": 531, \"39\": 712, \"40\": 539, \"41\": 251, \"42\": 447, \"43\": 1110, \"44\": 613, \"45\": 329, \"46\": 880, \"47\": 1079, \"48\": 544, \"49\": 1585, \"50\": 1769, \"51\": 1148, \"52\": 2109, \"53\": 1991, \"54\": 1153, \"55\": 1012, \"56\": 297, \"57\": 1603, \"58\": 1053, \"59\": 2598, \"60\": 1484, \"61\": 1746, \"62\": 1267},\"glucose and glucose-1-phosphate degradation\":{\"0\": 197, \"1\": 669, \"2\": 1319, \"3\": 1794, \"4\": 1044, \"5\": 269, \"6\": 1318, \"7\": 350, \"8\": 1388, \"9\": 1614, \"10\": 1665, \"11\": 1414, \"12\": 754, \"13\": 1964, \"14\": 4454, \"15\": 1953, \"16\": 963, \"17\": 589, \"18\": 930, \"19\": 1867, \"20\": 2433, \"21\": 353, \"22\": 1034, \"23\": 139, \"24\": 484, \"25\": 470, \"26\": 524, \"27\": 82, \"28\": 2538, \"29\": 1604, \"30\": 4195, \"31\": 3377, \"32\": 1770, \"33\": 4103, \"34\": 2692, \"35\": 1131, \"36\": 1886, \"37\": 3836, \"38\": 792, \"39\": 1060, \"40\": 801, \"41\": 375, \"42\": 690, \"43\": 1678, \"44\": 925, \"45\": 510, \"46\": 1335, \"47\": 1674, \"48\": 833, \"49\": 2269, \"50\": 2538, \"51\": 1700, \"52\": 3025, \"53\": 2928, \"54\": 1682, \"55\": 1484, \"56\": 445, \"57\": 2374, \"58\": 1563, \"59\": 3819, \"60\": 2189, \"61\": 2575, \"62\": 1870},\"Bifidobacterium shunt\":{\"0\": 1937, \"1\": 5052, \"2\": 6517, \"3\": 6307, \"4\": 2814, \"5\": 2705, \"6\": 3250, \"7\": 7072, \"8\": 15548, \"9\": 23969, \"10\": 20835, \"11\": 24652, \"12\": 8569, \"13\": 21652, \"14\": 11349, \"15\": 9390, \"16\": 10305, \"17\": 11933, \"18\": 17268, \"19\": 12095, \"20\": 15212, \"21\": 432, \"22\": 3075, \"23\": 776, \"24\": 2245, \"25\": 476, \"26\": 1111, \"27\": 357, \"28\": 10274, \"29\": 3599, \"30\": 10281, \"31\": 10992, \"32\": 10026, \"33\": 4634, \"34\": 17375, \"35\": 16684, \"36\": 12485, \"37\": 5107, \"38\": 14241, \"39\": 14729, \"40\": 10754, \"41\": 16371, \"42\": 3182, \"43\": 7588, \"44\": 3224, \"45\": 3607, \"46\": 5566, \"47\": 3539, \"48\": 4797, \"49\": 9953, \"50\": 10683, \"51\": 20714, \"52\": 11114, \"53\": 22087, \"54\": 10919, \"55\": 13841, \"56\": 23132, \"57\": 28508, \"58\": 25538, \"59\": 27095, \"60\": 20359, \"61\": 25329, \"62\": 20108},\"sucrose degradation IV (sucrose phosphorylase)\":{\"0\": 194, \"1\": 644, \"2\": 1226, \"3\": 1662, \"4\": 966, \"5\": 263, \"6\": 1273, \"7\": 349, \"8\": 1378, \"9\": 1622, \"10\": 1660, \"11\": 1410, \"12\": 757, \"13\": 1962, \"14\": 4321, \"15\": 1904, \"16\": 956, \"17\": 588, \"18\": 920, \"19\": 1848, \"20\": 2367, \"21\": 350, \"22\": 938, \"23\": 137, \"24\": 474, \"25\": 443, \"26\": 496, \"27\": 81, \"28\": 2521, \"29\": 1669, \"30\": 4344, \"31\": 3508, \"32\": 1732, \"33\": 4373, \"34\": 2657, \"35\": 1117, \"36\": 1880, \"37\": 3846, \"38\": 784, \"39\": 1048, \"40\": 795, \"41\": 375, \"42\": 656, \"43\": 1664, \"44\": 904, \"45\": 498, \"46\": 1286, \"47\": 1604, \"48\": 804, \"49\": 2264, \"50\": 2534, \"51\": 1689, \"52\": 3122, \"53\": 2882, \"54\": 1674, \"55\": 1481, \"56\": 443, \"57\": 2347, \"58\": 1560, \"59\": 3744, \"60\": 2163, \"61\": 2558, \"62\": 1853},\"sucrose degradation III (sucrose invertase)\":{\"0\": 2434, \"1\": 3693, \"2\": 4148, \"3\": 5391, \"4\": 2624, \"5\": 1827, \"6\": 5497, \"7\": 4936, \"8\": 9458, \"9\": 9290, \"10\": 10707, \"11\": 5451, \"12\": 6513, \"13\": 9014, \"14\": 17393, \"15\": 12795, \"16\": 12442, \"17\": 34149, \"18\": 8532, \"19\": 15677, \"20\": 19826, \"21\": 8986, \"22\": 1186, \"23\": 3930, \"24\": 8262, \"25\": 3600, \"26\": 3145, \"27\": 1976, \"28\": 6921, \"29\": 4488, \"30\": 7799, \"31\": 10494, \"32\": 6996, \"33\": 6107, \"34\": 10529, \"35\": 6408, \"36\": 12757, \"37\": 7705, \"38\": 6011, \"39\": 4224, \"40\": 4700, \"41\": 9562, \"42\": 1180, \"43\": 1970, \"44\": 3238, \"45\": 812, \"46\": 1921, \"47\": 2555, \"48\": 4658, \"49\": 8263, \"50\": 4785, \"51\": 7487, \"52\": 8435, \"53\": 11418, \"54\": 5491, \"55\": 5258, \"56\": 14028, \"57\": 20431, \"58\": 29646, \"59\": 15104, \"60\": 19153, \"61\": 23285, \"62\": 16940},\"galactose degradation I (Leloir pathway)\":{\"0\": 5662, \"1\": 12208, \"2\": 11337, \"3\": 15431, \"4\": 7698, \"5\": 4044, \"6\": 8780, \"7\": 3200, \"8\": 13352, \"9\": 28402, \"10\": 24274, \"11\": 24581, \"12\": 14333, \"13\": 27018, \"14\": 15286, \"15\": 10993, \"16\": 9031, \"17\": 26503, \"18\": 6313, \"19\": 12112, \"20\": 18668, \"21\": 8229, \"22\": 4231, \"23\": 6302, \"24\": 9428, \"25\": 5099, \"26\": 7613, \"27\": 3813, \"28\": 4855, \"29\": 3734, \"30\": 5619, \"31\": 6695, \"32\": 5042, \"33\": 5007, \"34\": 6589, \"35\": 4160, \"36\": 8087, \"37\": 6150, \"38\": 3765, \"39\": 2757, \"40\": 3053, \"41\": 5802, \"42\": 9246, \"43\": 9492, \"44\": 6717, \"45\": 10410, \"46\": 12588, \"47\": 7790, \"48\": 11935, \"49\": 5394, \"50\": 4549, \"51\": 4678, \"52\": 10970, \"53\": 7110, \"54\": 3807, \"55\": 3544, \"56\": 9388, \"57\": 14236, \"58\": 21732, \"59\": 10163, \"60\": 12329, \"61\": 14479, \"62\": 11027},\"superpathway of glucose and xylose degradation\":{\"0\": 476, \"1\": 1359, \"2\": 2389, \"3\": 3364, \"4\": 1913, \"5\": 581, \"6\": 2482, \"7\": 616, \"8\": 2310, \"9\": 2698, \"10\": 2784, \"11\": 2343, \"12\": 1286, \"13\": 3227, \"14\": 7618, \"15\": 3492, \"16\": 2099, \"17\": 1299, \"18\": 2098, \"19\": 3499, \"20\": 4621, \"21\": 818, \"22\": 1627, \"23\": 330, \"24\": 1062, \"25\": 886, \"26\": 1100, \"27\": 205, \"28\": 3761, \"29\": 2409, \"30\": 5773, \"31\": 5011, \"32\": 2809, \"33\": 5013, \"34\": 4186, \"35\": 2467, \"36\": 3283, \"37\": 5866, \"38\": 1757, \"39\": 2278, \"40\": 1757, \"41\": 903, \"42\": 1326, \"43\": 2814, \"44\": 1841, \"45\": 975, \"46\": 2515, \"47\": 2745, \"48\": 1697, \"49\": 3461, \"50\": 3627, \"51\": 2733, \"52\": 4611, \"53\": 4586, \"54\": 2594, \"55\": 2332, \"56\": 1113, \"57\": 4844, \"58\": 3276, \"59\": 6906, \"60\": 4184, \"61\": 4838, \"62\": 3738},\"L-rhamnose degradation I\":{\"0\": 128, \"1\": 421, \"2\": 807, \"3\": 1094, \"4\": 628, \"5\": 172, \"6\": 850, \"7\": 230, \"8\": 889, \"9\": 1011, \"10\": 1053, \"11\": 848, \"12\": 487, \"13\": 1211, \"14\": 2990, \"15\": 1303, \"16\": 644, \"17\": 395, \"18\": 603, \"19\": 1253, \"20\": 1611, \"21\": 237, \"22\": 565, \"23\": 92, \"24\": 322, \"25\": 309, \"26\": 333, \"27\": 54, \"28\": 1603, \"29\": 1106, \"30\": 2707, \"31\": 2314, \"32\": 1127, \"33\": 3028, \"34\": 1703, \"35\": 711, \"36\": 1255, \"37\": 2659, \"38\": 504, \"39\": 643, \"40\": 504, \"41\": 247, \"42\": 382, \"43\": 912, \"44\": 575, \"45\": 276, \"46\": 723, \"47\": 968, \"48\": 529, \"49\": 1487, \"50\": 1534, \"51\": 1050, \"52\": 1971, \"53\": 1834, \"54\": 1045, \"55\": 916, \"56\": 295, \"57\": 1553, \"58\": 1043, \"59\": 2406, \"60\": 1448, \"61\": 1698, \"62\": 1234})\"Sugar Degradation\",(\"glycogen degradation I (bacterial)\":{\"0\": 7979, \"1\": 17328, \"2\": 16495, \"3\": 22213, \"4\": 10903, \"5\": 5891, \"6\": 12078, \"7\": 6321, \"8\": 14862, \"9\": 17782, \"10\": 18942, \"11\": 14161, \"12\": 10406, \"13\": 18331, \"14\": 23697, \"15\": 16823, \"16\": 15998, \"17\": 36189, \"18\": 14023, \"19\": 19560, \"20\": 29163, \"21\": 10264, \"22\": 6505, \"23\": 8200, \"24\": 12226, \"25\": 6450, \"26\": 10212, \"27\": 5113, \"28\": 10683, \"29\": 5703, \"30\": 12173, \"31\": 12273, \"32\": 10801, \"33\": 7451, \"34\": 15732, \"35\": 11191, \"36\": 15520, \"37\": 10139, \"38\": 10088, \"39\": 8761, \"40\": 8088, \"41\": 13448, \"42\": 13010, \"43\": 14273, \"44\": 9864, \"45\": 14446, \"46\": 18238, \"47\": 11107, \"48\": 16727, \"49\": 10901, \"50\": 9793, \"51\": 13346, \"52\": 13340, \"53\": 18063, \"54\": 9129, \"55\": 9174, \"56\": 20224, \"57\": 29061, \"58\": 37011, \"59\": 24057, \"60\": 24120, \"61\": 28880, \"62\": 22145},\"starch degradation V\":{\"0\": 7306, \"1\": 15958, \"2\": 15166, \"3\": 20386, \"4\": 9972, \"5\": 5452, \"6\": 11109, \"7\": 7016, \"8\": 22306, \"9\": 32709, \"10\": 33295, \"11\": 38048, \"12\": 15507, \"13\": 35434, \"14\": 22242, \"15\": 15468, \"16\": 14621, \"17\": 32030, \"18\": 17489, \"19\": 17533, \"20\": 26466, \"21\": 9321, \"22\": 6261, \"23\": 7415, \"24\": 11109, \"25\": 5821, \"26\": 9290, \"27\": 4629, \"28\": 12644, \"29\": 5283, \"30\": 13345, \"31\": 11235, \"32\": 13418, \"33\": 7740, \"34\": 20637, \"35\": 16573, \"36\": 15140, \"37\": 9649, \"38\": 15981, \"39\": 16496, \"40\": 12137, \"41\": 18631, \"42\": 11905, \"43\": 13863, \"44\": 9192, \"45\": 13461, \"46\": 16755, \"47\": 10241, \"48\": 15393, \"49\": 10982, \"50\": 10789, \"51\": 23755, \"52\": 13453, \"53\": 25192, \"54\": 11938, \"55\": 11495, \"56\": 22927, \"57\": 31109, \"58\": 33839, \"59\": 30064, \"60\": 24353, \"61\": 30977, \"62\": 22466})\"Polysaccharide Degradation\")\"Carbohydrate Degradation\",((\"D-galactarate degradation I\":{\"0\": 473, \"1\": 1098, \"2\": 2276, \"3\": 2152, \"4\": 1163, \"5\": 714, \"6\": 1471, \"7\": 2989, \"8\": 2924, \"9\": 1537, \"10\": 4511, \"11\": 2905, \"12\": 709, \"13\": 4989, \"14\": 4472, \"15\": 3362, \"16\": 2922, \"17\": 2060, \"18\": 3588, \"19\": 4515, \"20\": 4148, \"21\": 285, \"22\": 1307, \"23\": 191, \"24\": 661, \"25\": 396, \"26\": 518, \"27\": 98, \"28\": 3841, \"29\": 1727, \"30\": 4260, \"31\": 4945, \"32\": 1938, \"33\": 4663, \"34\": 5209, \"35\": 4221, \"36\": 3411, \"37\": 3449, \"38\": 1725, \"39\": 2232, \"40\": 1920, \"41\": 1328, \"42\": 886, \"43\": 3051, \"44\": 1253, \"45\": 984, \"46\": 1816, \"47\": 1811, \"48\": 1124, \"49\": 5034, \"50\": 5744, \"51\": 3732, \"52\": 2851, \"53\": 7356, \"54\": 4176, \"55\": 7454, \"56\": 5943, \"57\": 8085, \"58\": 6045, \"59\": 8534, \"60\": 6086, \"61\": 5283, \"62\": 5852},\"D-galacturonate degradation I\":{\"0\": 2010, \"1\": 2991, \"2\": 4288, \"3\": 4739, \"4\": 2377, \"5\": 1991, \"6\": 4349, \"7\": 5309, \"8\": 13940, \"9\": 26636, \"10\": 24557, \"11\": 24381, \"12\": 11121, \"13\": 26621, \"14\": 13236, \"15\": 10273, \"16\": 9857, \"17\": 26793, \"18\": 7336, \"19\": 13229, \"20\": 15006, \"21\": 6283, \"22\": 1674, \"23\": 2402, \"24\": 5748, \"25\": 2351, \"26\": 2099, \"27\": 1200, \"28\": 6017, \"29\": 3661, \"30\": 6690, \"31\": 12269, \"32\": 4517, \"33\": 5542, \"34\": 8703, \"35\": 6926, \"36\": 9765, \"37\": 5920, \"38\": 4725, \"39\": 4347, \"40\": 4380, \"41\": 6833, \"42\": 1919, \"43\": 3848, \"44\": 2825, \"45\": 1626, \"46\": 3460, \"47\": 2754, \"48\": 4348, \"49\": 8344, \"50\": 7454, \"51\": 6554, \"52\": 13790, \"53\": 10362, \"54\": 6015, \"55\": 9452, \"56\": 12933, \"57\": 17463, \"58\": 24153, \"59\": 13576, \"60\": 15404, \"61\": 17155, \"62\": 14061},\"D-glucarate degradation I\":{\"0\": 381, \"1\": 865, \"2\": 1769, \"3\": 1850, \"4\": 1016, \"5\": 614, \"6\": 1322, \"7\": 1918, \"8\": 2163, \"9\": 1488, \"10\": 3162, \"11\": 2159, \"12\": 682, \"13\": 3567, \"14\": 4124, \"15\": 2627, \"16\": 2035, \"17\": 1379, \"18\": 2341, \"19\": 3307, \"20\": 3245, \"21\": 274, \"22\": 1103, \"23\": 157, \"24\": 594, \"25\": 369, \"26\": 466, \"27\": 84, \"28\": 3148, \"29\": 1541, \"30\": 3976, \"31\": 4506, \"32\": 1823, \"33\": 4267, \"34\": 3966, \"35\": 2788, \"36\": 2639, \"37\": 3355, \"38\": 1261, \"39\": 1648, \"40\": 1377, \"41\": 865, \"42\": 803, \"43\": 2438, \"44\": 1060, \"45\": 825, \"46\": 1632, \"47\": 1646, \"48\": 1023, \"49\": 3782, \"50\": 4379, \"51\": 2732, \"52\": 2695, \"53\": 5248, \"54\": 3018, \"55\": 5432, \"56\": 3554, \"57\": 5444, \"58\": 4128, \"59\": 6258, \"60\": 4253, \"61\": 3942, \"62\": 4014},\"superpathway of &beta,-D-glucuronide and D-glucuronate degradation\":{\"0\": 1790, \"1\": 2400, \"2\": 3412, \"3\": 4155, \"4\": 2210, \"5\": 1583, \"6\": 3990, \"7\": 3906, \"8\": 12401, \"9\": 33114, \"10\": 23655, \"11\": 22547, \"12\": 16168, \"13\": 26662, \"14\": 12069, \"15\": 8694, \"16\": 8212, \"17\": 24341, \"18\": 5541, \"19\": 10922, \"20\": 12609, \"21\": 6208, \"22\": 1421, \"23\": 2224, \"24\": 5349, \"25\": 2303, \"26\": 2014, \"27\": 1218, \"28\": 4677, \"29\": 3170, \"30\": 5570, \"31\": 9580, \"32\": 3729, \"33\": 5087, \"34\": 6572, \"35\": 5174, \"36\": 7852, \"37\": 5766, \"38\": 3841, \"39\": 3506, \"40\": 3492, \"41\": 5364, \"42\": 1563, \"43\": 2851, \"44\": 2463, \"45\": 1192, \"46\": 2882, \"47\": 2389, \"48\": 3583, \"49\": 6364, \"50\": 5239, \"51\": 4541, \"52\": 14168, \"53\": 7593, \"54\": 4220, \"55\": 6586, \"56\": 9624, \"57\": 13344, \"58\": 19273, \"59\": 10534, \"60\": 12306, \"61\": 13643, \"62\": 10965},\"ketogluconate metabolism\":{\"0\": 149, \"1\": 510, \"2\": 1020, \"3\": 1388, \"4\": 812, \"5\": 206, \"6\": 1045, \"7\": 267, \"8\": 1069, \"9\": 1241, \"10\": 1277, \"11\": 1078, \"12\": 580, \"13\": 1512, \"14\": 3668, \"15\": 1546, \"16\": 745, \"17\": 446, \"18\": 711, \"19\": 1470, \"20\": 1895, \"21\": 270, \"22\": 819, \"23\": 105, \"24\": 370, \"25\": 364, \"26\": 401, \"27\": 62, \"28\": 2082, \"29\": 1427, \"30\": 3717, \"31\": 2954, \"32\": 1402, \"33\": 4283, \"34\": 2129, \"35\": 867, \"36\": 1495, \"37\": 3545, \"38\": 603, \"39\": 811, \"40\": 615, \"41\": 284, \"42\": 528, \"43\": 1337, \"44\": 727, \"45\": 388, \"46\": 1027, \"47\": 1355, \"48\": 639, \"49\": 1862, \"50\": 2099, \"51\": 1311, \"52\": 2566, \"53\": 2297, \"54\": 1337, \"55\": 1166, \"56\": 336, \"57\": 1832, \"58\": 1197, \"59\": 3002, \"60\": 1700, \"61\": 1997, \"62\": 1449},\"D-fructuronate degradation\":{\"0\": 2946, \"1\": 3340, \"2\": 4923, \"3\": 6056, \"4\": 3264, \"5\": 2142, \"6\": 5434, \"7\": 4962, \"8\": 13415, \"9\": 36755, \"10\": 25242, \"11\": 23733, \"12\": 17450, \"13\": 28561, \"14\": 15457, \"15\": 10779, \"16\": 9636, \"17\": 26200, \"18\": 6905, \"19\": 13316, \"20\": 15483, \"21\": 7037, \"22\": 2233, \"23\": 2737, \"24\": 6314, \"25\": 2892, \"26\": 2678, \"27\": 2270, \"28\": 6768, \"29\": 4596, \"30\": 8927, \"31\": 12730, \"32\": 4705, \"33\": 6005, \"34\": 9094, \"35\": 7672, \"36\": 9921, \"37\": 7135, \"38\": 7009, \"39\": 8861, \"40\": 6754, \"41\": 9508, \"42\": 2658, \"43\": 3953, \"44\": 3520, \"45\": 1894, \"46\": 6693, \"47\": 3341, \"48\": 5004, \"49\": 8498, \"50\": 7193, \"51\": 6911, \"52\": 16226, \"53\": 10289, \"54\": 6276, \"55\": 8438, \"56\": 11483, \"57\": 16645, \"58\": 23254, \"59\": 13974, \"60\": 14762, \"61\": 16792, \"62\": 13463})\"Sugar Acid Degradation\",(\"acetylene degradation\":{\"0\": 6983, \"1\": 14208, \"2\": 14015, \"3\": 19676, \"4\": 10179, \"5\": 4616, \"6\": 9345, \"7\": 983, \"8\": 3036, \"9\": 3679, \"10\": 3743, \"11\": 4021, \"12\": 1669, \"13\": 4510, \"14\": 14027, \"15\": 8193, \"16\": 4585, \"17\": 3202, \"18\": 5456, \"19\": 7047, \"20\": 14323, \"21\": 4513, \"22\": 6672, \"23\": 6299, \"24\": 7761, \"25\": 5064, \"26\": 8990, \"27\": 4776, \"28\": 5190, \"29\": 3925, \"30\": 7882, \"31\": 6579, \"32\": 4352, \"33\": 8520, \"34\": 5371, \"35\": 7699, \"36\": 3858, \"37\": 8745, \"38\": 7821, \"39\": 11080, \"40\": 7192, \"41\": 7653, \"42\": 12524, \"43\": 12246, \"44\": 7792, \"45\": 13136, \"46\": 19454, \"47\": 10076, \"48\": 13274, \"49\": 4551, \"50\": 6201, \"51\": 3636, \"52\": 6699, \"53\": 5979, \"54\": 3685, \"55\": 3373, \"56\": 5155, \"57\": 9661, \"58\": 9367, \"59\": 11363, \"60\": 6113, \"61\": 7497, \"62\": 5657},\"hexitol fermentation to lactate, formate, ethanol and acetate\":{\"0\": 264, \"1\": 897, \"2\": 1776, \"3\": 2415, \"4\": 1409, \"5\": 361, \"6\": 1804, \"7\": 468, \"8\": 1854, \"9\": 2176, \"10\": 2229, \"11\": 1887, \"12\": 1017, \"13\": 2635, \"14\": 6133, \"15\": 2658, \"16\": 1299, \"17\": 790, \"18\": 1238, \"19\": 2540, \"20\": 3287, \"21\": 475, \"22\": 1393, \"23\": 186, \"24\": 651, \"25\": 636, \"26\": 704, \"27\": 110, \"28\": 3399, \"29\": 2313, \"30\": 5749, \"31\": 4831, \"32\": 2347, \"33\": 5983, \"34\": 3572, \"35\": 1500, \"36\": 2552, \"37\": 5358, \"38\": 1051, \"39\": 1404, \"40\": 1066, \"41\": 501, \"42\": 927, \"43\": 2304, \"44\": 1259, \"45\": 684, \"46\": 1794, \"47\": 2311, \"48\": 1122, \"49\": 3092, \"50\": 3451, \"51\": 2249, \"52\": 4297, \"53\": 3872, \"54\": 2247, \"55\": 1994, \"56\": 593, \"57\": 3174, \"58\": 2103, \"59\": 5060, \"60\": 2935, \"61\": 3452, \"62\": 2507},\"pyruvate fermentation to acetate and lactate II\":{\"0\": 8468, \"1\": 16723, \"2\": 15978, \"3\": 21149, \"4\": 10328, \"5\": 6074, \"6\": 12336, \"7\": 9008, \"8\": 24904, \"9\": 36182, \"10\": 37861, \"11\": 41625, \"12\": 16893, \"13\": 40092, \"14\": 26182, \"15\": 18252, \"16\": 21116, \"17\": 39749, \"18\": 30188, \"19\": 22092, \"20\": 31679, \"21\": 10850, \"22\": 6783, \"23\": 7346, \"24\": 11920, \"25\": 5743, \"26\": 9493, \"27\": 5294, \"28\": 13536, \"29\": 5765, \"30\": 13728, \"31\": 13752, \"32\": 13933, \"33\": 7622, \"34\": 22296, \"35\": 25456, \"36\": 19333, \"37\": 12368, \"38\": 20620, \"39\": 24020, \"40\": 17042, \"41\": 23130, \"42\": 12696, \"43\": 15380, \"44\": 11533, \"45\": 13350, \"46\": 19683, \"47\": 11022, \"48\": 17029, \"49\": 13134, \"50\": 12780, \"51\": 25192, \"52\": 15151, \"53\": 27419, \"54\": 13457, \"55\": 15507, \"56\": 43228, \"57\": 42447, \"58\": 42213, \"59\": 37358, \"60\": 30789, \"61\": 37067, \"62\": 31167})\"Fermentation to Acetate\",(\"superpathway of N-acetylneuraminate degradation\":{\"0\": 651, \"1\": 1957, \"2\": 3354, \"3\": 4456, \"4\": 2456, \"5\": 812, \"6\": 3387, \"7\": 1016, \"8\": 3529, \"9\": 4315, \"10\": 4327, \"11\": 3604, \"12\": 2058, \"13\": 4942, \"14\": 10078, \"15\": 5130, \"16\": 2897, \"17\": 1987, \"18\": 2751, \"19\": 5131, \"20\": 6863, \"21\": 1190, \"22\": 1938, \"23\": 486, \"24\": 1587, \"25\": 1361, \"26\": 1516, \"27\": 285, \"28\": 5046, \"29\": 3215, \"30\": 7351, \"31\": 6956, \"32\": 3828, \"33\": 6206, \"34\": 5892, \"35\": 3125, \"36\": 4634, \"37\": 6706, \"38\": 2299, \"39\": 2823, \"40\": 2281, \"41\": 1294, \"42\": 1631, \"43\": 3445, \"44\": 2342, \"45\": 1219, \"46\": 2951, \"47\": 3369, \"48\": 2447, \"49\": 4860, \"50\": 5021, \"51\": 4078, \"52\": 6531, \"53\": 6478, \"54\": 3715, \"55\": 3504, \"56\": 1531, \"57\": 6660, \"58\": 4979, \"59\": 8818, \"60\": 5834, \"61\": 6948, \"62\": 5123})\"Superpathways\",(\"glutaryl-CoA degradation\":{\"0\": 239, \"1\": 301, \"2\": 838, \"3\": 510, \"4\": 265, \"5\": 381, \"6\": 564, \"7\": 623, \"8\": 1307, \"9\": 2943, \"10\": 2339, \"11\": 2103, \"12\": 1265, \"13\": 2959, \"14\": 2004, \"15\": 1359, \"16\": 1249, \"17\": 829, \"18\": 1337, \"19\": 1898, \"20\": 1711, \"21\": 24, \"22\": 354, \"23\": 49, \"24\": 371, \"25\": 62, \"26\": 95, \"27\": 21, \"28\": 3023, \"29\": 1744, \"30\": 5567, \"31\": 4888, \"32\": 824, \"33\": 1011, \"34\": 3611, \"35\": 1574, \"36\": 2817, \"37\": 818, \"38\": 1096, \"39\": 1529, \"40\": 1324, \"41\": 723, \"42\": 576, \"43\": 1346, \"44\": 498, \"45\": 500, \"46\": 927, \"47\": 646, \"48\": 884, \"49\": 2850, \"50\": 3662, \"51\": 2894, \"52\": 4280, \"53\": 3605, \"54\": 2617, \"55\": 2514, \"56\": 797, \"57\": 3391, \"58\": 2817, \"59\": 3464, \"60\": 2236, \"61\": 4061, \"62\": 2704})\"unknow\",(\"2-methylcitrate cycle II\":{\"0\": 1248, \"1\": 1808, \"2\": 1724, \"3\": 2321, \"4\": 1094, \"5\": 749, \"6\": 2542, \"7\": 191, \"8\": 726, \"9\": 842, \"10\": 886, \"11\": 728, \"12\": 411, \"13\": 1029, \"14\": 5111, \"15\": 1759, \"16\": 4904, \"17\": 3618, \"18\": 9988, \"19\": 2577, \"20\": 3636, \"21\": 1149, \"22\": 918, \"23\": 167, \"24\": 943, \"25\": 284, \"26\": 1103, \"27\": 440, \"28\": 1389, \"29\": 954, \"30\": 2484, \"31\": 1977, \"32\": 940, \"33\": 2862, \"34\": 1424, \"35\": 5762, \"36\": 2402, \"37\": 4742, \"38\": 1873, \"39\": 4706, \"40\": 3026, \"41\": 662, \"42\": 2228, \"43\": 2648, \"44\": 3498, \"45\": 1529, \"46\": 2910, \"47\": 2674, \"48\": 4036, \"49\": 1282, \"50\": 1419, \"51\": 906, \"52\": 1787, \"53\": 1566, \"54\": 913, \"55\": 788, \"56\": 15490, \"57\": 5766, \"58\": 3378, \"59\": 4982, \"60\": 2536, \"61\": 1969, \"62\": 4788},\"2-methylcitrate cycle I\":{\"0\": 1248, \"1\": 1808, \"2\": 1724, \"3\": 2321, \"4\": 1094, \"5\": 749, \"6\": 2542, \"7\": 191, \"8\": 726, \"9\": 842, \"10\": 886, \"11\": 728, \"12\": 411, \"13\": 1029, \"14\": 5111, \"15\": 1759, \"16\": 4904, \"17\": 3618, \"18\": 9988, \"19\": 2577, \"20\": 3636, \"21\": 1149, \"22\": 918, \"23\": 167, \"24\": 943, \"25\": 285, \"26\": 1103, \"27\": 440, \"28\": 1389, \"29\": 954, \"30\": 2484, \"31\": 1977, \"32\": 940, \"33\": 2862, \"34\": 1424, \"35\": 5762, \"36\": 2402, \"37\": 4742, \"38\": 1873, \"39\": 4706, \"40\": 3026, \"41\": 662, \"42\": 2228, \"43\": 2648, \"44\": 3498, \"45\": 1529, \"46\": 2910, \"47\": 2674, \"48\": 4036, \"49\": 1282, \"50\": 1419, \"51\": 906, \"52\": 1787, \"53\": 1566, \"54\": 913, \"55\": 788, \"56\": 15490, \"57\": 5766, \"58\": 3378, \"59\": 4982, \"60\": 2536, \"61\": 1970, \"62\": 4788})\"Propanoate Degradation\")\"Carboxylate Degradation\",((\"superpathway of N-acetylglucosamine, N-acetylmannosamine and N-acetylneuraminate degradation\":{\"0\": 1503, \"1\": 2365, \"2\": 3008, \"3\": 3785, \"4\": 1888, \"5\": 1197, \"6\": 3730, \"7\": 2982, \"8\": 5251, \"9\": 6266, \"10\": 6222, \"11\": 3505, \"12\": 3984, \"13\": 5684, \"14\": 11736, \"15\": 8333, \"16\": 7592, \"17\": 24462, \"18\": 4710, \"19\": 10222, \"20\": 12389, \"21\": 6287, \"22\": 1051, \"23\": 2367, \"24\": 5403, \"25\": 2382, \"26\": 1976, \"27\": 1138, \"28\": 4581, \"29\": 3198, \"30\": 5918, \"31\": 7813, \"32\": 3800, \"33\": 4872, \"34\": 6333, \"35\": 3667, \"36\": 7900, \"37\": 5327, \"38\": 3123, \"39\": 2532, \"40\": 2827, \"41\": 5435, \"42\": 959, \"43\": 1824, \"44\": 2075, \"45\": 676, \"46\": 1604, \"47\": 2023, \"48\": 3166, \"49\": 5549, \"50\": 3875, \"51\": 4616, \"52\": 6356, \"53\": 6782, \"54\": 3693, \"55\": 3739, \"56\": 7958, \"57\": 11938, \"58\": 19378, \"59\": 8909, \"60\": 11296, \"61\": 13669, \"62\": 10103},\"superpathway of ornithine degradation\":{\"0\": 133, \"1\": 453, \"2\": 907, \"3\": 1233, \"4\": 722, \"5\": 183, \"6\": 929, \"7\": 238, \"8\": 950, \"9\": 1103, \"10\": 1135, \"11\": 958, \"12\": 516, \"13\": 1344, \"14\": 3260, \"15\": 1374, \"16\": 662, \"17\": 397, \"18\": 632, \"19\": 1307, \"20\": 1684, \"21\": 240, \"22\": 728, \"23\": 93, \"24\": 329, \"25\": 323, \"26\": 356, \"27\": 55, \"28\": 1850, \"29\": 1269, \"30\": 3304, \"31\": 2625, \"32\": 1246, \"33\": 3807, \"34\": 1893, \"35\": 771, \"36\": 1329, \"37\": 3151, \"38\": 536, \"39\": 721, \"40\": 546, \"41\": 252, \"42\": 469, \"43\": 1189, \"44\": 646, \"45\": 345, \"46\": 913, \"47\": 1205, \"48\": 568, \"49\": 1655, \"50\": 1866, \"51\": 1166, \"52\": 2281, \"53\": 2042, \"54\": 1188, \"55\": 1036, \"56\": 299, \"57\": 1628, \"58\": 1064, \"59\": 2668, \"60\": 1511, \"61\": 1775, \"62\": 1288})\"Superpathways\",(\"4-aminobutanoate degradation V\":{\"0\": 339, \"1\": 1107, \"2\": 2107, \"3\": 2556, \"4\": 1388, \"5\": 483, \"6\": 1730, \"7\": 687, \"8\": 2636, \"9\": 3163, \"10\": 3184, \"11\": 2727, \"12\": 1467, \"13\": 3739, \"14\": 6303, \"15\": 3285, \"16\": 1781, \"17\": 1099, \"18\": 1785, \"19\": 3342, \"20\": 4158, \"21\": 319, \"22\": 1503, \"23\": 209, \"24\": 721, \"25\": 388, \"26\": 604, \"27\": 115, \"28\": 4513, \"29\": 2404, \"30\": 6720, \"31\": 6227, \"32\": 3175, \"33\": 5724, \"34\": 4994, \"35\": 2157, \"36\": 3419, \"37\": 4667, \"38\": 1512, \"39\": 1978, \"40\": 1496, \"41\": 734, \"42\": 1032, \"43\": 2786, \"44\": 1347, \"45\": 839, \"46\": 1982, \"47\": 2132, \"48\": 1328, \"49\": 4164, \"50\": 4709, \"51\": 3259, \"52\": 5719, \"53\": 5521, \"54\": 3159, \"55\": 2904, \"56\": 877, \"57\": 4508, \"58\": 2968, \"59\": 7066, \"60\": 4095, \"61\": 4802, \"62\": 3529})\"4-Aminobutanoate Degradation\",(\"allantoin degradation to glyoxylate III\":{\"0\": 100, \"1\": 340, \"2\": 680, \"3\": 925, \"4\": 542, \"5\": 137, \"6\": 696, \"7\": 178, \"8\": 713, \"9\": 827, \"10\": 851, \"11\": 719, \"12\": 387, \"13\": 1008, \"14\": 2445, \"15\": 1031, \"16\": 496, \"17\": 298, \"18\": 474, \"19\": 980, \"20\": 1263, \"21\": 180, \"22\": 546, \"23\": 70, \"24\": 246, \"25\": 242, \"26\": 267, \"27\": 41, \"28\": 1388, \"29\": 952, \"30\": 2478, \"31\": 1969, \"32\": 935, \"33\": 2855, \"34\": 1420, \"35\": 578, \"36\": 997, \"37\": 2364, \"38\": 402, \"39\": 541, \"40\": 410, \"41\": 189, \"42\": 352, \"43\": 892, \"44\": 485, \"45\": 259, \"46\": 685, \"47\": 904, \"48\": 426, \"49\": 1241, \"50\": 1399, \"51\": 874, \"52\": 1711, \"53\": 1532, \"54\": 891, \"55\": 777, \"56\": 224, \"57\": 1221, \"58\": 798, \"59\": 2001, \"60\": 1134, \"61\": 1332, \"62\": 966},\"allantoin degradation IV (anaerobic)\":{\"0\": 118, \"1\": 403, \"2\": 797, \"3\": 1083, \"4\": 632, \"5\": 163, \"6\": 820, \"7\": 213, \"8\": 846, \"9\": 976, \"10\": 1009, \"11\": 854, \"12\": 457, \"13\": 1190, \"14\": 2855, \"15\": 1216, \"16\": 591, \"17\": 356, \"18\": 565, \"19\": 1161, \"20\": 1495, \"21\": 214, \"22\": 630, \"23\": 84, \"24\": 293, \"25\": 286, \"26\": 315, \"27\": 49, \"28\": 1625, \"29\": 1104, \"30\": 2854, \"31\": 2294, \"32\": 1104, \"33\": 3266, \"34\": 1676, \"35\": 687, \"36\": 1177, \"37\": 2717, \"38\": 479, \"39\": 641, \"40\": 485, \"41\": 226, \"42\": 414, \"43\": 1054, \"44\": 572, \"45\": 308, \"46\": 805, \"47\": 1057, \"48\": 505, \"49\": 1457, \"50\": 1636, \"51\": 1038, \"52\": 1989, \"53\": 1813, \"54\": 1051, \"55\": 921, \"56\": 268, \"57\": 1452, \"58\": 951, \"59\": 2365, \"60\": 1346, \"61\": 1580, \"62\": 1148})\"Allantoin Degradation\",(\"superpathway of phenylethylamine degradation\":{\"0\": 149, \"1\": 513, \"2\": 1001, \"3\": 1350, \"4\": 778, \"5\": 205, \"6\": 979, \"7\": 264, \"8\": 1012, \"9\": 1059, \"10\": 1210, \"11\": 1065, \"12\": 492, \"13\": 1433, \"14\": 3464, \"15\": 1516, \"16\": 749, \"17\": 453, \"18\": 727, \"19\": 1448, \"20\": 1891, \"21\": 256, \"22\": 787, \"23\": 105, \"24\": 356, \"25\": 336, \"26\": 382, \"27\": 61, \"28\": 1918, \"29\": 1280, \"30\": 3191, \"31\": 2514, \"32\": 1358, \"33\": 3611, \"34\": 1967, \"35\": 886, \"36\": 1378, \"37\": 3145, \"38\": 621, \"39\": 831, \"40\": 627, \"41\": 294, \"42\": 498, \"43\": 1298, \"44\": 694, \"45\": 380, \"46\": 976, \"47\": 1253, \"48\": 607, \"49\": 1691, \"50\": 1980, \"51\": 1241, \"52\": 2171, \"53\": 2143, \"54\": 1262, \"55\": 1108, \"56\": 348, \"57\": 1845, \"58\": 1211, \"59\": 2960, \"60\": 1671, \"61\": 1969, \"62\": 1434})\"Aromatic Compound Degradation\")\"Amine and Polyamine Degradation\",((\"superpathway of glycol metabolism and degradation\":{\"0\": 156, \"1\": 525, \"2\": 987, \"3\": 1349, \"4\": 784, \"5\": 212, \"6\": 1056, \"7\": 275, \"8\": 1056, \"9\": 1202, \"10\": 1250, \"11\": 1030, \"12\": 579, \"13\": 1443, \"14\": 3536, \"15\": 1550, \"16\": 770, \"17\": 473, \"18\": 720, \"19\": 1500, \"20\": 1920, \"21\": 284, \"22\": 676, \"23\": 111, \"24\": 386, \"25\": 370, \"26\": 408, \"27\": 65, \"28\": 1906, \"29\": 1344, \"30\": 3142, \"31\": 2714, \"32\": 1357, \"33\": 3563, \"34\": 2014, \"35\": 842, \"36\": 1490, \"37\": 3117, \"38\": 600, \"39\": 757, \"40\": 597, \"41\": 296, \"42\": 531, \"43\": 1361, \"44\": 742, \"45\": 405, \"46\": 1026, \"47\": 1339, \"48\": 658, \"49\": 1758, \"50\": 1841, \"51\": 1246, \"52\": 2344, \"53\": 2172, \"54\": 1246, \"55\": 1093, \"56\": 353, \"57\": 1849, \"58\": 1248, \"59\": 2840, \"60\": 1724, \"61\": 2021, \"62\": 1469})\"Superpathways\",(\"L-1,2-propanediol degradation\":{\"0\": 1316, \"1\": 1303, \"2\": 3713, \"3\": 2012, \"4\": 1082, \"5\": 2286, \"6\": 2322, \"7\": 5558, \"8\": 3604, \"9\": 24847, \"10\": 7195, \"11\": 3415, \"12\": 9662, \"13\": 8444, \"14\": 2475, \"15\": 4791, \"16\": 5121, \"17\": 3806, \"18\": 5668, \"19\": 7931, \"20\": 5210, \"21\": 88, \"22\": 1476, \"23\": 206, \"24\": 1686, \"25\": 252, \"26\": 394, \"27\": 87, \"28\": 3889, \"29\": 1852, \"30\": 2120, \"31\": 13563, \"32\": 556, \"33\": 3691, \"34\": 6029, \"35\": 6832, \"36\": 4271, \"37\": 803, \"38\": 2041, \"39\": 2789, \"40\": 2793, \"41\": 2067, \"42\": 2657, \"43\": 5734, \"44\": 2137, \"45\": 2582, \"46\": 4330, \"47\": 2663, \"48\": 4460, \"49\": 8046, \"50\": 9972, \"51\": 4420, \"52\": 15785, \"53\": 9773, \"54\": 6092, \"55\": 14450, \"56\": 11253, \"57\": 12799, \"58\": 12550, \"59\": 11150, \"60\": 9018, \"61\": 6564, \"62\": 9222})\"Generation of Precursor Metabolites and Energy\")\"Alcohol Degradation\",((\"3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation to 2-oxopent-4-enoate\":{\"0\": 109, \"1\": 371, \"2\": 742, \"3\": 1009, \"4\": 591, \"5\": 149, \"6\": 760, \"7\": 194, \"8\": 778, \"9\": 902, \"10\": 929, \"11\": 784, \"12\": 422, \"13\": 1099, \"14\": 2668, \"15\": 1124, \"16\": 542, \"17\": 325, \"18\": 517, \"19\": 1069, \"20\": 1378, \"21\": 196, \"22\": 595, \"23\": 76, \"24\": 269, \"25\": 265, \"26\": 292, \"27\": 45, \"28\": 1514, \"29\": 1038, \"30\": 2704, \"31\": 2148, \"32\": 1019, \"33\": 3115, \"34\": 1549, \"35\": 631, \"36\": 1087, \"37\": 2578, \"38\": 439, \"39\": 590, \"40\": 447, \"41\": 206, \"42\": 384, \"43\": 973, \"44\": 529, \"45\": 282, \"46\": 747, \"47\": 986, \"48\": 465, \"49\": 1354, \"50\": 1526, \"51\": 954, \"52\": 1867, \"53\": 1671, \"54\": 972, \"55\": 848, \"56\": 244, \"57\": 1332, \"58\": 871, \"59\": 2183, \"60\": 1237, \"61\": 1453, \"62\": 1054},\"cinnamate and 3-hydroxycinnamate degradation to 2-oxopent-4-enoate\":{\"0\": 109, \"1\": 371, \"2\": 742, \"3\": 1009, \"4\": 591, \"5\": 149, \"6\": 760, \"7\": 194, \"8\": 778, \"9\": 902, \"10\": 929, \"11\": 784, \"12\": 422, \"13\": 1099, \"14\": 2668, \"15\": 1124, \"16\": 542, \"17\": 325, \"18\": 517, \"19\": 1069, \"20\": 1378, \"21\": 196, \"22\": 595, \"23\": 76, \"24\": 269, \"25\": 265, \"26\": 292, \"27\": 45, \"28\": 1514, \"29\": 1038, \"30\": 2704, \"31\": 2148, \"32\": 1019, \"33\": 3115, \"34\": 1549, \"35\": 631, \"36\": 1087, \"37\": 2578, \"38\": 439, \"39\": 590, \"40\": 447, \"41\": 206, \"42\": 384, \"43\": 973, \"44\": 529, \"45\": 282, \"46\": 747, \"47\": 986, \"48\": 465, \"49\": 1354, \"50\": 1526, \"51\": 954, \"52\": 1867, \"53\": 1671, \"54\": 972, \"55\": 848, \"56\": 244, \"57\": 1332, \"58\": 871, \"59\": 2183, \"60\": 1237, \"61\": 1453, \"62\": 1054},\"phenylacetate degradation I (aerobic)\":{\"0\": 167, \"1\": 578, \"2\": 1118, \"3\": 1504, \"4\": 861, \"5\": 230, \"6\": 1076, \"7\": 296, \"8\": 1116, \"9\": 1129, \"10\": 1336, \"11\": 1192, \"12\": 524, \"13\": 1581, \"14\": 3818, \"15\": 1693, \"16\": 844, \"17\": 513, \"18\": 824, \"19\": 1620, \"20\": 2126, \"21\": 282, \"22\": 872, \"23\": 118, \"24\": 395, \"25\": 368, \"26\": 422, \"27\": 69, \"28\": 2097, \"29\": 1386, \"30\": 3409, \"31\": 2679, \"32\": 1510, \"33\": 3837, \"34\": 2152, \"35\": 1005, \"36\": 1506, \"37\": 3395, \"38\": 707, \"39\": 943, \"40\": 711, \"41\": 336, \"42\": 549, \"43\": 1445, \"44\": 767, \"45\": 424, \"46\": 1078, \"47\": 1371, \"48\": 670, \"49\": 1838, \"50\": 2181, \"51\": 1369, \"52\": 2308, \"53\": 2352, \"54\": 1391, \"55\": 1224, \"56\": 397, \"57\": 2082, \"58\": 1369, \"59\": 3312, \"60\": 1867, \"61\": 2203, \"62\": 1607})\"Phenolic Compound Degradation\",(\"3-phenylpropanoate and 3-(3-hydroxyphenyl)propanoate degradation\":{\"0\": 136, \"1\": 461, \"2\": 912, \"3\": 1241, \"4\": 725, \"5\": 185, \"6\": 923, \"7\": 219, \"8\": 850, \"9\": 989, \"10\": 1017, \"11\": 883, \"12\": 461, \"13\": 1208, \"14\": 3074, \"15\": 1323, \"16\": 641, \"17\": 385, \"18\": 619, \"19\": 1246, \"20\": 1654, \"21\": 241, \"22\": 721, \"23\": 95, \"24\": 333, \"25\": 325, \"26\": 362, \"27\": 56, \"28\": 1653, \"29\": 1161, \"30\": 2905, \"31\": 2309, \"32\": 1141, \"33\": 3372, \"34\": 1680, \"35\": 761, \"36\": 1182, \"37\": 2858, \"38\": 536, \"39\": 723, \"40\": 545, \"41\": 256, \"42\": 477, \"43\": 1186, \"44\": 647, \"45\": 352, \"46\": 924, \"47\": 1192, \"48\": 576, \"49\": 1470, \"50\": 1706, \"51\": 1041, \"52\": 2045, \"53\": 1817, \"54\": 1069, \"55\": 933, \"56\": 299, \"57\": 1558, \"58\": 1041, \"59\": 2492, \"60\": 1397, \"61\": 1648, \"62\": 1201})\"Superpathways\")\"Aromatic Compound Degradation\",((\"superpathway of hexitol degradation (bacteria)\":{\"0\": 310, \"1\": 1043, \"2\": 2000, \"3\": 2716, \"4\": 1567, \"5\": 418, \"6\": 1990, \"7\": 537, \"8\": 2130, \"9\": 2535, \"10\": 2592, \"11\": 2213, \"12\": 1185, \"13\": 3056, \"14\": 6288, \"15\": 2863, \"16\": 1453, \"17\": 903, \"18\": 1405, \"19\": 2769, \"20\": 3648, \"21\": 547, \"22\": 1497, \"23\": 220, \"24\": 753, \"25\": 714, \"26\": 809, \"27\": 130, \"28\": 3475, \"29\": 2239, \"30\": 5558, \"31\": 4752, \"32\": 2470, \"33\": 5348, \"34\": 3758, \"35\": 1669, \"36\": 2669, \"37\": 5199, \"38\": 1148, \"39\": 1520, \"40\": 1164, \"41\": 569, \"42\": 1068, \"43\": 2546, \"44\": 1417, \"45\": 798, \"46\": 2043, \"47\": 2491, \"48\": 1297, \"49\": 3182, \"50\": 3569, \"51\": 2429, \"52\": 4499, \"53\": 4143, \"54\": 2390, \"55\": 2199, \"56\": 695, \"57\": 3525, \"58\": 2391, \"59\": 5417, \"60\": 3162, \"61\": 3684, \"62\": 2743},\"4-deoxy-L-threo-hex-4-enopyranuronate degradation\":{\"0\": 194, \"1\": 636, \"2\": 1223, \"3\": 1663, \"4\": 963, \"5\": 261, \"6\": 1261, \"7\": 345, \"8\": 1355, \"9\": 1619, \"10\": 1648, \"11\": 1396, \"12\": 757, \"13\": 1948, \"14\": 4259, \"15\": 1901, \"16\": 951, \"17\": 589, \"18\": 898, \"19\": 1838, \"20\": 2367, \"21\": 352, \"22\": 904, \"23\": 138, \"24\": 480, \"25\": 457, \"26\": 503, \"27\": 81, \"28\": 2302, \"29\": 1577, \"30\": 3880, \"31\": 3410, \"32\": 1565, \"33\": 3723, \"34\": 2466, \"35\": 1086, \"36\": 1831, \"37\": 3518, \"38\": 766, \"39\": 1026, \"40\": 781, \"41\": 373, \"42\": 643, \"43\": 1492, \"44\": 876, \"45\": 470, \"46\": 1267, \"47\": 1460, \"48\": 801, \"49\": 2164, \"50\": 2353, \"51\": 1593, \"52\": 3097, \"53\": 2665, \"54\": 1573, \"55\": 1428, \"56\": 441, \"57\": 2296, \"58\": 1555, \"59\": 3519, \"60\": 2118, \"61\": 2501, \"62\": 1817},\"myo-, chiro- and scillo-inositol degradation\":{\"0\": 641, \"1\": 2778, \"2\": 3181, \"3\": 3250, \"4\": 1336, \"5\": 1034, \"6\": 1106, \"7\": 6803, \"8\": 14811, \"9\": 4550, \"10\": 14834, \"11\": 20318, \"12\": 1677, \"13\": 12859, \"14\": 6669, \"15\": 6234, \"16\": 7049, \"17\": 6608, \"18\": 15555, \"19\": 8264, \"20\": 10346, \"21\": 189, \"22\": 1734, \"23\": 342, \"24\": 634, \"25\": 158, \"26\": 458, \"27\": 155, \"28\": 9821, \"29\": 1255, \"30\": 5887, \"31\": 5749, \"32\": 12533, \"33\": 3214, \"34\": 19607, \"35\": 15708, \"36\": 9442, \"37\": 3147, \"38\": 14939, \"39\": 12017, \"40\": 7310, \"41\": 10525, \"42\": 808, \"43\": 3783, \"44\": 1226, \"45\": 1198, \"46\": 1742, \"47\": 1258, \"48\": 1169, \"49\": 8570, \"50\": 8616, \"51\": 23683, \"52\": 3228, \"53\": 27207, \"54\": 10532, \"55\": 13671, \"56\": 18745, \"57\": 27217, \"58\": 12406, \"59\": 29503, \"60\": 20529, \"61\": 22267, \"62\": 18046},\"sulfoglycolysis\":{\"0\": 100, \"1\": 340, \"2\": 680, \"3\": 925, \"4\": 542, \"5\": 137, \"6\": 696, \"7\": 178, \"8\": 713, \"9\": 827, \"10\": 851, \"11\": 719, \"12\": 387, \"13\": 1008, \"14\": 2445, \"15\": 1031, \"16\": 496, \"17\": 298, \"18\": 474, \"19\": 980, \"20\": 1263, \"21\": 180, \"22\": 546, \"23\": 70, \"24\": 246, \"25\": 242, \"26\": 267, \"27\": 41, \"28\": 1388, \"29\": 952, \"30\": 2478, \"31\": 1969, \"32\": 935, \"33\": 2855, \"34\": 1420, \"35\": 578, \"36\": 997, \"37\": 2364, \"38\": 402, \"39\": 541, \"40\": 410, \"41\": 189, \"42\": 352, \"43\": 892, \"44\": 485, \"45\": 259, \"46\": 685, \"47\": 904, \"48\": 426, \"49\": 1241, \"50\": 1399, \"51\": 874, \"52\": 1711, \"53\": 1532, \"54\": 891, \"55\": 777, \"56\": 224, \"57\": 1221, \"58\": 798, \"59\": 2001, \"60\": 1134, \"61\": 1332, \"62\": 966},\"anhydromuropeptides recycling\":{\"0\": 942, \"1\": 2469, \"2\": 4662, \"3\": 5695, \"4\": 3206, \"5\": 1268, \"6\": 4313, \"7\": 1878, \"8\": 5396, \"9\": 8856, \"10\": 7250, \"11\": 5719, \"12\": 4016, \"13\": 8514, \"14\": 12227, \"15\": 6612, \"16\": 4217, \"17\": 2834, \"18\": 4276, \"19\": 7217, \"20\": 8574, \"21\": 1164, \"22\": 3097, \"23\": 514, \"24\": 1928, \"25\": 1309, \"26\": 1707, \"27\": 309, \"28\": 7393, \"29\": 4181, \"30\": 10361, \"31\": 10689, \"32\": 5006, \"33\": 8453, \"34\": 8922, \"35\": 5065, \"36\": 6527, \"37\": 8951, \"38\": 3148, \"39\": 4193, \"40\": 3300, \"41\": 1784, \"42\": 2774, \"43\": 6064, \"44\": 3356, \"45\": 2174, \"46\": 5188, \"47\": 5060, \"48\": 3597, \"49\": 7517, \"50\": 8459, \"51\": 6355, \"52\": 11256, \"53\": 10463, \"54\": 6046, \"55\": 6739, \"56\": 2675, \"57\": 10181, \"58\": 7519, \"59\": 13500, \"60\": 8649, \"61\": 9564, \"62\": 7820})\"Sugar Derivative Degradation\")\"Secondary Metabolite Degradation\",((\"superpathway of methylglyoxal degradation\":{\"0\": 124, \"1\": 423, \"2\": 843, \"3\": 1146, \"4\": 670, \"5\": 170, \"6\": 857, \"7\": 221, \"8\": 883, \"9\": 1028, \"10\": 1057, \"11\": 894, \"12\": 480, \"13\": 1250, \"14\": 2967, \"15\": 1267, \"16\": 614, \"17\": 371, \"18\": 588, \"19\": 1206, \"20\": 1561, \"21\": 224, \"22\": 671, \"23\": 87, \"24\": 307, \"25\": 301, \"26\": 332, \"27\": 51, \"28\": 1678, \"29\": 1131, \"30\": 2931, \"31\": 2349, \"32\": 1142, \"33\": 3186, \"34\": 1737, \"35\": 716, \"36\": 1222, \"37\": 2739, \"38\": 499, \"39\": 670, \"40\": 507, \"41\": 236, \"42\": 438, \"43\": 1094, \"44\": 597, \"45\": 322, \"46\": 849, \"47\": 1105, \"48\": 530, \"49\": 1503, \"50\": 1691, \"51\": 1080, \"52\": 2071, \"53\": 1879, \"54\": 1090, \"55\": 955, \"56\": 279, \"57\": 1510, \"58\": 991, \"59\": 2453, \"60\": 1398, \"61\": 1644, \"62\": 1193})\"Superpathways\")\"Aldehyde Degradation\",((\"reductive TCA cycle I\":{\"0\": 577, \"1\": 1632, \"2\": 2538, \"3\": 3412, \"4\": 1820, \"5\": 673, \"6\": 2860, \"7\": 546, \"8\": 2023, \"9\": 2450, \"10\": 2452, \"11\": 2057, \"12\": 1140, \"13\": 2869, \"14\": 7917, \"15\": 3235, \"16\": 2708, \"17\": 1724, \"18\": 2886, \"19\": 3727, \"20\": 4937, \"21\": 900, \"22\": 1666, \"23\": 265, \"24\": 1081, \"25\": 655, \"26\": 1179, \"27\": 234, \"28\": 3655, \"29\": 2331, \"30\": 6094, \"31\": 5067, \"32\": 2522, \"33\": 5759, \"34\": 3897, \"35\": 3175, \"36\": 3626, \"37\": 6879, \"38\": 1888, \"39\": 2896, \"40\": 2127, \"41\": 840, \"42\": 1757, \"43\": 3478, \"44\": 2423, \"45\": 1287, \"46\": 3078, \"47\": 3379, \"48\": 2307, \"49\": 3350, \"50\": 3743, \"51\": 2498, \"52\": 4495, \"53\": 4283, \"54\": 2478, \"55\": 2261, \"56\": 1497, \"57\": 5699, \"58\": 3702, \"59\": 7384, \"60\": 4120, \"61\": 4058, \"62\": 4539},\"incomplete reductive TCA cycle\":{\"0\": 3213, \"1\": 5308, \"2\": 5773, \"3\": 7364, \"4\": 3349, \"5\": 2453, \"6\": 6781, \"7\": 1134, \"8\": 3895, \"9\": 5020, \"10\": 4902, \"11\": 4025, \"12\": 2396, \"13\": 5683, \"14\": 15385, \"15\": 6630, \"16\": 12964, \"17\": 10047, \"18\": 23130, \"19\": 9391, \"20\": 12636, \"21\": 2950, \"22\": 2983, \"23\": 597, \"24\": 2905, \"25\": 652, \"26\": 3052, \"27\": 1135, \"28\": 6168, \"29\": 3103, \"30\": 9404, \"31\": 7786, \"32\": 4413, \"33\": 5850, \"34\": 6988, \"35\": 16214, \"36\": 9130, \"37\": 11329, \"38\": 6834, \"39\": 13235, \"40\": 9026, \"41\": 3003, \"42\": 5942, \"43\": 8406, \"44\": 8335, \"45\": 4447, \"46\": 8666, \"47\": 6896, \"48\": 9766, \"49\": 5737, \"50\": 6376, \"51\": 4787, \"52\": 7952, \"53\": 7908, \"54\": 4527, \"55\": 4324, \"56\": 34086, \"57\": 20635, \"58\": 13295, \"59\": 19251, \"60\": 10688, \"61\": 9265, \"62\": 16321})\"CO2 Fixation\")\"C1 Compound Utilization and Assimilation\",((\"urea cycle\":{\"0\": 424, \"1\": 414, \"2\": 1205, \"3\": 638, \"4\": 343, \"5\": 777, \"6\": 759, \"7\": 2166, \"8\": 1186, \"9\": 9345, \"10\": 2403, \"11\": 1100, \"12\": 3546, \"13\": 2831, \"14\": 790, \"15\": 1598, \"16\": 1805, \"17\": 1244, \"18\": 2000, \"19\": 2789, \"20\": 1704, \"21\": 27, \"22\": 474, \"23\": 65, \"24\": 543, \"25\": 79, \"26\": 124, \"27\": 27, \"28\": 1302, \"29\": 607, \"30\": 678, \"31\": 4834, \"32\": 176, \"33\": 1169, \"34\": 2045, \"35\": 2386, \"36\": 1445, \"37\": 254, \"38\": 658, \"39\": 903, \"40\": 919, \"41\": 664, \"42\": 860, \"43\": 1984, \"44\": 710, \"45\": 838, \"46\": 1402, \"47\": 875, \"48\": 1486, \"49\": 2893, \"50\": 3599, \"51\": 1471, \"52\": 5761, \"53\": 3418, \"54\": 2164, \"55\": 5758, \"56\": 4318, \"57\": 4505, \"58\": 4361, \"59\": 3837, \"60\": 3132, \"61\": 2179, \"62\": 3267})\"Nitrogen Compound Metabolism\",(\"methylphosphonate degradation I\":{\"0\": 122, \"1\": 418, \"2\": 837, \"3\": 1138, \"4\": 666, \"5\": 169, \"6\": 857, \"7\": 219, \"8\": 877, \"9\": 1018, \"10\": 1048, \"11\": 885, \"12\": 476, \"13\": 1240, \"14\": 3010, \"15\": 1269, \"16\": 611, \"17\": 366, \"18\": 584, \"19\": 1206, \"20\": 1555, \"21\": 221, \"22\": 672, \"23\": 86, \"24\": 303, \"25\": 298, \"26\": 329, \"27\": 51, \"28\": 1708, \"29\": 1171, \"30\": 3050, \"31\": 2423, \"32\": 1150, \"33\": 3514, \"34\": 1747, \"35\": 712, \"36\": 1226, \"37\": 2909, \"38\": 495, \"39\": 666, \"40\": 504, \"41\": 233, \"42\": 433, \"43\": 1097, \"44\": 596, \"45\": 318, \"46\": 843, \"47\": 1112, \"48\": 525, \"49\": 1527, \"50\": 1722, \"51\": 1076, \"52\": 2106, \"53\": 1885, \"54\": 1097, \"55\": 956, \"56\": 276, \"57\": 1503, \"58\": 982, \"59\": 2463, \"60\": 1395, \"61\": 1639, \"62\": 1189})\"Phosphorus Compound Metabolism\",(\"sulfate reduction I (assimilatory)\":{\"0\": 345, \"1\": 1010, \"2\": 1622, \"3\": 2198, \"4\": 1186, \"5\": 410, \"6\": 1871, \"7\": 250, \"8\": 963, \"9\": 1118, \"10\": 1170, \"11\": 967, \"12\": 539, \"13\": 1365, \"14\": 5428, \"15\": 2019, \"16\": 1664, \"17\": 1027, \"18\": 1736, \"19\": 2367, \"20\": 3148, \"21\": 557, \"22\": 1059, \"23\": 163, \"24\": 671, \"25\": 364, \"26\": 744, \"27\": 140, \"28\": 1851, \"29\": 1271, \"30\": 3310, \"31\": 2633, \"32\": 1252, \"33\": 3814, \"34\": 1897, \"35\": 1941, \"36\": 2334, \"37\": 5163, \"38\": 1156, \"39\": 1776, \"40\": 1306, \"41\": 501, \"42\": 1088, \"43\": 2245, \"44\": 1538, \"45\": 788, \"46\": 1921, \"47\": 2272, \"48\": 1420, \"49\": 1695, \"50\": 1886, \"51\": 1197, \"52\": 2357, \"53\": 2076, \"54\": 1210, \"55\": 1047, \"56\": 871, \"57\": 3523, \"58\": 2236, \"59\": 4742, \"60\": 2582, \"61\": 2361, \"62\": 2822},\"superpathway of sulfate assimilation and cysteine biosynthesis\":{\"0\": 732, \"1\": 2057, \"2\": 3098, \"3\": 4206, \"4\": 2253, \"5\": 836, \"6\": 3427, \"7\": 541, \"8\": 2037, \"9\": 2403, \"10\": 2493, \"11\": 2094, \"12\": 1144, \"13\": 2893, \"14\": 9137, \"15\": 3798, \"16\": 3329, \"17\": 2177, \"18\": 3610, \"19\": 4506, \"20\": 6013, \"21\": 1129, \"22\": 1938, \"23\": 350, \"24\": 1355, \"25\": 708, \"26\": 1473, \"27\": 303, \"28\": 3490, \"29\": 2174, \"30\": 5648, \"31\": 4654, \"32\": 2483, \"33\": 5094, \"34\": 3800, \"35\": 3962, \"36\": 4416, \"37\": 7351, \"38\": 2423, \"39\": 3657, \"40\": 2677, \"41\": 1097, \"42\": 2178, \"43\": 4235, \"44\": 2927, \"45\": 1634, \"46\": 3828, \"47\": 3989, \"48\": 2835, \"49\": 3200, \"50\": 3529, \"51\": 2529, \"52\": 4379, \"53\": 4210, \"54\": 2420, \"55\": 2151, \"56\": 1904, \"57\": 7047, \"58\": 4625, \"59\": 9042, \"60\": 5126, \"61\": 4839, \"62\": 5573})\"Sulfur Compound Metabolism\")\"Inorganic Nutrient Metabolism\",((\"urate biosynthesis/inosine 5'-phosphate degradation\":{\"0\": 2649, \"1\": 8344, \"2\": 10516, \"3\": 12209, \"4\": 5970, \"5\": 3511, \"6\": 6665, \"7\": 8677, \"8\": 23251, \"9\": 25467, \"10\": 31677, \"11\": 37653, \"12\": 9525, \"13\": 31571, \"14\": 21384, \"15\": 15020, \"16\": 15391, \"17\": 17347, \"18\": 25621, \"19\": 18145, \"20\": 24460, \"21\": 2569, \"22\": 5632, \"23\": 1476, \"24\": 3708, \"25\": 2008, \"26\": 3003, \"27\": 955, \"28\": 13789, \"29\": 5356, \"30\": 13930, \"31\": 13207, \"32\": 14315, \"33\": 10316, \"34\": 22950, \"35\": 23412, \"36\": 17304, \"37\": 10993, \"38\": 19966, \"39\": 21293, \"40\": 14749, \"41\": 20668, \"42\": 5090, \"43\": 12030, \"44\": 6270, \"45\": 5266, \"46\": 9184, \"47\": 7432, \"48\": 7938, \"49\": 12829, \"50\": 13027, \"51\": 26588, \"52\": 14458, \"53\": 28707, \"54\": 13752, \"55\": 15827, \"56\": 33469, \"57\": 39284, \"58\": 32607, \"59\": 37144, \"60\": 28528, \"61\": 34378, \"62\": 28030},\"guanosine nucleotides degradation III\":{\"0\": 2501, \"1\": 8060, \"2\": 10122, \"3\": 11652, \"4\": 5691, \"5\": 3328, \"6\": 6104, \"7\": 7557, \"8\": 13853, \"9\": 14583, \"10\": 15570, \"11\": 19039, \"12\": 5450, \"13\": 14966, \"14\": 14171, \"15\": 10561, \"16\": 9401, \"17\": 7997, \"18\": 16602, \"19\": 12293, \"20\": 17623, \"21\": 2098, \"22\": 5162, \"23\": 1439, \"24\": 3421, \"25\": 1909, \"26\": 2902, \"27\": 916, \"28\": 11093, \"29\": 4194, \"30\": 11051, \"31\": 11946, \"32\": 11911, \"33\": 10316, \"34\": 18994, \"35\": 14992, \"36\": 10196, \"37\": 10786, \"38\": 12871, \"39\": 11026, \"40\": 7382, \"41\": 9951, \"42\": 4917, \"43\": 11582, \"44\": 5602, \"45\": 5178, \"46\": 8622, \"47\": 7039, \"48\": 7494, \"49\": 11116, \"50\": 12847, \"51\": 21013, \"52\": 11243, \"53\": 25968, \"54\": 11632, \"55\": 17211, \"56\": 23429, \"57\": 28002, \"58\": 18564, \"59\": 29115, \"60\": 20193, \"61\": 21650, \"62\": 18434},\"purine ribonucleosides degradation\":{\"0\": 6436, \"1\": 13498, \"2\": 12972, \"3\": 17496, \"4\": 8720, \"5\": 4633, \"6\": 9047, \"7\": 4833, \"8\": 9516, \"9\": 6899, \"10\": 10451, \"11\": 7648, \"12\": 4536, \"13\": 9398, \"14\": 17956, \"15\": 13241, \"16\": 11373, \"17\": 27167, \"18\": 12335, \"19\": 14750, \"20\": 22325, \"21\": 7809, \"22\": 5590, \"23\": 6354, \"24\": 9367, \"25\": 4964, \"26\": 7834, \"27\": 4317, \"28\": 7890, \"29\": 4060, \"30\": 7862, \"31\": 8211, \"32\": 8845, \"33\": 6300, \"34\": 11505, \"35\": 12971, \"36\": 11259, \"37\": 7661, \"38\": 13233, \"39\": 14263, \"40\": 9664, \"41\": 13727, \"42\": 10073, \"43\": 11684, \"44\": 7382, \"45\": 11277, \"46\": 15831, \"47\": 8358, \"48\": 12065, \"49\": 8181, \"50\": 7231, \"51\": 8421, \"52\": 7237, \"53\": 13018, \"54\": 6436, \"55\": 6234, \"56\": 16727, \"57\": 24521, \"58\": 25861, \"59\": 21079, \"60\": 20045, \"61\": 23105, \"62\": 17595},\"adenosine nucleotides degradation II\":{\"0\": 1916, \"1\": 4597, \"2\": 5790, \"3\": 6907, \"4\": 3516, \"5\": 2071, \"6\": 5118, \"7\": 8786, \"8\": 20929, \"9\": 12115, \"10\": 21782, \"11\": 29095, \"12\": 4712, \"13\": 19680, \"14\": 15167, \"15\": 10154, \"16\": 10146, \"17\": 9819, \"18\": 20832, \"19\": 12413, \"20\": 16362, \"21\": 1342, \"22\": 3469, \"23\": 646, \"24\": 2291, \"25\": 1167, \"26\": 2083, \"27\": 535, \"28\": 15354, \"29\": 4563, \"30\": 12705, \"31\": 12873, \"32\": 17875, \"33\": 11200, \"34\": 27915, \"35\": 21153, \"36\": 14587, \"37\": 11388, \"38\": 20271, \"39\": 17061, \"40\": 10796, \"41\": 15639, \"42\": 3732, \"43\": 7895, \"44\": 4807, \"45\": 3303, \"46\": 6328, \"47\": 5886, \"48\": 5320, \"49\": 12837, \"50\": 12905, \"51\": 32832, \"52\": 11837, \"53\": 37252, \"54\": 15227, \"55\": 17433, \"56\": 24739, \"57\": 37251, \"58\": 18650, \"59\": 41166, \"60\": 28426, \"61\": 32441, \"62\": 25103})\"adenosine\",(\"purine nucleotides degradation II (aerobic)\":{\"0\": 2451, \"1\": 5087, \"2\": 6426, \"3\": 7852, \"4\": 4006, \"5\": 2343, \"6\": 5817, \"7\": 3979, \"8\": 7192, \"9\": 12490, \"10\": 9379, \"11\": 7747, \"12\": 4968, \"13\": 10360, \"14\": 14146, \"15\": 8377, \"16\": 9870, \"17\": 8616, \"18\": 17627, \"19\": 10383, \"20\": 13264, \"21\": 1873, \"22\": 3638, \"23\": 741, \"24\": 2834, \"25\": 1432, \"26\": 2676, \"27\": 777, \"28\": 9180, \"29\": 4051, \"30\": 11006, \"31\": 11494, \"32\": 7077, \"33\": 8460, \"34\": 12123, \"35\": 14389, \"36\": 9572, \"37\": 9153, \"38\": 7596, \"39\": 11403, \"40\": 7691, \"41\": 3929, \"42\": 4719, \"43\": 8403, \"44\": 5577, \"45\": 4092, \"46\": 7541, \"47\": 6442, \"48\": 6812, \"49\": 9197, \"50\": 10150, \"51\": 9169, \"52\": 11226, \"53\": 14966, \"54\": 8024, \"55\": 11111, \"56\": 23969, \"57\": 21469, \"58\": 14193, \"59\": 22325, \"60\": 14096, \"61\": 13760, \"62\": 15981},\"superpathway of purine deoxyribonucleosides degradation\":{\"0\": 4120, \"1\": 6545, \"2\": 7531, \"3\": 10064, \"4\": 5137, \"5\": 2902, \"6\": 6025, \"7\": 4105, \"8\": 7853, \"9\": 4034, \"10\": 8505, \"11\": 6312, \"12\": 1946, \"13\": 7640, \"14\": 13569, \"15\": 9822, \"16\": 9535, \"17\": 13078, \"18\": 10431, \"19\": 11671, \"20\": 16152, \"21\": 4808, \"22\": 3922, \"23\": 3686, \"24\": 6571, \"25\": 3193, \"26\": 4114, \"27\": 2915, \"28\": 6749, \"29\": 3515, \"30\": 8158, \"31\": 7270, \"32\": 7429, \"33\": 6499, \"34\": 9768, \"35\": 11046, \"36\": 9840, \"37\": 7071, \"38\": 11295, \"39\": 12402, \"40\": 8481, \"41\": 12071, \"42\": 4760, \"43\": 7308, \"44\": 4846, \"45\": 4058, \"46\": 10337, \"47\": 4789, \"48\": 6229, \"49\": 7040, \"50\": 6899, \"51\": 7165, \"52\": 5941, \"53\": 10996, \"54\": 5488, \"55\": 5290, \"56\": 14261, \"57\": 20861, \"58\": 18711, \"59\": 17844, \"60\": 17187, \"61\": 19999, \"62\": 15113},\"superpathway of pyrimidine deoxyribonucleosides degradation\":{\"0\": 3948, \"1\": 6307, \"2\": 7013, \"3\": 9430, \"4\": 4861, \"5\": 2793, \"6\": 5908, \"7\": 1353, \"8\": 3672, \"9\": 4040, \"10\": 4320, \"11\": 4065, \"12\": 1964, \"13\": 4711, \"14\": 12942, \"15\": 8328, \"16\": 5611, \"17\": 4890, \"18\": 6191, \"19\": 8100, \"20\": 14045, \"21\": 4856, \"22\": 3603, \"23\": 3525, \"24\": 6252, \"25\": 3022, \"26\": 3948, \"27\": 2783, \"28\": 5051, \"29\": 3391, \"30\": 6201, \"31\": 6250, \"32\": 4722, \"33\": 5383, \"34\": 5938, \"35\": 7858, \"36\": 4853, \"37\": 6690, \"38\": 8045, \"39\": 10329, \"40\": 6979, \"41\": 8459, \"42\": 4676, \"43\": 7232, \"44\": 4800, \"45\": 4165, \"46\": 10091, \"47\": 4796, \"48\": 6146, \"49\": 4789, \"50\": 5151, \"51\": 4108, \"52\": 5651, \"53\": 6609, \"54\": 3790, \"55\": 3512, \"56\": 6565, \"57\": 11429, \"58\": 11842, \"59\": 11915, \"60\": 7813, \"61\": 9501, \"62\": 7140})\"Superpathways\")\"Nucleoside and Nucleotide Degradation\")\"Degradation/Utilization/Assimilation\",(((\"queuosine biosynthesis\":{\"0\": 2140, \"1\": 3213, \"2\": 3064, \"3\": 4119, \"4\": 1951, \"5\": 1313, \"6\": 4119, \"7\": 2097, \"8\": 2267, \"9\": 9254, \"10\": 3503, \"11\": 2256, \"12\": 3611, \"13\": 4126, \"14\": 8179, \"15\": 3126, \"16\": 7552, \"17\": 6449, \"18\": 14094, \"19\": 4474, \"20\": 6333, \"21\": 2030, \"22\": 1585, \"23\": 325, \"24\": 1725, \"25\": 538, \"26\": 1955, \"27\": 805, \"28\": 3283, \"29\": 1933, \"30\": 4412, \"31\": 6582, \"32\": 1834, \"33\": 4375, \"34\": 4044, \"35\": 8964, \"36\": 4129, \"37\": 6424, \"38\": 3353, \"39\": 7564, \"40\": 4955, \"41\": 1277, \"42\": 3757, \"43\": 4427, \"44\": 5222, \"45\": 2723, \"46\": 5009, \"47\": 4226, \"48\": 6429, \"49\": 4180, \"50\": 4899, \"51\": 2763, \"52\": 7251, \"53\": 5298, \"54\": 3176, \"55\": 6020, \"56\": 21380, \"57\": 9798, \"58\": 6126, \"59\": 8497, \"60\": 4569, \"61\": 4150, \"62\": 7972})\"Queuosine Biosynthesis and Salvage\",(\"tRNA processing\":{\"0\": 284, \"1\": 915, \"2\": 1719, \"3\": 2332, \"4\": 1342, \"5\": 375, \"6\": 1645, \"7\": 504, \"8\": 1984, \"9\": 2361, \"10\": 2414, \"11\": 2066, \"12\": 1103, \"13\": 2845, \"14\": 5519, \"15\": 2551, \"16\": 1365, \"17\": 851, \"18\": 1351, \"19\": 2517, \"20\": 3275, \"21\": 479, \"22\": 1301, \"23\": 195, \"24\": 648, \"25\": 559, \"26\": 687, \"27\": 120, \"28\": 3231, \"29\": 1919, \"30\": 5050, \"31\": 4157, \"32\": 2344, \"33\": 4237, \"34\": 3607, \"35\": 1626, \"36\": 2568, \"37\": 4503, \"38\": 1145, \"39\": 1528, \"40\": 1152, \"41\": 555, \"42\": 938, \"43\": 2209, \"44\": 1226, \"45\": 701, \"46\": 1841, \"47\": 2026, \"48\": 1099, \"49\": 2901, \"50\": 3211, \"51\": 2397, \"52\": 4011, \"53\": 3968, \"54\": 2256, \"55\": 2038, \"56\": 660, \"57\": 3358, \"58\": 2245, \"59\": 5193, \"60\": 3040, \"61\": 3599, \"62\": 2633})\"unknow\")\"Nucleic Acid Processing\")\"Macromolecule Modification\")\"root\"" ;
			
			


			var add_sunburst_listeners = function() {
				$('#sunburst-modal').on('shown.bs.modal', function (event) {
					// --- Nettoyage du contenu précédent ---
					$('#sunburst-graph').empty();
					$('#sunburst-walktrace').empty();
					$('#sunburst-menu').empty();
					$('#sunburst-detail').empty();

					// --- Création du tree complet ---
					let tree = ExtendedNode.fromNewick(tree_distribution);

					// --- Si le bouton "Display distribution" est celui qui a déclenché ---
					if (event.relatedTarget.id === "display-spl-sunburst") {
						// Récupère les lignes sélectionnées dans la table
						const selectedRows = $('#taxBySample-table').bootstrapTable('getSelections');

						// Extrait les noms d'échantillons (col0)
						const selected_samples = selectedRows.map(row => {
							return samples_names.indexOf(row.col0); // correspondance par nom
						});

						// Restreint le tree aux échantillons sélectionnés
						tree.keepOnlySamples(selected_samples);
					}

					// --- Dessin du graphique Sunburst ---
					cJDistrib(
						tree.toJson(),
						{
							"pg_selector": {
								"sunburst": "#sunburst-graph",
								"walktrace": "#sunburst-walktrace",
								"menu": "#sunburst-menu",
								"detail": "#sunburst-detail"
							},
							"graph": {
								"sunburst": {
									"width": Math.min($("#sunburst-graph").width(), $(window).height()),
									"height": Math.min($("#sunburst-graph").width(), $(window).height())
								},
								"colors": {
									"start_depth": 2
								}
							}
						}
					);

					// --- Ajuste la taille du conteneur pour centrer le graphique ---
					$("#sunburst-graph").width(Math.min($("#sunburst-graph").width(), $(window).height()));
				});
			};

			var taxBySample_load = function(container_id) {
				// --- Titres / Colonnes dynamiques ---
				const style = getComputedStyle(document.documentElement);
				const frogsColor = style.getPropertyValue('--frogsColor').trim();
				const frogsColor2 = style.getPropertyValue('--frogsColor2').trim();
				const frogsColorHover = style.getPropertyValue('--frogsColorHover').trim();
				var titles = [];
				titles.push( "Sample");
				titles.push( "Nb " + taxonomic_ranks[taxonomic_ranks.length-1].toLowerCase() + " retrieved");

				let columns = [];

				// 1) colonne checkbox (plugin bootstrap-table)
				columns.push({
					checkbox: true,
					field: 'state',
					align: 'center',
					valign: 'middle',
					width: 30
				});

				// 2) colonnes de données : col0, col1, ...
				titles.forEach((title, idx) => {
					columns.push({
						field: 'col' + idx,
						title: title,
						sortable: true
					});
				});

				// --- Construction des lignes (objets) ---
				let rows = [];
				for (let sample_idx = 0; sample_idx < samples_names.length; sample_idx++) {
					let sample_name = samples_names[sample_idx];
					let tree = ExtendedNode.fromNewick(tree_distribution);
					tree.keepOnlySamples([sample_idx]);

					let row = {};

					// col0 = sample name
					row['col0'] = sample_name;
					var last_rank = taxonomic_ranks.length;
					row['col1'] =  numberDisplay(tree.getNodeByDepth(last_rank).length) 
					rows.push(row);
				}

				// --- Création du <table> dans le container et initialisation bootstrapTable ---
				// on met un <table> vide (bootstrapTable s'initialise dessus)
				$('#' + container_id).html('<table id="taxBySample-table" class="table table-striped"></table>');

				// destroy si existant puis init
				$('#taxBySample-table').bootstrapTable('destroy');
				$('#taxBySample-table').bootstrapTable({
					columns: columns,
					data: rows,
					search: true,
					pagination: true,
					pageSize: 10,
					pageList: [10, 25, 50, 100, 'All'],
					showExport: true,
					exportTypes: ['excel', 'csv'],
					onPostBody: function() {
						$('#taxBySample-table input[type="checkbox"]').addClass('form-check-input');
					}
				});

				// Ajouter la classe aux input pour s'adapter au theme
				//$('#taxBySample-table').find('tbody input[type="checkbox"], thead input[type="checkbox"]').addClass("form-check-input");
				$('#taxBySample-table input[type="checkbox"]').addClass('form-check-input');

				// --- Activation des boutons "With selection" (div externe) ---
				// écouter sur la table (événements fournis par bootstrap-table)
				$('#taxBySample-table').on('check.bs.table uncheck.bs.table check-all.bs.table uncheck-all.bs.table', function () {
					const selected = $('#taxBySample-table').bootstrapTable('getSelections');
					const anySelected = selected.length > 0;
					$('#display-spl-sunburst').prop('disabled', !anySelected);
				});

				// --- Listeners pour modales (réutilise tes fonctions existantes) ---
				add_sunburst_listeners();
			};
			


			var summaryLoad = function(){
				// Remove alert
				$('#js-alert').remove();
				document.getElementById("logo").src = "data:image/png;base64," + logoBase64;
				$('#content').removeClass("hidden");
				
				taxBySample_load( "tax-distrib" );
				
			}

			function updateCharts(CURRENT_THEME) {
				
				

			}
			

			

			$(function () {
				
				$("#report-title").html("Pathways report <i><small class='text-muted'>(" + frogs_tool + ", v" + frogs_version + ")<small></i>");

				// Charger le résumé par défaut
				summaryLoad();

				// Default theme
				update_theme(DEFAULT_THEME);
				select = document.getElementById("themechoice");
				select.options[1].disabled = true 
				$('#taxBySample-table input[type="checkbox"]').addClass('form-check-input');
			});
		</script>
	</head>
		<body class="p-5">
			<!-- Alert -->
			<p id="js-alert" class="alert alert-warning">
				javascript is needed to display data.<br />
				If you are trying to view this data on galaxy, please contact your administrator to enable javascript or download the file for viewing.
			</p>
			<div class="container-fluid d-flex align-items-center mb-5">
				<img id="logo" class="object-fit-contain me-3" style="height:180px;" src="data:image/png;base64," />
				<h2 id="report-title" class="mb-0">Place seqs report</h2>
			</div>
		
			<div class="d-flex justify-content-end">
				<select id="themechoice" class="form-select form-select-sm" onchange="update_theme($(this).val())" style="width: auto;" aria-label="Default select example">
				  <option selected disabled value="">Switch theme</option>
				  <option value="DefaultTheme">Default</option>
				  <option value="CoralTheme">Coral</option>
				  <option value="GoldTheme">Gold</option>
				  <option value="SteelTheme">Steel</option>
				</select>
			</div>

			<!-- Tabs organization -->
			<ul class="nav nav-tabs" id="myTab" role="tablist">
				<li class="nav-item" role="presentation">
				<button class="nav-link active" id="tab1-tab" data-bs-toggle="tab" data-bs-target="#tab1" type="button" role="tab">
					Summary
				</button>
				</li>
			</ul>

			<!-- Content -->
			<div class="tab-content" id="myTabContent">
				<!-- TAB 1 -->
				<div class="tab-pane fade show active p-3 border border-top-0" id="tab1" role="tabpanel">
					<h2 class="pb-4 mt-4 mb-2 border-bottom">Pathway abundances per sample</h2>
					<button id="display-global-sunburst" class="btn d-block mx-auto" data-bs-toggle="modal" data-bs-target="#sunburst-modal">
						<span class="fa fa-pie-chart" aria-hidden="true"></span> Display global distribution
					</button>
					<div id="tax-distrib">
						
						<table id="taxBySample-table" class="table table-striped table-responsive">
						</table>
						
					</div>
					<!-- Bouton Display Sunburst -->
					
					
					<button id="display-spl-sunburst" class="btn btn-outline-secondary btn-sm table-action" disabled
						data-bs-toggle="modal" data-bs-target="#sunburst-modal" data-whatever="distribution">
						<span class="fa fa-pie-chart" aria-hidden="true"></span> Display distribution
					</button>
				</div>
			</div>
		

			<!-- Modal -->
		<div class="modal fade" id="sunburst-modal" tabindex="-1">
			<div class="modal-dialog modal-lg">
			  <div class="modal-content">
				<div class="modal-header">
				  <h6 class="modal-title">Taxa distribution</h6>
				  <button type="button" class="btn-close" data-bs-dismiss="modal" aria-label="Close"></button>
				</div>
				<div class="modal-body">
				  <div id="sunburst-walktrace"></div>
				  <div id="sunburst-graph"></div>
				  <div>
					<br>
					<h6 style="margin-top:12px">Detail on selected:</h6>
					<div id="sunburst-detail"></div>
				  </div>
				</div>
				<div class="modal-footer">
				  <span id="sunburst-menu"></span>
				  <button type="button" class="btn btn-secondary" data-bs-dismiss="modal">
					<span class="fa fa-close" aria-hidden="true"></span> Close
				  </button>
				</div>
			  </div>
			</div>
		  </div>
		</body>
	
</html>