Mercurial > repos > fubar > jbrowse2dev
view jbrowse2/blastxml_to_gapped_gff3.py @ 6:88b9b105c09b draft
Uploaded
author | fubar |
---|---|
date | Fri, 05 Jan 2024 01:58:02 +0000 (12 months ago) |
parents | cd5d63cd0eb5 |
children | 234cf4490901 |
line wrap: on
line source
#!/usr/bin/env python import argparse import copy import logging import re import sys from BCBio import GFF logging.basicConfig(level=logging.INFO) log = logging.getLogger(name="blastxml2gff3") __doc__ = """ BlastXML files, when transformed to GFF3, do not normally show gaps in the blast hits. This tool aims to fill that "gap". """ def blastxml2gff3(blastxml, min_gap=3, trim=False, trim_end=False, include_seq=False): from Bio.Blast import NCBIXML from Bio.Seq import Seq from Bio.SeqRecord import SeqRecord from Bio.SeqFeature import SeqFeature, SimpleLocation blast_records = NCBIXML.parse(blastxml) for idx_record, record in enumerate(blast_records): # http://www.sequenceontology.org/browser/release_2.4/term/SO:0000343 match_type = { # Currently we can only handle BLASTN, BLASTP "BLASTN": "nucleotide_match", "BLASTP": "protein_match", }.get(record.application, "match") recid = record.query if " " in recid: recid = recid[0 : recid.index(" ")] rec = SeqRecord(Seq("ACTG"), id=recid) for idx_hit, hit in enumerate(record.alignments): for idx_hsp, hsp in enumerate(hit.hsps): qualifiers = { "ID": "b2g.%s.%s.%s" % (idx_record, idx_hit, idx_hsp), "source": "blast", "score": hsp.expect, "accession": hit.accession, "hit_id": hit.hit_id, "length": hit.length, "hit_titles": hit.title.split(" >"), } if include_seq: qualifiers.update( { "blast_qseq": hsp.query, "blast_sseq": hsp.sbjct, "blast_mseq": hsp.match, } ) for prop in ( "score", "bits", "identities", "positives", "gaps", "align_length", "strand", "frame", "query_start", "query_end", "sbjct_start", "sbjct_end", ): qualifiers["blast_" + prop] = getattr(hsp, prop, None) desc = hit.title.split(" >")[0] qualifiers["description"] = desc[desc.index(" ") :] # This required a fair bit of sketching out/match to figure out # the first time. # # the match_start location must account for queries and # subjecst that start at locations other than 1 parent_match_start = hsp.query_start - hsp.sbjct_start # The end is the start + hit.length because the match itself # may be longer than the parent feature, so we use the supplied # subject/hit length to calculate the real ending of the target # protein. parent_match_end = hsp.query_start + hit.length + hsp.query.count("-") # If we trim the left end, we need to trim without losing information. used_parent_match_start = parent_match_start if trim: if parent_match_start < 1: used_parent_match_start = 0 if trim or trim_end: if parent_match_end > hsp.query_end: parent_match_end = hsp.query_end + 1 # The ``match`` feature will hold one or more ``match_part``s top_feature = SeqFeature( SimpleLocation(used_parent_match_start, parent_match_end, strand=0), type=match_type, qualifiers=qualifiers, ) # Unlike the parent feature, ``match_part``s have sources. part_qualifiers = { "source": "blast", } top_feature.sub_features = [] for idx_part, (start, end, cigar) in enumerate( generate_parts( hsp.query, hsp.match, hsp.sbjct, ignore_under=min_gap ) ): part_qualifiers["Gap"] = cigar part_qualifiers["ID"] = qualifiers["ID"] + (".%s" % idx_part) # Otherwise, we have to account for the subject start's location match_part_start = parent_match_start + hsp.sbjct_start + start - 1 # We used to use hsp.align_length here, but that includes # gaps in the parent sequence # # Furthermore align_length will give calculation errors in weird places # So we just use (end-start) for simplicity match_part_end = match_part_start + (end - start) top_feature.sub_features.append( SeqFeature( SimpleLocation(match_part_start, match_part_end, strand=1), type="match_part", qualifiers=copy.deepcopy(part_qualifiers), ) ) rec.features.append(top_feature) rec.annotations = {} yield rec def __remove_query_gaps(query, match, subject): """remove positions in all three based on gaps in query In order to simplify math and calculations...we remove all of the gaps based on gap locations in the query sequence:: Q:ACTG-ACTGACTG S:ACTGAAC---CTG will become:: Q:ACTGACTGACTG S:ACTGAC---CTG which greatly simplifies the process of identifying the correct location for a match_part """ prev = 0 fq = "" fm = "" fs = "" for position in re.finditer("-", query): fq += query[prev : position.start()] fm += match[prev : position.start()] fs += subject[prev : position.start()] prev = position.start() + 1 fq += query[prev:] fm += match[prev:] fs += subject[prev:] return (fq, fm, fs) def generate_parts(query, match, subject, ignore_under=3): region_q = [] region_m = [] region_s = [] (query, match, subject) = __remove_query_gaps(query, match, subject) region_start = -1 region_end = -1 mismatch_count = 0 for i, (q, m, s) in enumerate(zip(query, match, subject)): # If we have a match if m != " " or m == "+": if region_start == -1: region_start = i # It's a new region, we need to reset or it's pre-seeded with # spaces region_q = [] region_m = [] region_s = [] region_end = i mismatch_count = 0 else: mismatch_count += 1 region_q.append(q) region_m.append(m) region_s.append(s) if mismatch_count >= ignore_under and region_start != -1 and region_end != -1: region_q = region_q[0:-ignore_under] region_m = region_m[0:-ignore_under] region_s = region_s[0:-ignore_under] yield region_start, region_end + 1, cigar_from_string( region_q, region_m, region_s, strict_m=True ) region_q = [] region_m = [] region_s = [] region_start = -1 region_end = -1 mismatch_count = 0 yield region_start, region_end + 1, cigar_from_string( region_q, region_m, region_s, strict_m=True ) def _qms_to_matches(query, match, subject, strict_m=True): matchline = [] for (q, m, s) in zip(query, match, subject): ret = "" if m != " " or m == "+": ret = "=" elif m == " ": if q == "-": ret = "D" elif s == "-": ret = "I" else: ret = "X" else: log.warn("Bad data: \n\t%s\n\t%s\n\t%s\n" % (query, match, subject)) if strict_m: if ret == "=" or ret == "X": ret = "M" matchline.append(ret) return matchline def _matchline_to_cigar(matchline): cigar_line = [] last_char = matchline[0] count = 0 for char in matchline: if char == last_char: count += 1 else: cigar_line.append("%s%s" % (last_char, count)) count = 1 last_char = char cigar_line.append("%s%s" % (last_char, count)) return " ".join(cigar_line) def cigar_from_string(query, match, subject, strict_m=True): matchline = _qms_to_matches(query, match, subject, strict_m=strict_m) if len(matchline) > 0: return _matchline_to_cigar(matchline) else: return "" if __name__ == "__main__": parser = argparse.ArgumentParser( description="Convert Blast XML to gapped GFF3", epilog="" ) parser.add_argument( "blastxml", type=argparse.FileType("r"), help="Blast XML Output" ) parser.add_argument( "--min_gap", type=int, help="Maximum gap size before generating a new match_part", default=3, ) parser.add_argument( "--trim", action="store_true", help="Trim blast hits to be only as long as the parent feature", ) parser.add_argument( "--trim_end", action="store_true", help="Cut blast results off at end of gene" ) parser.add_argument("--include_seq", action="store_true", help="Include sequence") args = parser.parse_args() for rec in blastxml2gff3(**vars(args)): if len(rec.features): GFF.write([rec], sys.stdout)