changeset 0:dd49a7040643 draft

Initial commit
author fubar
date Wed, 09 Aug 2023 11:12:16 +0000
parents
children 232b874046a7
files lifelines_tool/LICENSE lifelines_tool/README.md lifelines_tool/lifelines_report.png lifelines_tool/lifelines_rossi_km.png lifelines_tool/lifelines_rossi_schoenfeld.png lifelines_tool/lifelineskmcph.xml lifelines_tool/plotlykm.py lifelines_tool/rossi.tab lifelines_tool/run_log.txt lifelines_tool/test-data/input_tab_sample lifelines_tool/test-data/readme_sample lifelines_tool/tongue.tab
diffstat 12 files changed, 1576 insertions(+), 0 deletions(-) [+]
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lifelines_tool/LICENSE	Wed Aug 09 11:12:16 2023 +0000
@@ -0,0 +1,21 @@
+MIT License
+
+Copyright (c) 2023 Ross
+
+Permission is hereby granted, free of charge, to any person obtaining a copy
+of this software and associated documentation files (the "Software"), to deal
+in the Software without restriction, including without limitation the rights
+to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+copies of the Software, and to permit persons to whom the Software is
+furnished to do so, subject to the following conditions:
+
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lifelines_tool/README.md	Wed Aug 09 11:12:16 2023 +0000
@@ -0,0 +1,35 @@
+# lifelines_tool - lifelines statistical package wrapped as a Galaxy tool.
+
+## Galaxy tool to run failure time models using lifelines
+
+## Install to your Galaxy server from the toolshed - search for lifelines_tool owned by fubar2
+
+### More at https://lazarus.name/demo/
+
+#### Using the Rossi sample input data from lifelines, tool outputs include:
+
+![KM plot sample](lifelines_rossi_km.png)
+and
+![KM plot sample](lifelines_rossi_schoenfeld.png)
+and
+![KM plot sample](lifelines_report.png)
+
+
+Runs Kaplan-Meier and generates a plot. Optional grouping variable.
+If 2 groups, runs a log-rank test for difference.
+Plots show confidence intervals
+
+If a list of covariate column names is provided, these are used in a
+Cox Proportional Hazards model with tests for proportionality.
+
+Should work with any tabular data with the required columns - time and status for observations.
+
+Issues to https://github.com/fubar2/lifelines_tool please.
+Autogenerated so pull requests are possibly meaningless but regeneration of a new version is easy so please tell me what is needed.
+
+## Tool made with the Galaxy ToolFactory: https://github.com/fubar2/galaxy_tf_overlay
+The current release includes this and a generic tabular version, and a java .jar wrapper in a history where the generating
+ToolFactory form can be recreated using the redo button. Editing the tool id will make a new tool, so all other edits to parameters can be
+made and the new tool generated without destroying the original sample.
+
+
Binary file lifelines_tool/lifelines_report.png has changed
Binary file lifelines_tool/lifelines_rossi_km.png has changed
Binary file lifelines_tool/lifelines_rossi_schoenfeld.png has changed
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lifelines_tool/lifelineskmcph.xml	Wed Aug 09 11:12:16 2023 +0000
@@ -0,0 +1,229 @@
+<tool name="lifelineskmcph" id="lifelineskmcph" version="0.01">
+  <!--Source in git at: https://github.com/fubar2/galaxy_tf_overlay-->
+  <!--Created by toolfactory@galaxy.org at 09/08/2023 17:43:16 using the Galaxy Tool Factory.-->
+  <description>Lifelines KM and optional Cox PH models</description>
+  <requirements>
+    <requirement version="1.5.3" type="package">pandas</requirement>
+    <requirement version="3.7.2" type="package">matplotlib</requirement>
+    <requirement version="0.27.7" type="package">lifelines</requirement>
+  </requirements>
+  <stdio>
+    <exit_code range="1:" level="fatal"/>
+  </stdio>
+  <version_command><![CDATA[echo "0.01"]]></version_command>
+  <command><![CDATA[python
+$runme
+--input_tab
+$input_tab
+--readme
+$readme
+--time
+'$time'
+--status
+'$status'
+--cphcols
+'$CPHcovariatecolumnnames'
+--title
+'$title'
+--header
+'$header'
+--group
+'$group'
+--image_type
+'$image_type'
+--image_dir
+'image_dir']]></command>
+  <configfiles>
+    <configfile name="runme"><![CDATA[#raw
+
+# script for a lifelines ToolFactory KM/CPH tool for Galaxy
+# km models for https://github.com/galaxyproject/tools-iuc/issues/5393
+# test as
+# python plotlykm.py --input_tab rossi.tab --htmlout "testfoo" --time "week" --status "arrest" --title "test" --image_dir images --cphcol="prio,age,race,paro,mar,fin"
+
+import argparse
+import os
+import sys
+
+import lifelines
+
+from matplotlib import pyplot as plt
+
+import pandas as pd
+
+# Ross Lazarus July 2023
+
+
+kmf = lifelines.KaplanMeierFitter()
+cph = lifelines.CoxPHFitter()
+
+parser = argparse.ArgumentParser()
+a = parser.add_argument
+a('--input_tab', default='', required=True)
+a('--header', default='')
+a('--htmlout', default="test_run.html")
+a('--group', default='')
+a('--time', default='', required=True)
+a('--status',default='', required=True)
+a('--cphcols',default='')
+a('--title', default='Default plot title')
+a('--image_type', default='png')
+a('--image_dir', default='images')
+a('--readme', default='run_log.txt')
+args = parser.parse_args()
+sys.stdout = open(args.readme, 'w')
+df = pd.read_csv(args.input_tab, sep='\t')
+NCOLS = df.columns.size
+NROWS = len(df.index)
+defaultcols = ['col%d' % (x+1) for x in range(NCOLS)]
+testcols = df.columns
+if len(args.header.strip()) > 0:
+    newcols = args.header.split(',')
+    if len(newcols) == NCOLS:
+        if (args.time in newcols) and (args.status in newcols):
+            df.columns = newcols
+        else:
+            sys.stderr.write('## CRITICAL USAGE ERROR (not a bug!): time %s and/or status %s not found in supplied header parameter %s' % (args.time, args.status, args.header))
+            sys.exit(4)
+    else:
+        sys.stderr.write('## CRITICAL USAGE ERROR (not a bug!): Supplied header %s has %d comma delimited header names - does not match the input tabular file %d columns' % (args.header, len(newcols), NCOLS))
+        sys.exit(5)
+else: # no header supplied - check for a real one that matches the x and y axis column names
+    colsok = (args.time in testcols) and (args.status in testcols) # if they match, probably ok...should use more code and logic..
+    if colsok:
+        df.columns = testcols # use actual header
+    else:
+        colsok = (args.time in defaultcols) and (args.status in defaultcols)
+        if colsok:
+            sys.stderr.write('replacing first row of data derived header %s with %s' % (testcols, defaultcols))
+            df.columns = defaultcols
+        else:
+            sys.stderr.write('## CRITICAL USAGE ERROR (not a bug!): time %s and status %s do not match anything in the file header, supplied header or automatic default column names %s' % (args.time, args.status, defaultcols))
+print('## Lifelines tool starting.\nUsing data header =', df.columns, 'time column =', args.time, 'status column =', args.status)
+os.makedirs(args.image_dir, exist_ok=True)
+fig, ax = plt.subplots()
+if args.group > '':
+    names = []
+    times = []
+    events = []
+    rmst = []
+    for name, grouped_df in df.groupby(args.group):
+        T = grouped_df[args.time]
+        E = grouped_df[args.status]
+        gfit = kmf.fit(T, E, label=name)
+        kmf.plot_survival_function(ax=ax)
+        rst = lifelines.utils.restricted_mean_survival_time(gfit)
+        rmst.append(rst)
+        names.append(str(name))
+        times.append(T)
+        events.append(E)
+    ax.set_title(args.title)
+    fig.savefig(os.path.join(args.image_dir,'KM_%s.png' % args.title))
+    ngroup = len(names)
+    if  ngroup == 2: # run logrank test if 2 groups
+        results = lifelines.statistics.logrank_test(times[0], times[1], events[0], events[1], alpha=.99)
+        print('Logrank test for %s - %s vs %s\n' % (args.group, names[0], names[1]))
+        results.print_summary()
+    elif ngroup > 1:
+        fig, ax = plt.subplots(nrows=ngroup, ncols=1, sharex=True)
+        for i, rst in rmst:
+            lifelines.plotting.rmst_plot(rst, ax=ax)
+        fig.savefig(os.path.join(args.image_dir,'RMST_%s.png' % args.title))
+else:
+    kmf.fit(df[args.time], df[args.status])
+    kmf.plot_survival_function(ax=ax)
+    ax.set_title(args.title)
+    fig.savefig(os.path.join(args.image_dir,'KM_%s.png' % args.title))
+if len(args.cphcols) > 0:
+    fig, ax = plt.subplots()
+    ax.set_title('Cox PH model: %s' % args.title)
+    cphcols = args.cphcols.strip().split(',')
+    cphcols = [x.strip() for x in cphcols]
+    notfound = sum([(x not in df.columns) for x in cphcols])
+    if notfound > 0:
+        sys.stderr.write('## CRITICAL USAGE ERROR (not a bug!): One or more requested Cox PH columns %s not found in supplied column header %s' % (args.cphcols, df.columns))
+        sys.exit(6)
+    print('### Lifelines test of Proportional Hazards results with %s as covariates on %s' % (', '.join(cphcols), args.title))
+    cphcols += [args.time, args.status]
+    cphdf = df[cphcols]
+    cph.fit(cphdf, duration_col=args.time, event_col=args.status)
+    cph.print_summary()
+    cphaxes = cph.check_assumptions(cphdf, p_value_threshold=0.01, show_plots=True)
+    for i, ax in enumerate(cphaxes):
+        figr = ax[0].get_figure()
+        titl = figr._suptitle.get_text().replace(' ','_').replace("'","")
+        oname = os.path.join(args.image_dir,'CPH%s.%s' % (titl, args.image_type))
+        figr.savefig(oname)
+
+
+#end raw]]></configfile>
+  </configfiles>
+  <inputs>
+    <param name="input_tab" type="data" optional="false" label="Tabular input file for failure time testing." help="Must have a column with a measure of time and status (0,1) at observation." format="tabular" multiple="false"/>
+    <param name="time" type="text" value="week" label="Name of column containing a time to observation" help="Use a column name from the file header if the data has one, or use one from the list supplied below, or use col1....colN otherwise to select the correct column"/>
+    <param name="status" type="text" value="arrest" label="Status at observation. Typically 1=alive, 0=deceased for life-table observations" help="Use a column name from the header if the file has one, or use one from the list supplied below, or use col1....colN otherwise to select the correct column"/>
+    <param name="CPHcovariatecolumnnames" type="text" value="prio,age,race,paro,mar,fin" label="Optional comma delimited column names to use as covariates in the Cox Proportional Hazards model" help="Leave blank for no Cox PH model tests "/>
+    <param name="title" type="text" value="KM and CPH in lifelines test" label="Title for this lifelines analysis" help="Special characters will probably be escaped so do not use them"/>
+    <param name="header" type="text" value="" label="Optional comma delimited list of column names to use for this tabular file. Default is None when col1...coln will be used if no header row in the input data" help="The column names supplied for time, status and so on MUST match either this supplied list, or if none, the original file header if it exists, or col1...coln as the default of last resort."/>
+    <param name="group" type="text" value="race" label="Optional group column name for KM plot" help="If there are exactly 2 groups, a log-rank statistic will be generated as part of the Kaplan-Meier test."/>
+    <param name="image_type" type="select" label="Output format for all images" help="">
+      <option value="png">Portable Network Graphics .png format</option>
+      <option value="jpg">JPEG</option>
+      <option value="pdf">PDF</option>
+      <option value="tiff">TIFF</option>
+    </param>
+  </inputs>
+  <outputs>
+    <collection name="image_dir" type="list" label="Images from $title on $input_tab.element_identifier">
+      <discover_datasets pattern="__name_and_ext__" directory="image_dir" visible="false"/>
+    </collection>
+    <data name="readme" format="txt" label="Lifelines_km_cph $title on $input_tab.element_identifier" hidden="false"/>
+  </outputs>
+  <tests>
+    <test>
+      <output_collection name="image_dir"/>
+      <output name="readme" value="readme_sample" compare="sim_size" delta="1000"/>
+      <param name="input_tab" value="input_tab_sample"/>
+      <param name="time" value="week"/>
+      <param name="status" value="arrest"/>
+      <param name="CPHcovariatecolumnnames" value="prio,age,race,paro,mar,fin"/>
+      <param name="title" value="KM and CPH in lifelines test"/>
+      <param name="header" value=""/>
+      <param name="group" value="race"/>
+      <param name="image_type" value="png"/>
+    </test>
+  </tests>
+  <help><![CDATA[
+
+This is a wrapper for some elementary life table analysis functions from the Lifelines package - see https://lifelines.readthedocs.io/en/latest for the full story
+
+
+
+Given a Galaxy tabular dataset with suitable indicators for time and status at observation, this tool can perform some simple life-table analyses and produce some useful plots. Kaplan-Meier is the default. Cox Proportional Hazards model will be tested if covariates to include are provided.
+
+
+
+1. Kaplan-Meier survival analysis - see https://lifelines.readthedocs.io/en/latest/Survival%20analysis%20with%20lifelines.html
+
+    This is always performed and a survival curve is plotted. 
+
+    If there is an optional "group" column, the plot will show each group separately. If there are *exactly* two groups, a log-rank test for difference is performed and reported
+
+
+
+2. The Cox Proportional Hazards model can be tested, if a comma separated list of covariate column names is supplied on the tool form.
+
+    These are used in as covariates. 
+
+    Although not usually a real problem, some diagnostics and advice about the assumption of proportional hazards are are also provided as outputs - see   https://lifelines.readthedocs.io/en/latest/Survival%20Regression.html
+
+
+
+A big shout out to the lifelines authors - no R code needed - nice job, thanks!
+
+ ]]></help>
+  <citations>
+    <citation type="doi">10.1093/bioinformatics/bts573</citation>
+  </citations>
+</tool>
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lifelines_tool/plotlykm.py	Wed Aug 09 11:12:16 2023 +0000
@@ -0,0 +1,118 @@
+# script for a lifelines ToolFactory KM/CPH tool for Galaxy
+# km models for https://github.com/galaxyproject/tools-iuc/issues/5393
+# test as
+# python plotlykm.py --input_tab rossi.tab --htmlout "testfoo" --time "week" --status "arrest" --title "test" --image_dir images --cphcol="prio,age,race,paro,mar,fin"
+
+import argparse
+import os
+import sys
+
+import lifelines
+
+from matplotlib import pyplot as plt
+
+import pandas as pd
+
+# Ross Lazarus July 2023
+
+
+kmf = lifelines.KaplanMeierFitter()
+cph = lifelines.CoxPHFitter()
+
+parser = argparse.ArgumentParser()
+a = parser.add_argument
+a('--input_tab', default='', required=True)
+a('--header', default='')
+a('--htmlout', default="test_run.html")
+a('--group', default='')
+a('--time', default='', required=True)
+a('--status',default='', required=True)
+a('--cphcols',default='')
+a('--title', default='Default plot title')
+a('--image_type', default='png')
+a('--image_dir', default='images')
+a('--readme', default='run_log.txt')
+args = parser.parse_args()
+sys.stdout = open(args.readme, 'w')
+df = pd.read_csv(args.input_tab, sep='\t')
+NCOLS = df.columns.size
+NROWS = len(df.index)
+defaultcols = ['col%d' % (x+1) for x in range(NCOLS)]
+testcols = df.columns
+if len(args.header.strip()) > 0:
+    newcols = args.header.split(',')
+    if len(newcols) == NCOLS:
+        if (args.time in newcols) and (args.status in newcols):
+            df.columns = newcols
+        else:
+            sys.stderr.write('## CRITICAL USAGE ERROR (not a bug!): time %s and/or status %s not found in supplied header parameter %s' % (args.time, args.status, args.header))
+            sys.exit(4)
+    else:
+        sys.stderr.write('## CRITICAL USAGE ERROR (not a bug!): Supplied header %s has %d comma delimited header names - does not match the input tabular file %d columns' % (args.header, len(newcols), NCOLS))
+        sys.exit(5)
+else: # no header supplied - check for a real one that matches the x and y axis column names
+    colsok = (args.time in testcols) and (args.status in testcols) # if they match, probably ok...should use more code and logic..
+    if colsok:
+        df.columns = testcols # use actual header
+    else:
+        colsok = (args.time in defaultcols) and (args.status in defaultcols)
+        if colsok:
+            sys.stderr.write('replacing first row of data derived header %s with %s' % (testcols, defaultcols))
+            df.columns = defaultcols
+        else:
+            sys.stderr.write('## CRITICAL USAGE ERROR (not a bug!): time %s and status %s do not match anything in the file header, supplied header or automatic default column names %s' % (args.time, args.status, defaultcols))
+print('## Lifelines tool starting.\nUsing data header =', df.columns, 'time column =', args.time, 'status column =', args.status)
+os.makedirs(args.image_dir, exist_ok=True)
+fig, ax = plt.subplots()
+if args.group > '':
+    names = []
+    times = []
+    events = []
+    rmst = []
+    for name, grouped_df in df.groupby(args.group):
+        T = grouped_df[args.time]
+        E = grouped_df[args.status]
+        gfit = kmf.fit(T, E, label=name)
+        kmf.plot_survival_function(ax=ax)
+        rst = lifelines.utils.restricted_mean_survival_time(gfit)
+        rmst.append(rst)
+        names.append(str(name))
+        times.append(T)
+        events.append(E)
+    ngroup = len(names)
+    if  ngroup == 2: # run logrank test if 2 groups
+        results = lifelines.statistics.logrank_test(times[0], times[1], events[0], events[1], alpha=.99)
+        print(' vs '.join(names), results)
+        results.print_summary()
+    elif ngroup > 1:
+        fig, ax = plt.subplots(nrows=ngroup, ncols=1, sharex=True)
+        for i, rst in rmst:
+            lifelines.plotting.rmst_plot(rst, ax=ax)
+        fig.savefig(os.path.join(args.image_dir,'RMST_%s.png' % args.title))
+else:
+    kmf.fit(df[args.time], df[args.status])
+    kmf.plot_survival_function(ax=ax)
+fig.savefig(os.path.join(args.image_dir,'KM_%s.png' % args.title))
+if len(args.cphcols) > 0:
+    fig, ax = plt.subplots()
+    cphcols = args.cphcols.strip().split(',')
+    cphcols = [x.strip() for x in cphcols]
+    notfound = sum([(x not in df.columns) for x in cphcols])
+    if notfound > 0:
+        sys.stderr.write('## CRITICAL USAGE ERROR (not a bug!): One or more requested Cox PH columns %s not found in supplied column header %s' % (args.cphcols, df.columns))
+        sys.exit(6)
+    print('### Lifelines test of Proportional Hazards results with %s as covariates on %s' % (', '.join(cphcols), args.title))
+    cphcols += [args.time, args.status]
+    cphdf = df[cphcols]
+    cph.fit(cphdf, duration_col=args.time, event_col=args.status)
+    cph.print_summary()
+    cphaxes = cph.check_assumptions(cphdf, p_value_threshold=0.01, show_plots=True)
+    for i, ax in enumerate(cphaxes):
+        figr = ax[0].get_figure()
+        titl = figr._suptitle.get_text().replace(' ','_').replace("'","")
+        oname = os.path.join(args.image_dir,'CPH%s.%s' % (titl, args.image_type))
+        figr.savefig(oname)
+
+
+
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lifelines_tool/rossi.tab	Wed Aug 09 11:12:16 2023 +0000
@@ -0,0 +1,433 @@
+	week	arrest	fin	age	race	wexp	mar	paro	prio
+0	20	1	0	27	1	0	0	1	3
+1	17	1	0	18	1	0	0	1	8
+2	25	1	0	19	0	1	0	1	13
+3	52	0	1	23	1	1	1	1	1
+4	52	0	0	19	0	1	0	1	3
+5	52	0	0	24	1	1	0	0	2
+6	23	1	0	25	1	1	1	1	0
+7	52	0	1	21	1	1	0	1	4
+8	52	0	0	22	1	0	0	0	6
+9	52	0	0	20	1	1	0	0	0
+10	52	0	1	26	1	0	0	1	3
+11	52	0	0	40	1	1	0	0	2
+12	37	1	0	17	1	1	0	1	5
+13	52	0	0	37	1	1	0	0	2
+14	25	1	0	20	1	0	0	1	3
+15	46	1	1	22	1	1	0	1	2
+16	28	1	0	19	1	0	0	0	7
+17	52	0	0	20	1	0	0	0	2
+18	52	0	0	25	1	0	0	1	12
+19	52	0	0	24	0	1	0	1	1
+20	52	0	0	23	1	0	0	1	4
+21	52	0	1	44	1	1	1	1	0
+22	24	1	1	29	1	1	0	1	2
+23	52	0	1	28	0	1	0	1	1
+24	52	0	1	21	1	1	0	0	0
+25	52	0	1	19	1	1	0	1	2
+26	52	0	0	33	1	1	0	1	1
+27	52	0	0	19	1	0	0	0	2
+28	52	0	1	19	1	0	0	1	3
+29	52	0	1	23	1	1	1	1	9
+30	52	0	1	23	1	0	0	1	3
+31	52	0	1	19	1	0	0	1	1
+32	52	0	1	42	1	1	0	0	0
+33	52	0	0	23	1	1	1	0	2
+34	52	0	0	24	1	1	0	0	3
+35	50	1	1	20	1	1	0	1	2
+36	52	0	0	22	1	1	0	1	5
+37	52	0	0	27	1	1	0	0	2
+38	52	0	1	19	1	0	0	0	4
+39	52	0	0	28	1	1	0	1	3
+40	52	0	1	33	1	1	1	0	9
+41	52	0	0	24	1	1	0	1	1
+42	10	1	0	21	1	0	0	1	14
+43	52	0	0	22	1	0	0	1	2
+44	52	0	1	19	1	0	0	1	2
+45	52	0	1	22	1	0	0	0	2
+46	52	0	1	22	1	0	0	0	15
+47	20	1	1	23	1	1	0	1	5
+48	52	0	0	32	1	1	1	1	2
+49	52	0	1	27	1	1	0	1	0
+50	52	0	1	36	1	1	0	0	0
+51	52	0	1	22	1	1	0	1	1
+52	52	0	1	32	1	1	0	1	1
+53	50	1	1	19	1	1	0	0	10
+54	52	0	0	28	1	1	1	1	1
+55	52	0	0	32	0	1	0	0	3
+56	52	0	0	33	1	1	1	1	1
+57	52	0	0	26	1	0	0	1	1
+58	52	0	1	20	1	1	0	1	0
+59	52	0	1	42	1	1	0	0	9
+60	6	1	0	19	1	0	0	0	6
+61	52	0	0	22	1	1	0	0	2
+62	52	0	0	22	1	0	0	1	5
+63	52	0	0	36	1	0	0	0	11
+64	52	1	0	23	1	1	0	0	2
+65	52	0	1	27	1	1	0	1	3
+66	52	0	1	21	1	0	0	1	1
+67	52	0	1	22	1	1	0	1	2
+68	49	1	0	35	1	1	0	1	3
+69	52	0	0	21	1	1	0	1	4
+70	52	0	1	25	1	1	0	1	5
+71	52	0	0	18	1	0	0	1	0
+72	52	0	1	26	1	1	0	1	2
+73	52	0	0	30	1	1	0	0	4
+74	52	0	0	20	1	0	0	1	2
+75	52	0	1	43	1	1	0	1	1
+76	43	1	0	23	1	1	1	1	4
+77	52	0	0	42	0	1	0	0	2
+78	52	0	0	21	0	0	0	0	2
+79	5	1	0	19	1	0	0	0	3
+80	27	1	0	29	1	0	0	0	4
+81	52	0	0	30	1	1	0	1	3
+82	52	0	1	21	0	1	1	1	10
+83	52	0	0	20	1	0	0	1	7
+84	22	1	1	19	1	0	0	1	10
+85	52	0	1	22	1	1	0	1	1
+86	52	0	0	25	1	0	0	1	3
+87	18	1	0	22	1	0	0	0	4
+88	52	0	1	22	1	1	0	1	4
+89	52	0	1	24	1	0	0	1	2
+90	52	0	0	39	1	1	1	1	4
+91	52	0	0	21	1	1	0	1	1
+92	52	0	1	20	1	1	0	1	2
+93	52	0	1	24	1	0	0	0	1
+94	52	0	0	25	1	1	0	1	2
+95	24	1	1	21	1	1	0	0	4
+96	52	0	1	20	1	0	0	1	1
+97	52	0	1	19	1	0	0	1	3
+98	52	0	1	24	1	0	0	0	2
+99	52	0	1	24	1	1	0	1	1
+100	2	1	0	44	1	1	0	1	2
+101	26	1	0	32	1	1	0	0	2
+102	52	0	0	23	1	1	0	0	3
+103	49	1	1	19	1	0	0	1	1
+104	52	0	0	20	1	0	0	1	1
+105	21	1	0	27	1	1	0	1	0
+106	48	1	0	19	1	0	0	0	6
+107	52	0	1	21	1	1	0	0	1
+108	52	0	0	20	1	0	0	1	1
+109	52	0	0	25	1	0	0	1	3
+110	52	0	0	20	1	0	0	1	6
+111	52	0	1	23	1	1	0	1	3
+112	52	0	0	20	1	0	0	0	2
+113	52	0	1	30	1	1	0	0	1
+114	52	0	0	25	1	1	1	1	0
+115	52	0	0	22	1	1	0	1	1
+116	52	0	0	24	1	1	0	1	3
+117	52	0	1	18	1	0	0	0	4
+118	8	1	1	40	1	1	0	1	1
+119	52	0	0	22	1	0	0	1	1
+120	52	0	1	23	1	0	0	1	6
+121	49	1	0	21	1	1	0	1	1
+122	52	0	1	24	0	1	1	1	2
+123	52	0	1	24	1	0	0	1	14
+124	52	0	0	38	1	1	0	1	2
+125	52	0	0	26	0	1	0	0	3
+126	52	0	1	29	1	1	0	0	1
+127	52	0	0	21	1	0	0	1	8
+128	52	0	1	21	1	1	1	1	2
+129	52	0	0	22	0	0	0	1	4
+130	8	1	0	23	1	0	0	1	5
+131	52	0	0	27	1	1	0	0	2
+132	52	0	1	18	1	0	0	1	2
+133	13	1	0	23	1	0	0	0	5
+134	52	0	1	24	1	0	0	1	2
+135	52	0	1	21	1	0	0	0	3
+136	52	0	1	20	1	0	0	1	4
+137	52	0	1	27	1	1	0	0	4
+138	8	1	1	20	1	0	0	1	11
+139	52	0	1	29	1	1	1	1	5
+140	33	1	0	19	1	0	0	0	10
+141	52	0	0	20	1	0	0	0	8
+142	52	0	1	18	1	0	0	1	0
+143	11	1	1	19	1	0	0	1	2
+144	52	0	1	24	1	1	0	1	1
+145	52	0	0	28	0	1	0	1	4
+146	52	0	1	26	1	0	0	0	4
+147	52	0	1	17	1	0	0	1	0
+148	52	0	0	21	1	0	0	1	3
+149	37	1	0	34	1	1	0	0	2
+150	52	0	1	26	1	1	0	0	1
+151	52	0	1	43	1	1	0	1	2
+152	52	0	0	20	1	0	0	1	0
+153	44	1	0	20	1	1	0	1	1
+154	52	0	0	32	1	1	0	1	1
+155	52	1	0	25	0	1	0	1	1
+156	52	0	1	22	1	0	0	1	1
+157	52	0	1	31	0	1	0	1	1
+158	52	0	1	42	1	1	1	1	4
+159	52	0	1	32	1	1	0	0	10
+160	52	0	1	20	1	0	0	0	8
+161	52	0	0	20	0	0	0	0	1
+162	52	0	1	36	1	0	0	1	8
+163	52	0	1	34	1	1	0	1	2
+164	52	0	1	28	1	1	1	1	3
+165	52	0	1	21	1	1	0	1	2
+166	52	0	0	18	0	0	0	1	6
+167	52	0	1	20	0	0	0	1	4
+168	52	0	0	17	0	0	0	1	3
+169	52	0	1	44	1	0	0	1	3
+170	52	0	1	30	1	1	0	1	5
+171	52	0	1	22	1	0	0	0	11
+172	9	1	1	30	1	0	0	0	3
+173	17	1	0	23	1	0	0	0	8
+174	52	0	1	20	1	1	0	0	2
+175	52	0	0	19	1	0	0	0	10
+176	52	0	1	21	1	0	0	1	1
+177	52	0	1	22	1	0	0	1	6
+178	52	0	1	19	1	0	0	1	2
+179	52	0	1	21	1	0	0	0	10
+180	16	1	0	38	1	0	0	1	3
+181	52	0	1	24	1	0	0	0	7
+182	52	0	1	39	1	1	1	0	2
+183	3	1	0	30	1	0	0	1	3
+184	52	0	0	37	1	1	0	0	0
+185	52	0	1	23	1	0	0	1	2
+186	52	0	0	21	0	0	0	1	1
+187	52	0	1	31	1	1	0	1	1
+188	52	0	1	24	1	0	0	0	13
+189	52	0	0	31	0	1	1	1	3
+190	52	0	0	24	1	0	0	1	2
+191	52	0	1	24	1	1	0	1	1
+192	52	0	1	21	0	1	0	0	1
+193	52	0	1	22	1	0	0	0	2
+194	45	1	0	20	1	0	0	1	5
+195	52	0	1	21	1	1	0	1	0
+196	52	0	1	24	1	1	0	1	2
+197	52	0	0	25	1	1	0	1	1
+198	52	0	0	19	1	0	0	1	1
+199	52	0	0	20	0	0	0	0	2
+200	52	0	0	20	1	1	0	1	4
+201	28	1	0	24	1	1	0	0	1
+202	52	0	1	18	1	0	0	0	4
+203	16	1	1	28	1	0	0	1	5
+204	15	1	1	19	1	0	0	0	4
+205	52	0	0	19	1	1	0	0	1
+206	52	0	0	25	1	1	1	0	0
+207	52	0	1	19	0	0	0	0	1
+208	52	0	1	25	1	0	0	0	2
+209	14	1	0	24	1	0	0	0	0
+210	52	0	1	20	1	1	0	1	1
+211	52	0	1	30	1	0	0	1	1
+212	52	0	0	29	1	1	0	1	4
+213	52	0	0	28	0	1	1	1	4
+214	52	0	1	36	1	0	0	1	1
+215	52	0	1	23	1	1	0	0	7
+216	52	0	1	23	1	0	0	0	2
+217	52	0	0	24	1	1	0	1	4
+218	52	0	0	29	1	1	1	1	1
+219	52	0	0	26	1	1	1	1	2
+220	52	0	0	39	0	1	1	0	3
+221	52	0	1	20	1	1	0	1	1
+222	52	0	0	23	1	1	0	1	3
+223	52	0	1	21	1	1	0	1	2
+224	52	0	1	21	1	0	0	1	1
+225	7	1	1	20	0	0	0	1	2
+226	52	0	1	20	0	0	0	1	3
+227	52	0	1	27	1	1	0	1	2
+228	43	1	0	18	0	1	0	0	3
+229	46	1	1	25	1	1	0	0	1
+230	40	1	1	20	1	0	0	0	6
+231	52	0	1	20	1	1	0	0	5
+232	14	1	0	20	0	0	0	0	7
+233	52	0	0	24	0	1	1	0	11
+234	52	0	1	23	1	0	0	0	1
+235	8	1	0	28	1	1	0	0	4
+236	52	0	0	21	1	0	0	0	2
+237	52	0	0	25	1	0	0	0	1
+238	52	0	0	24	1	1	0	1	1
+239	52	0	0	29	1	1	1	0	3
+240	52	0	0	22	1	1	1	1	2
+241	25	1	0	28	1	0	0	1	18
+242	52	0	0	19	1	0	0	1	1
+243	52	0	0	20	1	1	0	1	1
+244	17	1	0	20	1	0	0	1	5
+245	37	1	1	22	1	1	0	1	1
+246	52	0	0	20	1	0	0	1	8
+247	52	0	1	21	1	0	0	1	2
+248	52	0	1	21	1	1	0	1	1
+249	32	1	0	19	1	0	0	1	3
+250	52	0	0	26	1	1	0	1	1
+251	52	0	0	23	1	1	1	1	2
+252	52	0	1	22	0	1	0	1	4
+253	52	0	1	24	1	1	0	0	8
+254	52	0	1	40	1	0	0	0	5
+255	52	0	1	32	1	0	0	0	2
+256	52	0	0	38	1	1	0	0	0
+257	52	0	0	26	1	1	0	1	1
+258	12	1	1	27	1	1	0	1	0
+259	52	0	0	29	1	1	1	1	3
+260	18	1	0	20	1	1	0	1	4
+261	52	0	0	22	1	0	0	0	1
+262	52	0	0	22	0	0	0	0	5
+263	14	1	1	19	1	1	0	0	12
+264	52	0	0	22	1	1	0	0	1
+265	52	0	0	19	1	0	0	0	3
+266	52	0	1	32	1	1	0	0	1
+267	52	0	1	25	1	1	0	1	2
+268	38	1	0	21	1	0	0	1	2
+269	52	0	1	36	1	1	0	1	1
+270	24	1	0	40	1	1	0	0	2
+271	20	1	1	20	1	0	0	1	1
+272	32	1	1	19	1	0	0	1	0
+273	52	0	0	18	1	0	0	1	4
+274	52	0	1	28	1	1	0	0	0
+275	52	0	1	22	1	1	0	0	2
+276	52	0	1	25	1	0	0	1	1
+277	52	0	1	28	1	1	0	0	2
+278	52	0	1	25	1	1	0	0	2
+279	52	0	1	20	1	1	0	0	4
+280	52	0	1	24	1	0	0	0	5
+281	52	0	0	24	1	1	0	0	0
+282	52	0	1	36	0	1	0	1	2
+283	52	0	1	34	1	1	0	0	1
+284	31	1	0	19	1	1	0	1	5
+285	20	1	1	23	1	0	0	1	1
+286	40	1	0	19	1	1	0	1	3
+287	52	0	1	40	1	1	0	0	2
+288	52	0	1	31	1	1	0	0	2
+289	52	0	0	23	1	1	1	1	0
+290	52	0	0	42	1	0	0	1	2
+291	42	1	1	26	1	1	1	1	1
+292	52	0	0	20	1	0	0	1	9
+293	26	1	0	27	1	1	0	1	1
+294	52	0	1	24	1	0	0	0	5
+295	52	0	0	25	1	0	0	0	2
+296	52	0	1	22	1	1	0	1	3
+297	52	0	1	20	1	0	0	1	2
+298	52	0	1	20	1	1	0	1	2
+299	47	1	0	22	1	0	0	1	3
+300	52	0	0	18	1	1	0	1	1
+301	52	0	0	20	1	1	0	1	2
+302	40	1	0	20	1	1	0	1	1
+303	52	0	0	22	1	1	0	1	2
+304	52	0	1	30	1	1	1	0	2
+305	52	0	0	36	0	1	0	0	1
+306	52	0	0	25	0	1	1	1	5
+307	21	1	0	29	1	0	0	1	3
+308	52	0	0	19	1	1	0	1	3
+309	52	0	1	24	1	1	0	1	2
+310	52	0	1	21	1	0	0	0	0
+311	52	0	1	35	1	1	0	1	6
+312	52	0	1	19	0	1	0	0	4
+313	1	1	0	20	1	0	0	0	0
+314	43	1	0	22	0	0	0	0	3
+315	24	1	0	23	1	1	0	0	1
+316	11	1	0	19	1	0	0	0	18
+317	52	0	0	18	1	0	0	1	3
+318	52	0	1	38	0	1	0	1	2
+319	52	0	1	18	0	0	0	1	6
+320	52	0	0	22	1	1	1	1	1
+321	33	1	0	21	1	0	0	1	3
+322	52	0	0	21	1	1	0	1	1
+323	46	1	1	21	1	0	0	1	5
+324	36	1	1	17	1	0	0	1	3
+325	52	0	1	22	1	1	0	1	1
+326	52	0	1	23	1	1	1	1	0
+327	18	1	1	19	1	0	0	1	4
+328	52	0	1	21	1	1	0	0	1
+329	52	0	1	35	1	1	0	0	5
+330	50	1	0	23	1	1	0	0	8
+331	52	0	1	22	1	0	0	0	2
+332	34	1	1	25	1	0	0	0	11
+333	52	0	1	20	1	1	0	0	4
+334	35	1	1	19	0	0	0	0	1
+335	52	0	0	20	1	0	0	0	1
+336	52	0	1	41	0	1	1	1	3
+337	39	1	0	23	0	1	0	1	4
+338	9	1	1	26	1	1	0	0	0
+339	52	0	0	26	1	0	0	0	2
+340	52	0	1	38	1	1	0	1	1
+341	52	0	0	27	1	1	0	1	1
+342	34	1	1	19	1	0	0	1	3
+343	52	0	0	25	1	1	0	0	1
+344	52	0	1	30	1	1	0	0	2
+345	52	0	1	42	1	1	0	0	1
+346	44	1	0	20	1	1	0	1	2
+347	52	0	1	23	1	1	0	1	1
+348	52	0	0	21	1	0	0	1	3
+349	35	1	1	20	1	1	0	0	3
+350	30	1	0	17	1	0	0	0	1
+351	39	1	1	26	1	0	1	0	5
+352	52	0	1	24	1	1	0	1	1
+353	52	0	0	37	1	1	1	1	1
+354	52	0	0	28	1	1	1	1	1
+355	52	0	0	33	1	1	0	1	0
+356	19	1	1	22	1	0	0	1	4
+357	52	0	0	25	1	1	1	1	2
+358	43	1	0	20	0	0	1	0	10
+359	52	0	0	20	1	0	0	0	1
+360	48	1	1	24	0	1	0	0	4
+361	37	1	1	26	0	0	0	0	11
+362	20	1	1	26	1	1	0	1	1
+363	52	0	0	25	0	1	0	1	1
+364	52	0	0	26	1	1	0	1	1
+365	36	1	1	23	1	0	0	0	3
+366	52	0	1	28	1	0	0	1	4
+367	52	0	0	27	1	1	0	1	0
+368	52	0	1	23	1	0	0	0	3
+369	52	0	0	17	1	0	0	1	7
+370	52	0	0	20	0	0	0	1	4
+371	52	0	1	20	1	0	0	1	5
+372	52	0	1	20	0	0	0	1	9
+373	30	1	1	22	1	1	0	1	2
+374	52	0	0	31	1	0	0	1	1
+375	52	0	0	43	1	1	0	0	1
+376	52	0	0	29	1	1	0	0	1
+377	52	0	1	21	1	0	0	0	0
+378	52	0	0	24	0	1	0	0	2
+379	52	0	1	30	1	1	1	0	3
+380	52	0	0	22	1	1	0	0	0
+381	52	0	1	26	1	1	1	0	1
+382	42	1	1	20	1	1	0	0	0
+383	52	0	0	23	1	1	0	0	6
+384	52	0	0	25	1	1	0	1	5
+385	52	0	1	40	1	1	0	1	2
+386	52	0	1	30	1	1	1	1	0
+387	26	1	0	22	1	0	1	1	2
+388	40	1	0	18	1	0	0	1	2
+389	52	0	0	18	1	0	0	1	0
+390	52	0	0	24	1	1	0	1	2
+391	52	0	1	25	1	1	1	1	2
+392	35	1	1	19	1	0	0	1	2
+393	52	0	0	24	1	1	0	1	2
+394	46	1	0	24	1	0	1	1	2
+395	52	0	0	18	1	1	0	1	3
+396	49	1	1	18	1	1	0	1	0
+397	52	0	0	23	1	1	0	0	0
+398	52	0	0	20	1	0	0	1	2
+399	49	1	1	18	1	1	0	1	1
+400	52	0	0	23	1	1	0	1	2
+401	52	0	1	20	1	0	0	1	1
+402	52	0	0	23	1	0	0	0	5
+403	52	0	0	23	1	1	0	1	1
+404	52	0	0	23	1	1	1	1	2
+405	35	1	0	20	1	1	0	1	4
+406	52	0	1	26	1	1	1	0	4
+407	52	0	1	30	1	0	0	0	1
+408	52	0	1	36	0	1	0	0	4
+409	52	0	1	43	1	1	0	0	4
+410	27	1	0	20	0	1	0	0	1
+411	52	0	1	24	1	1	0	1	1
+412	52	0	0	22	1	1	0	0	1
+413	52	0	1	20	1	0	1	0	1
+414	52	1	0	21	1	0	0	0	0
+415	45	1	1	18	1	0	0	0	5
+416	4	1	0	18	1	1	0	0	1
+417	52	1	0	33	1	1	0	1	2
+418	36	1	1	19	1	0	0	1	2
+419	52	0	1	21	0	1	0	1	1
+420	52	0	1	21	1	0	0	1	1
+421	8	1	1	21	1	1	0	1	4
+422	15	1	1	22	1	0	0	1	3
+423	52	0	0	18	1	0	0	1	3
+424	19	1	0	18	1	0	0	0	2
+425	52	0	0	24	1	1	0	1	2
+426	12	1	1	22	1	1	1	1	2
+427	52	0	1	31	0	1	0	1	3
+428	52	0	0	20	1	0	0	1	1
+429	52	0	1	20	1	1	1	1	1
+430	52	0	0	29	1	1	0	1	3
+431	52	0	1	24	1	1	0	1	1
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lifelines_tool/run_log.txt	Wed Aug 09 11:12:16 2023 +0000
@@ -0,0 +1,107 @@
+## Lifelines tool starting.
+Using data header = Index(['Unnamed: 0', 'week', 'arrest', 'fin', 'age', 'race', 'wexp', 'mar',
+       'paro', 'prio'],
+      dtype='object') time column = week status column = arrest
+### Lifelines test of Proportional Hazards results with prio, age, race, paro, mar, fin as covariates on test
+<lifelines.CoxPHFitter: fitted with 432 total observations, 318 right-censored observations>
+             duration col = 'week'
+                event col = 'arrest'
+      baseline estimation = breslow
+   number of observations = 432
+number of events observed = 114
+   partial log-likelihood = -659.00
+         time fit was run = 2023-08-09 00:18:43 UTC
+
+---
+            coef  exp(coef)   se(coef)   coef lower 95%   coef upper 95%  exp(coef) lower 95%  exp(coef) upper 95%
+covariate                                                                                                         
+prio        0.10       1.10       0.03             0.04             0.15                 1.04                 1.16
+age        -0.06       0.94       0.02            -0.10            -0.02                 0.90                 0.98
+race        0.32       1.38       0.31            -0.28             0.92                 0.75                 2.52
+paro       -0.09       0.91       0.20            -0.47             0.29                 0.62                 1.34
+mar        -0.48       0.62       0.38            -1.22             0.25                 0.30                 1.29
+fin        -0.38       0.68       0.19            -0.75            -0.00                 0.47                 1.00
+
+            cmp to     z      p   -log2(p)
+covariate                                 
+prio          0.00  3.53 <0.005      11.26
+age           0.00 -2.95 <0.005       8.28
+race          0.00  1.04   0.30       1.75
+paro          0.00 -0.46   0.65       0.63
+mar           0.00 -1.28   0.20       2.32
+fin           0.00 -1.98   0.05       4.40
+---
+Concordance = 0.63
+Partial AIC = 1330.00
+log-likelihood ratio test = 32.77 on 6 df
+-log2(p) of ll-ratio test = 16.39
+
+
+   Bootstrapping lowess lines. May take a moment...
+
+
+   Bootstrapping lowess lines. May take a moment...
+
+The ``p_value_threshold`` is set at 0.01. Even under the null hypothesis of no violations, some
+covariates will be below the threshold by chance. This is compounded when there are many covariates.
+Similarly, when there are lots of observations, even minor deviances from the proportional hazard
+assumption will be flagged.
+
+With that in mind, it's best to use a combination of statistical tests and visual tests to determine
+the most serious violations. Produce visual plots using ``check_assumptions(..., show_plots=True)``
+and looking for non-constant lines. See link [A] below for a full example.
+
+<lifelines.StatisticalResult: proportional_hazard_test>
+ null_distribution = chi squared
+degrees_of_freedom = 1
+             model = <lifelines.CoxPHFitter: fitted with 432 total observations, 318 right-censored observations>
+         test_name = proportional_hazard_test
+
+---
+           test_statistic    p  -log2(p)
+age  km              6.99 0.01      6.93
+     rank            7.40 0.01      7.26
+fin  km              0.02 0.90      0.15
+     rank            0.01 0.91      0.13
+mar  km              1.64 0.20      2.32
+     rank            1.80 0.18      2.48
+paro km              0.06 0.81      0.31
+     rank            0.07 0.79      0.34
+prio km              0.92 0.34      1.57
+     rank            0.88 0.35      1.52
+race km              1.70 0.19      2.38
+     rank            1.68 0.19      2.36
+
+
+1. Variable 'age' failed the non-proportional test: p-value is 0.0065.
+
+   Advice 1: the functional form of the variable 'age' might be incorrect. That is, there may be
+non-linear terms missing. The proportional hazard test used is very sensitive to incorrect
+functional forms. See documentation in link [D] below on how to specify a functional form.
+
+   Advice 2: try binning the variable 'age' using pd.cut, and then specify it in `strata=['age',
+...]` in the call in `.fit`. See documentation in link [B] below.
+
+   Advice 3: try adding an interaction term with your time variable. See documentation in link [C]
+below.
+
+
+   Bootstrapping lowess lines. May take a moment...
+
+
+   Bootstrapping lowess lines. May take a moment...
+
+
+   Bootstrapping lowess lines. May take a moment...
+
+
+   Bootstrapping lowess lines. May take a moment...
+
+
+---
+[A]  https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html
+[B]  https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Bin-variable-and-stratify-on-it
+[C]  https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Introduce-time-varying-covariates
+[D]  https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Modify-the-functional-form
+[E]  https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Stratification
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lifelines_tool/test-data/input_tab_sample	Wed Aug 09 11:12:16 2023 +0000
@@ -0,0 +1,433 @@
+	week	arrest	fin	age	race	wexp	mar	paro	prio
+0	20	1	0	27	1	0	0	1	3
+1	17	1	0	18	1	0	0	1	8
+2	25	1	0	19	0	1	0	1	13
+3	52	0	1	23	1	1	1	1	1
+4	52	0	0	19	0	1	0	1	3
+5	52	0	0	24	1	1	0	0	2
+6	23	1	0	25	1	1	1	1	0
+7	52	0	1	21	1	1	0	1	4
+8	52	0	0	22	1	0	0	0	6
+9	52	0	0	20	1	1	0	0	0
+10	52	0	1	26	1	0	0	1	3
+11	52	0	0	40	1	1	0	0	2
+12	37	1	0	17	1	1	0	1	5
+13	52	0	0	37	1	1	0	0	2
+14	25	1	0	20	1	0	0	1	3
+15	46	1	1	22	1	1	0	1	2
+16	28	1	0	19	1	0	0	0	7
+17	52	0	0	20	1	0	0	0	2
+18	52	0	0	25	1	0	0	1	12
+19	52	0	0	24	0	1	0	1	1
+20	52	0	0	23	1	0	0	1	4
+21	52	0	1	44	1	1	1	1	0
+22	24	1	1	29	1	1	0	1	2
+23	52	0	1	28	0	1	0	1	1
+24	52	0	1	21	1	1	0	0	0
+25	52	0	1	19	1	1	0	1	2
+26	52	0	0	33	1	1	0	1	1
+27	52	0	0	19	1	0	0	0	2
+28	52	0	1	19	1	0	0	1	3
+29	52	0	1	23	1	1	1	1	9
+30	52	0	1	23	1	0	0	1	3
+31	52	0	1	19	1	0	0	1	1
+32	52	0	1	42	1	1	0	0	0
+33	52	0	0	23	1	1	1	0	2
+34	52	0	0	24	1	1	0	0	3
+35	50	1	1	20	1	1	0	1	2
+36	52	0	0	22	1	1	0	1	5
+37	52	0	0	27	1	1	0	0	2
+38	52	0	1	19	1	0	0	0	4
+39	52	0	0	28	1	1	0	1	3
+40	52	0	1	33	1	1	1	0	9
+41	52	0	0	24	1	1	0	1	1
+42	10	1	0	21	1	0	0	1	14
+43	52	0	0	22	1	0	0	1	2
+44	52	0	1	19	1	0	0	1	2
+45	52	0	1	22	1	0	0	0	2
+46	52	0	1	22	1	0	0	0	15
+47	20	1	1	23	1	1	0	1	5
+48	52	0	0	32	1	1	1	1	2
+49	52	0	1	27	1	1	0	1	0
+50	52	0	1	36	1	1	0	0	0
+51	52	0	1	22	1	1	0	1	1
+52	52	0	1	32	1	1	0	1	1
+53	50	1	1	19	1	1	0	0	10
+54	52	0	0	28	1	1	1	1	1
+55	52	0	0	32	0	1	0	0	3
+56	52	0	0	33	1	1	1	1	1
+57	52	0	0	26	1	0	0	1	1
+58	52	0	1	20	1	1	0	1	0
+59	52	0	1	42	1	1	0	0	9
+60	6	1	0	19	1	0	0	0	6
+61	52	0	0	22	1	1	0	0	2
+62	52	0	0	22	1	0	0	1	5
+63	52	0	0	36	1	0	0	0	11
+64	52	1	0	23	1	1	0	0	2
+65	52	0	1	27	1	1	0	1	3
+66	52	0	1	21	1	0	0	1	1
+67	52	0	1	22	1	1	0	1	2
+68	49	1	0	35	1	1	0	1	3
+69	52	0	0	21	1	1	0	1	4
+70	52	0	1	25	1	1	0	1	5
+71	52	0	0	18	1	0	0	1	0
+72	52	0	1	26	1	1	0	1	2
+73	52	0	0	30	1	1	0	0	4
+74	52	0	0	20	1	0	0	1	2
+75	52	0	1	43	1	1	0	1	1
+76	43	1	0	23	1	1	1	1	4
+77	52	0	0	42	0	1	0	0	2
+78	52	0	0	21	0	0	0	0	2
+79	5	1	0	19	1	0	0	0	3
+80	27	1	0	29	1	0	0	0	4
+81	52	0	0	30	1	1	0	1	3
+82	52	0	1	21	0	1	1	1	10
+83	52	0	0	20	1	0	0	1	7
+84	22	1	1	19	1	0	0	1	10
+85	52	0	1	22	1	1	0	1	1
+86	52	0	0	25	1	0	0	1	3
+87	18	1	0	22	1	0	0	0	4
+88	52	0	1	22	1	1	0	1	4
+89	52	0	1	24	1	0	0	1	2
+90	52	0	0	39	1	1	1	1	4
+91	52	0	0	21	1	1	0	1	1
+92	52	0	1	20	1	1	0	1	2
+93	52	0	1	24	1	0	0	0	1
+94	52	0	0	25	1	1	0	1	2
+95	24	1	1	21	1	1	0	0	4
+96	52	0	1	20	1	0	0	1	1
+97	52	0	1	19	1	0	0	1	3
+98	52	0	1	24	1	0	0	0	2
+99	52	0	1	24	1	1	0	1	1
+100	2	1	0	44	1	1	0	1	2
+101	26	1	0	32	1	1	0	0	2
+102	52	0	0	23	1	1	0	0	3
+103	49	1	1	19	1	0	0	1	1
+104	52	0	0	20	1	0	0	1	1
+105	21	1	0	27	1	1	0	1	0
+106	48	1	0	19	1	0	0	0	6
+107	52	0	1	21	1	1	0	0	1
+108	52	0	0	20	1	0	0	1	1
+109	52	0	0	25	1	0	0	1	3
+110	52	0	0	20	1	0	0	1	6
+111	52	0	1	23	1	1	0	1	3
+112	52	0	0	20	1	0	0	0	2
+113	52	0	1	30	1	1	0	0	1
+114	52	0	0	25	1	1	1	1	0
+115	52	0	0	22	1	1	0	1	1
+116	52	0	0	24	1	1	0	1	3
+117	52	0	1	18	1	0	0	0	4
+118	8	1	1	40	1	1	0	1	1
+119	52	0	0	22	1	0	0	1	1
+120	52	0	1	23	1	0	0	1	6
+121	49	1	0	21	1	1	0	1	1
+122	52	0	1	24	0	1	1	1	2
+123	52	0	1	24	1	0	0	1	14
+124	52	0	0	38	1	1	0	1	2
+125	52	0	0	26	0	1	0	0	3
+126	52	0	1	29	1	1	0	0	1
+127	52	0	0	21	1	0	0	1	8
+128	52	0	1	21	1	1	1	1	2
+129	52	0	0	22	0	0	0	1	4
+130	8	1	0	23	1	0	0	1	5
+131	52	0	0	27	1	1	0	0	2
+132	52	0	1	18	1	0	0	1	2
+133	13	1	0	23	1	0	0	0	5
+134	52	0	1	24	1	0	0	1	2
+135	52	0	1	21	1	0	0	0	3
+136	52	0	1	20	1	0	0	1	4
+137	52	0	1	27	1	1	0	0	4
+138	8	1	1	20	1	0	0	1	11
+139	52	0	1	29	1	1	1	1	5
+140	33	1	0	19	1	0	0	0	10
+141	52	0	0	20	1	0	0	0	8
+142	52	0	1	18	1	0	0	1	0
+143	11	1	1	19	1	0	0	1	2
+144	52	0	1	24	1	1	0	1	1
+145	52	0	0	28	0	1	0	1	4
+146	52	0	1	26	1	0	0	0	4
+147	52	0	1	17	1	0	0	1	0
+148	52	0	0	21	1	0	0	1	3
+149	37	1	0	34	1	1	0	0	2
+150	52	0	1	26	1	1	0	0	1
+151	52	0	1	43	1	1	0	1	2
+152	52	0	0	20	1	0	0	1	0
+153	44	1	0	20	1	1	0	1	1
+154	52	0	0	32	1	1	0	1	1
+155	52	1	0	25	0	1	0	1	1
+156	52	0	1	22	1	0	0	1	1
+157	52	0	1	31	0	1	0	1	1
+158	52	0	1	42	1	1	1	1	4
+159	52	0	1	32	1	1	0	0	10
+160	52	0	1	20	1	0	0	0	8
+161	52	0	0	20	0	0	0	0	1
+162	52	0	1	36	1	0	0	1	8
+163	52	0	1	34	1	1	0	1	2
+164	52	0	1	28	1	1	1	1	3
+165	52	0	1	21	1	1	0	1	2
+166	52	0	0	18	0	0	0	1	6
+167	52	0	1	20	0	0	0	1	4
+168	52	0	0	17	0	0	0	1	3
+169	52	0	1	44	1	0	0	1	3
+170	52	0	1	30	1	1	0	1	5
+171	52	0	1	22	1	0	0	0	11
+172	9	1	1	30	1	0	0	0	3
+173	17	1	0	23	1	0	0	0	8
+174	52	0	1	20	1	1	0	0	2
+175	52	0	0	19	1	0	0	0	10
+176	52	0	1	21	1	0	0	1	1
+177	52	0	1	22	1	0	0	1	6
+178	52	0	1	19	1	0	0	1	2
+179	52	0	1	21	1	0	0	0	10
+180	16	1	0	38	1	0	0	1	3
+181	52	0	1	24	1	0	0	0	7
+182	52	0	1	39	1	1	1	0	2
+183	3	1	0	30	1	0	0	1	3
+184	52	0	0	37	1	1	0	0	0
+185	52	0	1	23	1	0	0	1	2
+186	52	0	0	21	0	0	0	1	1
+187	52	0	1	31	1	1	0	1	1
+188	52	0	1	24	1	0	0	0	13
+189	52	0	0	31	0	1	1	1	3
+190	52	0	0	24	1	0	0	1	2
+191	52	0	1	24	1	1	0	1	1
+192	52	0	1	21	0	1	0	0	1
+193	52	0	1	22	1	0	0	0	2
+194	45	1	0	20	1	0	0	1	5
+195	52	0	1	21	1	1	0	1	0
+196	52	0	1	24	1	1	0	1	2
+197	52	0	0	25	1	1	0	1	1
+198	52	0	0	19	1	0	0	1	1
+199	52	0	0	20	0	0	0	0	2
+200	52	0	0	20	1	1	0	1	4
+201	28	1	0	24	1	1	0	0	1
+202	52	0	1	18	1	0	0	0	4
+203	16	1	1	28	1	0	0	1	5
+204	15	1	1	19	1	0	0	0	4
+205	52	0	0	19	1	1	0	0	1
+206	52	0	0	25	1	1	1	0	0
+207	52	0	1	19	0	0	0	0	1
+208	52	0	1	25	1	0	0	0	2
+209	14	1	0	24	1	0	0	0	0
+210	52	0	1	20	1	1	0	1	1
+211	52	0	1	30	1	0	0	1	1
+212	52	0	0	29	1	1	0	1	4
+213	52	0	0	28	0	1	1	1	4
+214	52	0	1	36	1	0	0	1	1
+215	52	0	1	23	1	1	0	0	7
+216	52	0	1	23	1	0	0	0	2
+217	52	0	0	24	1	1	0	1	4
+218	52	0	0	29	1	1	1	1	1
+219	52	0	0	26	1	1	1	1	2
+220	52	0	0	39	0	1	1	0	3
+221	52	0	1	20	1	1	0	1	1
+222	52	0	0	23	1	1	0	1	3
+223	52	0	1	21	1	1	0	1	2
+224	52	0	1	21	1	0	0	1	1
+225	7	1	1	20	0	0	0	1	2
+226	52	0	1	20	0	0	0	1	3
+227	52	0	1	27	1	1	0	1	2
+228	43	1	0	18	0	1	0	0	3
+229	46	1	1	25	1	1	0	0	1
+230	40	1	1	20	1	0	0	0	6
+231	52	0	1	20	1	1	0	0	5
+232	14	1	0	20	0	0	0	0	7
+233	52	0	0	24	0	1	1	0	11
+234	52	0	1	23	1	0	0	0	1
+235	8	1	0	28	1	1	0	0	4
+236	52	0	0	21	1	0	0	0	2
+237	52	0	0	25	1	0	0	0	1
+238	52	0	0	24	1	1	0	1	1
+239	52	0	0	29	1	1	1	0	3
+240	52	0	0	22	1	1	1	1	2
+241	25	1	0	28	1	0	0	1	18
+242	52	0	0	19	1	0	0	1	1
+243	52	0	0	20	1	1	0	1	1
+244	17	1	0	20	1	0	0	1	5
+245	37	1	1	22	1	1	0	1	1
+246	52	0	0	20	1	0	0	1	8
+247	52	0	1	21	1	0	0	1	2
+248	52	0	1	21	1	1	0	1	1
+249	32	1	0	19	1	0	0	1	3
+250	52	0	0	26	1	1	0	1	1
+251	52	0	0	23	1	1	1	1	2
+252	52	0	1	22	0	1	0	1	4
+253	52	0	1	24	1	1	0	0	8
+254	52	0	1	40	1	0	0	0	5
+255	52	0	1	32	1	0	0	0	2
+256	52	0	0	38	1	1	0	0	0
+257	52	0	0	26	1	1	0	1	1
+258	12	1	1	27	1	1	0	1	0
+259	52	0	0	29	1	1	1	1	3
+260	18	1	0	20	1	1	0	1	4
+261	52	0	0	22	1	0	0	0	1
+262	52	0	0	22	0	0	0	0	5
+263	14	1	1	19	1	1	0	0	12
+264	52	0	0	22	1	1	0	0	1
+265	52	0	0	19	1	0	0	0	3
+266	52	0	1	32	1	1	0	0	1
+267	52	0	1	25	1	1	0	1	2
+268	38	1	0	21	1	0	0	1	2
+269	52	0	1	36	1	1	0	1	1
+270	24	1	0	40	1	1	0	0	2
+271	20	1	1	20	1	0	0	1	1
+272	32	1	1	19	1	0	0	1	0
+273	52	0	0	18	1	0	0	1	4
+274	52	0	1	28	1	1	0	0	0
+275	52	0	1	22	1	1	0	0	2
+276	52	0	1	25	1	0	0	1	1
+277	52	0	1	28	1	1	0	0	2
+278	52	0	1	25	1	1	0	0	2
+279	52	0	1	20	1	1	0	0	4
+280	52	0	1	24	1	0	0	0	5
+281	52	0	0	24	1	1	0	0	0
+282	52	0	1	36	0	1	0	1	2
+283	52	0	1	34	1	1	0	0	1
+284	31	1	0	19	1	1	0	1	5
+285	20	1	1	23	1	0	0	1	1
+286	40	1	0	19	1	1	0	1	3
+287	52	0	1	40	1	1	0	0	2
+288	52	0	1	31	1	1	0	0	2
+289	52	0	0	23	1	1	1	1	0
+290	52	0	0	42	1	0	0	1	2
+291	42	1	1	26	1	1	1	1	1
+292	52	0	0	20	1	0	0	1	9
+293	26	1	0	27	1	1	0	1	1
+294	52	0	1	24	1	0	0	0	5
+295	52	0	0	25	1	0	0	0	2
+296	52	0	1	22	1	1	0	1	3
+297	52	0	1	20	1	0	0	1	2
+298	52	0	1	20	1	1	0	1	2
+299	47	1	0	22	1	0	0	1	3
+300	52	0	0	18	1	1	0	1	1
+301	52	0	0	20	1	1	0	1	2
+302	40	1	0	20	1	1	0	1	1
+303	52	0	0	22	1	1	0	1	2
+304	52	0	1	30	1	1	1	0	2
+305	52	0	0	36	0	1	0	0	1
+306	52	0	0	25	0	1	1	1	5
+307	21	1	0	29	1	0	0	1	3
+308	52	0	0	19	1	1	0	1	3
+309	52	0	1	24	1	1	0	1	2
+310	52	0	1	21	1	0	0	0	0
+311	52	0	1	35	1	1	0	1	6
+312	52	0	1	19	0	1	0	0	4
+313	1	1	0	20	1	0	0	0	0
+314	43	1	0	22	0	0	0	0	3
+315	24	1	0	23	1	1	0	0	1
+316	11	1	0	19	1	0	0	0	18
+317	52	0	0	18	1	0	0	1	3
+318	52	0	1	38	0	1	0	1	2
+319	52	0	1	18	0	0	0	1	6
+320	52	0	0	22	1	1	1	1	1
+321	33	1	0	21	1	0	0	1	3
+322	52	0	0	21	1	1	0	1	1
+323	46	1	1	21	1	0	0	1	5
+324	36	1	1	17	1	0	0	1	3
+325	52	0	1	22	1	1	0	1	1
+326	52	0	1	23	1	1	1	1	0
+327	18	1	1	19	1	0	0	1	4
+328	52	0	1	21	1	1	0	0	1
+329	52	0	1	35	1	1	0	0	5
+330	50	1	0	23	1	1	0	0	8
+331	52	0	1	22	1	0	0	0	2
+332	34	1	1	25	1	0	0	0	11
+333	52	0	1	20	1	1	0	0	4
+334	35	1	1	19	0	0	0	0	1
+335	52	0	0	20	1	0	0	0	1
+336	52	0	1	41	0	1	1	1	3
+337	39	1	0	23	0	1	0	1	4
+338	9	1	1	26	1	1	0	0	0
+339	52	0	0	26	1	0	0	0	2
+340	52	0	1	38	1	1	0	1	1
+341	52	0	0	27	1	1	0	1	1
+342	34	1	1	19	1	0	0	1	3
+343	52	0	0	25	1	1	0	0	1
+344	52	0	1	30	1	1	0	0	2
+345	52	0	1	42	1	1	0	0	1
+346	44	1	0	20	1	1	0	1	2
+347	52	0	1	23	1	1	0	1	1
+348	52	0	0	21	1	0	0	1	3
+349	35	1	1	20	1	1	0	0	3
+350	30	1	0	17	1	0	0	0	1
+351	39	1	1	26	1	0	1	0	5
+352	52	0	1	24	1	1	0	1	1
+353	52	0	0	37	1	1	1	1	1
+354	52	0	0	28	1	1	1	1	1
+355	52	0	0	33	1	1	0	1	0
+356	19	1	1	22	1	0	0	1	4
+357	52	0	0	25	1	1	1	1	2
+358	43	1	0	20	0	0	1	0	10
+359	52	0	0	20	1	0	0	0	1
+360	48	1	1	24	0	1	0	0	4
+361	37	1	1	26	0	0	0	0	11
+362	20	1	1	26	1	1	0	1	1
+363	52	0	0	25	0	1	0	1	1
+364	52	0	0	26	1	1	0	1	1
+365	36	1	1	23	1	0	0	0	3
+366	52	0	1	28	1	0	0	1	4
+367	52	0	0	27	1	1	0	1	0
+368	52	0	1	23	1	0	0	0	3
+369	52	0	0	17	1	0	0	1	7
+370	52	0	0	20	0	0	0	1	4
+371	52	0	1	20	1	0	0	1	5
+372	52	0	1	20	0	0	0	1	9
+373	30	1	1	22	1	1	0	1	2
+374	52	0	0	31	1	0	0	1	1
+375	52	0	0	43	1	1	0	0	1
+376	52	0	0	29	1	1	0	0	1
+377	52	0	1	21	1	0	0	0	0
+378	52	0	0	24	0	1	0	0	2
+379	52	0	1	30	1	1	1	0	3
+380	52	0	0	22	1	1	0	0	0
+381	52	0	1	26	1	1	1	0	1
+382	42	1	1	20	1	1	0	0	0
+383	52	0	0	23	1	1	0	0	6
+384	52	0	0	25	1	1	0	1	5
+385	52	0	1	40	1	1	0	1	2
+386	52	0	1	30	1	1	1	1	0
+387	26	1	0	22	1	0	1	1	2
+388	40	1	0	18	1	0	0	1	2
+389	52	0	0	18	1	0	0	1	0
+390	52	0	0	24	1	1	0	1	2
+391	52	0	1	25	1	1	1	1	2
+392	35	1	1	19	1	0	0	1	2
+393	52	0	0	24	1	1	0	1	2
+394	46	1	0	24	1	0	1	1	2
+395	52	0	0	18	1	1	0	1	3
+396	49	1	1	18	1	1	0	1	0
+397	52	0	0	23	1	1	0	0	0
+398	52	0	0	20	1	0	0	1	2
+399	49	1	1	18	1	1	0	1	1
+400	52	0	0	23	1	1	0	1	2
+401	52	0	1	20	1	0	0	1	1
+402	52	0	0	23	1	0	0	0	5
+403	52	0	0	23	1	1	0	1	1
+404	52	0	0	23	1	1	1	1	2
+405	35	1	0	20	1	1	0	1	4
+406	52	0	1	26	1	1	1	0	4
+407	52	0	1	30	1	0	0	0	1
+408	52	0	1	36	0	1	0	0	4
+409	52	0	1	43	1	1	0	0	4
+410	27	1	0	20	0	1	0	0	1
+411	52	0	1	24	1	1	0	1	1
+412	52	0	0	22	1	1	0	0	1
+413	52	0	1	20	1	0	1	0	1
+414	52	1	0	21	1	0	0	0	0
+415	45	1	1	18	1	0	0	0	5
+416	4	1	0	18	1	1	0	0	1
+417	52	1	0	33	1	1	0	1	2
+418	36	1	1	19	1	0	0	1	2
+419	52	0	1	21	0	1	0	1	1
+420	52	0	1	21	1	0	0	1	1
+421	8	1	1	21	1	1	0	1	4
+422	15	1	1	22	1	0	0	1	3
+423	52	0	0	18	1	0	0	1	3
+424	19	1	0	18	1	0	0	0	2
+425	52	0	0	24	1	1	0	1	2
+426	12	1	1	22	1	1	1	1	2
+427	52	0	1	31	0	1	0	1	3
+428	52	0	0	20	1	0	0	1	1
+429	52	0	1	20	1	1	1	1	1
+430	52	0	0	29	1	1	0	1	3
+431	52	0	1	24	1	1	0	1	1
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lifelines_tool/test-data/readme_sample	Wed Aug 09 11:12:16 2023 +0000
@@ -0,0 +1,119 @@
+## Lifelines tool starting.
+Using data header = Index(['Unnamed: 0', 'week', 'arrest', 'fin', 'age', 'race', 'wexp', 'mar',
+       'paro', 'prio'],
+      dtype='object') time column = week status column = arrest
+Logrank test for race - 0 vs 1
+
+<lifelines.StatisticalResult: logrank_test>
+               t_0 = -1
+ null_distribution = chi squared
+degrees_of_freedom = 1
+             alpha = 0.99
+         test_name = logrank_test
+
+---
+ test_statistic    p  -log2(p)
+           0.58 0.45      1.16
+### Lifelines test of Proportional Hazards results with prio, age, race, paro, mar, fin as covariates on KM and CPH in lifelines test
+<lifelines.CoxPHFitter: fitted with 432 total observations, 318 right-censored observations>
+             duration col = 'week'
+                event col = 'arrest'
+      baseline estimation = breslow
+   number of observations = 432
+number of events observed = 114
+   partial log-likelihood = -659.00
+         time fit was run = 2023-08-09 07:43:37 UTC
+
+---
+            coef  exp(coef)   se(coef)   coef lower 95%   coef upper 95%  exp(coef) lower 95%  exp(coef) upper 95%
+covariate                                                                                                         
+prio        0.10       1.10       0.03             0.04             0.15                 1.04                 1.16
+age        -0.06       0.94       0.02            -0.10            -0.02                 0.90                 0.98
+race        0.32       1.38       0.31            -0.28             0.92                 0.75                 2.52
+paro       -0.09       0.91       0.20            -0.47             0.29                 0.62                 1.34
+mar        -0.48       0.62       0.38            -1.22             0.25                 0.30                 1.29
+fin        -0.38       0.68       0.19            -0.75            -0.00                 0.47                 1.00
+
+            cmp to     z      p   -log2(p)
+covariate                                 
+prio          0.00  3.53 <0.005      11.26
+age           0.00 -2.95 <0.005       8.28
+race          0.00  1.04   0.30       1.75
+paro          0.00 -0.46   0.65       0.63
+mar           0.00 -1.28   0.20       2.32
+fin           0.00 -1.98   0.05       4.40
+---
+Concordance = 0.63
+Partial AIC = 1330.00
+log-likelihood ratio test = 32.77 on 6 df
+-log2(p) of ll-ratio test = 16.39
+
+
+   Bootstrapping lowess lines. May take a moment...
+
+
+   Bootstrapping lowess lines. May take a moment...
+
+The ``p_value_threshold`` is set at 0.01. Even under the null hypothesis of no violations, some
+covariates will be below the threshold by chance. This is compounded when there are many covariates.
+Similarly, when there are lots of observations, even minor deviances from the proportional hazard
+assumption will be flagged.
+
+With that in mind, it's best to use a combination of statistical tests and visual tests to determine
+the most serious violations. Produce visual plots using ``check_assumptions(..., show_plots=True)``
+and looking for non-constant lines. See link [A] below for a full example.
+
+<lifelines.StatisticalResult: proportional_hazard_test>
+ null_distribution = chi squared
+degrees_of_freedom = 1
+             model = <lifelines.CoxPHFitter: fitted with 432 total observations, 318 right-censored observations>
+         test_name = proportional_hazard_test
+
+---
+           test_statistic    p  -log2(p)
+age  km              6.99 0.01      6.93
+     rank            7.40 0.01      7.26
+fin  km              0.02 0.90      0.15
+     rank            0.01 0.91      0.13
+mar  km              1.64 0.20      2.32
+     rank            1.80 0.18      2.48
+paro km              0.06 0.81      0.31
+     rank            0.07 0.79      0.34
+prio km              0.92 0.34      1.57
+     rank            0.88 0.35      1.52
+race km              1.70 0.19      2.38
+     rank            1.68 0.19      2.36
+
+
+1. Variable 'age' failed the non-proportional test: p-value is 0.0065.
+
+   Advice 1: the functional form of the variable 'age' might be incorrect. That is, there may be
+non-linear terms missing. The proportional hazard test used is very sensitive to incorrect
+functional forms. See documentation in link [D] below on how to specify a functional form.
+
+   Advice 2: try binning the variable 'age' using pd.cut, and then specify it in `strata=['age',
+...]` in the call in `.fit`. See documentation in link [B] below.
+
+   Advice 3: try adding an interaction term with your time variable. See documentation in link [C]
+below.
+
+
+   Bootstrapping lowess lines. May take a moment...
+
+
+   Bootstrapping lowess lines. May take a moment...
+
+
+   Bootstrapping lowess lines. May take a moment...
+
+
+   Bootstrapping lowess lines. May take a moment...
+
+
+---
+[A]  https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html
+[B]  https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Bin-variable-and-stratify-on-it
+[C]  https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Introduce-time-varying-covariates
+[D]  https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Modify-the-functional-form
+[E]  https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Stratification
+
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/lifelines_tool/tongue.tab	Wed Aug 09 11:12:16 2023 +0000
@@ -0,0 +1,81 @@
+type	time	delta
+1	1	1
+1	3	1
+1	3	1
+1	4	1
+1	10	1
+1	13	1
+1	13	1
+1	16	1
+1	16	1
+1	24	1
+1	26	1
+1	27	1
+1	28	1
+1	30	1
+1	30	1
+1	32	1
+1	41	1
+1	51	1
+1	65	1
+1	67	1
+1	70	1
+1	72	1
+1	73	1
+1	77	1
+1	91	1
+1	93	1
+1	96	1
+1	100	1
+1	104	1
+1	157	1
+1	167	1
+1	61	0
+1	74	0
+1	79	0
+1	80	0
+1	81	0
+1	87	0
+1	87	0
+1	88	0
+1	89	0
+1	93	0
+1	97	0
+1	101	0
+1	104	0
+1	108	0
+1	109	0
+1	120	0
+1	131	0
+1	150	0
+1	231	0
+1	240	0
+1	400	0
+2	1	1
+2	3	1
+2	4	1
+2	5	1
+2	5	1
+2	8	1
+2	12	1
+2	13	1
+2	18	1
+2	23	1
+2	26	1
+2	27	1
+2	30	1
+2	42	1
+2	56	1
+2	62	1
+2	69	1
+2	104	1
+2	104	1
+2	112	1
+2	129	1
+2	181	1
+2	8	0
+2	67	0
+2	76	0
+2	104	0
+2	176	0
+2	231	0