Mercurial > repos > genouest > askor_de
view AskoR.R @ 2:877d2be25a6a draft default tip
planemo upload for repository https://github.com/genouest/galaxy-tools/tree/master/tools/askor commit 994ecff7807bb0eb9dac740d67ad822415b0b464
author | genouest |
---|---|
date | Thu, 19 Apr 2018 03:44:31 -0400 |
parents | ceef9bc6bbc7 |
children |
line wrap: on
line source
asko3c <- function(data_list){ asko<-list() ######### Condition ############ condition<-unique(data_list$samples$condition) # retrieval of different condition's names col1<-which(colnames(data_list$samples)=="condition") # determination of number of the column "condition" colcol<-which(colnames(data_list$samples)=="color") if(is.null(parameters$fileofcount)){ col2<-which(colnames(data_list$samples)=="file") # determination of number of the column "replicate" column_name<-colnames(data_list$samples[,c(-col1,-col2,-colcol)]) # retrieval of column names needful to create the file condition }else{column_name<-colnames(data_list$samples[,c(-col1,-colcol)])} condition_asko<-data.frame(row.names=condition) # initialization of the condition's data frame #level<-list() # initialization of the list will contain the level # of each experimental factor for (name in column_name){ # for each experimental factor : # if(str_detect(name, "condition")){ # for the column of conditions, the level is fixed to 0 because # level<-append(level, 0) # "condition" must be the first column of the data frame # }else{ # # level<-append(level, length(levels(data_list$samples[,name]))) # adding to the list the level of other experimental factors # } # condition_asko$n<-NA # initialization of new column in the condition's data frame colnames(condition_asko)[colnames(condition_asko)=="n"]<-name # to rename the new column with with the name of experimental factor for(condition_name in condition){ # for each condition's names condition_asko[condition_name,name]<-as.character(unique(data_list$samples[data_list$samples$condition==condition_name, name])) } # filling the condition's data frame } # order_level<-order(unlist(level)) # list to vector # condition_asko<-condition_asko[,order_level] # order columns according to their level #asko$condition<-condition_asko # adding data frame of conditions to asko object #print(condition_asko) #############contrast + context################## i=0 contrast_asko<-data.frame(row.names = colnames(data_list$contrast)) # initialization of the contrast's data frame contrast_asko$Contrast<-NA # all columns are created et initialized with contrast_asko$context1<-NA # NA values contrast_asko$context2<-NA # list_context<-list() # initialization of context and condition lists list_condition<-list() # will be used to create the context data frame if(parameters$mk_context==TRUE){ for (contrast in colnames(data_list$contrast)){ # for each contrast : i=i+1 # contrast data frame will be filled line by line #print(contrast) set_cond1<-row.names(data_list$contrast)[data_list$contrast[,contrast]>0] # retrieval of 1st set of condition's names implicated in a given contrast set_cond2<-row.names(data_list$contrast)[data_list$contrast[,contrast]<0] # retrieval of 2nd set of condition's names implicated in a given contrast parameters<-colnames(condition_asko) # retrieval of names of experimental factor print(paste("set_cond1 : ", set_cond1, sep = "")) # print(length(set_cond1)) print(paste("set_cond2 : ", set_cond2, sep = "")) # print(length(set_cond2)) if(length(set_cond1)==1){complex1=F}else{complex1=T}# to determine if we have complex contrast (multiple conditions if(length(set_cond2)==1){complex2=F}else{complex2=T}# compared to multiple conditions) or not #print(complex1) if(complex1==F && complex2==F){ # Case 1: one condition against one condition contrast_asko[i,"context1"]<-set_cond1 # filling contrast data frame with the name of the 1st context contrast_asko[i,"context2"]<-set_cond2 # filling contrast data frame with the name of the 2nd context contrast_name<-paste(set_cond1,set_cond2, sep = "vs") # creation of contrast name by associating the names of contexts contrast_asko[i,"Contrast"]<-contrast_name # filling contrast data frame with contrast name list_context<-append(list_context, set_cond1) # list_condition<-append(list_condition, set_cond1) # adding respectively to the lists "context" and "condition" the context name list_context<-append(list_context, set_cond2) # and the condition name associated list_condition<-append(list_condition, set_cond2) # } if(complex1==F && complex2==T){ # Case 2: one condition against multiple condition contrast_asko[i,"context1"]<-set_cond1 # filling contrast data frame with the name of the 1st context list_context<-append(list_context, set_cond1) # adding respectively to the lists "context" and "condition" the 1st context list_condition<-append(list_condition, set_cond1) # name and the condition name associated l=0 # "common_factor" will contain the common experimental factors shared by common_factor=list() # conditions belonging to the complex context for (param_names in parameters){ # for each experimental factor facteur<-unique(c(condition_asko[,param_names])) # retrieval of possible values for the experimental factor l=l+1 # for(value in facteur){ # for each possible values verif<-unique(str_detect(set_cond2, value)) # verification of the presence of values in each condition contained in the set if(length(verif)==1 && verif==TRUE){common_factor[l]<-value} # if verif contains only TRUE, value of experimental factor } # is added as common factor } if(length(common_factor)>1){ # if there are several common factor common_factor<-toString(common_factor) # the list is converted to string contx<-str_replace(common_factor,", ","") contx<-str_replace_all(contx, "NULL", "")}else{contx<-common_factor} # and all common factor are concatenated to become the name of context contrast_asko[i,"context2"]<-contx # filling contrast data frame with the name of the 2nd context contrast_name<-paste(set_cond1,contx, sep = "vs") # concatenation of context names to make the contrast name contrast_asko[i,"Contrast"]<-contrast_name # filling contrast data frame with the contrast name for(j in 1:length(set_cond2)){ # for each condition contained in the complex context (2nd): list_context<-append(list_context, contx) # adding condition name with the context name associated list_condition<-append(list_condition, set_cond2[j]) # to their respective list } } if(complex1==T && complex2==F){ # Case 3: multiple conditions against one condition contrast_asko[i,"context2"]<-set_cond2 # filling contrast data frame with the name of the 2nd context list_context<-append(list_context, set_cond2) # adding respectively to the lists "context" and "condition" the 2nd context list_condition<-append(list_condition, set_cond2) # name and the 2nd condition name associated l=0 # "common_factor" will contain the common experimental factors shared by common_factor=list() # conditions belonging to the complex context for (param_names in parameters){ # for each experimental factor: facteur<-unique(c(condition_asko[,param_names])) # retrieval of possible values for the experimental factor l=l+1 for(value in facteur){ # for each possible values: verif<-unique(str_detect(set_cond1, value)) # verification of the presence of values in each condition contained in the set if(length(verif)==1 && verif==TRUE){common_factor[l]<-value} # if verif contains only TRUE, value of experimental factor } # is added as common factor } if(length(common_factor)>1){ # if there are several common factor common_factor<-toString(common_factor) # the list is converted to string contx<-str_replace(common_factor,", ","") contx<-str_replace_all(contx, "NULL", "")}else{contx<-common_factor} # and all common factor are concatenated to become the name of context contrast_asko[i,"context1"]<-contx # filling contrast data frame with the name of the 1st context contrast_name<-paste(contx,set_cond2, sep = "vs") # concatenation of context names to make the contrast name contrast_asko[i,"Contrast"]<-contrast_name # filling contrast data frame with the contrast name for(j in 1:length(set_cond1)){ # for each condition contained in the complex context (1st): list_context<-append(list_context, contx) # adding condition name with the context name associated list_condition<-append(list_condition, set_cond1[j]) # to their respective list } } if(complex1==T && complex2==T){ # Case 4: multiple conditions against multiple conditions m=0 # n=0 # common_factor1=list() # list of common experimental factors shared by conditions of the 1st context common_factor2=list() # list of common experimental factors shared by conditions of the 2nd context w=1 for (param_names in parameters){ # for each experimental factor: print(w) w=w+1 facteur<-unique(c(condition_asko[,param_names])) # retrieval of possible values for the experimental factor print(paste("facteur : ", facteur, sep="")) for(value in facteur){ # for each possible values: print(value) #print(class(value)) #print(set_cond1) verif1<-unique(str_detect(set_cond1, value)) # verification of the presence of values in each condition # contained in the 1st context verif2<-unique(str_detect(set_cond2, value)) # verification of the presence of values in each condition # contained in the 2nd context if(length(verif1)==1 && verif1==TRUE){m=m+1;common_factor1[m]<-value} # if verif=only TRUE, value of experimental factor is added as common factor if(length(verif2)==1 && verif2==TRUE){n=n+1;common_factor2[n]<-value} # if verif=only TRUE, value of experimental factor is added as common factor } } print(paste("common_factor1 : ",common_factor1,sep="")) print(paste("common_factor2 : ",common_factor2,sep="")) if(length(common_factor1)>1){ # if there are several common factor for conditions in the 1st context common_factor1<-toString(common_factor1) # conversion list to string contx1<-str_replace(common_factor1,", ","")}else{contx1<-common_factor1}# all common factor are concatenated to become the name of context contx1<-str_replace_all(contx1, "NULL", "") print(paste("contx1 : ", contx1, sep="")) if(length(common_factor2)>1){ # if there are several common factor for conditions in the 2nd context common_factor2<-toString(common_factor2) # conversion list to string contx2<-str_replace(common_factor2,", ","")}else{contx2<-common_factor2}# all common factor are concatenated to become the name of context contx2<-str_replace_all(contx2, "NULL", "") print(paste("contx2 : ", contx2, sep="")) contrast_asko[i,"context1"]<-contx1 # filling contrast data frame with the name of the 1st context contrast_asko[i,"context2"]<-contx2 # filling contrast data frame with the name of the 2nd context contrast_asko[i,"Contrast"]<-paste(contx1,contx2, sep = "vs") # filling contrast data frame with the name of the contrast for(j in 1:length(set_cond1)){ # for each condition contained in the complex context (1st): list_context<-append(list_context, contx1) # verification of the presence of values in each condition list_condition<-append(list_condition, set_cond1[j]) # contained in the 1st context } for(j in 1:length(set_cond2)){ # for each condition contained in the complex context (2nd): list_context<-append(list_context, contx2) # verification of the presence of values in each condition list_condition<-append(list_condition, set_cond2[j]) # contained in the 1st context } } } } else{ for (contrast in colnames(data_list$contrast)){ i=i+1 contexts=strsplit2(contrast,"vs") contrast_asko[i,"Contrast"]<-contrast contrast_asko[i,"context1"]=contexts[1] contrast_asko[i,"context2"]=contexts[2] set_cond1<-row.names(data_list$contrast)[data_list$contrast[,contrast]>0] set_cond2<-row.names(data_list$contrast)[data_list$contrast[,contrast]<0] for (cond1 in set_cond1){ # print(contexts[1]) # print(cond1) list_context<-append(list_context, contexts[1]) list_condition<-append(list_condition, cond1) } for (cond2 in set_cond2){ list_context<-append(list_context, contexts[2]) list_condition<-append(list_condition, cond2) } } } list_context<-unlist(list_context) # conversion list to vector list_condition<-unlist(list_condition) # conversion list to vector # print(list_condition) # print(list_context) context_asko<-data.frame(list_context,list_condition) # creation of the context data frame context_asko<-unique(context_asko) colnames(context_asko)[colnames(context_asko)=="list_context"]<-"context" # header formatting for askomics colnames(context_asko)[colnames(context_asko)=="list_condition"]<-"condition" # header formatting for askomics #asko$contrast<-contrast_asko # adding context data frame to asko object #asko$context<-context_asko # adding context data frame to asko object asko<-list("condition"=condition_asko, "contrast"=contrast_asko, "context"=context_asko) colnames(context_asko)[colnames(context_asko)=="context"]<-"Context" # header formatting for askomics colnames(context_asko)[colnames(context_asko)=="condition"]<-"has@Condition" # header formatting for askomics colnames(contrast_asko)[colnames(contrast_asko)=="context1"]<-paste("context1_of", "Context", sep="@") # header formatting for askomics colnames(contrast_asko)[colnames(contrast_asko)=="context2"]<-paste("context2_of", "Context", sep="@") # header formatting for askomics ######## Files creation ######## write.table(data.frame("Condition"=row.names(condition_asko),condition_asko), paste0(parameters$out_dir,"/condition.asko.txt"), sep = parameters$sep, row.names = F, quote=F) # creation of condition file for asko write.table(context_asko, paste0(parameters$out_dir,"/context.asko.txt"), sep=parameters$sep, col.names = T, row.names = F,quote=F) # creation of context file for asko write.table(contrast_asko, paste0(parameters$out_dir,"/contrast.asko.txt"), sep=parameters$sep, col.names = T, row.names = F, quote=F) # creation of contrast file for asko return(asko) } .NormCountsMean <- function(glmfit, ASKOlist, context){ lib_size_norm<-glmfit$samples$lib.size*glmfit$samples$norm.factors # normalization computation of all library sizes set_condi<-ASKOlist$context$condition[ASKOlist$context$context==context] # retrieval of condition names associated to context for (condition in set_condi){ sample_name<-rownames(glmfit$samples[glmfit$samples$condition==condition,]) # retrieval of the replicate names associated to conditions subset_counts<-data.frame(row.names = row.names(glmfit$counts)) # initialization of data frame as subset of counts table for(name in sample_name){ lib_sample_norm<-glmfit$samples[name,"lib.size"]*glmfit$samples[name,"norm.factors"] # normalization computation of sample library size subset_counts$c<-glmfit$counts[,name] # addition in subset of sample counts column subset_counts$c<-subset_counts$c*mean(lib_size_norm)/lib_sample_norm # normalization computation of sample counts colnames(subset_counts)[colnames(subset_counts)=="c"]<-name # to rename the column with the condition name } mean_counts<-rowSums(subset_counts)/ncol(subset_counts) # computation of the mean ASKOlist$stat.table$mean<-mean_counts # subset integration in the glm_result table colnames(ASKOlist$stat.table)[colnames(ASKOlist$stat.table)=="mean"]<-paste(context,condition,sep = "/") } # to rename the column with the context name return(ASKOlist$stat.table) # return the glm object } AskoStats <- function (glm_test, fit, contrast, ASKOlist, dge,parameters){ contrasko<-ASKOlist$contrast$Contrast[row.names(ASKOlist$contrast)==contrast] # to retrieve the name of contrast from Asko object contx1<-ASKOlist$contrast$context1[row.names(ASKOlist$contrast)==contrast] # to retrieve the name of 1st context from Asko object contx2<-ASKOlist$contrast$context2[row.names(ASKOlist$contrast)==contrast] # to retrieve the name of 2nd context from Asko object ASKO_stat<-glm_test$table ASKO_stat$Test_id<-paste(contrasko, rownames(ASKO_stat), sep = "_") # addition of Test_id column = unique ID ASKO_stat$contrast<-contrasko # addition of the contrast of the test ASKO_stat$gene <- row.names(ASKO_stat) # addition of gene column = gene ID ASKO_stat$FDR<-p.adjust(ASKO_stat$PValue, method=parameters$p_adj_method) # computation of False Discovery Rate ASKO_stat$Significance=0 # Between context1 and context2 : ASKO_stat$Significance[ASKO_stat$logFC< 0 & ASKO_stat$FDR<=parameters$threshold_FDR] = -1 # Significance values = -1 for down regulated genes ASKO_stat$Significance[ASKO_stat$logFC> 0 & ASKO_stat$FDR<=parameters$threshold_FDR] = 1 # Significance values = 1 for up regulated genes if(parameters$Expression==TRUE){ ASKO_stat$Expression=NA # addition of column "expression" ASKO_stat$Expression[ASKO_stat$Significance==-1]<-paste(contx1, contx2, sep="<") # the value of attribute "Expression" is a string ASKO_stat$Expression[ASKO_stat$Significance==1]<-paste(contx1, contx2, sep=">") # this attribute is easier to read the Significance ASKO_stat$Expression[ASKO_stat$Significance==0]<-paste(contx1, contx2, sep="=") # of expression between two contexts } if(parameters$logFC==T){cola="logFC"}else{cola=NULL} # if(parameters$FC==T){colb="FC";ASKO_stat$FC <- 2^abs(ASKO_stat$logFC)}else{colb=NULL} # computation of Fold Change from log2FC if(parameters$Sign==T){colc="Significance"} # if(parameters$logCPM==T){cold="logCPM"}else{cold=NULL} # if(parameters$LR==T){cole="LR"}else{cole=NULL} # if(parameters$FDR==T){colf="FDR"}else{colf=NULL} ASKOlist$stat.table<-ASKO_stat[,c("Test_id","contrast","gene",cola,colb,"PValue", # adding table "stat.table" to the ASKOlist "Expression",colc,cold,cole,colf)] if(parameters$mean_counts==T){ # computation of the mean of normalized counts for conditions ASKOlist$stat.table<-.NormCountsMean(fit, ASKOlist, contx1) # in the 1st context ASKOlist$stat.table<-.NormCountsMean(fit, ASKOlist, contx2) # in the 2nd context } print(table(ASKO_stat$Expression)) colnames(ASKOlist$stat.table)[colnames(ASKOlist$stat.table)=="gene"] <- paste("is", "gene", sep="@") # header formatting for askomics colnames(ASKOlist$stat.table)[colnames(ASKOlist$stat.table)=="contrast"] <- paste("measured_in", "Contrast", sep="@") # header formatting for askomics o <- order(ASKOlist$stat.table$FDR) # ordering genes by FDR value ASKOlist$stat.table<-ASKOlist$stat.table[o,] # dir.create(parameters$out_dir) write.table(ASKOlist$stat.table,paste0(parameters$out_dir,"/", parameters$organism, contrasko, ".txt"), # sep=parameters$sep, col.names = T, row.names = F, quote=FALSE) if(parameters$heatmap==TRUE){ numhigh=parameters$numhigh if (numhigh>length(o)) {numhigh=length(o)} cpm_gstats<-cpm(dge, log=TRUE)[o,][1:numhigh,] heatmap.2(cpm_gstats, cexRow=0.5, cexCol=0.8, scale="row", labCol=dge$samples$Name, xlab=contrast, Rowv = FALSE, dendrogram="col") } return(ASKOlist) } loadData <- function(parameters){ #####samples##### samples<-read.table(parameters$sample_file, header=TRUE, sep="\t", row.names=1, comment.char = "#") #prise en compte des r?sultats de T2 if(is.null(parameters$select_sample)==FALSE){ if(parameters$regex==TRUE){ selected<-c() for(sel in parameters$select_sample){ select<-grep(sel, rownames(samples)) if(is.null(selected)){selected=select}else{selected<-append(selected, select)} } samples<-samples[selected,] }else{samples<-samples[parameters$select_sample,]} } if(is.null(parameters$rm_sample)==FALSE){ if(parameters$regex==TRUE){ for(rm in parameters$rm_sample){ removed<-grep(rm, rownames(samples)) # print(removed) if(length(removed!=0)){samples<-samples[-removed,]} } }else{ for (rm in parameters$rm_sample) { rm2<-match(rm, rownames(samples)) samples<-samples[-rm2,] } } } condition<-unique(samples$condition) #print(condition) color<-brewer.pal(length(condition), parameters$palette) #print(color) samples$color<-NA j=0 for(name in condition){ j=j+1 samples$color[samples$condition==name]<-color[j] } #print(samples) #####counts##### if(is.null(parameters$fileofcount)){ dge<-readDGE(samples$file, labels=rownames(samples), columns=c(parameters$col_genes,parameters$col_counts), header=TRUE, comment.char="#") dge<-DGEList(counts=dge$counts, samples=samples) # dge$samples=samples #countT<-dge$counts # if(is.null(parameters$select_sample)==FALSE){ # slct<-grep(parameters$select_sample, colnames(countT)) # dge$counts<-dge$counts[,slct] # dge$samples<-dge$samples[,slct] # } # if(is.null(parameters$rm_sample)==FALSE){ # rmc<-grep(parameters$rm_count, colnames(dge$counts)) # dge$counts<-dge$counts[,-rmc] # print(ncol(dge$counts)) # rms<-grep(parameters$rm_sample, row.names(dge$samples)) # dge$samples<-dge$samples[-rms,] # } }else { if(grepl(".csv", parameters$fileofcount)==TRUE){ count<-read.csv(parameters$fileofcount, header=TRUE, sep = "\t", row.names = parameters$col_genes) } else{ count<-read.table(parameters$fileofcount, header=TRUE, sep = "\t", row.names = parameters$col_genes, comment.char = "") } select_counts<-row.names(samples) #countT<-count[,c(parameters$col_counts:length(colnames(count)))] countT<-count[,select_counts] #print(countT) dge<-DGEList(counts=countT, samples=samples) # if(is.null(parameters$select_sample)==FALSE){ # slct<-grep(parameters$select_sample, colnames(countT)) # countT<-countT[,slct] # } # if(is.null(parameters$rm_count)==FALSE){ # rms<-grep(parameters$rm_count, colnames(countT)) # #print(rms) # countT<-countT[,-rms] # # } #print(nrow(samples)) #print(ncol(countT)) } #####design##### Group<-factor(samples$condition) designExp<-model.matrix(~0+Group) rownames(designExp) <- row.names(samples) colnames(designExp) <- levels(Group) #####contrast##### contrastab<-read.table(parameters$contrast_file, sep="\t", header=TRUE, row.names = 1, comment.char="#", stringsAsFactors = FALSE) rmcol<-list() for(condition_name in row.names(contrastab)){ test<-match(condition_name, colnames(designExp),nomatch = 0) if(test==0){ print(condition_name) rm<-grep("0", contrastab[condition_name,], invert = T) print(rm) if(is.null(rmcol)){rmcol=rm}else{rmcol<-append(rmcol, rm)} } } if (length(rmcol)> 0){ rmcol<-unlist(rmcol) rmcol<-unique(rmcol) rmcol=-rmcol contrastab<-contrastab[,rmcol] } ord<-match(colnames(designExp),row.names(contrastab), nomatch = 0) contrast_table<-contrastab[ord,] colnum<-c() for(contrast in colnames(contrast_table)){ set_cond1<-row.names(contrast_table)[contrast_table[,contrast]=="+"] #print(set_cond1) set_cond2<-row.names(contrast_table)[contrast_table[,contrast]=="-"] #print(set_cond2) if(length(set_cond1)!=length(set_cond2)){ contrast_table[,contrast][contrast_table[,contrast]=="+"]=signif(1/length(set_cond1),digits = 2) contrast_table[,contrast][contrast_table[,contrast]=="-"]=signif(-1/length(set_cond2),digits = 2) } else { contrast_table[,contrast][contrast_table[,contrast]=="+"]=1 contrast_table[,contrast][contrast_table[,contrast]=="-"]=-1 } contrast_table[,contrast]<-as.numeric(contrast_table[,contrast]) } #####annotation##### #annotation <- read.csv(parameters$annotation_file, header = T, sep = '\t', quote = "", row.names = 1) #data<-list("counts"=countT, "samples"=samples, "contrast"=contrast_table, "annot"=annotation, "design"=designExp) #print(countT) rownames(dge$samples)<-rownames(samples) # replace the renaming by files data<-list("dge"=dge, "samples"=samples, "contrast"=contrast_table, "design"=designExp) return(data) } GEfilt <- function(dge_list, parameters){ cpm<-cpm(dge_list) logcpm<-cpm(dge_list, log=TRUE) colnames(logcpm)<-rownames(dge_list$samples) nsamples <- ncol(dge_list) # cr?ation nouveau plot plot(density(logcpm[,1]), col=as.character(dge_list$samples$color[1]), # plot exprimant la densit? de chaque g?ne lwd=1, ylim=c(0,0.21), las=2, main="A. Raw data", xlab="Log-cpm") # en fonction de leurs valeurs d'expression abline(v=0, lty=3) for (i in 2:nsamples){ # on boucle sur chaque condition restante den<-density(logcpm[,i]) # et les courbes sont rajout?es dans le plot lines(den$x, col=as.character(dge_list$samples$color[i]), den$y, lwd=1) # } legend("topright", rownames(dge_list$samples), text.col=as.character(dge_list$samples$color), bty="n", text.width=6, cex=0.5) # rowSums compte le nombre de score (cases) pour chaque colonne Sup ? 0.5 keep.exprs <- rowSums(cpm>parameters$threshold_cpm)>=parameters$replicate_cpm # en ajoutant >=3 cela donne un test conditionnel filtered_counts <- dge_list[keep.exprs,,keep.lib.sizes=F] # si le comptage respecte la condition alors renvoie TRUE filtered_cpm<-cpm(filtered_counts$counts, log=TRUE) plot(density(filtered_cpm[,1]), col=as.character(dge_list$samples$color[1]), lwd=2, ylim=c(0,0.21), las=2, main="B. Filtered data", xlab="Log-cpm") abline(v=0, lty=3) for (i in 2:nsamples){ den <- density(filtered_cpm[,i]) lines(den$x,col=as.character(dge_list$samples$color[i]), den$y, lwd=1) } legend("topright", rownames(dge_list$samples), text.col=as.character(dge_list$samples$col), bty="n", text.width=6, cex=0.5) return(filtered_counts) } GEnorm <- function(filtered_GE, parameters){ filtered_cpm=log2(1000000*filtered_GE$counts/colSums(filtered_GE$counts)) #filtered_cpm <- cpm(filtered_GE, log=TRUE, normalized.lib.sizes=TRUE) #nouveau calcul Cpm sur donn?es filtr?es, si log=true alors valeurs cpm en log2 colnames(filtered_cpm)<-rownames(filtered_GE$samples) boxplot(filtered_cpm, col=filtered_GE$samples$color, #boxplot des scores cpm non normalis?s main="A. Before normalization", cex.axis=0.5, las=2, ylab="Log-cpm") norm_GE<-calcNormFactors(filtered_GE, method = parameters$normal_method) # normalisation de nos comptages par le methode TMM, estimation du taux de production d'un ARN # en estimant l'?chelle des facteurs entre echantillons -> but : pouvoir comparer nos ech entre eux logcpm_norm <- cpm(norm_GE, log=TRUE) colnames(logcpm_norm)<-rownames(filtered_GE$samples) boxplot(logcpm_norm, col=filtered_GE$samples$color, main="B. After normalization", cex.axis=0.5, las=2, ylab="Log-cpm") return(norm_GE) } GEcorr <- function(dge, parameters){ lcpm<-cpm(dge, log=TRUE) colnames(lcpm)<-rownames(dge$samples) cormat<-cor(lcpm) # color<- colorRampPalette(c("yellow", "white", "green"))(20) color<-colorRampPalette(c("black","red","yellow","white"),space="rgb")(28) heatmap.2(cormat, col=color, symm=TRUE,RowSideColors =as.character(dge$samples$color), ColSideColors = as.character(dge$samples$color)) #MDS mds <- cmdscale(dist(t(lcpm)),k=3, eig=TRUE) eigs<-round((mds$eig)*100/sum(mds$eig[mds$eig>0]),2) mds1<-ggplot(as.data.frame(mds$points), aes(V1, V2, label = rownames(mds$points))) + labs(title="MDS Axes 1 and 2") + geom_point(color =as.character(dge$samples$color) ) + xlab(paste('dim 1 [', eigs[1], '%]')) +ylab(paste('dim 2 [', eigs[2], "%]")) + geom_label_repel(aes(label = rownames(mds$points)), color = 'black',size = 3.5) print(mds1) #ggsave("mds_corr1-2.tiff") #ggtitle("MDS Axes 2 and 3") mds2<-ggplot(as.data.frame(mds$points), aes(V2, V3, label = rownames(mds$points))) + labs(title="MDS Axes 2 and 3") + geom_point(color =as.character(dge$samples$color) ) + xlab(paste('dim 2 [', eigs[2], '%]')) +ylab(paste('dim 3 [', eigs[3], "%]")) + geom_label_repel(aes(label = rownames(mds$points)), color = 'black',size = 3.5) print(mds2) # ggtitle("MDS Axes 1 and 3") #ggsave("mds_corr2-3.tiff") mds3<-ggplot(as.data.frame(mds$points), aes(V1, V3, label = rownames(mds$points))) + labs(title="MDS Axes 1 and 3") + geom_point(color =as.character(dge$samples$color) ) + xlab(paste('dim 1 [', eigs[1], '%]')) +ylab(paste('dim 3 [', eigs[3], "%]")) + geom_label_repel(aes(label = rownames(mds$points)), color = 'black',size = 3.5) print(mds3) #ggsave("mds_corr1-3.tiff") } DEanalysis <- function(norm_GE, data_list, asko_list, parameters){ normGEdisp <- estimateDisp(norm_GE, data_list$design) if(parameters$glm=="lrt"){ fit <- glmFit(normGEdisp, data_list$design, robust = T) } if(parameters$glm=="qlf"){ fit <- glmQLFit(normGEdisp, data_list$design, robust = T) plotQLDisp(fit) } #plotMD.DGEGLM(fit) #plotBCV(norm_GE) #sum<-norm_GE$genes for (contrast in colnames(data_list$contrast)){ print(asko_list$contrast$Contrast[contrast]) if(parameters$glm=="lrt"){ glm_test<-glmLRT(fit, contrast=data_list$contrast[,contrast]) } if(parameters$glm=="qlf"){ glm_test<-glmQLFTest(fit, contrast=data_list$contrast[,contrast]) } #sum[,contrast]<-decideTestsDGE(glm, adjust.method = parameters$p_adj_method, lfc=1) #print(table(sum[,contrast])) AskoStats(glm_test, fit, contrast, asko_list,normGEdisp,parameters) } } Asko_start <-function(){ library(limma) library(statmod) library(edgeR) library(ggplot2) library(RColorBrewer) library(ggrepel) library(gplots) library(stringr) library(optparse) option_list = list( make_option(c("-o", "--out"), type="character", default="out.pdf",dest="output_pdf", help="output file name [default= %default]", metavar="character"), make_option(c("-d", "--dir"), type="character", default=".",dest="dir_path", help="data directory path [default= %default]", metavar="character"), make_option("--outdir", type="character", default=".",dest="out_dir", help="outputs directory [default= %default]", metavar="character"), make_option(c("-O", "--org"), type="character", default="Asko", dest="organism", help="Organism name [default= %default]", metavar="character"), make_option(c("-f", "--fileofcount"), type="character", default=NULL, dest="fileofcount", help="file of counts [default= %default]", metavar="character"), make_option(c("-G", "--col_genes"), type="integer", default=1, dest="col_genes", help="col of ids in count files [default= %default]", metavar="integer"), make_option(c("-C", "--col_counts"), type="integer", default=7,dest="col_counts", help="col of counts in count files [default= %default (featureCounts) ]", metavar="integer"), make_option(c("-t", "--sep"), type="character", default="\t", dest="sep", help="col separator [default= %default]", metavar="character"), make_option(c("-a", "--annotation"), type="character", default="annotation.txt", dest="annotation_file", help="annotation file [default= %default]", metavar="character"), make_option(c("-s", "--sample"), type="character", default="Samples.txt", dest="sample_file", help="Samples file [default= %default]", metavar="character"), make_option(c("-c", "--contrasts"), type="character", default="Contrasts.txt",dest="contrast_file", help="Contrasts file [default= %default]", metavar="character"), make_option(c("-k", "--mk_context"), type="logical", default=FALSE,dest="mk_context", help="generate automatically the context names [default= %default]", metavar="logical"), make_option(c("-p", "--palette"), type="character", default="Set2", dest="palette", help="Color palette (ggplot)[default= %default]", metavar="character"), make_option(c("-R", "--regex"), type="logical", default=FALSE, dest="regex", help="use regex when selecting/removing samples [default= %default]", metavar="logical"), make_option(c("-S", "--select"), type="character", default=NULL, dest="select_sample", help="selected samples [default= %default]", metavar="character"), make_option(c("-r", "--remove"), type="character", default=NULL, dest="rm_sample", help="removed samples [default= %default]", metavar="character"), make_option(c("--th_cpm"), type="double", default=0.5, dest="threshold_cpm", help="CPM's threshold [default= %default]", metavar="double"), make_option(c("--rep"), type="integer", default=3, dest="replicate_cpm", help="Minimum number of replicates [default= %default]", metavar="integer"), make_option(c("--th_FDR"), type="double", default=0.05, dest="threshold_FDR", help="FDR threshold [default= %default]", metavar="double"), make_option(c("-n", "--normalization"), type="character", default="TMM", dest="normal_method", help="normalization method (TMM/RLE/upperquartile/none) [default= %default]", metavar="character"), make_option(c("--adj"), type="character", default="fdr", dest="p_adj_method", help="p-value adjust method (holm/hochberg/hommel/bonferroni/BH/BY/fdr/none) [default= %default]", metavar="character"), make_option("--glm", type="character", default="qlf", dest="glm", help=" GLM method (lrt/qlf) [default= %default]", metavar="character"), make_option(c("--lfc"), type="logical", default="TRUE", dest="logFC", help="logFC in the summary table [default= %default]", metavar="logical"), make_option("--fc", type="logical", default="TRUE", dest="FC", help="FC in the summary table [default= %default]", metavar="logical"), make_option(c("--lcpm"), type="logical", default="FALSE", dest="logCPM", help="logCPm in the summary table [default= %default]", metavar="logical"), make_option("--fdr", type="logical", default="TRUE", dest="FDR", help="FDR in the summary table [default= %default]", metavar="logical"), make_option("--lr", type="logical", default="FALSE", dest="LR", help="LR in the summary table [default= %default]", metavar="logical"), make_option(c("--sign"), type="logical", default="TRUE", dest="Sign", help="Significance (1/0/-1) in the summary table [default= %default]", metavar="logical"), make_option(c("--expr"), type="logical", default="TRUE", dest="Expression", help="Significance expression in the summary table [default= %default]", metavar="logical"), make_option(c("--mc"), type="logical", default="TRUE", dest="mean_counts", help="Mean counts in the summary table [default= %default]", metavar="logical"), make_option(c("--hm"), type="logical", default="TRUE", dest="heatmap", help="generation of the expression heatmap [default= %default]", metavar="logical"), make_option(c("--nh"), type="integer", default="50", dest="numhigh", help="number of genes in the heatmap [default= %default]", metavar="integer") ) opt_parser = OptionParser(option_list=option_list) parameters = parse_args(opt_parser) if(is.null(parameters$rm_sample) == FALSE ) { str_replace_all(parameters$rm_sample, " ", "") parameters$rm_sample<-strsplit2(parameters$rm_sample, ",") } if(is.null(parameters$select_sample) == FALSE ) { str_replace_all(parameters$select_sample, " ", "") parameters$select_sample<-strsplit2(parameters$select_sample, ",") } dir.create(parameters$out_dir) return(parameters) }