Mercurial > repos > george-weingart > lefse
view home/ubuntu/lefse_to_export/lefse.py @ 2:a31c10fe09c8 draft default tip
Fixed bug due to numerical approximation after normalization affecting root-level clades (e.g. "Bacteria" or "Archaea")
author | george-weingart |
---|---|
date | Tue, 07 Jul 2015 13:52:29 -0400 |
parents | db64b6287cd6 |
children |
line wrap: on
line source
import os,sys,math,pickle import random as lrand import rpy2.robjects as robjects import argparse import numpy #import svmutil def init(): lrand.seed(1982) robjects.r('library(splines)') robjects.r('library(stats4)') robjects.r('library(survival)') robjects.r('library(mvtnorm)') robjects.r('library(modeltools)') robjects.r('library(coin)') robjects.r('library(MASS)') def get_class_means(class_sl,feats): means = {} clk = class_sl.keys() for fk,f in feats.items(): means[fk] = [numpy.mean((f[class_sl[k][0]:class_sl[k][1]])) for k in clk] return clk,means def save_res(res,filename): with open(filename, 'w') as out: for k,v in res['cls_means'].items(): out.write(k+"\t"+str(math.log(max(max(v),1.0),10.0))+"\t") if k in res['lda_res_th']: for i,vv in enumerate(v): if vv == max(v): out.write(str(res['cls_means_kord'][i])+"\t") break out.write(str(res['lda_res'][k])) else: out.write("\t") out.write( "\t" + res['wilcox_res'][k]+"\n") def load_data(input_file, nnorm = False): with open(input_file, 'rb') as inputf: inp = pickle.load(inputf) if nnorm: return inp['feats'],inp['cls'],inp['class_sl'],inp['subclass_sl'],inp['class_hierarchy'],inp['norm'] else: return inp['feats'],inp['cls'],inp['class_sl'],inp['subclass_sl'],inp['class_hierarchy'] def load_res(input_file): with open(input_file, 'rb') as inputf: inp = pickle.load(inputf) return inp['res'],inp['params'],inp['class_sl'],inp['subclass_sl'] def test_kw_r(cls,feats,p,factors): robjects.globalenv["y"] = robjects.FloatVector(feats) for i,f in enumerate(factors): robjects.globalenv['x'+str(i+1)] = robjects.FactorVector(robjects.StrVector(cls[f])) fo = "y~x1" #for i,f in enumerate(factors[1:]): # if f == "subclass" and len(set(cls[f])) <= len(set(cls["class"])): continue # if len(set(cls[f])) == len(cls[f]): continue # fo += "+x"+str(i+2) kw_res = robjects.r('kruskal.test('+fo+',)$p.value') return float(tuple(kw_res)[0]) < p, float(tuple(kw_res)[0]) def test_rep_wilcoxon_r(sl,cl_hie,feats,th,multiclass_strat,mul_cor,fn,min_c,comp_only_same_subcl,curv=False): comp_all_sub = not comp_only_same_subcl tot_ok = 0 alpha_mtc = th all_diff = [] for pair in [(x,y) for x in cl_hie.keys() for y in cl_hie.keys() if x < y]: dir_cmp = "not_set" # l_subcl1, l_subcl2 = (len(cl_hie[pair[0]]), len(cl_hie[pair[1]])) if mul_cor != 0: alpha_mtc = th*l_subcl1*l_subcl2 if mul_cor == 2 else 1.0-math.pow(1.0-th,l_subcl1*l_subcl2) ok = 0 curv_sign = 0 first = True for i,k1 in enumerate(cl_hie[pair[0]]): br = False for j,k2 in enumerate(cl_hie[pair[1]]): if not comp_all_sub and k1[len(pair[0]):] != k2[len(pair[1]):]: ok += 1 continue cl1 = feats[sl[k1][0]:sl[k1][1]] cl2 = feats[sl[k2][0]:sl[k2][1]] med_comp = False if len(cl1) < min_c or len(cl2) < min_c: med_comp = True sx,sy = numpy.median(cl1),numpy.median(cl2) if cl1[0] == cl2[0] and len(set(cl1)) == 1 and len(set(cl2)) == 1: tres, first = False, False elif not med_comp: robjects.globalenv["x"] = robjects.FloatVector(cl1+cl2) robjects.globalenv["y"] = robjects.FactorVector(robjects.StrVector(["a" for a in cl1]+["b" for b in cl2])) pv = float(robjects.r('pvalue(wilcox_test(x~y,data=data.frame(x,y)))')[0]) tres = pv < alpha_mtc*2.0 if first: first = False if not curv and ( med_comp or tres ): dir_cmp = sx < sy #if sx == sy: br = True elif curv: dir_cmp = None if med_comp or tres: curv_sign += 1 dir_cmp = sx < sy else: br = True elif not curv and med_comp: if ((sx < sy) != dir_cmp or sx == sy): br = True elif curv: if tres and dir_cmp == None: curv_sign += 1 dir_cmp = sx < sy if tres and dir_cmp != (sx < sy): br = True curv_sign = -1 elif not tres or (sx < sy) != dir_cmp or sx == sy: br = True if br: break ok += 1 if br: break if curv: diff = curv_sign > 0 else: diff = (ok == len(cl_hie[pair[1]])*len(cl_hie[pair[0]])) # or (not comp_all_sub and dir_cmp != "not_set") if diff: tot_ok += 1 if not diff and multiclass_strat: return False if diff and not multiclass_strat: all_diff.append(pair) if not multiclass_strat: tot_k = len(cl_hie.keys()) for k in cl_hie.keys(): nk = 0 for a in all_diff: if k in a: nk += 1 if nk == tot_k-1: return True return False return True def contast_within_classes_or_few_per_class(feats,inds,min_cl,ncl): ff = zip(*[v for n,v in feats.items() if n != 'class']) cols = [ff[i] for i in inds] cls = [feats['class'][i] for i in inds] if len(set(cls)) < ncl: return True for c in set(cls): if cls.count(c) < min_cl: return True cols_cl = [x for i,x in enumerate(cols) if cls[i] == c] for i,col in enumerate(zip(*cols_cl)): if (len(set(col)) <= min_cl and min_cl > 1) or (min_cl == 1 and len(set(col)) <= 1): return True return False def test_lda_r(cls,feats,cl_sl,boots,fract_sample,lda_th,tol_min,nlogs): fk = feats.keys() means = dict([(k,[]) for k in feats.keys()]) feats['class'] = list(cls['class']) clss = list(set(feats['class'])) for uu,k in enumerate(fk): if k == 'class': continue ff = [(feats['class'][i],v) for i,v in enumerate(feats[k])] for c in clss: if len(set([float(v[1]) for v in ff if v[0] == c])) > max(float(feats['class'].count(c))*0.5,4): continue for i,v in enumerate(feats[k]): if feats['class'][i] == c: feats[k][i] = math.fabs(feats[k][i] + lrand.normalvariate(0.0,max(feats[k][i]*0.05,0.01))) rdict = {} for a,b in feats.items(): if a == 'class' or a == 'subclass' or a == 'subject': rdict[a] = robjects.StrVector(b) else: rdict[a] = robjects.FloatVector(b) robjects.globalenv["d"] = robjects.DataFrame(rdict) lfk = len(feats[fk[0]]) rfk = int(float(len(feats[fk[0]]))*fract_sample) f = "class ~ "+fk[0] for k in fk[1:]: f += " + " + k.strip() ncl = len(set(cls['class'])) min_cl = int(float(min([cls['class'].count(c) for c in set(cls['class'])]))*fract_sample*fract_sample*0.5) min_cl = max(min_cl,1) pairs = [(a,b) for a in set(cls['class']) for b in set(cls['class']) if a > b] for k in fk: for i in range(boots): means[k].append([]) for i in range(boots): for rtmp in range(1000): rand_s = [lrand.randint(0,lfk-1) for v in range(rfk)] if not contast_within_classes_or_few_per_class(feats,rand_s,min_cl,ncl): break rand_s = [r+1 for r in rand_s] means[k][i] = [] for p in pairs: robjects.globalenv["rand_s"] = robjects.IntVector(rand_s) robjects.globalenv["sub_d"] = robjects.r('d[rand_s,]') z = robjects.r('z <- suppressWarnings(lda(as.formula('+f+'),data=sub_d,tol='+str(tol_min)+'))') robjects.r('w <- z$scaling[,1]') robjects.r('w.unit <- w/sqrt(sum(w^2))') robjects.r('ss <- sub_d[,-match("class",colnames(sub_d))]') if 'subclass' in feats: robjects.r('ss <- ss[,-match("subclass",colnames(ss))]') if 'subject' in feats: robjects.r('ss <- ss[,-match("subject",colnames(ss))]') robjects.r('xy.matrix <- as.matrix(ss)') robjects.r('LD <- xy.matrix%*%w.unit') robjects.r('effect.size <- abs(mean(LD[sub_d[,"class"]=="'+p[0]+'"]) - mean(LD[sub_d[,"class"]=="'+p[1]+'"]))') scal = robjects.r('wfinal <- w.unit * effect.size') rres = robjects.r('mm <- z$means') rowns = list(rres.rownames) lenc = len(list(rres.colnames)) coeff = [abs(float(v)) if not math.isnan(float(v)) else 0.0 for v in scal] res = dict([(pp,[float(ff) for ff in rres.rx(pp,True)] if pp in rowns else [0.0]*lenc ) for pp in [p[0],p[1]]]) for j,k in enumerate(fk): gm = abs(res[p[0]][j] - res[p[1]][j]) means[k][i].append((gm+coeff[j])*0.5) res = {} for k in fk: m = max([numpy.mean([means[k][kk][p] for kk in range(boots)]) for p in range(len(pairs))]) res[k] = math.copysign(1.0,m)*math.log(1.0+math.fabs(m),10) return res,dict([(k,x) for k,x in res.items() if math.fabs(x) > lda_th]) def test_svm(cls,feats,cl_sl,boots,fract_sample,lda_th,tol_min,nsvm): return NULL """ fk = feats.keys() clss = list(set(cls['class'])) y = [clss.index(c)*2-1 for c in list(cls['class'])] xx = [feats[f] for f in fk] if nsvm: maxs = [max(v) for v in xx] mins = [min(v) for v in xx] x = [ dict([(i+1,(v-mins[i])/(maxs[i]-mins[i])) for i,v in enumerate(f)]) for f in zip(*xx)] else: x = [ dict([(i+1,v) for i,v in enumerate(f)]) for f in zip(*xx)] lfk = len(feats[fk[0]]) rfk = int(float(len(feats[fk[0]]))*fract_sample) mm = [] best_c = svmutil.svm_ms(y, x, [pow(2.0,i) for i in range(-5,10)],'-t 0 -q') for i in range(boots): rand_s = [lrand.randint(0,lfk-1) for v in range(rfk)] r = svmutil.svm_w([y[yi] for yi in rand_s], [x[xi] for xi in rand_s], best_c,'-t 0 -q') mm.append(r[:len(fk)]) m = [numpy.mean(v) for v in zip(*mm)] res = dict([(v,m[i]) for i,v in enumerate(fk)]) return res,dict([(k,x) for k,x in res.items() if math.fabs(x) > lda_th]) """