Mercurial > repos > goeckslab > clustering_spatialge
view clustering.xml @ 0:555ca19d07e6 draft default tip
planemo upload for repository https://github.com/goeckslab/tools-st/tree/main/tools/spatialge commit 482b2e0e6ca7aaa789ba07b8cd689da9a01532ef
author | goeckslab |
---|---|
date | Wed, 13 Aug 2025 19:32:19 +0000 |
parents | |
children |
line wrap: on
line source
<tool id="clustering_spatialGE" name="spatialGE Spatially-Informed Clustering" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="22.01"> <description>Unsupervised spatially-informed clustering on spatialGE spatial transcriptomics data</description> <macros> <import>macros.xml</import> </macros> <expand macro="spatialge_requirements"/> <command detect_errors="aggressive"><![CDATA[ ##-------------------------- ## CLUSTERING ##-------------------------- Rscript '$__tool_directory__/spatialGE_clust.R' --file '$file' #if $datatype == 'visium' --visium #end if #if $datatype == 'raw' --raw #end if #if $datatype == 'cosmx' --cosmx #end if #if $samples --samples '$samples' #end if #if $spatial_weight --weight '$spatial_weight' #end if --dist '$dist_metric' #if str($deepsplit.split_type) == 'logical_split': --dslogical --logical '$split_true' #end if #if str($deepsplit.split_type) == 'numeric_split': --dsnumeric --numeric '$split_numeric' #end if #if $ptsize --ptsize '$ptsize' #end if ]]></command> <inputs> <param name="file" type="data" format="rds" label="STlist.rds output from spatialGE preprocessing tool" /> <param name="datatype" type="select" label="Original data type from spatialGE Preprocessing" > <option value="visium">Visium</option> <option value="raw">Raw Data</option> <option value="cosmx">CosMX-SMI</option> </param> <param name="samples" type="text" optional="true" label="Sample(s) to perform clustering (comma separated list)" /> <param name="spatial_weight" type="float" min="0" max="1" value="0.025" optional="true" label="Weight to be applied to spatial distances" /> <param name="dist_metric" type="select" label="Distance metric options" > <option value="euclidean" selected="true">Euclidean</option> <option value="manhattan">Manhattan</option> <option value="maximum">Maximum</option> <option value="minkowski">Minkowski</option> <option value="canberra">Canberra</option> </param> <conditional name="deepsplit"> <param name="split_type" type="select" label="Optional: specify deepSplit parameter for cluster splitting sensitivity" > <option value="no_split" selected="true">Do not change cluster sensitivity</option> <option value="logical_split">Logical split: generally perform more sensitive clustering</option> <option value="numeric_split">Numeric split: specify clustering sensitivity between 0-4</option> </param> <when value="no_split"> </when> <when value="logical_split"> <param name="split_true" type="boolean" label="Switch to Yes for logical deepSplit" /> </when> <when value="numeric_split"> <param name="split_numeric" type="float" min="0" max="4" label="Specify number between 0-4 for deepSplit (higher value equals higher sensitivity)" /> </when> </conditional> <param name="ptsize" type="float" min="0" max="5" value="2.75" optional="true" label="Specify plot point size" /> </inputs> <outputs> <collection name="cluster_plots" type="list" label="Cluster Plots"> <discover_datasets pattern="__name_and_ext__" directory="./cluster_plots" ext="png" /> <filter>cluster_plots['plot'] == "cluster_plots"</filter> </collection> </outputs> <tests> <test expect_num_outputs="1"> <param name="file" value="STobj_lung6.rds" /> <param name="datatype" value="cosmx" /> <param name="samples" value="Lung6_fov_4" /> <output_collection name="cluster_plots" > <element name="clustered_Lung6_fov_4" file="clustered_Lung6_fov_4.png" compare="sim_size" /> </output_collection> </test> <test expect_num_outputs="1"> <param name="file" value="STobj_lung5.rds" /> <param name="datatype" value="cosmx" /> <param name="samples" value="Lung5_fov_2" /> <conditional name="deepsplit"> <param name="split_type" value="logical_split" /> <param name="split_true" value="TRUE" /> </conditional> <output_collection name="cluster_plots"> <element name="clustered_Lung5_fov_2" file="clustered_Lung5_fov_2.png" compare="sim_size" /> </output_collection> </test> </tests> <help> <![CDATA[ **What it does** spatialGE is a tool designed for the analysis and visualization of spatially-resolved transcriptomics data. spatialGE Spatially-Informed Clustering is built to perform unsupervised spatially-informed clustering on the spots/cells of spatial transcriptomics data and the expression of the top variable genes. This tool will take the output of `spatialGE Preprocessing` and calculate a distance (defaults to euclidean) between spots/cells based on spatial coordinates. The distances are weighted and hierarchical clustering is performed on the sum of the weighted distance matrices. This allows for a better understanding of the tissue architecture by identifying tissue niches/domains that are spatially cohesive, according to spot/cell clustering. **Input** Currently, the only accepted input is an .rds file as output by `spatialGE Preprocessing`. The preprocessing step creates an `STlist`, spatialGE's required data type. Please first perform preprocessing to transform spatial transcriptomics data, then use the output **STlist.rds** file as input for this tool. It is also required to specify the original data type. Please select either Visium, Raw Data, or CosMX-SMI as the data type corresponding to the `spatialGE Preprocessing` input. **Optional Settings** - Sample(s) to perform clustering (comma separated list): - To perform clustering and plotting on only a subset of samples from the STlist.rds file, input a comma-separated list of unique sample names matching those in the input file - Visium Example: sample_094c,sample_094d - Raw Data Example: ST_mel3_rep1,ST_mel2_rep1 - CosMS-SMI Example: Lung5_fov_2,Lung5_fov_11 - Weight to be applied to spatial distances: - Any number between 0-1 indicating the weight to be applied to spatial distances. A weight closer to 0 indicates that little spatial information is used, and clustering relies on gene expression profiles. A weight closer to 1 indicates that spatial information is heavily used, with little reliance on gene expression. The default value here is 0.025, using mostly gene expression with a spatial smoothing effect. - Distance metric options: List of distance metric options from `wordspace::dist.matrix`. Different metrics compare expression profiles and spatial coordinates differently. - Euclidean (default) - Manhattan - Maximum - Minkowski - Canberra - deepSplit for cluster sensitivity: Choose between logical or numeric deepSplit to provide a rough control over sensitivity to cluster splitting. The higher the value (or if TRUE), the more and smaller clusters will be produced. - Logical: set deepSplit to TRUE, cluster sensitivity will increase - Numeric: control deepSplit between 0-4, closer to 4 indicate shigher cluster resolution - Specify plot point size: - Increase or decrease size of points when plotting, between 0-5. Defaults to 2.75. ]]> </help> <expand macro="citations"/> </tool>