Mercurial > repos > goeckslab > multimodal_learner
view metrics_logic.py @ 0:375c36923da1 draft default tip
planemo upload for repository https://github.com/goeckslab/gleam.git commit 1c6c1ad7a1b2bd3645aa0eafa2167784820b52e0
| author | goeckslab |
|---|---|
| date | Tue, 09 Dec 2025 23:49:47 +0000 |
| parents | |
| children |
line wrap: on
line source
from collections import OrderedDict from typing import Dict, Optional, Tuple import numpy as np import pandas as pd from sklearn.metrics import ( accuracy_score, average_precision_score, cohen_kappa_score, confusion_matrix, f1_score, log_loss, matthews_corrcoef, mean_absolute_error, mean_squared_error, median_absolute_error, precision_score, r2_score, recall_score, roc_auc_score, ) # -------------------- Transparent Metrics (task-aware) -------------------- # def _safe_y_proba_to_array(y_proba) -> Optional[np.ndarray]: """Convert predictor.predict_proba output (array/DataFrame/dict) to np.ndarray or None.""" if y_proba is None: return None if isinstance(y_proba, pd.DataFrame): return y_proba.values if isinstance(y_proba, (list, tuple)): return np.asarray(y_proba) if isinstance(y_proba, np.ndarray): return y_proba if isinstance(y_proba, dict): try: return np.vstack([np.asarray(v) for _, v in sorted(y_proba.items())]).T except Exception: return None return None def _specificity_from_cm(cm: np.ndarray) -> float: """Specificity (TNR) for binary confusion matrix.""" if cm.shape != (2, 2): return np.nan tn, fp, fn, tp = cm.ravel() denom = (tn + fp) return float(tn / denom) if denom > 0 else np.nan def _compute_regression_metrics(y_true: np.ndarray, y_pred: np.ndarray) -> "OrderedDict[str, float]": mse = mean_squared_error(y_true, y_pred) rmse = float(np.sqrt(mse)) mae = mean_absolute_error(y_true, y_pred) # Avoid division by zero using clip mape = float(np.mean(np.abs((y_true - y_pred) / np.clip(np.abs(y_true), 1e-12, None))) * 100.0) r2 = r2_score(y_true, y_pred) medae = median_absolute_error(y_true, y_pred) metrics = OrderedDict() metrics["MSE"] = mse metrics["RMSE"] = rmse metrics["MAE"] = mae metrics["MAPE_%"] = mape metrics["R2"] = r2 metrics["MedianAE"] = medae return metrics def _compute_binary_metrics( y_true: pd.Series, y_pred: pd.Series, y_proba: Optional[np.ndarray], predictor ) -> "OrderedDict[str, float]": metrics = OrderedDict() classes_sorted = np.sort(pd.unique(y_true)) # Choose the lexicographically larger class as "positive" pos_label = classes_sorted[-1] metrics["Accuracy"] = accuracy_score(y_true, y_pred) metrics["Precision"] = precision_score(y_true, y_pred, pos_label=pos_label, zero_division=0) metrics["Recall_(Sensitivity/TPR)"] = recall_score(y_true, y_pred, pos_label=pos_label, zero_division=0) metrics["F1-Score"] = f1_score(y_true, y_pred, pos_label=pos_label, zero_division=0) try: cm = confusion_matrix(y_true, y_pred, labels=classes_sorted) metrics["Specificity_(TNR)"] = _specificity_from_cm(cm) except Exception: metrics["Specificity_(TNR)"] = np.nan # Probabilistic metrics if y_proba is not None: # pick column of positive class if y_proba.ndim == 1: pos_scores = y_proba else: pos_col_idx = -1 try: if hasattr(predictor, "class_labels") and predictor.class_labels: pos_col_idx = list(predictor.class_labels).index(pos_label) except Exception: pos_col_idx = -1 pos_scores = y_proba[:, pos_col_idx] try: metrics["ROC-AUC"] = roc_auc_score(y_true == pos_label, pos_scores) except Exception: metrics["ROC-AUC"] = np.nan try: metrics["PR-AUC"] = average_precision_score(y_true == pos_label, pos_scores) except Exception: metrics["PR-AUC"] = np.nan try: if y_proba.ndim == 1: y_proba_ll = np.column_stack([1 - pos_scores, pos_scores]) else: y_proba_ll = y_proba metrics["LogLoss"] = log_loss(y_true, y_proba_ll, labels=classes_sorted) except Exception: metrics["LogLoss"] = np.nan else: metrics["ROC-AUC"] = np.nan metrics["PR-AUC"] = np.nan metrics["LogLoss"] = np.nan try: metrics["MCC"] = matthews_corrcoef(y_true, y_pred) except Exception: metrics["MCC"] = np.nan return metrics def _compute_multiclass_metrics( y_true: pd.Series, y_pred: pd.Series, y_proba: Optional[np.ndarray] ) -> "OrderedDict[str, float]": metrics = OrderedDict() metrics["Accuracy"] = accuracy_score(y_true, y_pred) metrics["Macro Precision"] = precision_score(y_true, y_pred, average="macro", zero_division=0) metrics["Macro Recall"] = recall_score(y_true, y_pred, average="macro", zero_division=0) metrics["Macro F1"] = f1_score(y_true, y_pred, average="macro", zero_division=0) metrics["Weighted Precision"] = precision_score(y_true, y_pred, average="weighted", zero_division=0) metrics["Weighted Recall"] = recall_score(y_true, y_pred, average="weighted", zero_division=0) metrics["Weighted F1"] = f1_score(y_true, y_pred, average="weighted", zero_division=0) try: metrics["Cohen_Kappa"] = cohen_kappa_score(y_true, y_pred) except Exception: metrics["Cohen_Kappa"] = np.nan try: metrics["MCC"] = matthews_corrcoef(y_true, y_pred) except Exception: metrics["MCC"] = np.nan # Probabilistic metrics classes_sorted = np.sort(pd.unique(y_true)) if y_proba is not None and y_proba.ndim == 2: try: metrics["LogLoss"] = log_loss(y_true, y_proba, labels=classes_sorted) except Exception: metrics["LogLoss"] = np.nan # Macro ROC-AUC / PR-AUC via OVR try: class_to_index = {c: i for i, c in enumerate(classes_sorted)} y_true_idx = np.vectorize(class_to_index.get)(y_true) metrics["ROC-AUC_macro"] = roc_auc_score(y_true_idx, y_proba, multi_class="ovr", average="macro") except Exception: metrics["ROC-AUC_macro"] = np.nan try: Y_true_ind = np.zeros_like(y_proba) idx_map = {c: i for i, c in enumerate(classes_sorted)} Y_true_ind[np.arange(y_proba.shape[0]), np.vectorize(idx_map.get)(y_true)] = 1 metrics["PR-AUC_macro"] = average_precision_score(Y_true_ind, y_proba, average="macro") except Exception: metrics["PR-AUC_macro"] = np.nan else: metrics["LogLoss"] = np.nan metrics["ROC-AUC_macro"] = np.nan metrics["PR-AUC_macro"] = np.nan return metrics def aggregate_metrics(list_of_dicts): """Aggregate a list of metrics dicts (per split) into mean/std.""" agg_mean = {} agg_std = {} for split in ("Train", "Validation", "Test", "Test (external)"): keys = set() for m in list_of_dicts: if isinstance(m, dict) and split in m: keys.update(m[split].keys()) if not keys: continue agg_mean[split] = {} agg_std[split] = {} for k in keys: vals = [m[split][k] for m in list_of_dicts if split in m and k in m[split]] numeric_vals = [] for v in vals: try: numeric_vals.append(float(v)) except Exception: pass if numeric_vals: agg_mean[split][k] = float(np.mean(numeric_vals)) agg_std[split][k] = float(np.std(numeric_vals, ddof=0)) else: agg_mean[split][k] = vals[-1] if vals else None agg_std[split][k] = None return agg_mean, agg_std def compute_metrics_for_split( predictor, df: pd.DataFrame, target_col: str, problem_type: str, threshold: Optional[float] = None, # <— NEW ) -> "OrderedDict[str, float]": """Compute transparency metrics for one split (Train/Val/Test) based on task type.""" # Prepare inputs features = df.drop(columns=[target_col], errors="ignore") y_true_series = df[target_col].reset_index(drop=True) # Probabilities (if available) y_proba = None try: y_proba_raw = predictor.predict_proba(features) y_proba = _safe_y_proba_to_array(y_proba_raw) except Exception: y_proba = None # Labels (optionally thresholded for binary) y_pred_series = None if problem_type == "binary" and (threshold is not None) and (y_proba is not None): classes_sorted = np.sort(pd.unique(y_true_series)) pos_label = classes_sorted[-1] neg_label = classes_sorted[0] if y_proba.ndim == 1: pos_scores = y_proba else: pos_col_idx = -1 try: if hasattr(predictor, "class_labels") and predictor.class_labels: pos_col_idx = list(predictor.class_labels).index(pos_label) except Exception: pos_col_idx = -1 pos_scores = y_proba[:, pos_col_idx] y_pred_series = pd.Series(np.where(pos_scores >= float(threshold), pos_label, neg_label)).reset_index(drop=True) else: # Fall back to model's default label prediction (argmax / 0.5 equivalent) y_pred_series = pd.Series(predictor.predict(features)).reset_index(drop=True) if problem_type == "regression": y_true_arr = np.asarray(y_true_series, dtype=float) y_pred_arr = np.asarray(y_pred_series, dtype=float) return _compute_regression_metrics(y_true_arr, y_pred_arr) if problem_type == "binary": return _compute_binary_metrics(y_true_series, y_pred_series, y_proba, predictor) # multiclass return _compute_multiclass_metrics(y_true_series, y_pred_series, y_proba) def evaluate_all_transparency( predictor, train_df: Optional[pd.DataFrame], val_df: Optional[pd.DataFrame], test_df: Optional[pd.DataFrame], target_col: str, problem_type: str, threshold: Optional[float] = None, ) -> Tuple[pd.DataFrame, Dict[str, Dict[str, float]]]: """ Evaluate Train/Val/Test with the transparent metrics suite. Returns: - metrics_table: DataFrame with index=Metric, columns subset of [Train, Validation, Test] - raw_dict: nested dict {split -> {metric -> value}} """ split_results: Dict[str, Dict[str, float]] = {} splits = [] # IMPORTANT: do NOT apply threshold to Train/Val if train_df is not None and len(train_df): split_results["Train"] = compute_metrics_for_split(predictor, train_df, target_col, problem_type, threshold=None) splits.append("Train") if val_df is not None and len(val_df): split_results["Validation"] = compute_metrics_for_split(predictor, val_df, target_col, problem_type, threshold=None) splits.append("Validation") if test_df is not None and len(test_df): split_results["Test"] = compute_metrics_for_split(predictor, test_df, target_col, problem_type, threshold=threshold) splits.append("Test") # Preserve order from the first split; include any extras from others order_source = split_results[splits[0]] if splits else {} all_metrics = list(order_source.keys()) for s in splits[1:]: for m in split_results[s].keys(): if m not in all_metrics: all_metrics.append(m) metrics_table = pd.DataFrame(index=all_metrics, columns=splits, dtype=float) for s in splits: for m, v in split_results[s].items(): metrics_table.loc[m, s] = v return metrics_table, split_results
