Mercurial > repos > goeckslab > pycaret_predict
diff pycaret_predict.xml @ 0:1f20fe57fdee draft
planemo upload for repository https://github.com/goeckslab/Galaxy-Pycaret commit d79b0f722b7d09505a526d1a4332f87e548a3df1
author | goeckslab |
---|---|
date | Wed, 11 Dec 2024 04:59:43 +0000 |
parents | |
children | 4a7df9abe4c4 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/pycaret_predict.xml Wed Dec 11 04:59:43 2024 +0000 @@ -0,0 +1,61 @@ +<tool id="pycaret_predict" name="PyCaret Predictor/Evaluator" version="@VERSION@" profile="@PROFILE@"> + <description>predicts/evaluates your pycaret ML model on a dataset. </description> + <macros> + <import>pycaret_macros.xml</import> + </macros> + <expand macro="python_requirements" /> + <command> + <![CDATA[ + echo $target_feature && + python $__tool_directory__/pycaret_predict.py --model_path $input_model --data_path $input_dataset --task $model_type + #if $target_feature + --target $target_feature + #end if + ]]> + </command> + <inputs> + <param name="input_model" type="data" format="h5" label="Model you want to use to predict/evaluate:" /> + <param name="input_dataset" type="data" format="csv,tabular" label="Dataset you use to predict/evaluate" /> + <param name="model_type" type="select" label="Task"> + <option value="classification">classification</option> + <option value="regression">regression</option> + </param> + <param name="target_feature" multiple="false" type="data_column" use_header_names="true" data_ref="input_dataset" optional="true" label="Does your uploaded data include a target column? If so, please select the target column:" /> + </inputs> + <outputs> + <data name="prediction" format="csv" from_work_dir="predictions.csv" label="${tool.name} prediction results on ${on_string}" /> + <data name="report" format="html" from_work_dir="evaluation_report.html" label="${tool.name} evaluation report on ${on_string}"> + <filter>target_feature</filter> + </data> + </outputs> + <tests> + <test expect_num_outputs="2"> + <param name="input_model" value="expected_model_classification.h5" /> + <param name="input_dataset" value="pcr.tsv" /> + <param name="model_type" value="classification" /> + <param name="target_feature" value="11" /> + <output name="prediction" file="predictions_classification.csv" /> + <output name="report" file="evaluation_report_classification.html" compare="sim_size" /> + </test> + <test expect_num_outputs="2"> + <param name="input_model" value="expected_model_regression.h5" /> + <param name="input_dataset" value="auto-mpg.tsv" /> + <param name="model_type" value="regression" /> + <param name="target_feature" value="1" /> + <output name="prediction" file="predictions_regression.csv" /> + <output name="report" file="evaluation_report_regression.html" compare="sim_size" /> + </test> + </tests> + <help> + This tool uses PyCaret to evaluate a machine learning model or do prediction. + + **Outputs**: + + - **prediction**: The prediction results on the dataset in a csv format. + + - **report**: The evaluation report is generated in HTML format. + if you upload a dataset with a target column and select the target column in the target_feature input field. + + </help> + <expand macro="macro_citations" /> +</tool> \ No newline at end of file