Mercurial > repos > goeckslab > pycaret_predict
view pycaret_predict.xml @ 1:4a7df9abe4c4 draft default tip
planemo upload for repository https://github.com/goeckslab/Galaxy-Pycaret commit 9497c4faca7063bcbb6b201ab6d0dd1570f22acb
author | goeckslab |
---|---|
date | Sat, 14 Dec 2024 23:17:48 +0000 |
parents | 1f20fe57fdee |
children |
line wrap: on
line source
<tool id="pycaret_predict" name="PyCaret Predictor/Evaluator" version="@VERSION@" profile="@PROFILE@"> <description>predicts/evaluates your pycaret ML model on a dataset. </description> <macros> <import>pycaret_macros.xml</import> </macros> <expand macro="python_requirements" /> <command> <![CDATA[ echo $target_feature && python $__tool_directory__/pycaret_predict.py --model_path '$input_model' --data_path '$input_dataset' --task '$model_type' #if $target_feature --target '$target_feature' #end if ]]> </command> <inputs> <param name="input_model" type="data" format="h5" label="Model you want to use to predict/evaluate:" /> <param name="input_dataset" type="data" format="csv,tabular" label="Dataset you use to predict/evaluate" /> <param name="model_type" type="select" label="Task"> <option value="classification">classification</option> <option value="regression">regression</option> </param> <param name="target_feature" multiple="false" type="data_column" use_header_names="true" data_ref="input_dataset" optional="true" label="Does your uploaded data include a target column? If so, please select the target column:" /> </inputs> <outputs> <data name="prediction" format="csv" from_work_dir="predictions.csv" label="${tool.name} prediction results on ${on_string}" /> <data name="report" format="html" from_work_dir="evaluation_report.html" label="${tool.name} evaluation report on ${on_string}"> <filter>target_feature</filter> </data> </outputs> <tests> <test expect_num_outputs="2"> <param name="input_model" value="expected_model_classification.h5" /> <param name="input_dataset" value="pcr.tsv" /> <param name="model_type" value="classification" /> <param name="target_feature" value="11" /> <output name="prediction" file="predictions_classification.csv" /> <output name="report" file="evaluation_report_classification.html" compare="sim_size" /> </test> <test expect_num_outputs="2"> <param name="input_model" value="expected_model_regression.h5" /> <param name="input_dataset" value="auto-mpg.tsv" /> <param name="model_type" value="regression" /> <param name="target_feature" value="1" /> <output name="prediction" file="predictions_regression.csv" /> <output name="report" file="evaluation_report_regression.html" compare="sim_size" /> </test> </tests> <help> This tool uses PyCaret to evaluate a machine learning model or do prediction. **Outputs**: - **prediction**: The prediction results on the dataset in a csv format. - **report**: The evaluation report is generated in HTML format. if you upload a dataset with a target column and select the target column in the target_feature input field. </help> <expand macro="macro_citations" /> </tool>