Mercurial > repos > goeckslab > tabular_learner
diff tabular_learner.xml @ 9:e7dd78077b72 draft default tip
planemo upload for repository https://github.com/goeckslab/gleam commit 84d5cd0b1fa5c1ff0ad892bc39c95dad1ceb4920
| author | goeckslab |
|---|---|
| date | Sat, 08 Nov 2025 14:20:19 +0000 |
| parents | ba45bc057d70 |
| children |
line wrap: on
line diff
--- a/tabular_learner.xml Mon Sep 08 22:38:55 2025 +0000 +++ b/tabular_learner.xml Sat Nov 08 14:20:19 2025 +0000 @@ -59,6 +59,9 @@ --test_file '$test_file' #end if --model_type '$model_type' + #if $best_model_metric + --best_model_metric '$best_model_metric' + #end if ]]> </command> <inputs> @@ -104,6 +107,16 @@ <option value="lightgbm">Light Gradient Boosting Machine</option> <option value="catboost">CatBoost Classifier</option> </param> + <param name="best_model_metric" type="select" label="Select metric to pick the best model" help="PyCaret will rank models by this metric. Default is Accuracy."> + <option value="Accuracy" selected="true">Accuracy</option> + <option value="AUC">ROC-AUC</option> + <option value="Precision">Precision</option> + <option value="Recall">Recall</option> + <option value="F1">F1</option> + <option value="Kappa">Cohen’s Kappa</option> + <option value="Log Loss">Log Loss (lower is better)</option> + <option value="PR-AUC-Weighted">PR-AUC (weighted)</option> + </param> </when> <when value="regression"> <param name="regression_models" type="select" multiple="true" label="Only Select Regression Models if you don't want to compare all models"> @@ -133,6 +146,14 @@ <option value="lightgbm">Light Gradient Boosting Machine</option> <option value="catboost">CatBoost Regressor</option> </param> + <param name="best_model_metric" type="select" label="Select metric to pick the best model" help="PyCaret will rank models by this metric. Default is R²."> + <option value="R2" selected="true">R²</option> + <option value="MAE">MAE</option> + <option value="MSE">MSE</option> + <option value="RMSE">RMSE</option> + <option value="RMSLE">RMSLE</option> + <option value="MAPE">MAPE</option> + </param> </when> </conditional> <param name="tune_model" type="boolean" truevalue="True" falsevalue="False" label="Tune hyperparameters" help="Hyperparameter tuning on the best model" /> @@ -179,6 +200,7 @@ <param name="input_file" value="pcr.tsv"/> <param name="target_feature" value="11"/> <param name="model_type" value="classification"/> + <param name="best_model_metric" value="F1"/> <param name="random_seed" value="42"/> <param name="customize_defaults" value="true"/> <param name="train_size" value="0.8"/> @@ -195,6 +217,8 @@ <has_text text="Validation Summary" /> <has_text text="Test Summary" /> <has_text text="Feature Importance" /> + <has_text text="Best Model Metric" /> + <has_text text="F1" /> </assert_contents> </output> <output name="best_model_csv" value="expected_best_model_classification_customized.csv" /> @@ -257,6 +281,7 @@ <param name="input_file" value="auto-mpg.tsv"/> <param name="target_feature" value="1"/> <param name="model_type" value="regression"/> + <param name="best_model_metric" value="RMSE"/> <param name="random_seed" value="42"/> <output name="model" file="expected_model_regression.h5" compare="sim_size" /> <output name="comparison_result"> @@ -264,6 +289,8 @@ <has_text text="Validation Summary" /> <has_text text="Test Summary" /> <has_text text="Feature Importance" /> + <has_text text="Best Model Metric" /> + <has_text text="RMSE" /> </assert_contents> </output> <output name="best_model_csv" value="expected_best_model_regression.csv" />
