Mercurial > repos > greg > insect_phenology_model
changeset 39:169c8180205a draft
Uploaded
author | greg |
---|---|
date | Wed, 11 Apr 2018 11:26:53 -0400 |
parents | c0f76f4f84fc |
children | d8e6304dc5e4 |
files | insect_phenology_model.R |
diffstat | 1 files changed, 97 insertions(+), 69 deletions(-) [+] |
line wrap: on
line diff
--- a/insect_phenology_model.R Tue Apr 10 14:22:45 2018 -0400 +++ b/insect_phenology_model.R Wed Apr 11 11:26:53 2018 -0400 @@ -123,6 +123,26 @@ return(list(p_m, p_se, f1_m, f1_se, f2_m, f2_se)) } +get_next_normals_row = function(norm_data_frame, year, is_leap_year, index) { + # Return the next 30 year normals row formatted + # appropriately for the year-to-date data. + latitude = norm_data_frame[index,"LATITUDE"][1]; + longitude = norm_data_frame[index,"LONGITUDE"][1]; + # Format the date. + mmdd = norm_data_frame[index,"MMDD"][1]; + date_str = paste(year, mmdd, sep="-"); + doy = norm_data_frame[index,"DOY"][1]; + if (!is_leap_year) { + # Since all normals data includes Feb 29, we have to + # subtract 1 from DOY if we're not in a leap year since + # we removed the Feb 29 row from the data frame above. + doy = as.integer(doy) - 1; + } + tmin = norm_data_frame[index,"TMIN"][1]; + tmax = norm_data_frame[index,"TMAX"][1]; + return(list(latitude, longitude, date_str, doy, tmin, tmax)); +} + get_temperature_at_hour = function(latitude, temperature_data_frame, row, num_days) { # Base development threshold for Brown Marmorated Stink Bug # insect phenology model. @@ -222,59 +242,67 @@ get_total_days = function(is_leap_year) { # Get the total number of days in the current year. if (is_leap_year) { - return (366); + return(366); } else { - return (365); + return(365); } } -get_x_axis_ticks_and_labels = function(temperature_data_frame, num_rows, num_days_ytd) { +get_x_axis_ticks_and_labels = function(temperature_data_frame, num_rows, start_doy_ytd, end_doy_ytd) { # Keep track of the years to see if spanning years. month_labels = list(); ticks = list(); current_month_label = NULL; last_tick = 0; for (i in 1:num_rows) { - if (i==num_days_ytd) { - # Add a tick for the start of the 30 year normnals data. + if (start_doy_ytd > 1 & i==start_doy_ytd-1) { + # Add a tick for the end of the 30 year normnals data + # that was prepended to the year-to-date data. tick_index = get_tick_index(i, last_tick, ticks, month_labels) ticks[tick_index] = i; - month_labels[tick_index] = "Start 30 year normals"; + month_labels[tick_index] = "End prepended 30 year normals"; last_tick = i; - } - # Get the year and month from the date which - # has the format YYYY-MM-DD. - date = format(temperature_data_frame$DATE[i]); - # Get the month label. - items = strsplit(date, "-")[[1]]; - month = items[2]; - month_label = month.abb[as.integer(month)]; - tick_index = get_tick_index(i, last_tick, ticks, month_labels) - if (!identical(current_month_label, month_label)) { - # Add an x-axis tick for the month. + } else if (i==end_doy_ytd+1) { + # Add a tick for the start of the 30 year normnals data + # that was appended to the year-to-date data. + tick_index = get_tick_index(i, last_tick, ticks, month_labels) ticks[tick_index] = i; - month_labels[tick_index] = month_label; - current_month_label = month_label; + month_labels[tick_index] = "Start appended 30 year normals"; last_tick = i; - } - tick_index = get_tick_index(i, last_tick, ticks, month_labels) - if (!is.null(tick_index)) { - # Get the day. - day = weekdays(as.Date(date)); - if (day=="Sunday") { - # Add an x-axis tick if we're on a Sunday. - ticks[tick_index] = i; - # Add a blank month label so it is not displayed. - month_labels[tick_index] = ""; - last_tick = i; - } - } - if (i==num_rows) { + } else if (i==num_rows) { # Add a tick for the last day of the year. tick_index = get_tick_index(i, last_tick, ticks, month_labels) ticks[tick_index] = i; month_labels[tick_index] = ""; last_tick = i; + } else { + # Get the year and month from the date which + # has the format YYYY-MM-DD. + date = format(temperature_data_frame$DATE[i]); + # Get the month label. + items = strsplit(date, "-")[[1]]; + month = items[2]; + month_label = month.abb[as.integer(month)]; + if (!identical(current_month_label, month_label)) { + # Add an x-axis tick for the month. + tick_index = get_tick_index(i, last_tick, ticks, month_labels) + ticks[tick_index] = i; + month_labels[tick_index] = month_label; + current_month_label = month_label; + last_tick = i; + } + tick_index = get_tick_index(i, last_tick, ticks, month_labels) + if (!is.null(tick_index)) { + # Get the day. + day = weekdays(as.Date(date)); + if (day=="Sunday") { + # Add an x-axis tick if we're on a Sunday. + ticks[tick_index] = i; + # Add a blank month label so it is not displayed. + month_labels[tick_index] = ""; + last_tick = i; + } + } } } return(list(ticks, month_labels)); @@ -286,9 +314,9 @@ items = strsplit(date, "-")[[1]]; year = as.integer(items[1]); if (((year %% 4 == 0) & (year %% 100 != 0)) | (year %% 400 == 0)) { - return (TRUE); + return(TRUE); } else { - return (FALSE); + return(FALSE); } } @@ -336,12 +364,15 @@ start_date = temperature_data_frame$DATE[1]; # See if we're in a leap year. is_leap_year = is_leap_year(start_date); - # get the number of days in the year. + # Get the number of days in the year. total_days = get_total_days(is_leap_year); # Extract the year from the start date. date_str = format(start_date); date_str_items = strsplit(date_str, "-")[[1]]; year = date_str_items[1]; + # Save the first DOY to later check if start_date is Jan 1. + start_doy_ytd = as.integer(temperature_data_frame$DOY[1]); + end_doy_ytd = as.integer(temperature_data_frame$DOY[num_days_ytd]); # Read the input_norm temperature datafile into a data frame. # The input_norm data has the following 10 columns: # STATIONID, LATITUDE, LONGITUDE, ELEV_M, NAME, ST, MMDD, DOY, TMIN, TMAX @@ -353,35 +384,31 @@ if (!is_leap_year) { norm_data_frame = norm_data_frame[-c(60),]; } - # Define the next row for the temperature_data_frame from the 30 year normals data. - first_normals_row = num_days_ytd + 1; - for (i in first_normals_row:total_days) { - latitude = norm_data_frame[i,"LATITUDE"][1]; - longitude = norm_data_frame[i,"LONGITUDE"][1]; - # Format the date. - mmdd = norm_data_frame[i,"MMDD"][1]; - date_str = paste(year, mmdd, sep="-"); - doy = norm_data_frame[i,"DOY"][1]; - if (!is_leap_year) { - # Since all normals data includes Feb 29, we have to - # subtract 1 from DOY if we're not in a leap year since - # we removed the Feb 29 row from the data frame above. - doy = as.integer(doy) - 1; + if (start_doy_ytd > 1) { + # The year-to-date data starts after Jan 1, so create a + # temporary data frame to contain the 30 year normals data + # from Jan 1 to the date immediately prior to start_date. + tmp_data_frame = temperature_data_frame[FALSE,]; + for (i in 1:start_doy_ytd-1) { + tmp_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i); } - tmin = norm_data_frame[i,"TMIN"][1]; - tmax = norm_data_frame[i,"TMAX"][1]; - # Append the row to temperature_data_frame. - new_row = list(latitude, longitude, date_str, doy, tmin, tmax); - temperature_data_frame[i,] = new_row; + # Next merge the temporary data frame with the year-to-date data frame. + temperature_data_frame = rbind(tmp_data_frame, temperature_data_frame); + } + # Define the next row for the year-to-date data from the 30 year normals data. + first_normals_append_row = end_doy_ytd + 1; + # Append the 30 year normals data to the year-to-date data. + for (i in first_normals_append_row:total_days) { + temperature_data_frame[i,] = get_next_normals_row(norm_data_frame, year, is_leap_year, i); } # Add a column containing the daylight length for each day. temperature_data_frame = add_daylight_length(temperature_data_frame, total_days); - return(temperature_data_frame); + return(list(temperature_data_frame, start_date, start_doy_ytd, end_doy_ytd, is_leap_year, total_days)); } render_chart = function(ticks, date_labels, chart_type, plot_std_error, insect, location, latitude, start_date, end_date, days, maxval, - replications, life_stage, group, group_std_error, group2=NULL, group2_std_error=NULL, group3=NULL, group3_std_error=NULL, - life_stages_adult=NULL, life_stages_nymph=NULL) { + replications, life_stage, group, group_std_error, group2=NULL, group2_std_error=NULL, group3=NULL, group3_std_error=NULL, + life_stages_adult=NULL, life_stages_nymph=NULL) { if (chart_type=="pop_size_by_life_stage") { if (life_stage=="Total") { title = paste(insect, ": Reps", replications, ":", life_stage, "Pop :", location, ": Lat", latitude, ":", start_date, "-", end_date, sep=" "); @@ -472,8 +499,17 @@ # Display the total number of days in the Galaxy history item blurb. cat("Year-to-date number of days: ", opt$num_days_ytd, "\n"); -# Read the temperature data into a data frame. -temperature_data_frame = parse_input_data(opt$input_ytd, opt$input_norm, opt$num_days_ytd); +# Parse the inputs. +data_list = parse_input_data(opt$input_ytd, opt$input_norm, opt$num_days_ytd); +temperature_data_frame = data_list[[1]]; +# Information needed for plots. +start_date = data_list[[2]]; +end_date = temperature_data_frame$DATE[opt$num_days_ytd]; +start_doy_ytd = data_list[[3]]; +end_doy_ytd = data_list[[4]]; +is_leap_year = data_list[[5]]; +total_days = data_list[[6]]; +total_days_vector = c(1:total_days); # Create copies of the temperature data for generations P, F1 and F2 if we're plotting generations separately. if (plot_generations_separately) { @@ -482,16 +518,8 @@ temperature_data_frame_F2 = data.frame(temperature_data_frame); } -# Information needed for plots. -start_date = temperature_data_frame$DATE[1]; -end_date = temperature_data_frame$DATE[opt$num_days_ytd]; -# See if we're in a leap year. -is_leap_year = is_leap_year(start_date); -total_days = get_total_days(is_leap_year); -total_days_vector = c(1:total_days); - # Get the ticks date labels for plots. -ticks_and_labels = get_x_axis_ticks_and_labels(temperature_data_frame, total_days, opt$num_days_ytd); +ticks_and_labels = get_x_axis_ticks_and_labels(temperature_data_frame, total_days, start_doy_ytd, end_doy_ytd); ticks = c(unlist(ticks_and_labels[1])); date_labels = c(unlist(ticks_and_labels[2])); # All latitude values are the same, so get the value for plots from the first row.