Mercurial > repos > imgteam > binary2labelimage
diff 2d_split_binaryimage_by_watershed.py @ 6:364e235bf378 draft default tip
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/binary2labelimage/ commit f5a4de7535e433e3b0e96e0694e481b6643a54f8
| author | imgteam |
|---|---|
| date | Sat, 03 Jan 2026 14:14:28 +0000 |
| parents | 7f8102bdbfa1 |
| children |
line wrap: on
line diff
--- a/2d_split_binaryimage_by_watershed.py Mon May 12 08:15:44 2025 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,33 +0,0 @@ -import argparse -import sys - -import numpy as np -import skimage.io -import skimage.util -from scipy import ndimage as ndi -from skimage.feature import peak_local_max -from skimage.segmentation import watershed - - -if __name__ == "__main__": - parser = argparse.ArgumentParser(description='Split binaryimage by watershed') - parser.add_argument('input_file', type=argparse.FileType('r'), default=sys.stdin, help='input file') - parser.add_argument('out_file', type=argparse.FileType('w'), default=sys.stdin, help='out file (TIFF)') - parser.add_argument('min_distance', type=int, default=100, help='Minimum distance to next object') - args = parser.parse_args() - - img_in = skimage.io.imread(args.input_file.name) - distance = ndi.distance_transform_edt(img_in) - - local_max_indices = peak_local_max( - distance, - min_distance=args.min_distance, - labels=img_in, - ) - local_max_mask = np.zeros(img_in.shape, dtype=bool) - local_max_mask[tuple(local_max_indices.T)] = True - markers = ndi.label(local_max_mask)[0] - res = watershed(-distance, markers, mask=img_in) - - res = skimage.util.img_as_uint(res) - skimage.io.imsave(args.out_file.name, res, plugin="tifffile")
