Mercurial > repos > imgteam > curve_fitting
view curve_fitting.py @ 5:e0af18405e37 draft
planemo upload for repository https://github.com/BMCV/galaxy-image-analysis/tree/master/tools/curve_fitting/ commit cd63bc5e6eb7254111012209fac9154569355f20
author | imgteam |
---|---|
date | Tue, 19 Jul 2022 08:51:41 +0000 |
parents | 8bf2c507af3a |
children |
line wrap: on
line source
""" Copyright 2021 Biomedical Computer Vision Group, Heidelberg University. Author: Qi Gao (qi.gao@bioquant.uni-heidelberg.de) Distributed under the MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT """ import argparse import numpy as np import pandas as pd from scipy.optimize import least_squares def compute_curve(x, par): assert len(par) in [2, 3], 'The degree of curve must be 1 or 2!' if len(par) == 3: return par[0] * x + par[1] + par[2] * x ** 2 elif len(par) == 2: return par[0] * x + par[1] def fitting_err(par, xx, seq, penalty): assert penalty in ['abs', 'quadratic', 'student-t'], 'Unknown penalty function!' curve = compute_curve(xx, par) if penalty == 'abs': err = np.sqrt(np.abs(curve - seq)) elif penalty == 'quadratic': err = (curve - seq) elif penalty == 'student-t': a = 1000 b = 0.001 err = np.sqrt(a * np.log(1 + (b * (curve - seq)) ** 2)) return err def curve_fitting(seq, degree=2, penalty='abs'): assert len(seq) > 5, 'Data is too short for curve fitting!' assert degree in [1, 2], 'The degree of curve must be 1 or 2!' par0 = [(seq[-1] - seq[0]) / len(seq), np.mean(seq[0:3])] if degree == 2: par0.append(-0.001) xx = np.array([i for i in range(len(seq))]) + 1 x = np.array(par0, dtype='float64') result = least_squares(fitting_err, x, args=(xx, seq, penalty)) return compute_curve(xx, result.x) def curve_fitting_io(fn_in, fn_out, degree=2, penalty='abs', alpha=0.01): # read all sheets xl = pd.ExcelFile(fn_in) nSpots = len(xl.sheet_names) data_all = [] for i in range(nSpots): df = pd.read_excel(xl, xl.sheet_names[i]) data_all.append(np.array(df)) col_names = df.columns.tolist() ncols_ori = len(col_names) # curve_fitting diff = np.array([], dtype=('float64')) for i in range(nSpots): seq = data_all[i][:, -1] seq_fit = seq.copy() idx_valid = ~np.isnan(seq) seq_fit[idx_valid] = curve_fitting(seq[idx_valid], degree=degree, penalty=penalty) data_all[i] = np.concatenate((data_all[i], seq_fit.reshape(-1, 1)), axis=1) if alpha > 0: diff = np.concatenate((diff, seq_fit[idx_valid] - seq[idx_valid])) # add assistive curve if alpha > 0: sorted_diff = np.sort(diff) fac = 1 - alpha / 2 sig3 = sorted_diff[int(diff.size * fac)] for i in range(nSpots): seq_assist = data_all[i][:, -1] + sig3 data_all[i] = np.concatenate((data_all[i], seq_assist.reshape(-1, 1)), axis=1) # write to file with pd.ExcelWriter(fn_out) as writer: for i in range(nSpots): df = pd.DataFrame() for c in range(ncols_ori): df[col_names[c]] = data_all[i][:, c] df['CURVE'] = data_all[i][:, ncols_ori] if alpha > 0: df['CURVE_A'] = data_all[i][:, ncols_ori + 1] df.to_excel(writer, sheet_name=xl.sheet_names[i], index=False, float_format='%.2f') writer.save() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Fit (1st- or 2nd-degree) polynomial curves to data points") parser.add_argument("fn_in", help="File name of input data points (xlsx)") parser.add_argument("fn_out", help="File name of output fitted curves (xlsx)") parser.add_argument("degree", type=int, help="Degree of the polynomial function") parser.add_argument("penalty", help="Optimization objective for fitting") parser.add_argument("alpha", type=float, help="Significance level for generating assistive curves") args = parser.parse_args() curve_fitting_io(args.fn_in, args.fn_out, args.degree, args.penalty, args.alpha)