diff clustering_from_distmat.xml @ 0:8192b416f945 draft

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/clustering_from_distmat/ commit a34052b87a2d05cabed5001c50f1bb10e74f97ee
author iuc
date Thu, 08 Aug 2024 19:34:36 +0000
parents
children c0b01c55a0e0
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/clustering_from_distmat.xml	Thu Aug 08 19:34:36 2024 +0000
@@ -0,0 +1,111 @@
+<tool id="clustering_from_distmat" name="Distance matrix-based hierarchical clustering" version="1.0" profile="23.0">
+    <description>using Scipy</description>
+    <edam_topics>
+        <edam_topic>topic_2269</edam_topic>
+        <edam_topic>topic_0084</edam_topic>
+    </edam_topics>
+    <edam_operations>
+        <edam_operation>operation_3432</edam_operation>
+    </edam_operations>
+    <requirements>
+        <requirement type="package" version="3.12">python</requirement>
+        <requirement type="package" version="1.14.0">scipy</requirement>
+    </requirements>
+    <command detect_errors="exit_code"><![CDATA[
+python '$__tool_directory__/clustering_from_distmat.py'
+  '$distmat'
+  result
+  --method $method
+  #if str($cluster_assignment.select) == 'n-cluster':
+    --n-clusters $cluster_assignment.n_cluster
+  #elif str($cluster_assignment.select) == 'height':
+    --height $cluster_assignment.height
+  #end if
+    ]]></command>
+    <inputs>
+        <param name="distmat" type="data" format="tabular" label="Distance matrix" />
+        <param name="method" type="select" label="Clustering method">
+            <option value="single">Nearest Point (scipy 'single' method)</option>
+            <option value="complete">Farthest Point (scipy 'complete' method)</option>
+            <option value="average" selected="true">UPGMA (scipy 'average' method)</option>
+            <option value="weighted">WPGMA (scipy 'weighted' method)</option>
+            <option value="centroid">UPGMC (scipy 'centroid' method)</option>
+            <option value="median">WPGMC (scipy 'median' method)</option>
+            <option value="ward">Ward/Incremental (scipy 'ward' method)</option>
+        </param>
+        <conditional name="cluster_assignment">
+            <param name="select" type="select" label="Generate cluster assignments?">
+                <option value="dendrogram-only">No, just generate the dendrogram of clustering results</option>
+                <option value="n-cluster">Yes, and divide into specified number of clusters </option>
+                <option value="height">Yes, and use distance threshold to divide into clusters</option>
+            </param>
+            <when value="dendrogram-only" />
+            <when value="n-cluster">
+                <param name="n_cluster" type="integer" value="5" min="1" label="How many clusters to divide into?" />
+                <param name="generate_dendrogram" type="boolean" label="Produce also the dendrogram of clustering results" />
+            </when>
+            <when value="height">
+                <param name="height" type="float" value="5.0" label="Distance threshold for clusters to be reported" />
+                <param name="generate_dendrogram" type="boolean" label="Produce also the dendrogram of clustering results" />
+            </when>
+        </conditional>
+    </inputs>
+    <outputs>
+        <data name="clustering_dendrogram" format="newick" from_work_dir="result.tree.newick" label="${tool.name} on ${on_string}: Dendrogram">
+            <filter>cluster_assignment["select"] == "dendrogram-only" or cluster_assignment["generate_dendrogram"]</filter>
+        </data>
+        <data name="clustering_assignment" format="tabular" from_work_dir="result.cluster_assignments.tsv" label="${tool.name} on ${on_string}: Cluster assignment">
+            <filter>cluster_assignment["select"] in ["n-cluster", "height"]</filter>
+        </data>
+    </outputs>
+    <tests>
+        <!-- Test data and expected results taken from https://en.wikipedia.org/wiki/UPGMA#Working_example -->
+        <test expect_num_outputs="1">
+            <param name="distmat" value="test_matrix.tsv"/>
+            <output name="clustering_dendrogram" ftype="newick" file="test_tree_average.newick" />
+        </test>
+        <test expect_num_outputs="1">
+            <param name="distmat" value="test_matrix.tsv" />
+            <param name="method" value="complete" />
+            <output name="clustering_dendrogram" ftype="newick" file="test_tree_complete.newick" />
+        </test>
+        <test expect_num_outputs="1">
+            <param name="distmat" value="test_matrix.tsv"/>
+            <conditional name="cluster_assignment">
+                <param name="select" value="height" />
+                <param name="height" value="18" />
+            </conditional>
+            <output name="clustering_assignment" ftype="tabular" file="test_assignment_average_h18.tsv" />
+        </test>
+        <test expect_num_outputs="2">
+            <param name="distmat" value="test_matrix.tsv"/>
+            <conditional name="cluster_assignment">
+                <param name="select" value="n-cluster" />
+                <param name="n_cluster" value="4" />
+                <param name="generate_dendrogram" value="true" />
+            </conditional>
+            <output name="clustering_assignment" ftype="tabular" file="test_assignment_average_n4.tsv" />
+        </test>
+    </tests>
+    <help><![CDATA[
+
+.. class:: infomark
+
+**What it does**
+
+This tool lets you perform hierarchical clustering of samples using the `scipy.cluster.hierarchy.linkage`_ function and any of the clustering methods supported by it.
+
+As input it expects a symmetrical distance matrix with sample names on the first row and in the first column.
+
+The clustering result can be reported in the form of a dendrogram in newick format.
+
+Additionally, the tool can report the assignment of the samples to clusters "cut" from the clustering tree using the `scipy.cluster.hierarchy.cut_tree`_ function.
+Reflecting the parameters of that function, you can specify *how* to cut the tree by specifying either the number of clusters to cut into or a distance threshold, i.e., the height at which to cut the tree as SciPy calls it.
+
+.. _`scipy.cluster.hierarchy.linkage`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html
+.. _`scipy.cluster.hierarchy.cut_tree`: https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.cut_tree.html
+    ]]></help>
+    <citations>
+        <citation type="doi">10.1038/s41592-019-0686-2</citation>
+    </citations>
+</tool>