Mercurial > repos > iuc > deeparg_predict
comparison deeparg_predict.xml @ 0:3953324f6d31 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/deeparg commit 0f935507a23e554a7d9e181a278a00440865c3ba
author | iuc |
---|---|
date | Fri, 14 Feb 2025 11:09:55 +0000 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:3953324f6d31 |
---|---|
1 <tool id="deeparg_predict" name="DeepARG predict" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@PROFILE@"> | |
2 <description>Antibiotic Resistance Genes (ARGs) from metagenomes</description> | |
3 <macros> | |
4 <import>macros.xml</import> | |
5 </macros> | |
6 <expand macro="xrefs"/> | |
7 <expand macro="requirements"/> | |
8 <command detect_errors="exit_code"><![CDATA[ | |
9 ##Used only for test | |
10 #if str($hide_db_build) == 'true': | |
11 deeparg download_data -o '$deeparg_db.fields.path' && | |
12 #end if | |
13 ## | |
14 mkdir -p deeparg_predict_output && | |
15 deeparg predict | |
16 --model '$model' | |
17 -i '$input' | |
18 -o 'deeparg_predict_output/deeparg_predict' | |
19 -d '$deeparg_db.fields.path' | |
20 --type '$type' | |
21 --min-prob $min_prob | |
22 --arg-alignment-identity $arg_alignment_identity | |
23 --arg-alignment-evalue $arg_alignment_evalue | |
24 --arg-alignment-overlap $arg_alignment_overlap | |
25 --arg-num-alignments-per-entry $arg_num_alignments_per_entry | |
26 ]]></command> | |
27 <inputs> | |
28 <!-- used only for tests, as the deeparg database contains large files that cannot be deleted or reduced. --> | |
29 <param name="hide_db_build" type="hidden" value=""/> | |
30 <!-- --> | |
31 <param name="input" type="data" format="fasta" label="Input file"/> | |
32 <param name="deeparg_db" type="select" label="DeepARG database"> | |
33 <options from_data_table="deeparg"> | |
34 <filter type="static_value" value="@TOOL_VERSION@" column="db_version"/> | |
35 <validator message="No deeparg database is available" type="no_options"/> | |
36 </options> | |
37 </param> | |
38 <param argument="--model" type="select" label="Select model to use"> | |
39 <option value="SS" selected="true">SS (short sequences for reads)</option> | |
40 <option value="LS">LS (long sequences for genes)</option> | |
41 </param> | |
42 <param argument="--type" type="select" label="Molecular data type"> | |
43 <option value="nucl" selected="true">Nucleotid (default)</option> | |
44 <option value="prot">Protein</option> | |
45 </param> | |
46 <param argument="--min-prob" type="float" min="0" max="1" value="0.8" label="Minimum probability cutoff [Default: 0.8]"/> | |
47 <param argument="--arg-alignment-identity" type="integer" min="0" value="50" label="Identity cutoff for sequence alignment [Default: 50]"/> | |
48 <param argument="--arg-alignment-evalue" type="float" min="0" value="1e-10" label="Evalue cutoff [Default: 1e-10]"/> | |
49 <param argument="--arg-alignment-overlap" type="float" min="0" max="1" value="0.8" label="Alignment read overlap [Default: 0.8]"/> | |
50 <param argument="--arg-num-alignments-per-entry" type="integer" min="0" value="1000" label="Diamond, minimum number of alignments per entry [Default: 1000]"/> | |
51 <section name="output_files" title="Selection of the output files"> | |
52 <param name="output_selection" type="select" label="Output files selection" display="checkboxes" multiple="true"> | |
53 <option value="file_ARG_tsv" selected="true">ARG detected with prob higher or equal to --prob in TSV</option> | |
54 <option value="file_potential_ARG_tsv" selected="true">ARG detected with prob below --prob in TSV</option> | |
55 <option value="file_all_hits_tsv" selected="false">All hits detected in TSV</option> | |
56 </param> | |
57 </section> | |
58 </inputs> | |
59 <outputs> | |
60 <data name="output_mapping_ARG" format="tabular" from_work_dir="deeparg_predict_output/deeparg_predict.mapping.ARG" label="${tool.name} on ${on_string} : ARG detected (prob higher or equal to --prob)"> | |
61 <filter>output_files['output_selection'] and "file_ARG_tsv" in output_files['output_selection']</filter> | |
62 </data> | |
63 <data name="output_mapping_potential_ARG" format="tabular" from_work_dir="deeparg_predict_output/deeparg_predict.mapping.potential.ARG" label="${tool.name} on ${on_string} : Potential ARG (prob below --prob)"> | |
64 <filter>output_files['output_selection'] and "file_potential_ARG_tsv" in output_files['output_selection']</filter> | |
65 </data> | |
66 <data name="output_all_hits" format="tabular" from_work_dir="deeparg_predict_output/deeparg_predict.align.daa.tsv" label="${tool.name} on ${on_string} : all hits detected"> | |
67 <filter>output_files['output_selection'] and "file_all_hits_tsv" in output_files['output_selection']</filter> | |
68 </data> | |
69 </outputs> | |
70 <tests> | |
71 <!-- Test 1 --> | |
72 <test expect_num_outputs="3"> | |
73 <param name="hide_db_build" value="true"/> | |
74 <param name="input" value="ORFs.fa" ftype="fasta"/> | |
75 <param name="deeparg_db" value="deeparg_1.0.4-19122024"/> | |
76 <param name="model" value="SS"/> | |
77 <param name="type" value="nucl"/> | |
78 <section name="output_files"> | |
79 <param name="output_selection" value="file_ARG_tsv,file_potential_ARG_tsv,file_all_hits_tsv"/> | |
80 </section> | |
81 <output name="output_mapping_ARG" ftype="tabular"> | |
82 <assert_contents> | |
83 <has_text text="YP_003283625.1|FEATURES|tet(K)|tetracycline|tet(K)"/> | |
84 <has_text text="RPOB2"/> | |
85 </assert_contents> | |
86 </output> | |
87 <output name="output_mapping_potential_ARG" ftype="tabular"> | |
88 <assert_contents> | |
89 <has_text text="gi:545254650:ref:WP_021551023.1:|FEATURES|mdtB|multidrug|mdtB"/> | |
90 <has_text text="MUXB"/> | |
91 </assert_contents> | |
92 </output> | |
93 <output name="output_all_hits" ftype="tabular"> | |
94 <assert_contents> | |
95 <has_size value="226000" delta="10000"/> | |
96 <has_text text="ADV91011.1|FEATURES|RbpA|rifamycin|RbpA"/> | |
97 </assert_contents> | |
98 </output> | |
99 </test> | |
100 </tests> | |
101 <help> | |
102 DeepARG Predict is a computational tool designed to classify and annotate antibiotic resistance genes (ARGs) from nucleotide or protein sequences | |
103 | |
104 It takes as input a **fasta nucleotide or protein file** containing short (SS model) or long (LS model) sequences | |
105 | |
106 DeepARG output | |
107 --------------- | |
108 | |
109 DeepARG generates two main files: .ARG that contains the sequences with a probability sup or = --prob (0.8 default) and .potential.ARG with sequences containing a probability inf to --prob (0.8 default). The .potential.ARG file can still contain ARG-like sequences, howevere, it is necessary inspect its sequences | |
110 | |
111 The output format for both files consists of the following fields: | |
112 | |
113 * ARG_NAME | |
114 * QUERY_START | |
115 * QUERY_END | |
116 * QUERY_ID | |
117 * PREDICTED_ARG_CLASS | |
118 * BEST_HIT_FROM_DATABASE | |
119 * PREDICTION_PROBABILITY | |
120 * ALIGNMENT_BESTHIT_IDENTITY (%) | |
121 * ALIGNMENT_BESTHIT_LENGTH | |
122 * ALIGNMENT_BESTHIT_BITSCORE | |
123 * ALIGNMENT_BESTHIT_EVALUE | |
124 * COUNTS | |
125 | |
126 If you want to annotate paired-end short read sequencing data use the DeepARG Short Reads tool | |
127 | |
128 </help> | |
129 <expand macro="citations"/> | |
130 </tool> |