Mercurial > repos > iuc > deeparg_predict
view deeparg_predict.xml @ 0:3953324f6d31 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/deeparg commit 0f935507a23e554a7d9e181a278a00440865c3ba
author | iuc |
---|---|
date | Fri, 14 Feb 2025 11:09:55 +0000 |
parents | |
children |
line wrap: on
line source
<tool id="deeparg_predict" name="DeepARG predict" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="@PROFILE@"> <description>Antibiotic Resistance Genes (ARGs) from metagenomes</description> <macros> <import>macros.xml</import> </macros> <expand macro="xrefs"/> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ ##Used only for test #if str($hide_db_build) == 'true': deeparg download_data -o '$deeparg_db.fields.path' && #end if ## mkdir -p deeparg_predict_output && deeparg predict --model '$model' -i '$input' -o 'deeparg_predict_output/deeparg_predict' -d '$deeparg_db.fields.path' --type '$type' --min-prob $min_prob --arg-alignment-identity $arg_alignment_identity --arg-alignment-evalue $arg_alignment_evalue --arg-alignment-overlap $arg_alignment_overlap --arg-num-alignments-per-entry $arg_num_alignments_per_entry ]]></command> <inputs> <!-- used only for tests, as the deeparg database contains large files that cannot be deleted or reduced. --> <param name="hide_db_build" type="hidden" value=""/> <!-- --> <param name="input" type="data" format="fasta" label="Input file"/> <param name="deeparg_db" type="select" label="DeepARG database"> <options from_data_table="deeparg"> <filter type="static_value" value="@TOOL_VERSION@" column="db_version"/> <validator message="No deeparg database is available" type="no_options"/> </options> </param> <param argument="--model" type="select" label="Select model to use"> <option value="SS" selected="true">SS (short sequences for reads)</option> <option value="LS">LS (long sequences for genes)</option> </param> <param argument="--type" type="select" label="Molecular data type"> <option value="nucl" selected="true">Nucleotid (default)</option> <option value="prot">Protein</option> </param> <param argument="--min-prob" type="float" min="0" max="1" value="0.8" label="Minimum probability cutoff [Default: 0.8]"/> <param argument="--arg-alignment-identity" type="integer" min="0" value="50" label="Identity cutoff for sequence alignment [Default: 50]"/> <param argument="--arg-alignment-evalue" type="float" min="0" value="1e-10" label="Evalue cutoff [Default: 1e-10]"/> <param argument="--arg-alignment-overlap" type="float" min="0" max="1" value="0.8" label="Alignment read overlap [Default: 0.8]"/> <param argument="--arg-num-alignments-per-entry" type="integer" min="0" value="1000" label="Diamond, minimum number of alignments per entry [Default: 1000]"/> <section name="output_files" title="Selection of the output files"> <param name="output_selection" type="select" label="Output files selection" display="checkboxes" multiple="true"> <option value="file_ARG_tsv" selected="true">ARG detected with prob higher or equal to --prob in TSV</option> <option value="file_potential_ARG_tsv" selected="true">ARG detected with prob below --prob in TSV</option> <option value="file_all_hits_tsv" selected="false">All hits detected in TSV</option> </param> </section> </inputs> <outputs> <data name="output_mapping_ARG" format="tabular" from_work_dir="deeparg_predict_output/deeparg_predict.mapping.ARG" label="${tool.name} on ${on_string} : ARG detected (prob higher or equal to --prob)"> <filter>output_files['output_selection'] and "file_ARG_tsv" in output_files['output_selection']</filter> </data> <data name="output_mapping_potential_ARG" format="tabular" from_work_dir="deeparg_predict_output/deeparg_predict.mapping.potential.ARG" label="${tool.name} on ${on_string} : Potential ARG (prob below --prob)"> <filter>output_files['output_selection'] and "file_potential_ARG_tsv" in output_files['output_selection']</filter> </data> <data name="output_all_hits" format="tabular" from_work_dir="deeparg_predict_output/deeparg_predict.align.daa.tsv" label="${tool.name} on ${on_string} : all hits detected"> <filter>output_files['output_selection'] and "file_all_hits_tsv" in output_files['output_selection']</filter> </data> </outputs> <tests> <!-- Test 1 --> <test expect_num_outputs="3"> <param name="hide_db_build" value="true"/> <param name="input" value="ORFs.fa" ftype="fasta"/> <param name="deeparg_db" value="deeparg_1.0.4-19122024"/> <param name="model" value="SS"/> <param name="type" value="nucl"/> <section name="output_files"> <param name="output_selection" value="file_ARG_tsv,file_potential_ARG_tsv,file_all_hits_tsv"/> </section> <output name="output_mapping_ARG" ftype="tabular"> <assert_contents> <has_text text="YP_003283625.1|FEATURES|tet(K)|tetracycline|tet(K)"/> <has_text text="RPOB2"/> </assert_contents> </output> <output name="output_mapping_potential_ARG" ftype="tabular"> <assert_contents> <has_text text="gi:545254650:ref:WP_021551023.1:|FEATURES|mdtB|multidrug|mdtB"/> <has_text text="MUXB"/> </assert_contents> </output> <output name="output_all_hits" ftype="tabular"> <assert_contents> <has_size value="226000" delta="10000"/> <has_text text="ADV91011.1|FEATURES|RbpA|rifamycin|RbpA"/> </assert_contents> </output> </test> </tests> <help> DeepARG Predict is a computational tool designed to classify and annotate antibiotic resistance genes (ARGs) from nucleotide or protein sequences It takes as input a **fasta nucleotide or protein file** containing short (SS model) or long (LS model) sequences DeepARG output --------------- DeepARG generates two main files: .ARG that contains the sequences with a probability sup or = --prob (0.8 default) and .potential.ARG with sequences containing a probability inf to --prob (0.8 default). The .potential.ARG file can still contain ARG-like sequences, howevere, it is necessary inspect its sequences The output format for both files consists of the following fields: * ARG_NAME * QUERY_START * QUERY_END * QUERY_ID * PREDICTED_ARG_CLASS * BEST_HIT_FROM_DATABASE * PREDICTION_PROBABILITY * ALIGNMENT_BESTHIT_IDENTITY (%) * ALIGNMENT_BESTHIT_LENGTH * ALIGNMENT_BESTHIT_BITSCORE * ALIGNMENT_BESTHIT_EVALUE * COUNTS If you want to annotate paired-end short read sequencing data use the DeepARG Short Reads tool </help> <expand macro="citations"/> </tool>