comparison diffdock.xml @ 0:bfba870d3537 draft default tip

planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/main/tools/diffdock/ commit b0db941a49bdfaa799b10cd68f9b7d8509f608d2
author iuc
date Thu, 03 Jul 2025 13:43:38 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:bfba870d3537
1 <tool id="diffdock" name="diffdock" version="@TOOL_VERSION@+@VERSION_SUFFIX@" profile="24.2" license="MIT">
2 <description>Predict ligand binding poses using DiffDock's diffusion-based docking method</description>
3 <macros>
4 <import>macros.xml</import>
5 </macros>
6 <expand macro="requirements" />
7 <expand macro="creators" />
8 <command detect_errors="aggressive"><![CDATA[
9 ln -s /home/appuser/DiffDock/* . &&
10 ln -s '$protein_path' protein_path.pdb &&
11 ln -s '$ligand_description' ligand_description.sdf &&
12 micromamba run -n diffdock python -m inference
13 --protein_path protein_path.pdb
14 --ligand_description ligand_description.sdf
15 --out_dir results
16 ]]></command>
17 <inputs>
18 <param argument="--protein_path" type="data" format="pdb" label="Protein structure" help="3D structure of the protein receptor in PDB format. This is the target for ligand docking."/>
19 <param argument="--ligand_description" type="data" format="sdf" label="Ligand molecule" help="Structure of the ligand(s) to be docked in SDF format. Multiple molecules can be included."/>
20 <param argument="--samples_per_complex" type="integer" label="Samples per complex" value="10" help="Number of binding pose samples to generate for each protein-ligand complex."/>
21 <param argument="--inference_steps" type="integer" label="Total inference steps" value="20" help="Total number of denoising steps to run in the diffusion model."/>
22 <param argument="--actual_steps" type="integer" label="Actual denoising steps" value="19" help="Number of denoising steps that are actually performed. Must be less than or equal to inference steps."/>
23 </inputs>
24 <outputs>
25 <collection name="output_collection" type="list" label="${tool.name} on ${on_string}">
26 <discover_datasets pattern="__name_and_ext__" directory="results" recurse="true" format="sdf"/>
27 </collection>
28 </outputs>
29 <tests>
30 <test expect_num_outputs="1">
31 <param name="protein_path" value="1a0q_protein_processed.pdb"/>
32 <param name="ligand_description" value="1a0q_ligand.sdf"/>
33 <param name="samples_per_complex" value="10"/>
34 <param name="inference_steps" value="20"/>
35 <param name="actual_steps" value="19"/>
36 <output_collection name="output_collection" type="list">
37 <element name="rank1">
38 <assert_contents>
39 <has_n_lines n="52"/>
40 <has_line line="1a0q_ligand"/>
41 <has_line line=" 23 23 0 0 0 0 0 0 0 0999 V2000"/>
42 </assert_contents>
43 </element>
44 </output_collection>
45 </test>
46 </tests>
47 <help><![CDATA[
48 DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
49 ------------------------------------------------------------------
50
51 DiffDock is a novel deep learning-based docking method using diffusion models to predict ligand binding poses.
52
53 For more information, visit the `DiffDock GitHub repository <https://github.com/gcorso/DiffDock>`_
54
55 **License**
56
57 * `MIT <https://raw.githubusercontent.com/gcorso/DiffDock/refs/heads/main/LICENSE>`_
58
59 ]]></help>
60 <expand macro="citations" />
61 </tool>