Mercurial > repos > iuc > diffdock
diff diffdock.xml @ 0:bfba870d3537 draft default tip
planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/main/tools/diffdock/ commit b0db941a49bdfaa799b10cd68f9b7d8509f608d2
author | iuc |
---|---|
date | Thu, 03 Jul 2025 13:43:38 +0000 |
parents | |
children |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/diffdock.xml Thu Jul 03 13:43:38 2025 +0000 @@ -0,0 +1,61 @@ +<tool id="diffdock" name="diffdock" version="@TOOL_VERSION@+@VERSION_SUFFIX@" profile="24.2" license="MIT"> + <description>Predict ligand binding poses using DiffDock's diffusion-based docking method</description> + <macros> + <import>macros.xml</import> + </macros> + <expand macro="requirements" /> + <expand macro="creators" /> + <command detect_errors="aggressive"><![CDATA[ + ln -s /home/appuser/DiffDock/* . && + ln -s '$protein_path' protein_path.pdb && + ln -s '$ligand_description' ligand_description.sdf && + micromamba run -n diffdock python -m inference + --protein_path protein_path.pdb + --ligand_description ligand_description.sdf + --out_dir results + ]]></command> + <inputs> + <param argument="--protein_path" type="data" format="pdb" label="Protein structure" help="3D structure of the protein receptor in PDB format. This is the target for ligand docking."/> + <param argument="--ligand_description" type="data" format="sdf" label="Ligand molecule" help="Structure of the ligand(s) to be docked in SDF format. Multiple molecules can be included."/> + <param argument="--samples_per_complex" type="integer" label="Samples per complex" value="10" help="Number of binding pose samples to generate for each protein-ligand complex."/> + <param argument="--inference_steps" type="integer" label="Total inference steps" value="20" help="Total number of denoising steps to run in the diffusion model."/> + <param argument="--actual_steps" type="integer" label="Actual denoising steps" value="19" help="Number of denoising steps that are actually performed. Must be less than or equal to inference steps."/> + </inputs> + <outputs> + <collection name="output_collection" type="list" label="${tool.name} on ${on_string}"> + <discover_datasets pattern="__name_and_ext__" directory="results" recurse="true" format="sdf"/> + </collection> + </outputs> + <tests> + <test expect_num_outputs="1"> + <param name="protein_path" value="1a0q_protein_processed.pdb"/> + <param name="ligand_description" value="1a0q_ligand.sdf"/> + <param name="samples_per_complex" value="10"/> + <param name="inference_steps" value="20"/> + <param name="actual_steps" value="19"/> + <output_collection name="output_collection" type="list"> + <element name="rank1"> + <assert_contents> + <has_n_lines n="52"/> + <has_line line="1a0q_ligand"/> + <has_line line=" 23 23 0 0 0 0 0 0 0 0999 V2000"/> + </assert_contents> + </element> + </output_collection> + </test> + </tests> + <help><![CDATA[ +DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking +------------------------------------------------------------------ + +DiffDock is a novel deep learning-based docking method using diffusion models to predict ligand binding poses. + +For more information, visit the `DiffDock GitHub repository <https://github.com/gcorso/DiffDock>`_ + +**License** + +* `MIT <https://raw.githubusercontent.com/gcorso/DiffDock/refs/heads/main/LICENSE>`_ + + ]]></help> + <expand macro="citations" /> +</tool> \ No newline at end of file