Mercurial > repos > iuc > scater_plot_pca
comparison scater-plot-dist-scatter.R @ 2:9e5c0bb18d08 draft
"planemo upload for repository https://github.com/galaxyproject/tools-iuc/tree/master/tools/scater commit 154318f74839a4481c7c68993c4fb745842c4cce"
author | iuc |
---|---|
date | Thu, 09 Sep 2021 12:23:55 +0000 |
parents | 46fc6751d746 |
children |
comparison
equal
deleted
inserted
replaced
1:46fc6751d746 | 2:9e5c0bb18d08 |
---|---|
11 library(ggpubr) | 11 library(ggpubr) |
12 library(scales) | 12 library(scales) |
13 | 13 |
14 # parse options | 14 # parse options |
15 | 15 |
16 option_list = list( | 16 option_list <- list( |
17 make_option( | 17 make_option( |
18 c("-i", "--input-loom"), | 18 c("-i", "--input-loom"), |
19 action = "store", | 19 action = "store", |
20 default = NA, | 20 default = NA, |
21 type = 'character', | 21 type = "character", |
22 help = "A SingleCellExperiment object file in Loom format." | 22 help = "A SingleCellExperiment object file in Loom format." |
23 ), | 23 ), |
24 make_option( | 24 make_option( |
25 c("-o", "--output-plot-file"), | 25 c("-o", "--output-plot-file"), |
26 action = "store", | 26 action = "store", |
27 default = NA, | 27 default = NA, |
28 type = 'character', | 28 type = "character", |
29 help = "Path of the PDF output file to save plot to." | 29 help = "Path of the PDF output file to save plot to." |
30 ), | 30 ), |
31 make_option( | 31 make_option( |
32 c("-l", "--log-scale"), | 32 c("-l", "--log-scale"), |
33 action="store_true", | 33 action = "store_true", |
34 default=FALSE, | 34 default = FALSE, |
35 type = 'logical', | 35 type = "logical", |
36 help = "Plot on log scale (recommended for large datasets)." | 36 help = "Plot on log scale (recommended for large datasets)." |
37 ) | 37 ) |
38 ) | 38 ) |
39 | 39 |
40 opt <- wsc_parse_args(option_list, mandatory = c('input_loom', 'output_plot_file', 'log_scale')) | 40 opt <- wsc_parse_args(option_list, mandatory = c("input_loom", "output_plot_file")) |
41 | 41 |
42 # Check parameter values | 42 # Check parameter values |
43 | 43 |
44 if ( ! file.exists(opt$input_loom)){ | 44 if (! file.exists(opt$input_loom)) { |
45 stop((paste('File', opt$input_loom, 'does not exist'))) | 45 stop((paste("File", opt$input_loom, "does not exist"))) |
46 } | 46 } |
47 | 47 |
48 # Input from Loom format | 48 # Filter out unexpressed features |
49 | 49 |
50 scle <- import(opt$input_loom, format='loom', type='SingleCellLoomExperiment') | 50 sce <- import(opt$input_loom, format = "loom", type = "SingleCellLoomExperiment") |
51 | 51 |
52 #do the scatter plot of reads vs genes | 52 # Do the scatter plot of reads vs genes |
53 total_counts <- scle$total_counts | 53 total_counts <- sce$total |
54 total_features <- scle$total_features_by_counts | 54 total_features <- sce$detected |
55 count_feats <- cbind(total_counts, total_features) | 55 count_feats <- cbind(total_counts, total_features) |
56 cf_dm <- as.data.frame(count_feats) | 56 cf_dm <- as.data.frame(count_feats) |
57 | 57 |
58 # Calculate binwidths for reads and features plots. Use 20 bins | 58 # Calculate binwidths for reads and features plots. Use 20 bins |
59 read_bins <- max(total_counts / 1e6) / 20 | 59 read_bins <- max(total_counts / 1e6) / 20 |
60 feat_bins <- max(total_features) / 20 | 60 feat_bins <- max(total_features) / 20 |
61 | 61 |
62 # Make the plots | 62 plot1 <- qplot(total_counts / 1e6, geom = "histogram", binwidth = read_bins, ylab = "Number of cells", xlab = "Read counts (millions)", fill = I("darkseagreen3")) + ggtitle("Read counts per cell") |
63 plot <- ggplot(cf_dm, aes(x=total_counts / 1e6, y=total_features)) + geom_point(shape=1) + geom_smooth() + xlab("Read count (millions)") + | 63 plot2 <- qplot(total_features, geom = "histogram", binwidth = feat_bins, ylab = "Number of cells", xlab = "Feature counts", fill = I("darkseagreen3")) + ggtitle("Feature counts per cell") |
64 ylab("Feature count") + ggtitle("Scatterplot of reads vs features") | 64 plot3 <- ggplot(cf_dm, aes(x = total_counts / 1e6, y = total_features)) + geom_point(shape = 1) + geom_smooth() + xlab("Read count (millions)") + |
65 plot1 <- qplot(total_counts / 1e6, geom="histogram", binwidth = read_bins, ylab="Number of cells", xlab = "Read counts (millions)", fill=I("darkseagreen3")) + ggtitle("Read counts per cell") | 65 ylab("Feature count") + ggtitle("Scatterplot of reads vs features") |
66 plot2 <- qplot(total_features, geom="histogram", binwidth = feat_bins, ylab="Number of cells", xlab = "Feature counts", fill=I("darkseagreen3")) + ggtitle("Feature counts per cell") | 66 plot4 <- plotColData(sce, y = "subsets_Mito_percent", x = "detected") + ggtitle("% MT genes") + geom_point(shape = 1) + theme(text = element_text(size = 15)) + theme(plot.title = element_text(size = 15)) + xlab("Total features") + ylab("% MT") |
67 plot3 <- plotColData(scle, y="pct_counts_MT", x="total_features_by_counts") + ggtitle("% MT genes") + geom_point(shape=1) + theme(text = element_text(size=15)) + theme(plot.title = element_text(size=15)) | |
68 | 67 |
69 if (! opt$log_scale){ | 68 if (! opt$log_scale) { |
70 final_plot <- ggarrange(plot1, plot2, plot, plot3, ncol=2, nrow=2) | 69 final_plot <- ggarrange(plot1, plot2, plot3, plot4, ncol = 2, nrow = 2) |
71 ggsave(opt$output_plot_file, final_plot, device="pdf") | 70 ggsave(opt$output_plot_file, final_plot, device = "pdf") |
72 } else { | 71 } else { |
73 plot_log_both <- plot + scale_x_continuous(trans = 'log10') + scale_y_continuous(trans = 'log10') | 72 plot1_log <- plot1 + scale_x_continuous(trans = "log10") + scale_y_continuous(trans = "log10") |
74 plot1_log <- plot1 + scale_y_continuous(trans = 'log10') | 73 plot2_log <- plot2 + scale_y_continuous(trans = "log10") |
75 plot2_log <- plot2 + scale_y_continuous(trans = 'log10') | 74 plot3_log <- plot3 + scale_y_continuous(trans = "log10") |
76 plot3_log <- plot3 + scale_y_log10(labels=number) | 75 plot4_log <- plot4 + scale_y_log10(labels = number) |
77 final_plot_log <- ggarrange(plot1_log, plot2_log, plot_log_both, plot3_log, ncol=2, nrow=2) | 76 final_plot_log <- ggarrange(plot1_log, plot2_log, plot3_log, plot4_log, ncol = 2, nrow = 2) |
78 ggsave(opt$output_plot_file, final_plot_log, device="pdf") | 77 ggsave(opt$output_plot_file, final_plot_log, device = "pdf") |
79 } | 78 } |