Mercurial > repos > jay > feature_selector
view ml_tool/ml_tool.py @ 0:76a728a52df6 draft default tip
planemo upload for repository https://github.com/jaidevjoshi83/MicroBiomML commit 5ef78d4decc95ac107c468499328e7f086289ff9-dirty
| author | jay |
|---|---|
| date | Tue, 17 Feb 2026 10:52:45 +0000 |
| parents | |
| children |
line wrap: on
line source
from pycaret.classification import setup, create_model, tune_model, pull import subprocess import itertools import sys import argparse import pandas as pd import json import io def retrieve_results_from_hdc_folds(n_folds, text): split_text = text.splitlines() n_folds = n_folds df_list = [] for i in range(n_folds): for n, line in enumerate(split_text): if f"Fold {i}" in split_text[n]: df_list.append([float(split_text[n+2].split(":")[1]), 'NaN', float(split_text[n+5].split(":")[1]), float(split_text[n+4].split(":")[1]), float(split_text[n+3].split(":")[1]), "NaN", float(split_text[n+6].split(":")[1])]) df = pd.DataFrame(df_list, columns=["Accuracy", "AUC", "Recall", "Prec.", "F1", "Kappa", "MCC"]) mean_row = df.mean(numeric_only=True) std_row = df.std(numeric_only=True) mean_df = mean_row.to_frame().T mean_df['Fold'] = 'Mean' std_df = std_row.to_frame().T std_df['Fold'] = 'Std' df = df.reset_index().rename(columns={'index': 'Fold'}) df_with_stats = pd.concat([df, mean_df, std_df], ignore_index=True) return df_with_stats def convert_value(val): """Convert string to appropriate Python type.""" val = val.strip() if val.lower() == 'true': return True elif val.lower() == 'false': return False elif val.lower() == 'none': return None try: if '.' in val: return float(val) else: return int(val) except ValueError: return val def read_params(filename): print("Reading hyperparameters from:", filename) """Read hyperparameter values from file.""" params = {} with open(filename, 'r') as f: for line in f: parts = line.strip().split(',') key = parts[0].strip() values = [convert_value(val) for val in parts[1:]] params[key] = values return params def tune_hdc(tune_param, data, output_tabular=None, output_html=None): combinations = list(itertools.product( tune_param['dimensionality'], tune_param['levels'], tune_param['retrain'] )) full_score, f1_score = {}, {} for n, combination in enumerate(combinations): command = [ "chopin2.py", "--input", data, "--dimensionality", str(combination[0]), "--kfolds", "5", "--levels", str(combination[1]), "--retrain", str(combination[2]) ] result = subprocess.run(command, capture_output=True, text=True) if result.returncode == 0: text = result.stdout df_scores = retrieve_results_from_hdc_folds(5, text) # Store the results for the current combination full_score[n] = df_scores # Get the mean F1 score from the results mean_f1 = df_scores[df_scores['Fold'] == 'Mean']['F1'].iloc[0] f1_score[n] = mean_f1 print(f"Combination {n}: {combination} -> Mean F1: {mean_f1}") # The user might want to see the output for each run, # but saving all of them to the same file will overwrite. # Let's save only the best one at the end. else: print(f"Command failed for combination {combination}:", result.stderr) if not f1_score: print("No successful runs, cannot determine best parameters.") return None max_key = max(f1_score, key=lambda k: f1_score[k]) print(f"\nBest parameter combination key: {max_key} with F1 score: {f1_score[max_key]}") best_results = full_score[max_key] if output_tabular: best_results.to_csv(output_tabular, sep='\t', index=False) if output_html: best_results.to_html(output_html, index=False) return best_results def run_pycaret(algo=None, custom_para=None, tune_para=None, file_path=None, setup_param=None, target_label=None, metadata_file=None, output_tabular=None, output_html=None, dp_columns=None, param_txt=None): # print(target_label) df = pd.read_csv(file_path, sep='\t') df_metadata = pd.read_csv(metadata_file, sep='\t') dp_column_list = [df.columns.tolist()[int(i)-1] for i in dp_columns.split(',')] if dp_columns else [] if dp_column_list: df = df.drop(columns=dp_column_list) # Index column drop removed setup_dict = json.loads(setup_param) # Handle target_label (index or name) try: col_idx = int(target_label) - 1 setup_dict['target'] = df_metadata.columns.tolist()[col_idx] except ValueError: setup_dict['target'] = target_label combine_df = pd.concat([df, df_metadata[setup_dict['target']]], axis=1) combine_df.to_csv("./training_data_with_target_columns.tsv", sep='\t', index=False) # Check for empty or too small dataframe before setup if combine_df.empty or len(combine_df) < 2: print("Error: Not enough samples after filtering for PyCaret setup. Please check your input data and parameters.") sys.exit(1) if algo == 'hdc': file_path = "./training_data_with_target_columns.tsv" if custom_para and not tune_para: custom_params = json.loads(custom_para) command = ['chopin2.py', "--input", file_path, "--kfolds", "5"] for c, v in custom_params.items(): command.append("--" + c) command.append(str(v)) result = subprocess.run(command, capture_output=True, text=True) print("--- HDC (chopin2.py) STDOUT ---") print(result.stdout) print("--- HDC (chopin2.py) STDERR ---") print(result.stderr) print("--- End HDC Output ---") if result.returncode == 0: text = result.stdout df_scores = retrieve_results_from_hdc_folds(4, text) if output_tabular: df_scores.to_csv(output_tabular, sep='\t', index=False) if output_html: df_scores.to_html(output_html, index=False) else: print("Command failed:", result.stderr) elif tune_para: params = read_params(param_txt) result = tune_hdc(params, file_path, output_tabular=output_tabular, output_html=output_html) print("Best Tune Result:\n", result) else: command = ["chopin2.py", "--input", file_path, "--levels", "100", "--kfolds", "5"] result = subprocess.run(command, capture_output=True, text=True) if result.returncode == 0: text = result.stdout df_scores =retrieve_results_from_hdc_folds(5, text) if output_tabular: df_scores.to_csv(output_tabular, sep='\t', index=False) if output_html: df_scores.to_html(output_html, index=False) else: print("Command failed:", result.stderr) else: clf = setup(data=combine_df, **setup_dict) if custom_para: custom_params = json.loads(custom_para) model = create_model(algo, **custom_params) df_result = pull() res = df_result.T['Mean'] print(res) with open('logs.log', 'a') as f: f.write(str(res) + '\n') # Add three-letter classifier suffix (algorithm + 'C') to columns except 'Fold' algo_abbr = (str(algo).upper()[:2] + 'C') if algo else "ALC" df_result.columns = [col if col == 'Fold' else f"{col}_{algo_abbr}" for col in df_result.columns] if output_tabular: df_result.to_csv(output_tabular, sep='\t') if output_html: df_result.to_html(output_html) elif tune_para: params = read_params(param_txt) # Generate all combinations of hyperparameters keys, values = zip(*params.items()) combinations = [dict(zip(keys, v)) for v in itertools.product(*values)] results = [] f1_scores = [] for idx, comb in enumerate(combinations): print(f"Tuning combination {idx+1}/{len(combinations)}: {comb}") try: model = create_model(algo) tuned_model = tune_model(model, custom_grid={k: [v] for k, v in comb.items()}) df_result = pull() res = df_result.T['Mean'] print(f"Result for combination {comb}:\n{res}") with open('logs.log', 'a') as f: f.write(f"Combination {comb}: {str(res)}\n") # Add three-letter classifier suffix (algorithm + 'C') to columns except 'Fold' algo_abbr = (str(algo).upper()[:2] + 'C') if algo else "ALC" df_result.columns = [col if col == 'Fold' else f"{col}_{algo_abbr}" for col in df_result.columns] results.append(df_result) # Try to get F1 score for ranking try: f1 = res['F1'] except Exception: f1 = None f1_scores.append(f1) except ValueError as e: print(f"Skipping invalid combination {comb}: {e}") with open('logs.log', 'a') as f: f.write(f"Skipping invalid combination {comb}: {e}\n") results.append(pd.DataFrame()) # Add empty dataframe to keep indices aligned f1_scores.append(None) # Select best result by F1 score (if available) if not any(f1 is not None for f1 in f1_scores): print("No successful tuning runs. Cannot determine best parameters.") # Exit or handle as appropriate if output_tabular: pd.DataFrame().to_csv(output_tabular, sep='\t') if output_html: pd.DataFrame().to_html(output_html) return best_idx = max((i for i, f1 in enumerate(f1_scores) if f1 is not None), key=lambda i: f1_scores[i]) best_result = results[best_idx] best_comb = combinations[best_idx] best_f1 = f1_scores[best_idx] print(f"\nBest parameter combination: {best_comb} with F1 score: {best_f1}") with open('logs.log', 'a') as f: f.write(f"Best combination: {best_comb} F1: {best_f1}\n") if output_tabular: best_result.to_csv(output_tabular, sep='\t') if output_html: best_result.to_html(output_html) else: model = create_model(algo) df_result = pull() res = df_result.T['Mean'] with open('logs.log', 'a') as f: f.write(str(res) + '\n') # Add three-letter classifier suffix (algorithm + 'C') to columns except 'Fold' algo_abbr = (str(algo).upper()[:2] + 'C') if algo else "ALC" df_result.columns = [col if col == 'Fold' else f"{col}_{algo_abbr}" for col in df_result.columns] if output_tabular: df_result.to_csv(output_tabular, sep='\t') if output_html: df_result.to_html(output_html) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Run PyCaret ML setup.') parser.add_argument('--algo', type=str, required=False, help='Algorithm to run') parser.add_argument('--data_file', type=str, required=True, help='Path to data file') parser.add_argument('--metadata_file', type=str, required=True, help='Path to metadata file') parser.add_argument('--custom_para', required=False, default=None, help='Custom hyperparameters (JSON string)') parser.add_argument('--tune_para', required=False, default=None, help='Flag for tuning hyperparameters') parser.add_argument('--setup', required=True, type=str, help='Setup parameters as JSON string') parser.add_argument('--target_label', required=False, type=str, help='Name of the target label Column') parser.add_argument('--output_tabular', required=False, type=str, help='Path to output tabular file') parser.add_argument('--output_html', required=False, type=str, help='Path to output HTML file') parser.add_argument('--dp_columns', required=False, type=str, help='Columns to drop from training data') parser.add_argument('--param_file', type=str, required=False, help='Path to parameter file') args = parser.parse_args() run_pycaret( algo=args.algo, file_path=args.data_file, custom_para=args.custom_para, tune_para=args.tune_para, setup_param=args.setup, target_label=args.target_label, metadata_file=args.metadata_file, output_tabular=args.output_tabular, output_html=args.output_html, dp_columns=args.dp_columns, param_txt=args.param_file )
