Mercurial > repos > jay > gaiac_precision
view gaiac_regression_plot/gaiac_regression_plot.py @ 3:1f9e67edde6a draft default tip
planemo upload for repository https://github.com/jaidevjoshi83/gaiac commit e9587f93346c7b55e1be00bad5844bf2db3ed03d-dirty
author | jay |
---|---|
date | Thu, 10 Jul 2025 19:42:02 +0000 |
parents | 287d6cc86582 |
children |
line wrap: on
line source
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns #%matplotlib inline from scipy import stats from sklearn import linear_model import statsmodels.formula.api as smf import statsmodels.api as sm import argparse def regression (infile,clm_list_y, clm_list_x, outfile, plottitle,fig_height, fig_aspect, clm_lab_y, clm_lab_x): df=pd.read_csv(infile, sep="\t") cl = df.columns.tolist() clms_x = cl[int(clm_list_x)-1] clms_y = cl[int(clm_list_y)-1] #results = smf.ols('clms_y~clms_x', data=df).fit() regr = linear_model.LinearRegression() X = df[clms_x].values.reshape(-1,1) y = df[clms_y].values.reshape(-1,1) regr.fit(X, y) slope, intercept, r_value, p_value, std_err = stats.mstats.linregress(df[clms_x],df[clms_y]) a='{0:0.2f}'.format(intercept) b='{0:0.2f}'.format(slope) c='{0:0.2f}'.format(r_value) g = sns.lmplot(x=clms_x,y=clms_y, data=df, fit_reg=True,height= int(fig_height),aspect= float(fig_aspect),ci=None, scatter_kws={"s": int(fig_height)*8}) g.set(xlabel=clm_lab_x, ylabel=clm_lab_y) props = dict(boxstyle='round', alpha=0.25,color=sns.color_palette()[0]) #textstr = '$y=1.42 + 1.27x$' textstr='y= {} + {}x , r={}'.format(a,b,c) g.ax.text(0.4, 1, textstr,transform=g.ax.transAxes, fontsize=int(fig_height)*2, bbox=props) plt.savefig(outfile,dpi=300,bbox_inches="tight") if __name__=="__main__": parser = argparse.ArgumentParser() parser.add_argument("-I", "--infile", required=True, default=None, help="Input data frame as a tab-separated (.tsv) file.") parser.add_argument("-Cy", "--column_list_y", required=False, default=False, help="Comma-separated list of column names to plot on the Y-axis.") parser.add_argument("-Cx", "--column_list_x", required=False, default=False, help="Comma-separated list of column names to plot on the X-axis.") parser.add_argument("-O", "--output", required=False, default='Out.png', help="Output file name for the saved figure (default: 'Out.png').") parser.add_argument("-T", "--title", required=False, default='Time Series plot', help="Title of the figure (default: 'Time Series plot').") parser.add_argument("-H", "--height", required=False, default='14', help="Figure height in inches (default: 14).") parser.add_argument("-A", "--aspect", required=False, default='12', help="Aspect ratio or figure width in inches (default: 12).") parser.add_argument("-Y", "--ylab", required=False, default='Y label', help="Label for the Y-axis (default: 'Y label').") parser.add_argument("-X", "--xlab", required=False, default='X label(time)', help="Label for the X-axis (default: 'X label(time)').") args = parser.parse_args() regression(args.infile, args.column_list_y, args.column_list_x, args.output, args.title, args.height, args.aspect, args.ylab, args.xlab)