comparison gaiac_data_averaging/gaiac_dataaveraging.py @ 0:0a8233db930e draft

planemo upload for repository https://github.com/jaidevjoshi83/gaiac.git commit c29a769ed165f313a6410925be24f776652a9663-dirty
author jay
date Thu, 15 May 2025 14:46:28 +0000
parents
children
comparison
equal deleted inserted replaced
-1:000000000000 0:0a8233db930e
1 import pandas as pd
2 import argparse
3
4 #This tool would average your time series data based on the time intervals based on the time and date column
5 #python avg_timeseries.py -I data.tsv -C 1 -T 5 -O averaged_output.tsv
6
7
8 def main():
9 parser = argparse.ArgumentParser(description="Average time series data over specified intervals.")
10 parser.add_argument("-I", "--infile", required=True, help="Input data file (TSV format)")
11 parser.add_argument("-C", "--dt_column", required=True, help="Column number (1-based) for the DateTime column")
12 parser.add_argument("-T", "--time_interval", required=True, help="Time interval in minutes, e.g., '5' or '30'")
13 parser.add_argument("-O", "--out_file", default='OutFile.tsv', help="Output file name (TSV format)")
14 parser.add_argument("-S", "--sep", default='\t', help="deliminator")
15
16 args = parser.parse_args()
17
18 # Load data
19 data = pd.read_csv(args.infile, sep=args.sep)
20
21 # Extract the correct datetime column name
22 col_index = int(args.dt_column) - 1 # Convert 1-based index to 0-based
23 datetime_col = data.columns[col_index]
24
25 # Set datetime index
26 data[datetime_col] = pd.to_datetime(data[datetime_col], errors='coerce')
27 data.set_index(datetime_col, inplace=True)
28
29 # Group by time intervals and compute mean for numeric columns
30 df_avg = data.resample(f'{args.time_interval}Min').mean(numeric_only=True)
31
32 # Round to 3 decimals and save to output file
33 df_avg.round(3).to_csv(args.out_file, sep='\t')
34
35 print(f"Averaged data saved to {args.out_file}")
36
37 if __name__ == "__main__":
38 main()