Mercurial > repos > jay > gaiac_regression_plot
view gaiac_data_averaging/gaiac_dataaveraging.py @ 0:0a8233db930e draft
planemo upload for repository https://github.com/jaidevjoshi83/gaiac.git commit c29a769ed165f313a6410925be24f776652a9663-dirty
author | jay |
---|---|
date | Thu, 15 May 2025 14:46:28 +0000 |
parents | |
children |
line wrap: on
line source
import pandas as pd import argparse #This tool would average your time series data based on the time intervals based on the time and date column #python avg_timeseries.py -I data.tsv -C 1 -T 5 -O averaged_output.tsv def main(): parser = argparse.ArgumentParser(description="Average time series data over specified intervals.") parser.add_argument("-I", "--infile", required=True, help="Input data file (TSV format)") parser.add_argument("-C", "--dt_column", required=True, help="Column number (1-based) for the DateTime column") parser.add_argument("-T", "--time_interval", required=True, help="Time interval in minutes, e.g., '5' or '30'") parser.add_argument("-O", "--out_file", default='OutFile.tsv', help="Output file name (TSV format)") parser.add_argument("-S", "--sep", default='\t', help="deliminator") args = parser.parse_args() # Load data data = pd.read_csv(args.infile, sep=args.sep) # Extract the correct datetime column name col_index = int(args.dt_column) - 1 # Convert 1-based index to 0-based datetime_col = data.columns[col_index] # Set datetime index data[datetime_col] = pd.to_datetime(data[datetime_col], errors='coerce') data.set_index(datetime_col, inplace=True) # Group by time intervals and compute mean for numeric columns df_avg = data.resample(f'{args.time_interval}Min').mean(numeric_only=True) # Round to 3 decimals and save to output file df_avg.round(3).to_csv(args.out_file, sep='\t') print(f"Averaged data saved to {args.out_file}") if __name__ == "__main__": main()