Mercurial > repos > lsong10 > psiclass
view PsiCLASS-1.0.2/SubexonGraph.cpp @ 0:903fc43d6227 draft default tip
Uploaded
author | lsong10 |
---|---|
date | Fri, 26 Mar 2021 16:52:45 +0000 |
parents | |
children |
line wrap: on
line source
#include "SubexonGraph.hpp" void SubexonGraph::GetGeneBoundary( int tag, int &boundary, int timeStamp ) { if ( visit[tag] == timeStamp ) return ; //printf( "%d %d\n", tag, timeStamp ) ; visit[tag] = timeStamp ; if ( subexons[tag].end > boundary ) boundary = subexons[tag].end ; //if ( subexons[tag].start == 2858011 ) // printf( "%d: %d %d\n", tag, subexons[tag].nextCnt, subexons[tag].prevCnt) ; int i ; int cnt = subexons[tag].nextCnt ; for ( i = 0 ; i < cnt ; ++i ) { //printf( "next of %d: %d %d\n", tag, i, subexons[tag].next[i] ) ; GetGeneBoundary( subexons[tag].next[i], boundary, timeStamp ) ; } } int SubexonGraph::GetGeneIntervalIdx( int startIdx, int &endIdx, int timeStamp ) { int i ; int seCnt = subexons.size() ; if ( startIdx >= seCnt ) return -1 ; int farthest = -1 ; GetGeneBoundary( startIdx, farthest, timeStamp ) ; for ( i = startIdx + 1 ; i < seCnt ; ++i ) { if ( subexons[i].start > farthest || subexons[i].chrId != subexons[ startIdx ].chrId ) break ; GetGeneBoundary( i, farthest, timeStamp ) ; } endIdx = i - 1 ; return endIdx ; } int SubexonGraph::ComputeGeneIntervals() { int i, cnt ; int seCnt = subexons.size() ; visit = new int[seCnt] ; memset( visit, -1, sizeof( int ) * seCnt ) ; int tag = 0 ; cnt = 0 ; while ( 1 ) { struct _geneInterval ngi ; //printf( "%d %d %d\n", tag, subexons[tag].start + 1, subexons[tag].end + 1 ) ; if ( GetGeneIntervalIdx( tag, ngi.endIdx, cnt ) == -1 ) break ; ++cnt ; ngi.startIdx = tag ; ngi.start = subexons[ ngi.startIdx ].start ; ngi.end = subexons[ ngi.endIdx ].end ; tag = ngi.endIdx + 1 ; // Adjust the extent // Adjust the start if ( subexons[ ngi.startIdx ].leftStrand != 0 && subexons[ngi.startIdx].leftStrand != subexons[ngi.startIdx ].rightStrand ) // We should make sure that rightstrand is non-zero whenever left-strand is non-zero for the startIdx. { for ( i = ngi.startIdx ; i >= 0 ; --i ) { if ( ( subexons[i].leftType == 1 && subexons[i].leftClassifier < classifierThreshold ) // an end within the subexon || ( subexons[i].leftType == 0 ) // probably a overhang subexon. It should be a subset of the criterion following. || ( i > 0 && subexons[i - 1].end + 1 < subexons[i].start ) ) // a gap. break ; } ngi.start = subexons[i].start ; } // Adjust the end. // And here, we also need to decide wether we need to adjust "tag" or not, // because the next interval might be overlap with current interval by the last subexon. // We solve the overlap genes now, so we DON'T need to adjust tag. if ( subexons[ ngi.endIdx ].rightStrand != 0 && subexons[ngi.endIdx].leftStrand != subexons[ngi.endIdx ].rightStrand ) { for ( i = ngi.endIdx ; i < seCnt ; ++i ) { if ( ( subexons[i].rightType == 2 && subexons[i].rightClassifier < classifierThreshold ) // an end within the subexon || ( subexons[i].rightType == 0 ) // probably a overhang subexon. || ( i < seCnt - 1 && subexons[i].end + 1 < subexons[i + 1].start ) ) // a gap break ; } ngi.end = subexons[i].end ; /*if ( subexons[ ngi.endIdx ].rightType == 2 ) { for ( i = ngi.endIdx ; i >= ngi.startIdx ; --i ) { if ( subexons[i].leftType == 1 ) break ; } // The last region overlapps. if ( i >= ngi.startIdx && subexons[i].leftStrand != subexons[ ngi.endIdx ].rightStrand ) --tag ; }*/ } geneIntervals.push_back( ngi ) ; } delete[] visit ; return cnt ; } int SubexonGraph::ExtractSubexons( int startIdx, int endIdx, struct _subexon *retList ) { int i, j, k ; int cnt = endIdx - startIdx + 1 ; //printf( "%s: %d %d %d\n", __func__, startIdx, endIdx, cnt ) ; for ( i = 0 ; i < cnt ; ++i ) { retList[i] = subexons[i + startIdx] ; retList[i].geneId = -1 ; retList[i].prev = new int[ retList[i].prevCnt ] ; retList[i].next = new int[ retList[i].nextCnt ] ; for ( j = 0 ; j < retList[i].prevCnt ; ++j ) retList[i].prev[j] = subexons[i + startIdx].prev[j] - startIdx ; for ( j = 0 ; j < retList[i].nextCnt ; ++j ) retList[i].next[j] = subexons[i + startIdx].next[j] - startIdx ; for ( j = 0, k = 0 ; j < retList[i].prevCnt ; ++j ) if ( retList[i].prev[j] >= 0 && retList[i].prev[j] < cnt ) { retList[i].prev[k] = retList[i].prev[j] ; ++k ; } retList[i].prevCnt = k ; for ( j = 0, k = 0 ; j < retList[i].nextCnt ; ++j ) if ( retList[i].next[j] >= 0 && retList[i].next[j] < cnt ) { retList[i].next[k] = retList[i].next[j] ; ++k ; } retList[i].nextCnt = k ; } UpdateGeneId( retList, cnt ) ; return cnt ; } void SubexonGraph::SetGeneId( int tag, int strand, struct _subexon *subexons, int seCnt, int id ) { if ( subexons[tag].geneId != -1 && subexons[tag].geneId != -2 ) { if ( subexons[tag].geneId != id ) // a subexon may belong to more than one gene. { //printf( "Set -2, %d: %d %d %d %d\n", id, tag, subexons[tag].geneId, subexons[tag].start + 1, strand ) ; subexons[tag].geneId = -2 ; } else return ; // There is no need to terminate at the ambiguous exon, the strand will prevent // us from overwriting previous gene ids. //return ; } else if ( subexons[tag].geneId == -2 ) return ; //printf( "%d: %d %d %d %d\n", id, tag, subexons[tag].geneId, subexons[tag].start + 1, strand ) ; int i ; if ( subexons[tag].geneId != -2 ) subexons[ tag ].geneId = id ; int cnt = subexons[tag].nextCnt ; // Set through the introns. if ( IsSameStrand( strand, subexons[tag].rightStrand ) ) { for ( i = 0 ; i < cnt ; ++i ) if ( subexons[ subexons[tag].next[i] ].start > subexons[tag].end + 1 ) SetGeneId( subexons[tag].next[i], strand, subexons, seCnt, id ) ; } cnt = subexons[tag].prevCnt ; if ( IsSameStrand( strand, subexons[tag].leftStrand ) ) { for ( i = 0 ; i < cnt ; ++i ) if ( subexons[ subexons[tag].prev[i] ].end < subexons[tag].start - 1 ) SetGeneId( subexons[tag].prev[i], strand, subexons, seCnt, id ) ; } // Set through the adjacent subexons. if ( tag < seCnt - 1 && subexons[tag + 1].start == subexons[tag].end + 1 ) { SetGeneId( tag + 1, strand, subexons, seCnt, id ) ; } if ( tag > 0 && subexons[tag].start - 1 == subexons[tag - 1].end ) { SetGeneId( tag - 1, strand, subexons, seCnt, id ) ; } } void SubexonGraph::UpdateGeneId( struct _subexon *subexons, int seCnt ) { int i ; baseGeneId = usedGeneId ; int lastMinusStrandGeneId = -1 ; for ( int strand = -1 ; strand <= 1 ; strand +=2 ) { for ( i = 0 ; i < seCnt ; ++i ) { //printf( "%d (%d %d) %d.\n", i, subexons[i].start + 1, subexons[i].end + 1, subexons[i].geneId ) ; if ( ( subexons[i].geneId == -1 && ( ( strand == 1 && subexons[i].rightStrand == 0 ) || subexons[i].rightStrand == strand ) ) || ( strand == 1 && baseGeneId <= subexons[i].geneId && subexons[i].geneId <= lastMinusStrandGeneId && subexons[i].rightStrand == strand ) ) { SetGeneId( i, strand, subexons, seCnt, usedGeneId ) ; if ( strand == -1 ) lastMinusStrandGeneId = usedGeneId ; ++usedGeneId ; } } } for ( i = 0 ; i < seCnt ; ++i ) if ( subexons[i].leftType == 0 && subexons[i].rightType == 0 ) { subexons[i].geneId = usedGeneId ; ++usedGeneId ; } // Put base and usedGeneId in lcCnt, rcCnt field. for ( i = 0 ; i < seCnt ; ++i ) { subexons[i].lcCnt = baseGeneId ; subexons[i].rcCnt = usedGeneId ; } /*for ( i = 0 ; i < seCnt ; ++i ) { printf( "geneId %d: %d-%d %d\n", i, subexons[i].start + 1, subexons[i].end + 1, subexons[i].geneId ) ; } printf("%d %d\n", baseGeneId, usedGeneId ) ;*/ }