Mercurial > repos > marie-tremblay-metatoul > nmr_preprocessing
comparison NmrPreprocessing_script.R @ 7:122df1bf0a8c draft default tip
planemo upload for repository https://github.com/workflow4metabolomics/nmr_preprocessing commit 3d328007dd7716848ec2eeb6c2a472f27eeb2995
| author | workflow4metabolomics |
|---|---|
| date | Fri, 11 Jul 2025 08:33:38 +0000 |
| parents | 5b06800f3449 |
| children |
comparison
equal
deleted
inserted
replaced
| 6:6e837e9352a2 | 7:122df1bf0a8c |
|---|---|
| 1 ## ========================== | 1 ## ========================== |
| 2 # Internal functions | 2 # Internal functions |
| 3 ## ========================== | 3 ## ========================== |
| 4 | 4 |
| 5 # beginTreatment | 5 # beginTreatment |
| 6 beginTreatment <- function(name, Signal_data = NULL, Signal_info = NULL, | 6 beginTreatment <- function(name, Signal_data = NULL, Signal_info = NULL, |
| 7 force.real = FALSE) { | 7 force.real = FALSE) { |
| 8 | 8 cat("Begin", name, "\n") |
| 9 cat("Begin", name, "\n") | 9 |
| 10 | 10 |
| 11 | 11 # Formatting the Signal_data and Signal_info ----------------------- |
| 12 # Formatting the Signal_data and Signal_info ----------------------- | 12 |
| 13 | 13 vec <- is.vector(Signal_data) |
| 14 vec <- is.vector(Signal_data) | 14 if (vec) { |
| 15 if (vec) { | 15 Signal_data <- vec2mat(Signal_data) |
| 16 Signal_data <- vec2mat(Signal_data) | 16 } |
| 17 } | 17 if (is.vector(Signal_info)) { |
| 18 if (is.vector(Signal_info)) { | 18 Signal_info <- vec2mat(Signal_info) |
| 19 Signal_info <- vec2mat(Signal_info) | 19 } |
| 20 } | 20 if (!is.null(Signal_data)) { |
| 21 if (!is.null(Signal_data)) { | 21 if (!is.matrix(Signal_data)) { |
| 22 if (!is.matrix(Signal_data)) { | 22 stop("Signal_data is not a matrix.") |
| 23 stop("Signal_data is not a matrix.") | 23 } |
| 24 } | 24 if (!is.complex(Signal_data) && !is.numeric(Signal_data)) { |
| 25 if (!is.complex(Signal_data) && !is.numeric(Signal_data)) { | 25 stop("Signal_data contains non-numerical values.") |
| 26 stop("Signal_data contains non-numerical values.") | 26 } |
| 27 } | 27 } |
| 28 } | 28 if (!is.null(Signal_info) && !is.matrix(Signal_info)) { |
| 29 if (!is.null(Signal_info) && !is.matrix(Signal_info)) { | 29 stop("Signal_info is not a matrix.") |
| 30 stop("Signal_info is not a matrix.") | 30 } |
| 31 } | 31 |
| 32 | 32 |
| 33 | 33 Original_data <- Signal_data |
| 34 Original_data <- Signal_data | 34 |
| 35 | 35 # Extract the real part of the spectrum --------------------------- |
| 36 # Extract the real part of the spectrum --------------------------- | 36 |
| 37 | 37 if (force.real) { |
| 38 if (force.real) { | 38 if (is.complex(Signal_data)) { |
| 39 if (is.complex(Signal_data)) { | 39 Signal_data <- Re(Signal_data) |
| 40 Signal_data <- Re(Signal_data) | 40 } else { |
| 41 } else { | 41 # The signal is numeric Im(Signal_data) is zero anyway so let's avoid |
| 42 # The signal is numeric Im(Signal_data) is zero anyway so let's avoid | 42 # using complex(real=...,imaginary=0) which would give a complex signal |
| 43 # using complex(real=...,imaginary=0) which would give a complex signal | 43 # in endTreatment() |
| 44 # in endTreatment() | 44 force.real <- FALSE |
| 45 force.real <- FALSE | 45 } |
| 46 } | 46 } |
| 47 } | 47 |
| 48 | 48 |
| 49 | 49 # Return the formatted data and metadata entries -------------------- |
| 50 # Return the formatted data and metadata entries -------------------- | 50 |
| 51 | 51 return(list( |
| 52 return(list(start = proc.time(), vec = vec, force.real = force.real, | 52 start = proc.time(), vec = vec, force.real = force.real, |
| 53 Original_data = Original_data, Signal_data = Signal_data, Signal_info = Signal_info)) | 53 Original_data = Original_data, Signal_data = Signal_data, Signal_info = Signal_info |
| 54 } | 54 )) |
| 55 | 55 } |
| 56 # endTreatment | 56 |
| 57 # endTreatment | |
| 57 endTreatment <- function(name, begin_info, Signal_data) { | 58 endTreatment <- function(name, begin_info, Signal_data) { |
| 58 | 59 # begin_info: object outputted from beginTreatment |
| 59 # begin_info: object outputted from beginTreatment | 60 |
| 60 | 61 |
| 61 | 62 # Formatting the entries and printing process time ----------------------- |
| 62 # Formatting the entries and printing process time ----------------------- | 63 end_time <- proc.time() # record it as soon as possible |
| 63 end_time <- proc.time() # record it as soon as possible | 64 start_time <- begin_info[["start"]] |
| 64 start_time <- begin_info[["start"]] | 65 delta_time <- end_time - start_time |
| 65 delta_time <- end_time - start_time | 66 delta <- delta_time[] |
| 66 delta <- delta_time[] | 67 cat("End", name, "\n") |
| 67 cat("End", name, "\n") | 68 cat( |
| 68 cat("It lasted", round(delta["user.self"], 3), "s user time,", round(delta["sys.self"],3), | 69 "It lasted", round(delta["user.self"], 3), "s user time,", round(delta["sys.self"], 3), |
| 69 "s system time and", round(delta["elapsed"], 3), "s elapsed time.\n") | 70 "s system time and", round(delta["elapsed"], 3), "s elapsed time.\n" |
| 70 | 71 ) |
| 71 | 72 |
| 72 if (begin_info[["force.real"]]) { | 73 |
| 73 # The imaginary part is left untouched | 74 if (begin_info[["force.real"]]) { |
| 74 i <- complex(real = 0, imaginary = 1) | 75 # The imaginary part is left untouched |
| 75 Signal_data <- Signal_data + i * Im(begin_info[["Original_data"]]) | 76 i <- complex(real = 0, imaginary = 1) |
| 76 } | 77 Signal_data <- Signal_data + i * Im(begin_info[["Original_data"]]) |
| 77 | 78 } |
| 78 if (begin_info[["vec"]]) { | 79 |
| 79 Signal_data <- Signal_data[1, ] | 80 if (begin_info[["vec"]]) { |
| 80 } | 81 Signal_data <- Signal_data[1, ] |
| 81 | 82 } |
| 82 # Return the formatted data and metadata entries -------------------- | 83 |
| 83 return(Signal_data) | 84 # Return the formatted data and metadata entries -------------------- |
| 84 } | 85 return(Signal_data) |
| 85 | 86 } |
| 86 # checkArg | 87 |
| 87 checkArg <- function(arg, checks, can.be.null=FALSE) { | 88 # checkArg |
| 88 check.list <- list(bool=c(is.logical, "a boolean"), | 89 checkArg <- function(arg, checks, can.be.null = FALSE) { |
| 89 int =c(function(x){x%%1==0}, "an integer"), | 90 check.list <- list( |
| 90 num =c(is.numeric, "a numeric"), | 91 bool = c(is.logical, "a boolean"), |
| 91 str =c(is.character, "a string"), | 92 int = c(function(x) { |
| 92 pos =c(function(x){x>0}, "positive"), | 93 x %% 1 == 0 |
| 93 pos0=c(function(x){x>=0}, "positive or zero"), | 94 }, "an integer"), |
| 94 l1 =c(function(x){length(x)==1}, "of length 1") | 95 num = c(is.numeric, "a numeric"), |
| 95 ) | 96 str = c(is.character, "a string"), |
| 96 if (is.null(arg)) { | 97 pos = c(function(x) { |
| 97 if (!can.be.null) { | 98 x > 0 |
| 98 stop(deparse(substitute(arg)), " is null.") | 99 }, "positive"), |
| 99 } | 100 pos0 = c(function(x) { |
| 100 } else { | 101 x >= 0 |
| 101 if (is.matrix(arg)) { | 102 }, "positive or zero"), |
| 102 stop(deparse(substitute(arg)), " is not scalar.") | 103 l1 = c(function(x) { |
| 103 } | 104 length(x) == 1 |
| 104 for (c in checks) { | 105 }, "of length 1") |
| 105 if (!check.list[[c]][[1]](arg)) { | 106 ) |
| 106 stop(deparse(substitute(arg)), " is not ", check.list[[c]][[2]], ".") | 107 if (is.null(arg)) { |
| 107 } | 108 if (!can.be.null) { |
| 108 } | 109 stop(deparse(substitute(arg)), " is null.") |
| 109 } | 110 } |
| 110 } | 111 } else { |
| 111 | 112 if (is.matrix(arg)) { |
| 112 # getArg | 113 stop(deparse(substitute(arg)), " is not scalar.") |
| 113 getArg <- function(arg, info, argname, can.be.absent=FALSE) { | 114 } |
| 114 if (is.null(arg)) { | 115 for (c in checks) { |
| 115 start <- paste("impossible to get argument", argname, "it was not given directly and"); | 116 if (!check.list[[c]][[1]](arg)) { |
| 116 if (!is.matrix(info)) { | 117 stop(deparse(substitute(arg)), " is not ", check.list[[c]][[2]], ".") |
| 117 stop(paste(start, "the info matrix was not given")) | 118 } |
| 118 } | 119 } |
| 119 if (!(argname %in% colnames(info))) { | 120 } |
| 120 if (can.be.absent) { | 121 } |
| 121 return(NULL) | 122 |
| 122 } else { | 123 # getArg |
| 123 stop(paste(start, "is not in the info matrix")) | 124 getArg <- function(arg, info, argname, can.be.absent = FALSE) { |
| 124 } | 125 if (is.null(arg)) { |
| 125 } | 126 start <- paste("impossible to get argument", argname, "it was not given directly and") |
| 126 if (nrow(info) < 1) { | 127 if (!is.matrix(info)) { |
| 127 stop(paste(start, "the info matrix has no row")) | 128 stop(paste(start, "the info matrix was not given")) |
| 128 } | 129 } |
| 129 arg <- info[1,argname] | 130 if (!(argname %in% colnames(info))) { |
| 130 if (is.na(arg)) { | 131 if (can.be.absent) { |
| 131 stop(paste(start, "it is NA in the info matrix")) | 132 return(NULL) |
| 132 } | 133 } else { |
| 133 } | 134 stop(paste(start, "is not in the info matrix")) |
| 134 return(arg) | 135 } |
| 136 } | |
| 137 if (nrow(info) < 1) { | |
| 138 stop(paste(start, "the info matrix has no row")) | |
| 139 } | |
| 140 arg <- info[1, argname] | |
| 141 if (is.na(arg)) { | |
| 142 stop(paste(start, "it is NA in the info matrix")) | |
| 143 } | |
| 144 } | |
| 145 return(arg) | |
| 135 } | 146 } |
| 136 | 147 |
| 137 # binarySearch | 148 # binarySearch |
| 138 binarySearch <- function(a, target, lower = TRUE) { | 149 binarySearch <- function(a, target, lower = TRUE) { |
| 139 # search the index i in a such that a[i] == target | 150 # search the index i in a such that a[i] == target |
| 140 # if it doesn't exists and lower, it searches the closer a[i] such that a[i] < target | 151 # if it doesn't exists and lower, it searches the closer a[i] such that a[i] < target |
| 141 # if !lower, it seraches the closer a[i] such that a[i] > target | 152 # if !lower, it seraches the closer a[i] such that a[i] > target |
| 142 # a should be monotone but can be increasing or decreasing | 153 # a should be monotone but can be increasing or decreasing |
| 143 | 154 |
| 144 # if a is increasing INVARIANT: a[amin] < target < a[amax] | 155 # if a is increasing INVARIANT: a[amin] < target < a[amax] |
| 145 N <- length(a) | 156 N <- length(a) |
| 146 if ((a[N] - target) * (a[N] - a[1]) <= 0) { | 157 if ((a[N] - target) * (a[N] - a[1]) <= 0) { |
| 147 return(N) | 158 return(N) |
| 148 } | 159 } |
| 149 if ((a[1] - target) * (a[N] - a[1]) >= 0) { | 160 if ((a[1] - target) * (a[N] - a[1]) >= 0) { |
| 150 return(1) | 161 return(1) |
| 151 } | 162 } |
| 152 amin <- 1 | 163 amin <- 1 |
| 153 amax <- N | 164 amax <- N |
| 154 while (amin + 1 < amax) { | 165 while (amin + 1 < amax) { |
| 155 amid <- floor((amin + amax)/2) | 166 amid <- floor((amin + amax) / 2) |
| 156 if ((a[amid] - target) * (a[amax] - a[amid]) < 0) { | 167 if ((a[amid] - target) * (a[amax] - a[amid]) < 0) { |
| 157 amin <- amid | 168 amin <- amid |
| 158 } else if ((a[amid] - target) * (a[amax] - a[amid]) > 0) { | 169 } else if ((a[amid] - target) * (a[amax] - a[amid]) > 0) { |
| 159 amax <- amid | 170 amax <- amid |
| 160 } else { | 171 } else { |
| 161 # a[amid] == a[amax] or a[amid] == target In both cases, a[amid] == | 172 # a[amid] == a[amax] or a[amid] == target In both cases, a[amid] == |
| 162 # target | 173 # target |
| 163 return(amid) | 174 return(amid) |
| 164 } | 175 } |
| 165 } | 176 } |
| 166 if (xor(lower, a[amin] > a[amax])) { | 177 if (xor(lower, a[amin] > a[amax])) { |
| 167 # (lower && a[amin] < a[amax]) || (!lower && a[min] > a[max]) | 178 # (lower && a[amin] < a[amax]) || (!lower && a[min] > a[max]) |
| 168 # If increasing and we want the lower, we take amin | 179 # If increasing and we want the lower, we take amin |
| 169 # If decreasing and we want the bigger, we take amin too | 180 # If decreasing and we want the bigger, we take amin too |
| 170 return(amin) | 181 return(amin) |
| 171 } else { | 182 } else { |
| 172 return(amax) | 183 return(amax) |
| 173 } | 184 } |
| 174 } | 185 } |
| 175 | 186 |
| 176 # Interpol | 187 # Interpol |
| 177 Interpol <- function(t, y) { | 188 Interpol <- function(t, y) { |
| 178 # y: sample | 189 # y: sample |
| 179 # t : warping function | 190 # t : warping function |
| 180 | 191 |
| 181 m <- length(y) | 192 m <- length(y) |
| 182 # t <= m-1 | 193 # t <= m-1 |
| 183 # because if t > m-1, y[ti+1] will be NA when we compute g | 194 # because if t > m-1, y[ti+1] will be NA when we compute g |
| 184 valid <- 1 <= t & t <= m-1 # FIXME it was '<' in Bubble v2 | 195 valid <- 1 <= t & t <= m - 1 # FIXME it was '<' in Bubble v2 |
| 185 s <- (1:m)[valid] | 196 s <- (1:m)[valid] |
| 186 ti <- floor(t[s]) | 197 ti <- floor(t[s]) |
| 187 tr <- t[s] - ti | 198 tr <- t[s] - ti |
| 188 g <- y[ti + 1] - y[ti] | 199 g <- y[ti + 1] - y[ti] |
| 189 f <- y[ti] + tr * g | 200 f <- y[ti] + tr * g |
| 190 list(f=f, s=s, g=g) | 201 list(f = f, s = s, g = g) |
| 191 } | 202 } |
| 192 | 203 |
| 193 # vec2mat | 204 # vec2mat |
| 194 vec2mat <- function(vec) { | 205 vec2mat <- function(vec) { |
| 195 return(matrix(vec, nrow = 1, dimnames = list(c(1), names(vec)))) | 206 return(matrix(vec, nrow = 1, dimnames = list(c(1), names(vec)))) |
| 196 | |
| 197 } | 207 } |
| 198 | 208 |
| 199 # binarySearch | 209 # binarySearch |
| 200 binarySearch <- function(a, target, lower = TRUE) { | 210 binarySearch <- function(a, target, lower = TRUE) { |
| 201 # search the index i in a such that a[i] == target | 211 # search the index i in a such that a[i] == target |
| 202 # if it doesn't exists and lower, it searches the closer a[i] such that a[i] < target | 212 # if it doesn't exists and lower, it searches the closer a[i] such that a[i] < target |
| 203 # if !lower, it seraches the closer a[i] such that a[i] > target | 213 # if !lower, it seraches the closer a[i] such that a[i] > target |
| 204 # a should be monotone but can be increasing or decreasing | 214 # a should be monotone but can be increasing or decreasing |
| 205 | 215 |
| 206 # if a is increasing INVARIANT: a[amin] < target < a[amax] | 216 # if a is increasing INVARIANT: a[amin] < target < a[amax] |
| 207 N <- length(a) | 217 N <- length(a) |
| 208 if ((a[N] - target) * (a[N] - a[1]) <= 0) { | 218 if ((a[N] - target) * (a[N] - a[1]) <= 0) { |
| 209 return(N) | 219 return(N) |
| 210 } | 220 } |
| 211 if ((a[1] - target) * (a[N] - a[1]) >= 0) { | 221 if ((a[1] - target) * (a[N] - a[1]) >= 0) { |
| 212 return(1) | 222 return(1) |
| 213 } | 223 } |
| 214 amin <- 1 | 224 amin <- 1 |
| 215 amax <- N | 225 amax <- N |
| 216 while (amin + 1 < amax) { | 226 while (amin + 1 < amax) { |
| 217 amid <- floor((amin + amax)/2) | 227 amid <- floor((amin + amax) / 2) |
| 218 if ((a[amid] - target) * (a[amax] - a[amid]) < 0) { | 228 if ((a[amid] - target) * (a[amax] - a[amid]) < 0) { |
| 219 amin <- amid | 229 amin <- amid |
| 220 } else if ((a[amid] - target) * (a[amax] - a[amid]) > 0) { | 230 } else if ((a[amid] - target) * (a[amax] - a[amid]) > 0) { |
| 221 amax <- amid | 231 amax <- amid |
| 222 } else { | 232 } else { |
| 223 # a[amid] == a[amax] or a[amid] == target In both cases, a[amid] == | 233 # a[amid] == a[amax] or a[amid] == target In both cases, a[amid] == |
| 224 # target | 234 # target |
| 225 return(amid) | 235 return(amid) |
| 226 } | 236 } |
| 227 } | 237 } |
| 228 if (xor(lower, a[amin] > a[amax])) { | 238 if (xor(lower, a[amin] > a[amax])) { |
| 229 # (lower && a[amin] < a[amax]) || (!lower && a[min] > a[max]) | 239 # (lower && a[amin] < a[amax]) || (!lower && a[min] > a[max]) |
| 230 # If increasing and we want the lower, we take amin | 240 # If increasing and we want the lower, we take amin |
| 231 # If decreasing and we want the bigger, we take amin too | 241 # If decreasing and we want the bigger, we take amin too |
| 232 return(amin) | 242 return(amin) |
| 233 } else { | 243 } else { |
| 234 return(amax) | 244 return(amax) |
| 235 } | 245 } |
| 236 } | 246 } |
| 237 | 247 |
| 238 | 248 |
| 239 # indexInterval | 249 # indexInterval |
| 240 indexInterval <- function (a, from, to, inclusive=TRUE) { | 250 indexInterval <- function(a, from, to, inclusive = TRUE) { |
| 241 # If inclusive and from <= to, we need to take the lower | 251 # If inclusive and from <= to, we need to take the lower |
| 242 # If not inclusive and from > to, we need to take the lower too | 252 # If not inclusive and from > to, we need to take the lower too |
| 243 lowerFrom <- xor(inclusive, from > to) | 253 lowerFrom <- xor(inclusive, from > to) |
| 244 fromIndex <- binarySearch(a, from, lowerFrom) | 254 fromIndex <- binarySearch(a, from, lowerFrom) |
| 245 toIndex <- binarySearch(a, to, !lowerFrom) | 255 toIndex <- binarySearch(a, to, !lowerFrom) |
| 246 return(fromIndex:toIndex) | 256 return(fromIndex:toIndex) |
| 247 } | 257 } |
| 248 | 258 |
| 249 | 259 |
| 250 | 260 |
| 251 ## ========================== | 261 ## ========================== |
| 252 # GroupDelayCorrection | 262 # GroupDelayCorrection |
| 253 ## ========================== | 263 ## ========================== |
| 254 GroupDelayCorrection <- function(Fid_data, Fid_info = NULL, group_delay = NULL) { | 264 GroupDelayCorrection <- function(Fid_data, Fid_info = NULL, group_delay = NULL) { |
| 255 | |
| 256 | |
| 257 # Data initialisation and checks ---------------------------------------------- | 265 # Data initialisation and checks ---------------------------------------------- |
| 258 | 266 |
| 259 begin_info <- beginTreatment("GroupDelayCorrection", Fid_data, Fid_info) | 267 begin_info <- beginTreatment("GroupDelayCorrection", Fid_data, Fid_info) |
| 260 Fid_data <- begin_info[["Signal_data"]] | 268 Fid_data <- begin_info[["Signal_data"]] |
| 261 dimension_names <- dimnames(Fid_data) | 269 dimension_names <- dimnames(Fid_data) |
| 262 Fid_info <- begin_info[["Signal_info"]] | 270 Fid_info <- begin_info[["Signal_info"]] |
| 263 checkArg(group_delay, c("num", "pos0"), can.be.null = TRUE) | 271 checkArg(group_delay, c("num", "pos0"), can.be.null = TRUE) |
| 264 # if Fid_info and group_delay are NULL, getArg will generate an error | 272 # if Fid_info and group_delay are NULL, getArg will generate an error |
| 265 | 273 |
| 266 group_delay <- getArg(group_delay, Fid_info, "GRPDLY", can.be.absent = TRUE) | 274 group_delay <- getArg(group_delay, Fid_info, "GRPDLY", can.be.absent = TRUE) |
| 267 | 275 |
| 268 if (is.null(group_delay)) { | 276 if (is.null(group_delay)) { |
| 269 | 277 # See DetermineBrukerDigitalFilter.m in matNMR MATLAB library |
| 270 # See DetermineBrukerDigitalFilter.m in matNMR MATLAB library | 278 group_delay_matrix <- matrix( |
| 271 group_delay_matrix <- matrix(c(44.75, 46, 46.311, 33.5, 36.5, 36.53, 66.625, | 279 c( |
| 272 48, 47.87, 59.0833, 50.1667, 50.229, 68.5625, 53.25, 53.289, 60.375, | 280 44.75, 46, 46.311, 33.5, 36.5, 36.53, 66.625, |
| 273 69.5, 69.551, 69.5313, 72.25, 71.6, 61.0208, 70.1667, 70.184, 70.0156, | 281 48, 47.87, 59.0833, 50.1667, 50.229, 68.5625, 53.25, 53.289, 60.375, |
| 274 72.75, 72.138, 61.3438, 70.5, 70.528, 70.2578, 73, 72.348, 61.5052, 70.6667, | 282 69.5, 69.551, 69.5313, 72.25, 71.6, 61.0208, 70.1667, 70.184, 70.0156, |
| 275 70.7, 70.3789, 72.5, 72.524, 61.5859, 71.3333, NA, 70.4395, 72.25, NA, | 283 72.75, 72.138, 61.3438, 70.5, 70.528, 70.2578, 73, 72.348, 61.5052, 70.6667, |
| 276 61.6263, 71.6667, NA, 70.4697, 72.125, NA, 61.6465, 71.8333, NA, 70.4849, | 284 70.7, 70.3789, 72.5, 72.524, 61.5859, 71.3333, NA, 70.4395, 72.25, NA, |
| 277 72.0625, NA, 61.6566, 71.9167, NA, 70.4924, 72.0313, NA), nrow = 21, | 285 61.6263, 71.6667, NA, 70.4697, 72.125, NA, 61.6465, 71.8333, NA, 70.4849, |
| 278 ncol = 3, byrow = TRUE, dimnames = list(c(2, 3, 4, 6, 8, 12, 16, 24, | 286 72.0625, NA, 61.6566, 71.9167, NA, 70.4924, 72.0313, NA |
| 279 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048), | 287 ), |
| 280 c(10, 11, 12))) | 288 nrow = 21, |
| 281 decim <- Fid_info[1, "DECIM"] | 289 ncol = 3, byrow = TRUE, dimnames = list( |
| 282 dspfvs <- Fid_info[1, "DSPFVS"] | 290 c( |
| 283 if (!(toString(decim) %in% rownames(group_delay_matrix))) { | 291 2, 3, 4, 6, 8, 12, 16, 24, |
| 284 stop(paste("Invalid DECIM", decim, "it should be one of", rownames(group_delay_matrix))) | 292 32, 48, 64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048 |
| 285 } | 293 ), |
| 286 if (!(toString(dspfvs) %in% colnames(group_delay_matrix))) { | 294 c(10, 11, 12) |
| 287 stop(paste("Invalid DSPFVS", dspfvs, "it should be one of", colnames(group_delay_matrix))) | 295 ) |
| 288 } | 296 ) |
| 289 group_delay <- group_delay_matrix[toString(decim), toString(dspfvs)] | 297 decim <- Fid_info[1, "DECIM"] |
| 290 if (is.na(group_delay)) { | 298 dspfvs <- Fid_info[1, "DSPFVS"] |
| 291 stop(paste("Invalid DECIM", decim, "for DSPFVS", dspfvs)) | 299 if (!(toString(decim) %in% rownames(group_delay_matrix))) { |
| 292 } | 300 stop(paste("Invalid DECIM", decim, "it should be one of", rownames(group_delay_matrix))) |
| 301 } | |
| 302 if (!(toString(dspfvs) %in% colnames(group_delay_matrix))) { | |
| 303 stop(paste("Invalid DSPFVS", dspfvs, "it should be one of", colnames(group_delay_matrix))) | |
| 304 } | |
| 305 group_delay <- group_delay_matrix[toString(decim), toString(dspfvs)] | |
| 306 if (is.na(group_delay)) { | |
| 307 stop(paste("Invalid DECIM", decim, "for DSPFVS", dspfvs)) | |
| 308 } | |
| 293 } | 309 } |
| 294 m <- ncol(Fid_data) | 310 m <- ncol(Fid_data) |
| 295 n <- nrow(Fid_data) | 311 n <- nrow(Fid_data) |
| 296 | 312 |
| 297 # GroupDelayCorrection ---------------------------------------------- | 313 # GroupDelayCorrection ---------------------------------------------- |
| 298 | 314 |
| 299 # We do the shifting in the Fourier domain because the shift can be non-integer. | 315 # We do the shifting in the Fourier domain because the shift can be non-integer. |
| 300 # That way we automatically have the circular behaviour of the shift and the | 316 # That way we automatically have the circular behaviour of the shift and the |
| 301 # interpolation if it is non-integer. | 317 # interpolation if it is non-integer. |
| 302 | 318 |
| 303 Spectrum <- t(stats::mvfft(t(Fid_data))) | 319 Spectrum <- t(stats::mvfft(t(Fid_data))) |
| 304 | 320 |
| 305 # Spectrum <- FourierTransform(Fid_data, Fid_info) | 321 # Spectrum <- FourierTransform(Fid_data, Fid_info) |
| 306 p <- ceiling(m/2) | 322 p <- ceiling(m / 2) |
| 307 new_index <- c((p + 1):m, 1:p) | 323 new_index <- c((p + 1):m, 1:p) |
| 308 Spectrum <- Spectrum[,new_index] | 324 Spectrum <- Spectrum[, new_index] |
| 309 Spectrum <- matrix(data = Spectrum, ncol = m, nrow = n) | 325 Spectrum <- matrix(data = Spectrum, ncol = m, nrow = n) |
| 310 | 326 |
| 311 Omega <- (0:(m - 1))/m | 327 Omega <- (0:(m - 1)) / m |
| 312 i <- complex(real = 0, imaginary = 1) | 328 i <- complex(real = 0, imaginary = 1) |
| 313 | 329 |
| 314 if (n>1) { | 330 if (n > 1) { |
| 315 Spectrum <- sweep(Spectrum, MARGIN = 2, exp(i * group_delay * 2 * pi * Omega), `*`) | 331 Spectrum <- sweep(Spectrum, MARGIN = 2, exp(i * group_delay * 2 * pi * Omega), `*`) |
| 316 Spectrum <- Spectrum[,new_index] | 332 Spectrum <- Spectrum[, new_index] |
| 317 }else { | 333 } else { |
| 318 Spectrum <- Spectrum* exp(i * group_delay * 2 * pi * Omega) | 334 Spectrum <- Spectrum * exp(i * group_delay * 2 * pi * Omega) |
| 319 Spectrum <- Spectrum[new_index] | 335 Spectrum <- Spectrum[new_index] |
| 320 Spectrum <- matrix(data = Spectrum, ncol = m, nrow = n) | 336 Spectrum <- matrix(data = Spectrum, ncol = m, nrow = n) |
| 321 } | 337 } |
| 322 | 338 |
| 323 | 339 |
| 324 Fid_data <- t(stats::mvfft(t(Spectrum), inverse = TRUE))/m | 340 Fid_data <- t(stats::mvfft(t(Spectrum), inverse = TRUE)) / m |
| 325 colnames(Fid_data) <- dimension_names[[2]] | 341 colnames(Fid_data) <- dimension_names[[2]] |
| 326 rownames(Fid_data) <- dimension_names[[1]] | 342 rownames(Fid_data) <- dimension_names[[1]] |
| 327 | 343 |
| 328 # Data finalisation ---------------------------------------------- | 344 # Data finalisation ---------------------------------------------- |
| 329 | 345 |
| 330 return(endTreatment("GroupDelayCorrection", begin_info, Fid_data)) | 346 return(endTreatment("GroupDelayCorrection", begin_info, Fid_data)) |
| 331 } | 347 } |
| 332 | 348 |
| 333 ## ========================== | 349 ## ========================== |
| 334 # SolventSuppression | 350 # SolventSuppression |
| 335 ## ========================== | 351 ## ========================== |
| 336 SolventSuppression <- function(Fid_data, lambda.ss = 1e+06, ptw.ss = TRUE, | 352 SolventSuppression <- function(Fid_data, lambda.ss = 1e+06, ptw.ss = TRUE, |
| 337 plotSolvent = F, returnSolvent = F) { | 353 plotSolvent = F, returnSolvent = F) { |
| 338 | 354 # Data initialisation and checks ---------------------------------------------- |
| 339 # Data initialisation and checks ---------------------------------------------- | 355 |
| 340 | 356 begin_info <- beginTreatment("SolventSuppression", Fid_data) |
| 341 begin_info <- beginTreatment("SolventSuppression", Fid_data) | 357 Fid_data <- begin_info[["Signal_data"]] |
| 342 Fid_data <- begin_info[["Signal_data"]] | 358 checkArg(ptw.ss, c("bool")) |
| 343 checkArg(ptw.ss, c("bool")) | 359 checkArg(lambda.ss, c("num", "pos0")) |
| 344 checkArg(lambda.ss, c("num", "pos0")) | 360 |
| 345 | 361 |
| 346 | 362 # difsm function definition for the smoother ----------------------------------- |
| 347 # difsm function definition for the smoother ----------------------------------- | 363 |
| 348 | 364 if (ptw.ss) { |
| 349 if (ptw.ss) { | 365 # Use of the function in ptw that smoothes signals with a finite difference |
| 350 # Use of the function in ptw that smoothes signals with a finite difference | 366 # penalty of order 2 |
| 351 # penalty of order 2 | 367 difsm <- ptw::difsm |
| 352 difsm <- ptw::difsm | 368 } else { |
| 353 } else { | 369 # Or manual implementation based on sparse matrices for large data series (cf. |
| 354 # Or manual implementation based on sparse matrices for large data series (cf. | 370 # Eilers, 2003. 'A perfect smoother') |
| 355 # Eilers, 2003. 'A perfect smoother') | 371 difsm <- function(y, d = 2, lambda) { |
| 356 difsm <- function(y, d = 2, lambda) { | 372 m <- length(y) |
| 357 | 373 # Sparse identity matrix m x m |
| 358 m <- length(y) | 374 E <- Matrix::Diagonal(m) |
| 359 # Sparse identity matrix m x m | 375 D <- Matrix::diff(E, differences = d) |
| 360 E <- Matrix::Diagonal(m) | 376 A <- E + lambda.ss * Matrix::t(D) %*% D |
| 361 D <- Matrix::diff(E, differences = d) | 377 # base::chol does not take into account that A is sparse and is extremely slow |
| 362 A <- E + lambda.ss * Matrix::t(D) %*% D | 378 C <- Matrix::chol(A) |
| 363 # base::chol does not take into account that A is sparse and is extremely slow | 379 x <- Matrix::solve(C, Matrix::solve(Matrix::t(C), y)) |
| 364 C <- Matrix::chol(A) | 380 return(as.numeric(x)) |
| 365 x <- Matrix::solve(C, Matrix::solve(Matrix::t(C), y)) | 381 } |
| 366 return(as.numeric(x)) | 382 } |
| 367 } | 383 |
| 368 } | 384 # Solvent Suppression ---------------------------------------------- |
| 369 | 385 |
| 370 # Solvent Suppression ---------------------------------------------- | 386 n <- dim(Fid_data)[1] |
| 371 | |
| 372 n <- dim(Fid_data)[1] | |
| 373 if (returnSolvent) { | |
| 374 SolventRe <- Fid_data | |
| 375 SolventIm <- Fid_data | |
| 376 } | |
| 377 for (i in 1:n) { | |
| 378 FidRe <- Re(Fid_data[i, ]) | |
| 379 FidIm <- Im(Fid_data[i, ]) | |
| 380 solventRe <- difsm(y = FidRe, lambda = lambda.ss) | |
| 381 solventIm <- difsm(y = FidIm, lambda = lambda.ss) | |
| 382 | |
| 383 if (plotSolvent) { | |
| 384 m <- length(FidRe) | |
| 385 graphics::plot(1:m, FidRe, type = "l", col = "red") | |
| 386 graphics::lines(1:m, solventRe, type = "l", col = "blue") | |
| 387 graphics::plot(1:m, FidIm, type = "l", col = "red") | |
| 388 graphics::lines(1:m, solventIm, type = "l", col = "blue") | |
| 389 } | |
| 390 FidRe <- FidRe - solventRe | |
| 391 FidIm <- FidIm - solventIm | |
| 392 Fid_data[i, ] <- complex(real = FidRe, imaginary = FidIm) | |
| 393 if (returnSolvent) { | 387 if (returnSolvent) { |
| 394 SolventRe[i, ] <- solventRe | 388 SolventRe <- Fid_data |
| 395 SolventIm[i, ] <- solventIm | 389 SolventIm <- Fid_data |
| 396 } | 390 } |
| 397 } | 391 for (i in 1:n) { |
| 398 | 392 FidRe <- Re(Fid_data[i, ]) |
| 399 | 393 FidIm <- Im(Fid_data[i, ]) |
| 400 # Data finalisation ---------------------------------------------- | 394 solventRe <- difsm(y = FidRe, lambda = lambda.ss) |
| 401 | 395 solventIm <- difsm(y = FidIm, lambda = lambda.ss) |
| 402 Fid_data <- endTreatment("SolventSuppression", begin_info, Fid_data) | 396 |
| 403 if (returnSolvent) { | 397 if (plotSolvent) { |
| 404 return(list(Fid_data = Fid_data, SolventRe = SolventRe, SolventIm = SolventIm)) | 398 m <- length(FidRe) |
| 405 } else { | 399 graphics::plot(1:m, FidRe, type = "l", col = "red") |
| 406 return(Fid_data) | 400 graphics::lines(1:m, solventRe, type = "l", col = "blue") |
| 407 } | 401 graphics::plot(1:m, FidIm, type = "l", col = "red") |
| 402 graphics::lines(1:m, solventIm, type = "l", col = "blue") | |
| 403 } | |
| 404 FidRe <- FidRe - solventRe | |
| 405 FidIm <- FidIm - solventIm | |
| 406 Fid_data[i, ] <- complex(real = FidRe, imaginary = FidIm) | |
| 407 if (returnSolvent) { | |
| 408 SolventRe[i, ] <- solventRe | |
| 409 SolventIm[i, ] <- solventIm | |
| 410 } | |
| 411 } | |
| 412 | |
| 413 | |
| 414 # Data finalisation ---------------------------------------------- | |
| 415 | |
| 416 Fid_data <- endTreatment("SolventSuppression", begin_info, Fid_data) | |
| 417 if (returnSolvent) { | |
| 418 return(list(Fid_data = Fid_data, SolventRe = SolventRe, SolventIm = SolventIm)) | |
| 419 } else { | |
| 420 return(Fid_data) | |
| 421 } | |
| 408 } | 422 } |
| 409 | 423 |
| 410 | 424 |
| 411 ## ========================== | 425 ## ========================== |
| 412 # Apodization | 426 # Apodization |
| 413 # ============================= | 427 # ============================= |
| 414 Apodization <- function(Fid_data, Fid_info = NULL, DT = NULL, | 428 Apodization <- function(Fid_data, Fid_info = NULL, DT = NULL, |
| 415 type.apod = c("exp","cos2", "blockexp", "blockcos2", | 429 type.apod = c( |
| 416 "gauss", "hanning", "hamming"), phase = 0, rectRatio = 1/2, | 430 "exp", "cos2", "blockexp", "blockcos2", |
| 431 "gauss", "hanning", "hamming" | |
| 432 ), phase = 0, rectRatio = 1 / 2, | |
| 417 gaussLB = 1, expLB = 1, plotWindow = F, returnFactor = F) { | 433 gaussLB = 1, expLB = 1, plotWindow = F, returnFactor = F) { |
| 418 | 434 # Data initialisation and checks ---------------------------------------------- |
| 419 # Data initialisation and checks ---------------------------------------------- | 435 begin_info <- beginTreatment("Apodization", Fid_data, Fid_info) |
| 420 begin_info <- beginTreatment("Apodization", Fid_data, Fid_info) | 436 Fid_data <- begin_info[["Signal_data"]] |
| 421 Fid_data <- begin_info[["Signal_data"]] | 437 Fid_info <- begin_info[["Signal_info"]] |
| 422 Fid_info <- begin_info[["Signal_info"]] | 438 # Data check |
| 423 # Data check | 439 type.apod <- match.arg(type.apod) |
| 424 type.apod <- match.arg(type.apod) | 440 checkArg(DT, c("num", "pos"), can.be.null = TRUE) |
| 425 checkArg(DT, c("num", "pos"), can.be.null = TRUE) | 441 checkArg(phase, c("num")) |
| 426 checkArg(phase, c("num")) | 442 |
| 427 | 443 # Apodization ---------------------------------------------- |
| 428 # Apodization ---------------------------------------------- | 444 DT <- getArg(DT, Fid_info, "DT") # Dwell Time |
| 429 DT <- getArg(DT, Fid_info, "DT") # Dwell Time | 445 m <- ncol(Fid_data) |
| 430 m <- ncol(Fid_data) | 446 t <- (1:m) * DT # Time |
| 431 t <- (1:m) * DT # Time | 447 rectSize <- ceiling(rectRatio * m) |
| 432 rectSize <- ceiling(rectRatio * m) | 448 gaussLB <- (gaussLB / (sqrt(8 * log(2)))) |
| 433 gaussLB <- (gaussLB/(sqrt(8 * log(2)))) | 449 # Define the types of apodization: |
| 434 # Define the types of apodization: | 450 switch(type.apod, |
| 435 switch(type.apod, exp = { | 451 exp = { |
| 436 # exponential | 452 # exponential |
| 437 Factor <- exp(-expLB * t) | 453 Factor <- exp(-expLB * t) |
| 438 }, cos2 = { | 454 }, |
| 439 # cos^2 | 455 cos2 = { |
| 440 c <- cos((1:m) * pi/(2 * m) - phase * pi/2) | 456 # cos^2 |
| 441 Factor <- c * c | 457 c <- cos((1:m) * pi / (2 * m) - phase * pi / 2) |
| 442 }, blockexp = { | 458 Factor <- c * c |
| 443 # block and exponential | 459 }, |
| 444 Factor <- c(rep.int(1, rectSize), rep.int(0, m - rectSize)) | 460 blockexp = { |
| 445 # | rectSize | 1 ___________ | \ 0 \____ | 461 # block and exponential |
| 446 Factor[(rectSize + 1):m] <- exp(-expLB * t[1:(m - rectSize)]) | 462 Factor <- c(rep.int(1, rectSize), rep.int(0, m - rectSize)) |
| 447 }, blockcos2 = { | 463 # | rectSize | 1 ___________ | \ 0 \____ |
| 448 # block and cos^2 | 464 Factor[(rectSize + 1):m] <- exp(-expLB * t[1:(m - rectSize)]) |
| 449 Factor <- c(rep.int(1, rectSize), rep.int(0, m - rectSize)) | 465 }, |
| 450 c <- cos((1:(m - rectSize)) * pi/(2 * (m - rectSize))) | 466 blockcos2 = { |
| 451 Factor[(rectSize + 1):m] <- c * c | 467 # block and cos^2 |
| 452 }, gauss = { | 468 Factor <- c(rep.int(1, rectSize), rep.int(0, m - rectSize)) |
| 453 # gaussian | 469 c <- cos((1:(m - rectSize)) * pi / (2 * (m - rectSize))) |
| 454 Factor <- exp(-(gaussLB * t)^2/2) | 470 Factor[(rectSize + 1):m] <- c * c |
| 455 Factor <- Factor/max(Factor) | 471 }, |
| 456 }, hanning = { | 472 gauss = { |
| 457 # Hanning | 473 # gaussian |
| 458 Factor <- 0.5 + 0.5 * cos((1:m) * pi/m - phase * pi) | 474 Factor <- exp(-(gaussLB * t)^2 / 2) |
| 459 }, hamming = { | 475 Factor <- Factor / max(Factor) |
| 460 # Hamming | 476 }, |
| 461 Factor <- 0.54 + 0.46 * cos((1:m) * pi/m - phase * pi) | 477 hanning = { |
| 462 }) | 478 # Hanning |
| 463 if (plotWindow) { | 479 Factor <- 0.5 + 0.5 * cos((1:m) * pi / m - phase * pi) |
| 464 graphics::plot(1:m, Factor, "l") | 480 }, |
| 465 # dev.off() # device independent, it is the responsability of the | 481 hamming = { |
| 466 # caller to do it | 482 # Hamming |
| 467 } | 483 Factor <- 0.54 + 0.46 * cos((1:m) * pi / m - phase * pi) |
| 468 # Apply the apodization factor on the spectra | 484 } |
| 469 Fid_data <- sweep(Fid_data, MARGIN = 2, Factor, `*`) | 485 ) |
| 470 | 486 if (plotWindow) { |
| 471 # Data finalisation ---------------------------------------------- | 487 graphics::plot(1:m, Factor, "l") |
| 472 Fid_data <- endTreatment("Apodization", begin_info, Fid_data) | 488 # dev.off() # device independent, it is the responsability of the |
| 473 if (returnFactor) { | 489 # caller to do it |
| 474 return(list(Fid_data = Fid_data, Factor = Factor)) | 490 } |
| 475 } else { | 491 # Apply the apodization factor on the spectra |
| 476 return(Fid_data) | 492 Fid_data <- sweep(Fid_data, MARGIN = 2, Factor, `*`) |
| 477 } | 493 |
| 494 # Data finalisation ---------------------------------------------- | |
| 495 Fid_data <- endTreatment("Apodization", begin_info, Fid_data) | |
| 496 if (returnFactor) { | |
| 497 return(list(Fid_data = Fid_data, Factor = Factor)) | |
| 498 } else { | |
| 499 return(Fid_data) | |
| 500 } | |
| 478 } | 501 } |
| 479 | 502 |
| 480 | 503 |
| 481 ## ==================================================== | 504 ## ==================================================== |
| 482 # FourierTransform | 505 # FourierTransform |
| 483 ## ==================================================== | 506 ## ==================================================== |
| 484 | 507 |
| 485 | 508 |
| 486 # fftshift1D2D | 509 # fftshift1D2D |
| 487 fftshift1D2D <- function(x) { | 510 fftshift1D2D <- function(x) { |
| 488 vec <- F | 511 vec <- F |
| 489 if (is.vector(x)) { | 512 if (is.vector(x)) { |
| 490 x <- vec2mat(x) | 513 x <- vec2mat(x) |
| 491 vec <- T | 514 vec <- T |
| 492 } | 515 } |
| 493 m <- dim(x)[2] | 516 m <- dim(x)[2] |
| 494 p <- ceiling(m/2) | 517 p <- ceiling(m / 2) |
| 495 new_index <- c((p + 1):m, 1:p) | 518 new_index <- c((p + 1):m, 1:p) |
| 496 y <- x[, new_index, drop = vec] | 519 y <- x[, new_index, drop = vec] |
| 497 } | 520 } |
| 498 | 521 |
| 499 # FourierTransform | 522 # FourierTransform |
| 500 FourierTransform <- function(Fid_data, Fid_info = NULL, SW_h = NULL, SW = NULL, O1 = NULL, reverse.axis = TRUE) { | 523 FourierTransform <- function(Fid_data, Fid_info = NULL, SW_h = NULL, SW = NULL, O1 = NULL, reverse.axis = TRUE) { |
| 501 | 524 # Data initialisation and checks ---------------------------------------------- |
| 502 # Data initialisation and checks ---------------------------------------------- | 525 begin_info <- beginTreatment("FourierTransform", Fid_data, Fid_info) |
| 503 begin_info <- beginTreatment("FourierTransform", Fid_data, Fid_info) | 526 Fid_data <- begin_info[["Signal_data"]] |
| 504 Fid_data <- begin_info[["Signal_data"]] | 527 Fid_info <- begin_info[["Signal_info"]] |
| 505 Fid_info <- begin_info[["Signal_info"]] | 528 |
| 506 | 529 m <- ncol(Fid_data) |
| 507 m <- ncol(Fid_data) | 530 n <- nrow(Fid_data) |
| 508 n <- nrow(Fid_data) | 531 |
| 509 | 532 if (is.null(SW_h)) { |
| 510 if (is.null(SW_h)) { | 533 SW_h <- getArg(SW_h, Fid_info, "SW_h") |
| 511 SW_h <- getArg(SW_h, Fid_info, "SW_h") | 534 } |
| 512 } | 535 |
| 513 | 536 if (is.null(SW)) { |
| 514 if (is.null(SW)) { | 537 SW <- getArg(SW, Fid_info, "SW") # Sweep Width in ppm (semi frequency scale in ppm) |
| 515 SW <- getArg(SW, Fid_info, "SW") # Sweep Width in ppm (semi frequency scale in ppm) | 538 } |
| 516 } | 539 |
| 517 | 540 |
| 518 | 541 if (is.null(O1)) { |
| 519 if (is.null(O1)) { | 542 O1 <- getArg(O1, Fid_info, "O1") |
| 520 O1 <- getArg(O1, Fid_info, "O1") | 543 } |
| 521 } | 544 |
| 522 | 545 |
| 523 | 546 checkArg(reverse.axis, c("bool")) |
| 524 checkArg(reverse.axis, c("bool")) | 547 |
| 525 | 548 # Fourier Transformation ---------------------------------------------- |
| 526 # Fourier Transformation ---------------------------------------------- | 549 # mvfft does the unnormalized fourier transform (see ?mvfft), so we need divide |
| 527 # mvfft does the unnormalized fourier transform (see ?mvfft), so we need divide | 550 # by m. It does not matter a lot in our case since the spectrum will be |
| 528 # by m. It does not matter a lot in our case since the spectrum will be | 551 # normalized. |
| 529 # normalized. | 552 |
| 530 | 553 # FT |
| 531 # FT | 554 RawSpect_data <- fftshift1D2D(t(stats::mvfft(t(Fid_data)))) |
| 532 RawSpect_data <- fftshift1D2D(t(stats::mvfft(t(Fid_data)))) | 555 # recover the frequencies values |
| 533 # recover the frequencies values | 556 f <- ((0:(m - 1)) - floor(m / 2)) * Fid_info[1, "SW_h"] / (m - 1) |
| 534 f <- ((0:(m - 1)) - floor(m/2)) * Fid_info[1, "SW_h"]/(m-1) | 557 |
| 535 | 558 if (reverse.axis == TRUE) { |
| 536 if(reverse.axis == TRUE) { | 559 revind <- rev(1:m) |
| 537 revind <- rev(1:m) | 560 RawSpect_data <- RawSpect_data[, revind] # reverse the spectrum |
| 538 RawSpect_data <- RawSpect_data[,revind] # reverse the spectrum | 561 } |
| 539 } | 562 |
| 540 | 563 RawSpect_data <- matrix(RawSpect_data, nrow = n, ncol = m) |
| 541 RawSpect_data <- matrix(RawSpect_data, nrow = n, ncol = m) | 564 colnames(RawSpect_data) <- f |
| 542 colnames(RawSpect_data) <- f | 565 rownames(RawSpect_data) <- rownames(Fid_data) |
| 543 rownames(RawSpect_data) <- rownames(Fid_data) | 566 |
| 544 | 567 # PPM conversion ---------------------------------------------- |
| 545 # PPM conversion ---------------------------------------------- | 568 |
| 546 | 569 # The Sweep Width has to be the same since the column names are the same |
| 547 # The Sweep Width has to be the same since the column names are the same | 570 |
| 548 | 571 ppmInterval <- SW / (m - 1) |
| 549 ppmInterval <- SW/(m-1) | 572 |
| 550 | 573 O1index <- round((m + 1) / 2 + O1 * (m - 1) / SW_h) |
| 551 O1index = round((m+1)/2+O1*(m - 1) / SW_h) | 574 |
| 552 | 575 end <- O1index - m |
| 553 end <- O1index - m | 576 start <- O1index - 1 |
| 554 start <- O1index -1 | 577 ppmScale <- (start:end) * ppmInterval |
| 555 ppmScale <- (start:end) * ppmInterval | 578 RawSpect_data <- matrix(RawSpect_data, |
| 556 RawSpect_data <- matrix(RawSpect_data, nrow = n, ncol = -(end - start) + 1, dimnames = | 579 nrow = n, ncol = -(end - start) + 1, dimnames = |
| 557 list(rownames(RawSpect_data), ppmScale)) | 580 list(rownames(RawSpect_data), ppmScale) |
| 558 | 581 ) |
| 559 | 582 |
| 560 # Data finalisation ---------------------------------------------- | 583 |
| 561 return(endTreatment("FourierTransform", begin_info, RawSpect_data)) | 584 # Data finalisation ---------------------------------------------- |
| 585 return(endTreatment("FourierTransform", begin_info, RawSpect_data)) | |
| 562 } | 586 } |
| 563 | 587 |
| 564 ## ==================================================== | 588 ## ==================================================== |
| 565 # InternalReferencing | 589 # InternalReferencing |
| 566 ## ==================================================== | 590 ## ==================================================== |
| 567 | 591 |
| 568 InternalReferencing <- function(Spectrum_data, Fid_info, method = c("max", "thres"), | 592 InternalReferencing <- function(Spectrum_data, Fid_info, method = c("max", "thres"), |
| 569 range = c("nearvalue", "all", "window"), ppm.value = 0, | 593 range = c("nearvalue", "all", "window"), ppm.value = 0, |
| 570 direction = "left", shiftHandling = c("zerofilling", "cut", | 594 direction = "left", shiftHandling = c( |
| 571 "NAfilling", "circular"), c = 2, pc = 0.02, fromto.RC = NULL, | 595 "zerofilling", "cut", |
| 596 "NAfilling", "circular" | |
| 597 ), c = 2, pc = 0.02, fromto.RC = NULL, | |
| 572 ppm.ir = TRUE, rowindex_graph = NULL) { | 598 ppm.ir = TRUE, rowindex_graph = NULL) { |
| 573 | 599 # Data initialisation and checks ---------------------------------------------- |
| 574 | 600 |
| 575 | 601 begin_info <- beginTreatment("InternalReferencing", Spectrum_data, Fid_info) |
| 576 # Data initialisation and checks ---------------------------------------------- | 602 Spectrum_data <- begin_info[["Signal_data"]] |
| 577 | 603 Fid_info <- begin_info[["Signal_info"]] |
| 578 begin_info <- beginTreatment("InternalReferencing", Spectrum_data, Fid_info) | 604 |
| 579 Spectrum_data <- begin_info[["Signal_data"]] | 605 |
| 580 Fid_info <- begin_info[["Signal_info"]] | 606 ######## Check input arguments |
| 581 | 607 |
| 582 | 608 range <- match.arg(range) |
| 583 ######## Check input arguments | 609 shiftHandling <- match.arg(shiftHandling) |
| 584 | 610 method <- match.arg(method) |
| 585 range <- match.arg(range) | 611 plots <- NULL |
| 586 shiftHandling <- match.arg(shiftHandling) | 612 |
| 587 method <- match.arg(method) | 613 checkArg(ppm.ir, c("bool")) |
| 588 plots <- NULL | 614 checkArg(unlist(fromto.RC), c("num"), can.be.null = TRUE) |
| 589 | 615 checkArg(pc, c("num")) |
| 590 checkArg(ppm.ir, c("bool")) | 616 checkArg(ppm.value, c("num")) |
| 591 checkArg(unlist(fromto.RC), c("num"), can.be.null = TRUE) | 617 checkArg(rowindex_graph, "num", can.be.null = TRUE) |
| 592 checkArg(pc, c("num")) | 618 |
| 593 checkArg(ppm.value, c("num")) | 619 # fromto.RC : if range == "window", |
| 594 checkArg(rowindex_graph, "num", can.be.null = TRUE) | 620 # fromto.RC defines the spectral window where to search for the peak |
| 595 | 621 if (!is.null(fromto.RC)) { |
| 596 # fromto.RC : if range == "window", | 622 diff <- diff(unlist(fromto.RC))[1:length(diff(unlist(fromto.RC))) %% 2 != 0] |
| 597 # fromto.RC defines the spectral window where to search for the peak | 623 for (i in 1:length(diff)) { |
| 598 if (!is.null(fromto.RC)) { | 624 if (diff[i] >= 0) { |
| 599 diff <- diff(unlist(fromto.RC))[1:length(diff(unlist(fromto.RC)))%%2 !=0] | 625 fromto <- c(fromto.RC[[i]][2], fromto.RC[[i]][1]) |
| 600 for (i in 1:length(diff)) { | 626 fromto.RC[[i]] <- fromto |
| 601 if (diff[i] >= 0) { | 627 } |
| 602 fromto <- c(fromto.RC[[i]][2], fromto.RC[[i]][1]) | 628 } |
| 603 fromto.RC[[i]] <- fromto | 629 } |
| 604 } | 630 |
| 605 } | 631 |
| 606 } | 632 # findTMSPpeak function ---------------------------------------------- |
| 607 | 633 # If method == "tresh", findTMSPpeak will find the position of the first |
| 608 | 634 # peak (from left or right) which is higher than a predefined threshold |
| 609 # findTMSPpeak function ---------------------------------------------- | 635 # and is computed as: c*(cumulated_mean/cumulated_sd) |
| 610 # If method == "tresh", findTMSPpeak will find the position of the first | 636 findTMSPpeak <- function(ft, c = 2, direction = "left") { |
| 611 # peak (from left or right) which is higher than a predefined threshold | 637 ft <- Re(ft) # extraction de la partie réelle |
| 612 # and is computed as: c*(cumulated_mean/cumulated_sd) | 638 N <- length(ft) |
| 613 findTMSPpeak <- function(ft, c = 2, direction = "left") { | 639 if (direction == "left") { |
| 614 ft <- Re(ft) # extraction de la partie réelle | 640 newindex <- rev(1:N) |
| 615 N <- length(ft) | 641 ft <- rev(ft) |
| 616 if (direction == "left") { | 642 } |
| 617 newindex <- rev(1:N) | 643 thres <- 99999 |
| 618 ft <- rev(ft) | 644 i <- 1000 # Start at point 1000 to find the peak |
| 619 } | 645 vect <- ft[1:i] |
| 620 thres <- 99999 | 646 |
| 621 i <- 1000 # Start at point 1000 to find the peak | 647 while (vect[i] <= (c * thres)) { |
| 622 vect <- ft[1:i] | 648 cumsd <- stats::sd(vect) |
| 623 | 649 cummean <- mean(vect) |
| 624 while (vect[i] <= (c * thres)) { | 650 thres <- cummean + 3 * cumsd |
| 625 cumsd <- stats::sd(vect) | 651 i <- i + 1 |
| 626 cummean <- mean(vect) | 652 vect <- ft[1:i] |
| 627 thres <- cummean + 3 * cumsd | 653 } |
| 628 i <- i + 1 | 654 if (direction == "left") { |
| 629 vect <- ft[1:i] | 655 v <- newindex[i] |
| 630 } | 656 } else { |
| 631 if (direction == "left") { | 657 v <- i |
| 632 v <- newindex[i] | 658 } |
| 633 } else {v <- i} | 659 |
| 634 | 660 if (is.na(v)) { |
| 635 if (is.na(v)) { | 661 warning("No peak found, need to lower the threshold.") |
| 636 warning("No peak found, need to lower the threshold.") | 662 return(NA) |
| 637 return(NA) | 663 } else { |
| 638 } else { | 664 # recherche dans les 1% de points suivants du max trouve pour etre au sommet du |
| 639 # recherche dans les 1% de points suivants du max trouve pour etre au sommet du | 665 # pic |
| 640 # pic | 666 d <- which.max(ft[v:(v + N * 0.01)]) |
| 641 d <- which.max(ft[v:(v + N * 0.01)]) | 667 new.peak <- v + d - 1 # nouveau pic du TMSP si d > 0 |
| 642 new.peak <- v + d - 1 # nouveau pic du TMSP si d > 0 | 668 |
| 643 | 669 if (names(which.max(ft[v:(v + N * 0.01)])) != names(which.max(ft[v:(v + N * 0.03)]))) { |
| 644 if (names(which.max(ft[v:(v + N * 0.01)])) != names(which.max(ft[v:(v + N * 0.03)]))) { | 670 # recherche dans les 3% de points suivants du max trouve pour eviter un faux |
| 645 # recherche dans les 3% de points suivants du max trouve pour eviter un faux | 671 # positif |
| 646 # positif | 672 warning("the TMSP peak might be located further away, increase the threshold to check.") |
| 647 warning("the TMSP peak might be located further away, increase the threshold to check.") | 673 } |
| 648 } | 674 return(new.peak) |
| 649 return(new.peak) | 675 } |
| 650 } | 676 } |
| 651 } | 677 |
| 652 | 678 |
| 653 | 679 # Define the search zone ---------------------------------------- |
| 654 # Define the search zone ---------------------------------------- | 680 |
| 655 | 681 n <- nrow(Spectrum_data) |
| 656 n <- nrow(Spectrum_data) | 682 m <- ncol(Spectrum_data) |
| 657 m <- ncol(Spectrum_data) | 683 |
| 658 | 684 # The Sweep Width (SW) has to be the same since the column names are the same |
| 659 # The Sweep Width (SW) has to be the same since the column names are the same | 685 SW <- Fid_info[1, "SW"] # Sweep Width in ppm |
| 660 SW <- Fid_info[1, "SW"] # Sweep Width in ppm | 686 ppmInterval <- SW / (m - 1) # size of a ppm interval |
| 661 ppmInterval <- SW/(m-1) # size of a ppm interval | 687 |
| 662 | 688 # range: How the search zone is defined ("all", "nearvalue" or "window") |
| 663 # range: How the search zone is defined ("all", "nearvalue" or "window") | 689 if (range == "all") { |
| 664 if (range == "all") { | 690 Data <- Spectrum_data |
| 665 | 691 } else { # range = "nearvalue" or "window" |
| 666 Data <- Spectrum_data | 692 # Need to define colindex (column indexes) to apply indexInterval on it |
| 667 | 693 |
| 668 } else { # range = "nearvalue" or "window" | 694 if (range == "nearvalue") { |
| 669 # Need to define colindex (column indexes) to apply indexInterval on it | 695 fromto.RC <- list(c(-(SW * pc) / 2 + ppm.value, (SW * pc) / 2 + ppm.value)) # automatic fromto values in ppm |
| 670 | 696 colindex <- as.numeric(colnames(Spectrum_data)) |
| 671 if (range == "nearvalue") { | 697 } else { |
| 672 | 698 # range == "window" |
| 673 fromto.RC <- list(c(-(SW * pc)/2 + ppm.value, (SW * pc)/2 + ppm.value)) # automatic fromto values in ppm | 699 # fromto.RC is already user-defined |
| 674 colindex <- as.numeric(colnames(Spectrum_data)) | 700 if (ppm.ir == TRUE) { |
| 675 | 701 colindex <- as.numeric(colnames(Spectrum_data)) |
| 676 } else { | 702 } else { |
| 677 # range == "window" | 703 colindex <- 1:m |
| 678 # fromto.RC is already user-defined | 704 } |
| 679 if (ppm.ir == TRUE) { | 705 } |
| 680 colindex <- as.numeric(colnames(Spectrum_data)) | 706 |
| 681 } else { | 707 # index intervals taking into account the different elements in the list fromto.RC |
| 682 colindex <- 1:m | 708 Int <- vector("list", length(fromto.RC)) |
| 683 } | |
| 684 } | |
| 685 | |
| 686 # index intervals taking into account the different elements in the list fromto.RC | |
| 687 Int <- vector("list", length(fromto.RC)) | |
| 688 for (i in 1:length(fromto.RC)) { | |
| 689 Int[[i]] <- indexInterval(colindex, from = fromto.RC[[i]][1], | |
| 690 to = fromto.RC[[i]][2], inclusive = TRUE) | |
| 691 } | |
| 692 | |
| 693 # define Data as the cropped spectrum including the index intervals | |
| 694 # outside the research zone, the intensities are set to the minimal | |
| 695 # intensity of the research zone | |
| 696 | |
| 697 if (n > 1){ | |
| 698 Data <- apply(Re(Spectrum_data[,unlist(Int)]),1, function(x) rep(min(x), m)) | |
| 699 Data <- t(Data) | |
| 700 Data[,unlist(Int)] <- Re(Spectrum_data[,unlist(Int)]) | |
| 701 } else { | |
| 702 Data <- rep(min(Re(Spectrum_data)) ,m) | |
| 703 Data[unlist(Int)] <- Re(Spectrum_data[unlist(Int)]) | |
| 704 } | |
| 705 | |
| 706 } | |
| 707 | |
| 708 | |
| 709 # Apply the peak location search method ('thres' or 'max') on spectra | |
| 710 # ----------------------------------------------------------------------- | |
| 711 | |
| 712 if (method == "thres") { | |
| 713 TMSPpeaks <- apply(Data, 1, findTMSPpeak, c = c, direction = direction) | |
| 714 } else { # method == "max | |
| 715 TMSPpeaks <- apply(Re(Data), 1, which.max) | |
| 716 } | |
| 717 | |
| 718 | |
| 719 # Shift spectra according to the TMSPpeaks found -------------------------------- | |
| 720 # Depends on the shiftHandling | |
| 721 | |
| 722 # TMSPpeaks is a column index | |
| 723 maxpeak <- max(TMSPpeaks) # max accross spectra | |
| 724 minpeak <- min(TMSPpeaks) # min accross spectra | |
| 725 | |
| 726 | |
| 727 if (shiftHandling %in% c("zerofilling", "NAfilling", "cut")) { | |
| 728 fill <- NA | |
| 729 if (shiftHandling == "zerofilling") { | |
| 730 fill <- 0 | |
| 731 } | |
| 732 | |
| 733 start <- maxpeak - 1 | |
| 734 end <- minpeak - m | |
| 735 | |
| 736 # ppm values of each interval for the whole spectral range of the spectral matrix | |
| 737 ppmScale <- (start:end) * ppmInterval | |
| 738 | |
| 739 # check if ppm.value is in the ppmScale interval | |
| 740 if(ppm.value < min(ppmScale) | ppm.value > max(ppmScale)) { | |
| 741 warning("ppm.value = ", ppm.value, " is not in the ppm interval [", | |
| 742 round(min(ppmScale),2), ",", round(max(ppmScale),2), "], and is set to its default ppm.value 0") | |
| 743 ppm.value = 0 | |
| 744 } | |
| 745 | |
| 746 # if ppm.value != 0, ppmScale is adapted | |
| 747 ppmScale <- ppmScale + ppm.value | |
| 748 | |
| 749 # create the spectral matrix with realigned spectra | |
| 750 Spectrum_data_calib <- matrix(fill, nrow = n, ncol = -(end - start) + 1, | |
| 751 dimnames = list(rownames(Spectrum_data), ppmScale)) | |
| 752 | |
| 753 # fills in Spectrum_data_calib with shifted spectra | |
| 754 for (i in 1:n) { | |
| 755 shift <- (1 - TMSPpeaks[i]) + start | |
| 756 Spectrum_data_calib[i, (1 + shift):(m + shift)] <- Spectrum_data[i, ] | |
| 757 } | |
| 758 | |
| 759 if (shiftHandling == "cut") { | |
| 760 Spectrum_data_calib = as.matrix(stats::na.omit(t(Spectrum_data_calib))) | |
| 761 Spectrum_data_calib = t(Spectrum_data_calib) | |
| 762 base::attr(Spectrum_data_calib, "na.action") <- NULL | |
| 763 } | |
| 764 | |
| 765 | |
| 766 } else { | |
| 767 # circular | |
| 768 start <- 1 - maxpeak | |
| 769 end <- m - maxpeak | |
| 770 | |
| 771 ppmScale <- (start:end) * ppmInterval | |
| 772 | |
| 773 # check if ppm.value in is the ppmScale interval | |
| 774 if(ppm.value < min(ppmScale) | ppm.value > max(ppmScale)) { | |
| 775 warning("ppm.value = ", ppm.value, " is not in the ppm interval [", | |
| 776 round(min(ppmScale),2), ",", round(max(ppmScale),2), "], and is set to its default ppm.value 0") | |
| 777 ppm.value = 0 | |
| 778 } | |
| 779 | |
| 780 # if ppm.value != 0, ppmScale is adapted | |
| 781 ppmScale <- ppmScale + ppm.value | |
| 782 | |
| 783 # create the spectral matrix with realigned spectra | |
| 784 Spectrum_data_calib <- matrix(nrow=n, ncol=end-start+1, | |
| 785 dimnames=list(rownames(Spectrum_data), ppmScale)) | |
| 786 | |
| 787 # fills in Spectrum_data_calib with shifted spectra | |
| 788 for (i in 1:n) { | |
| 789 shift <- (maxpeak-TMSPpeaks[i]) | |
| 790 Spectrum_data_calib[i,(1+shift):m] <- Spectrum_data[i,1:(m-shift)] | |
| 791 if (shift > 0) { | |
| 792 Spectrum_data_calib[i,1:shift] <- Spectrum_data[i,(m-shift+1):m] | |
| 793 } | |
| 794 } | |
| 795 } | |
| 796 | |
| 797 | |
| 798 | |
| 799 | |
| 800 # Plot of the spectra (depending on rowindex_graph) --------------------------------------------------- | |
| 801 | |
| 802 ppm = xstart = value = xend = Legend = NULL # only for R CMD check | |
| 803 | |
| 804 | |
| 805 # with the search zone for TMSP and the location of the peaks just found | |
| 806 if (!is.null(rowindex_graph)) { | |
| 807 | |
| 808 if (range == "window") { | |
| 809 if (ppm.ir == TRUE) { | |
| 810 fromto <- fromto.RC | |
| 811 } else { | |
| 812 fromto <- list() | |
| 813 idcol <- as.numeric(colnames(Spectrum_data)) | |
| 814 for (i in 1:length(fromto.RC)) { | 709 for (i in 1:length(fromto.RC)) { |
| 815 fromto[[i]] <- as.numeric(colnames(Spectrum_data))[fromto.RC[[i]]] | 710 Int[[i]] <- indexInterval(colindex, |
| 816 } | 711 from = fromto.RC[[i]][1], |
| 817 } | 712 to = fromto.RC[[i]][2], inclusive = TRUE |
| 818 } else { | 713 ) |
| 819 fromto <- fromto.RC | 714 } |
| 820 } | 715 |
| 821 | 716 # define Data as the cropped spectrum including the index intervals |
| 822 # TMSPloc in ppm | 717 # outside the research zone, the intensities are set to the minimal |
| 823 TMSPloc <- as.numeric(colnames(Spectrum_data))[TMSPpeaks[rowindex_graph]] | 718 # intensity of the research zone |
| 824 | 719 |
| 825 # num plot per window | 720 if (n > 1) { |
| 826 num.stacked <- 6 | 721 Data <- apply(Re(Spectrum_data[, unlist(Int)]), 1, function(x) rep(min(x), m)) |
| 827 | 722 Data <- t(Data) |
| 828 # rectanglar bands of color for the search zone | 723 Data[, unlist(Int)] <- Re(Spectrum_data[, unlist(Int)]) |
| 829 rects <- data.frame(xstart = sapply(fromto, function(x) x[[1]]), | 724 } else { |
| 830 xend = sapply(fromto, function(x) x[[2]]), | 725 Data <- rep(min(Re(Spectrum_data)), m) |
| 831 Legend = "Peak search zone and location") | 726 Data[unlist(Int)] <- Re(Spectrum_data[unlist(Int)]) |
| 832 | 727 } |
| 833 # vlines for TMSP peak | 728 } |
| 834 addlines <- data.frame(rowname = rownames(Spectrum_data)[rowindex_graph],TMSPloc) | 729 |
| 835 | 730 |
| 836 nn <- length(rowindex_graph) | 731 # Apply the peak location search method ('thres' or 'max') on spectra |
| 837 i <- 1 | 732 # ----------------------------------------------------------------------- |
| 838 j <- 1 | 733 |
| 839 plots <- vector(mode = "list", length = ceiling(nn/num.stacked)) | 734 if (method == "thres") { |
| 840 | 735 TMSPpeaks <- apply(Data, 1, findTMSPpeak, c = c, direction = direction) |
| 841 while (i <= nn) { | 736 } else { # method == "max |
| 842 | 737 TMSPpeaks <- apply(Re(Data), 1, which.max) |
| 843 last <- min(i + num.stacked - 1, nn) | 738 } |
| 844 | 739 |
| 845 melted <- reshape2::melt(Re(Spectrum_data[i:last, ]), | 740 |
| 846 varnames = c("rowname", "ppm")) | 741 # Shift spectra according to the TMSPpeaks found -------------------------------- |
| 847 | 742 # Depends on the shiftHandling |
| 848 plots[[j]] <- ggplot2::ggplot() + ggplot2::theme_bw() + | 743 |
| 849 ggplot2::geom_line(data = melted, | 744 # TMSPpeaks is a column index |
| 850 ggplot2::aes(x = ppm, y = value)) + | 745 maxpeak <- max(TMSPpeaks) # max accross spectra |
| 851 ggplot2::geom_rect(data = rects, ggplot2::aes(xmin = xstart, xmax = xend, | 746 minpeak <- min(TMSPpeaks) # min accross spectra |
| 852 ymin = -Inf, ymax = Inf, fill = Legend), alpha = 0.4) + | 747 |
| 853 ggplot2::facet_grid(rowname ~ ., scales = "free_y") + | 748 |
| 854 ggplot2::theme(legend.position = "none") + | 749 if (shiftHandling %in% c("zerofilling", "NAfilling", "cut")) { |
| 855 ggplot2::geom_vline(data = addlines, ggplot2::aes(xintercept = TMSPloc), | 750 fill <- NA |
| 856 color = "red", show.legend = TRUE) + | 751 if (shiftHandling == "zerofilling") { |
| 857 ggplot2::ggtitle("Peak search zone and location") + | 752 fill <- 0 |
| 858 ggplot2::theme(legend.position = "top", legend.text = ggplot2::element_text()) | 753 } |
| 859 | 754 |
| 860 | 755 start <- maxpeak - 1 |
| 861 | 756 end <- minpeak - m |
| 862 if ((melted[1, "ppm"] - melted[(dim(melted)[1]), "ppm"]) > 0) { | 757 |
| 863 plots[[j]] <- plots[[j]] + ggplot2::scale_x_reverse() | 758 # ppm values of each interval for the whole spectral range of the spectral matrix |
| 864 } | 759 ppmScale <- (start:end) * ppmInterval |
| 865 | 760 |
| 866 i <- last + 1 | 761 # check if ppm.value is in the ppmScale interval |
| 867 j <- j + 1 | 762 if (ppm.value < min(ppmScale) | ppm.value > max(ppmScale)) { |
| 868 } | 763 warning( |
| 869 | 764 "ppm.value = ", ppm.value, " is not in the ppm interval [", |
| 870 plots | 765 round(min(ppmScale), 2), ",", round(max(ppmScale), 2), "], and is set to its default ppm.value 0" |
| 871 } | 766 ) |
| 872 | 767 ppm.value <- 0 |
| 873 | 768 } |
| 874 # Return the results ---------------------------------------------- | 769 |
| 875 Spectrum_data <- endTreatment("InternalReferencing", begin_info, Spectrum_data_calib) | 770 # if ppm.value != 0, ppmScale is adapted |
| 876 | 771 ppmScale <- ppmScale + ppm.value |
| 877 if (is.null(plots)) { | 772 |
| 878 return(Spectrum_data) | 773 # create the spectral matrix with realigned spectra |
| 879 } else { | 774 Spectrum_data_calib <- matrix(fill, |
| 880 return(list(Spectrum_data = Spectrum_data, plots = plots)) | 775 nrow = n, ncol = -(end - start) + 1, |
| 881 } | 776 dimnames = list(rownames(Spectrum_data), ppmScale) |
| 882 | 777 ) |
| 778 | |
| 779 # fills in Spectrum_data_calib with shifted spectra | |
| 780 for (i in 1:n) { | |
| 781 shift <- (1 - TMSPpeaks[i]) + start | |
| 782 Spectrum_data_calib[i, (1 + shift):(m + shift)] <- Spectrum_data[i, ] | |
| 783 } | |
| 784 | |
| 785 if (shiftHandling == "cut") { | |
| 786 Spectrum_data_calib <- as.matrix(stats::na.omit(t(Spectrum_data_calib))) | |
| 787 Spectrum_data_calib <- t(Spectrum_data_calib) | |
| 788 base::attr(Spectrum_data_calib, "na.action") <- NULL | |
| 789 } | |
| 790 } else { | |
| 791 # circular | |
| 792 start <- 1 - maxpeak | |
| 793 end <- m - maxpeak | |
| 794 | |
| 795 ppmScale <- (start:end) * ppmInterval | |
| 796 | |
| 797 # check if ppm.value in is the ppmScale interval | |
| 798 if (ppm.value < min(ppmScale) | ppm.value > max(ppmScale)) { | |
| 799 warning( | |
| 800 "ppm.value = ", ppm.value, " is not in the ppm interval [", | |
| 801 round(min(ppmScale), 2), ",", round(max(ppmScale), 2), "], and is set to its default ppm.value 0" | |
| 802 ) | |
| 803 ppm.value <- 0 | |
| 804 } | |
| 805 | |
| 806 # if ppm.value != 0, ppmScale is adapted | |
| 807 ppmScale <- ppmScale + ppm.value | |
| 808 | |
| 809 # create the spectral matrix with realigned spectra | |
| 810 Spectrum_data_calib <- matrix( | |
| 811 nrow = n, ncol = end - start + 1, | |
| 812 dimnames = list(rownames(Spectrum_data), ppmScale) | |
| 813 ) | |
| 814 | |
| 815 # fills in Spectrum_data_calib with shifted spectra | |
| 816 for (i in 1:n) { | |
| 817 shift <- (maxpeak - TMSPpeaks[i]) | |
| 818 Spectrum_data_calib[i, (1 + shift):m] <- Spectrum_data[i, 1:(m - shift)] | |
| 819 if (shift > 0) { | |
| 820 Spectrum_data_calib[i, 1:shift] <- Spectrum_data[i, (m - shift + 1):m] | |
| 821 } | |
| 822 } | |
| 823 } | |
| 824 | |
| 825 | |
| 826 | |
| 827 | |
| 828 # Plot of the spectra (depending on rowindex_graph) --------------------------------------------------- | |
| 829 | |
| 830 ppm <- xstart <- value <- xend <- Legend <- NULL # only for R CMD check | |
| 831 | |
| 832 | |
| 833 # with the search zone for TMSP and the location of the peaks just found | |
| 834 if (!is.null(rowindex_graph)) { | |
| 835 if (range == "window") { | |
| 836 if (ppm.ir == TRUE) { | |
| 837 fromto <- fromto.RC | |
| 838 } else { | |
| 839 fromto <- list() | |
| 840 idcol <- as.numeric(colnames(Spectrum_data)) | |
| 841 for (i in 1:length(fromto.RC)) { | |
| 842 fromto[[i]] <- as.numeric(colnames(Spectrum_data))[fromto.RC[[i]]] | |
| 843 } | |
| 844 } | |
| 845 } else { | |
| 846 fromto <- fromto.RC | |
| 847 } | |
| 848 | |
| 849 # TMSPloc in ppm | |
| 850 TMSPloc <- as.numeric(colnames(Spectrum_data))[TMSPpeaks[rowindex_graph]] | |
| 851 | |
| 852 # num plot per window | |
| 853 num.stacked <- 6 | |
| 854 | |
| 855 # rectanglar bands of color for the search zone | |
| 856 rects <- data.frame( | |
| 857 xstart = sapply(fromto, function(x) x[[1]]), | |
| 858 xend = sapply(fromto, function(x) x[[2]]), | |
| 859 Legend = "Peak search zone and location" | |
| 860 ) | |
| 861 | |
| 862 # vlines for TMSP peak | |
| 863 addlines <- data.frame(rowname = rownames(Spectrum_data)[rowindex_graph], TMSPloc) | |
| 864 | |
| 865 nn <- length(rowindex_graph) | |
| 866 i <- 1 | |
| 867 j <- 1 | |
| 868 plots <- vector(mode = "list", length = ceiling(nn / num.stacked)) | |
| 869 | |
| 870 while (i <= nn) { | |
| 871 last <- min(i + num.stacked - 1, nn) | |
| 872 | |
| 873 melted <- reshape2::melt(Re(Spectrum_data[i:last, ]), | |
| 874 varnames = c("rowname", "ppm") | |
| 875 ) | |
| 876 | |
| 877 plots[[j]] <- ggplot2::ggplot() + | |
| 878 ggplot2::theme_bw() + | |
| 879 ggplot2::geom_line( | |
| 880 data = melted, | |
| 881 ggplot2::aes(x = ppm, y = value) | |
| 882 ) + | |
| 883 ggplot2::geom_rect(data = rects, ggplot2::aes( | |
| 884 xmin = xstart, xmax = xend, | |
| 885 ymin = -Inf, ymax = Inf, fill = Legend | |
| 886 ), alpha = 0.4) + | |
| 887 ggplot2::facet_grid(rowname ~ ., scales = "free_y") + | |
| 888 ggplot2::theme(legend.position = "none") + | |
| 889 ggplot2::geom_vline( | |
| 890 data = addlines, ggplot2::aes(xintercept = TMSPloc), | |
| 891 color = "red", show.legend = TRUE | |
| 892 ) + | |
| 893 ggplot2::ggtitle("Peak search zone and location") + | |
| 894 ggplot2::theme(legend.position = "top", legend.text = ggplot2::element_text()) | |
| 895 | |
| 896 | |
| 897 | |
| 898 if ((melted[1, "ppm"] - melted[(dim(melted)[1]), "ppm"]) > 0) { | |
| 899 plots[[j]] <- plots[[j]] + ggplot2::scale_x_reverse() | |
| 900 } | |
| 901 | |
| 902 i <- last + 1 | |
| 903 j <- j + 1 | |
| 904 } | |
| 905 | |
| 906 plots | |
| 907 } | |
| 908 | |
| 909 | |
| 910 # Return the results ---------------------------------------------- | |
| 911 Spectrum_data <- endTreatment("InternalReferencing", begin_info, Spectrum_data_calib) | |
| 912 | |
| 913 if (is.null(plots)) { | |
| 914 return(Spectrum_data) | |
| 915 } else { | |
| 916 return(list(Spectrum_data = Spectrum_data, plots = plots)) | |
| 917 } | |
| 883 } | 918 } |
| 884 | 919 |
| 885 ## ==================================================== | 920 ## ==================================================== |
| 886 # ZeroOrderPhaseCorrection | 921 # ZeroOrderPhaseCorrection |
| 887 ## ==================================================== | 922 ## ==================================================== |
| 888 | 923 |
| 889 ZeroOrderPhaseCorrection <- function(Spectrum_data, type.zopc = c("rms", "manual", "max"), | 924 ZeroOrderPhaseCorrection <- function(Spectrum_data, type.zopc = c("rms", "manual", "max"), |
| 890 plot_rms = NULL, returnAngle = FALSE, createWindow = TRUE, | 925 plot_rms = NULL, returnAngle = FALSE, createWindow = TRUE, |
| 891 angle = NULL, plot_spectra = FALSE, | 926 angle = NULL, plot_spectra = FALSE, |
| 892 ppm.zopc = TRUE, exclude.zopc = list(c(5.1,4.5))) { | 927 ppm.zopc = TRUE, exclude.zopc = list(c(5.1, 4.5))) { |
| 893 | 928 # Data initialisation and checks ---------------------------------------------- |
| 894 | 929 |
| 895 # Data initialisation and checks ---------------------------------------------- | 930 # Entry arguments definition: |
| 896 | 931 # plot_rms : graph of rms criterion returnAngle : if TRUE, returns avector of |
| 897 # Entry arguments definition: | 932 # optimal angles createWindow : for plot_rms plots angle : If angle is not NULL, |
| 898 # plot_rms : graph of rms criterion returnAngle : if TRUE, returns avector of | 933 # spectra are rotated according to the angle vector values |
| 899 # optimal angles createWindow : for plot_rms plots angle : If angle is not NULL, | 934 # plot_spectra : if TRUE, plot rotated spectra |
| 900 # spectra are rotated according to the angle vector values | 935 |
| 901 # plot_spectra : if TRUE, plot rotated spectra | 936 |
| 902 | 937 |
| 903 | 938 begin_info <- beginTreatment("ZeroOrderPhaseCorrection", Spectrum_data) |
| 904 | 939 Spectrum_data <- begin_info[["Signal_data"]] |
| 905 begin_info <- beginTreatment("ZeroOrderPhaseCorrection", Spectrum_data) | 940 n <- nrow(Spectrum_data) |
| 906 Spectrum_data <- begin_info[["Signal_data"]] | 941 m <- ncol(Spectrum_data) |
| 907 n <- nrow(Spectrum_data) | 942 |
| 908 m <- ncol(Spectrum_data) | 943 rnames <- rownames(Spectrum_data) |
| 909 | 944 |
| 910 rnames <- rownames(Spectrum_data) | 945 # Check input arguments |
| 911 | 946 type.zopc <- match.arg(type.zopc) |
| 912 # Check input arguments | 947 checkArg(ppm.zopc, c("bool")) |
| 913 type.zopc <- match.arg(type.zopc) | 948 checkArg(unlist(exclude.zopc), c("num"), can.be.null = TRUE) |
| 914 checkArg(ppm.zopc, c("bool")) | 949 |
| 915 checkArg(unlist(exclude.zopc), c("num"), can.be.null = TRUE) | 950 |
| 916 | 951 # type.zopc in c("max", "rms") ----------------------------------------- |
| 917 | 952 if (type.zopc %in% c("max", "rms")) { |
| 918 # type.zopc in c("max", "rms") ----------------------------------------- | 953 # angle is found by optimization |
| 919 if (type.zopc %in% c("max", "rms")) { | 954 |
| 920 # angle is found by optimization | 955 # rms function to be optimised |
| 921 | 956 rms <- function(ang, y, meth = c("max", "rms")) { |
| 922 # rms function to be optimised | 957 # if (debug_plot) { graphics::abline(v=ang, col='gray60') } |
| 923 rms <- function(ang, y, meth = c("max", "rms")) { | 958 roty <- y * exp(complex(real = 0, imaginary = ang)) # spectrum rotation |
| 924 # if (debug_plot) { graphics::abline(v=ang, col='gray60') } | 959 Rey <- Re(roty) |
| 925 roty <- y * exp(complex(real = 0, imaginary = ang)) # spectrum rotation | 960 |
| 926 Rey <- Re(roty) | 961 if (meth == "rms") { |
| 927 | 962 ReyPos <- Rey[Rey >= 0] # select positive intensities |
| 928 if (meth == "rms") { | 963 POSss <- sum((ReyPos)^2, na.rm = TRUE) # SS for positive intensities |
| 929 ReyPos <- Rey[Rey >= 0] # select positive intensities | 964 ss <- sum((Rey)^2, na.rm = TRUE) # SS for all intensities |
| 930 POSss <- sum((ReyPos)^2, na.rm = TRUE) # SS for positive intensities | 965 return(POSss / ss) # criterion : SS for positive values / SS for all intensities |
| 931 ss <- sum((Rey)^2, na.rm = TRUE) # SS for all intensities | 966 } else { |
| 932 return(POSss/ss) # criterion : SS for positive values / SS for all intensities | 967 maxi <- max(Rey, na.rm = TRUE) |
| 933 } else { | 968 return(maxi) |
| 934 maxi <- max(Rey, na.rm = TRUE) | 969 } |
| 935 return(maxi) | 970 } |
| 936 } | 971 |
| 937 } | 972 |
| 938 | 973 # Define the interval where to search for (by defining Data) |
| 939 | 974 if (is.null(exclude.zopc)) { |
| 975 Data <- Spectrum_data | |
| 976 } else { | |
| 977 # if ppm.zopc == TRUE, then exclude.zopc is in the colnames values, else, in the column | |
| 978 # index | |
| 979 if (ppm.zopc == TRUE) { | |
| 980 colindex <- as.numeric(colnames(Spectrum_data)) | |
| 981 } else { | |
| 982 colindex <- 1:m | |
| 983 } | |
| 984 | |
| 985 # Second check for the argument exclude.zopc | |
| 986 diff <- diff(unlist(exclude.zopc))[1:length(diff(unlist(exclude.zopc))) %% 2 != 0] | |
| 987 for (i in 1:length(diff)) { | |
| 988 if (ppm.zopc == TRUE & diff[i] >= 0) { | |
| 989 stop(paste("Invalid region removal because from <= to in ppm.zopc")) | |
| 990 } else if (ppm.zopc == FALSE & diff[i] <= 0) { | |
| 991 stop(paste("Invalid region removal because from >= to in column index")) | |
| 992 } | |
| 993 } | |
| 994 | |
| 995 | |
| 996 Int <- vector("list", length(exclude.zopc)) | |
| 997 for (i in 1:length(exclude.zopc)) { | |
| 998 Int[[i]] <- indexInterval(colindex, | |
| 999 from = exclude.zopc[[i]][1], | |
| 1000 to = exclude.zopc[[i]][2], inclusive = TRUE | |
| 1001 ) | |
| 1002 } | |
| 1003 | |
| 1004 vector <- rep(1, m) | |
| 1005 vector[unlist(Int)] <- 0 | |
| 1006 if (n > 1) { | |
| 1007 Data <- sweep(Spectrum_data, MARGIN = 2, FUN = "*", vector) # Cropped_Spectrum | |
| 1008 } else { | |
| 1009 Data <- Spectrum_data * vector | |
| 1010 } # Cropped_Spectrum | |
| 1011 } | |
| 1012 | |
| 1013 | |
| 1014 # angles computation | |
| 1015 Angle <- c() | |
| 1016 for (k in 1:n) | |
| 1017 { | |
| 1018 # The function is rms is periodic (period 2pi) and it seems that there is a phase | |
| 1019 # x such that rms is unimodal (i.e. decreasing then increasing) on the interval | |
| 1020 # [x; x+2pi]. However, if we do the optimization for example on [x-pi; x+pi], | |
| 1021 # instead of being decreasing then increasing, it might be increasing then | |
| 1022 # decreasing in which case optimize, thinking it is a valley will have to choose | |
| 1023 # between the left or the right of this hill and if it chooses wrong, it will end | |
| 1024 # up at like x-pi while the minimum is close to x+pi. | |
| 1025 | |
| 1026 # Supposing that rms is unimodal, the classical 1D unimodal optimization will | |
| 1027 # work in either [-pi;pi] or [0;2pi] (this is not easy to be convinced by that I | |
| 1028 # agree) and we can check which one it is simply by the following trick | |
| 1029 | |
| 1030 f0 <- rms(0, Data[k, ], meth = type.zopc) | |
| 1031 fpi <- rms(pi, Data[k, ], meth = type.zopc) | |
| 1032 if (f0 < fpi) { | |
| 1033 interval <- c(-pi, pi) | |
| 1034 } else { | |
| 1035 interval <- c(0, 2 * pi) | |
| 1036 } | |
| 1037 | |
| 1038 # graphs of rms criteria | |
| 1039 debug_plot <- F # rms should not plot anything now, only when called by optimize | |
| 1040 if (!is.null(plot_rms) && rnames[k] %in% plot_rms) { | |
| 1041 x <- seq(min(interval), max(interval), length.out = 100) | |
| 1042 y <- rep(1, 100) | |
| 1043 for (K in (1:100)) { | |
| 1044 y[K] <- rms(x[K], Data[k, ], meth = type.zopc) | |
| 1045 } | |
| 1046 if (createWindow == TRUE) { | |
| 1047 grDevices::dev.new(noRStudioGD = FALSE) | |
| 1048 } | |
| 1049 graphics::plot(x, y, | |
| 1050 main = paste( | |
| 1051 "Criterion maximization \n", | |
| 1052 rownames(Data)[k] | |
| 1053 ), ylim = c(0, 1.1), | |
| 1054 ylab = "positiveness criterion", xlab = "angle " | |
| 1055 ) | |
| 1056 debug_plot <- T | |
| 1057 } | |
| 1058 | |
| 1059 # Best angle | |
| 1060 best <- stats::optimize(rms, | |
| 1061 interval = interval, maximum = TRUE, | |
| 1062 y = Data[k, ], meth = type.zopc | |
| 1063 ) | |
| 1064 ang <- best[["maximum"]] | |
| 1065 | |
| 1066 | |
| 1067 if (debug_plot) { | |
| 1068 graphics::abline(v = ang, col = "black") | |
| 1069 graphics::text(x = (ang + 0.1 * ang), y = (y[ang] - 0.1 * y[ang]), labels = round(ang, 3)) | |
| 1070 } | |
| 1071 | |
| 1072 # Spectrum rotation | |
| 1073 Spectrum_data[k, ] <- Spectrum_data[k, ] * exp(complex(real = 0, imaginary = ang)) | |
| 1074 Angle <- c(Angle, ang) | |
| 1075 } | |
| 1076 } else { | |
| 1077 # type.zopc is "manual" ------------------------------------------------------- | |
| 1078 # if Angle is already specified and no optimisation is needed | |
| 1079 Angle <- angle | |
| 1080 | |
| 1081 if (!is.vector(angle)) { | |
| 1082 stop("angle is not a vector") | |
| 1083 } | |
| 1084 | |
| 1085 if (!is.numeric(angle)) { | |
| 1086 stop("angle is not a numeric") | |
| 1087 } | |
| 1088 | |
| 1089 if (length(angle) != n) { | |
| 1090 stop(paste("angle has length", length(angle), "and there are", n, "spectra to rotate.")) | |
| 1091 } | |
| 1092 for (k in 1:n) { | |
| 1093 Spectrum_data[k, ] <- Spectrum_data[k, ] * exp(complex(real = 0, imaginary = -angle[k])) | |
| 1094 } | |
| 1095 } | |
| 1096 | |
| 1097 | |
| 1098 # Draw spectra | |
| 1099 if (plot_spectra == TRUE) { | |
| 1100 nn <- ceiling(n / 4) | |
| 1101 i <- 1 | |
| 1102 for (k in 1:nn) { | |
| 1103 if (createWindow == TRUE) { | |
| 1104 grDevices::dev.new(noRStudioGD = FALSE) | |
| 1105 } | |
| 1106 graphics::par(mfrow = c(4, 2)) | |
| 1107 while (i <= n) { | |
| 1108 last <- min(i + 4 - 1, n) | |
| 1109 graphics::plot(Re(Spectrum_data[i, ]), | |
| 1110 type = "l", ylab = "intensity", | |
| 1111 xlab = "Index", main = paste0(rownames(Spectrum_data)[i], " - Real part") | |
| 1112 ) | |
| 1113 graphics::plot(Im(Spectrum_data[i, ]), | |
| 1114 type = "l", ylab = "intensity", | |
| 1115 xlab = "Index", main = paste0(rownames(Spectrum_data)[i], " - Imaginary part") | |
| 1116 ) | |
| 1117 i <- i + 1 | |
| 1118 } | |
| 1119 i <- last + 1 | |
| 1120 } | |
| 1121 } | |
| 1122 | |
| 1123 | |
| 1124 # Data finalisation ---------------------------------------------- | |
| 1125 | |
| 1126 Spectrum_data <- endTreatment("ZeroOrderPhaseCorrection", begin_info, Spectrum_data) | |
| 1127 if (returnAngle) { | |
| 1128 return(list(Spectrum_data = Spectrum_data, Angle = Angle)) | |
| 1129 } else { | |
| 1130 return(Spectrum_data) | |
| 1131 } | |
| 1132 } | |
| 1133 | |
| 1134 | |
| 1135 ## ==================================================== | |
| 1136 # Baseline Correction | |
| 1137 ## ==================================================== | |
| 1138 BaselineCorrection <- function(Spectrum_data, ptw.bc = TRUE, maxIter = 42, | |
| 1139 lambda.bc = 1e+07, p.bc = 0.05, eps = 1e-08, | |
| 1140 ppm.bc = TRUE, exclude.bc = list(c(5.1, 4.5)), | |
| 1141 returnBaseline = F) { | |
| 1142 # Data initialisation ---------------------------------------------- | |
| 1143 begin_info <- beginTreatment("BaselineCorrection", Spectrum_data, force.real = T) | |
| 1144 Spectrum_data <- begin_info[["Signal_data"]] | |
| 1145 p <- p.bc | |
| 1146 lambda <- lambda.bc | |
| 1147 n <- dim(Spectrum_data)[1] | |
| 1148 m <- dim(Spectrum_data)[2] | |
| 1149 | |
| 1150 | |
| 1151 # Data check | |
| 1152 checkArg(ptw.bc, c("bool")) | |
| 1153 checkArg(maxIter, c("int", "pos")) | |
| 1154 checkArg(lambda, c("num", "pos0")) | |
| 1155 checkArg(p.bc, c("num", "pos0")) | |
| 1156 checkArg(eps, c("num", "pos0")) | |
| 1157 checkArg(returnBaseline, c("bool")) | |
| 1158 checkArg(ppm.bc, c("bool")) | |
| 1159 checkArg(unlist(exclude.bc), c("num"), can.be.null = TRUE) | |
| 1160 | |
| 940 # Define the interval where to search for (by defining Data) | 1161 # Define the interval where to search for (by defining Data) |
| 941 if (is.null(exclude.zopc)) { | 1162 if (is.null(exclude.bc)) { |
| 942 Data <- Spectrum_data | 1163 exclude_index <- NULL |
| 943 } else { | 1164 } else { |
| 944 | 1165 # if ppm.bc == TRUE, then exclude.bc is in the colnames values, else, in the column |
| 945 # if ppm.zopc == TRUE, then exclude.zopc is in the colnames values, else, in the column | 1166 # index |
| 946 # index | 1167 if (ppm.bc == TRUE) { |
| 947 if (ppm.zopc == TRUE) { | 1168 colindex <- as.numeric(colnames(Spectrum_data)) |
| 948 colindex <- as.numeric(colnames(Spectrum_data)) | 1169 } else { |
| 949 } else { | 1170 colindex <- 1:m |
| 950 colindex <- 1:m | 1171 } |
| 951 } | 1172 |
| 952 | 1173 Int <- vector("list", length(exclude.bc)) |
| 953 # Second check for the argument exclude.zopc | 1174 for (i in 1:length(exclude.bc)) { |
| 954 diff <- diff(unlist(exclude.zopc))[1:length(diff(unlist(exclude.zopc)))%%2 !=0] | 1175 Int[[i]] <- indexInterval(colindex, |
| 955 for (i in 1:length(diff)) { | 1176 from = exclude.bc[[i]][1], |
| 956 if (ppm.zopc == TRUE & diff[i] >= 0) { | 1177 to = exclude.bc[[i]][2], inclusive = TRUE |
| 957 stop(paste("Invalid region removal because from <= to in ppm.zopc")) | 1178 ) |
| 958 } else if (ppm.zopc == FALSE & diff[i] <= 0) {stop(paste("Invalid region removal because from >= to in column index"))} | 1179 } |
| 959 } | 1180 exclude_index <- unlist(Int) |
| 960 | 1181 } |
| 961 | 1182 |
| 962 Int <- vector("list", length(exclude.zopc)) | 1183 # Baseline Correction implementation definition ---------------------- |
| 963 for (i in 1:length(exclude.zopc)) { | 1184 |
| 964 Int[[i]] <- indexInterval(colindex, from = exclude.zopc[[i]][1], | 1185 # 2 Ways: either use the function asysm from the ptw package or by |
| 965 to = exclude.zopc[[i]][2], inclusive = TRUE) | 1186 # built-in functions |
| 966 } | 1187 if (ptw.bc) { |
| 967 | 1188 asysm <- ptw::asysm |
| 968 vector <- rep(1, m) | 1189 } else { |
| 969 vector[unlist(Int)] <- 0 | 1190 difsmw <- function(y, lambda, w, d) { |
| 970 if (n > 1) { | 1191 # Weighted smoothing with a finite difference penalty cf Eilers, 2003. |
| 971 Data <- sweep(Spectrum_data, MARGIN = 2, FUN = "*", vector) # Cropped_Spectrum | 1192 # (A perfect smoother) |
| 972 } else { | 1193 # y: signal to be smoothed |
| 973 Data <- Spectrum_data * vector | 1194 # lambda: smoothing parameter |
| 974 } # Cropped_Spectrum | 1195 # w: weights (use0 zeros for missing values) |
| 975 } | 1196 # d: order of differences in penalty (generally 2) |
| 976 | 1197 m <- length(y) |
| 977 | 1198 W <- Matrix::Diagonal(x = w) |
| 978 # angles computation | 1199 E <- Matrix::Diagonal(m) |
| 979 Angle <- c() | 1200 D <- Matrix::diff(E, differences = d) |
| 980 for (k in 1:n) | 1201 C <- Matrix::chol(W + lambda * t(D) %*% D) |
| 981 { | 1202 x <- Matrix::solve(C, Matrix::solve(t(C), w * y)) |
| 982 # The function is rms is periodic (period 2pi) and it seems that there is a phase | 1203 return(as.numeric(x)) |
| 983 # x such that rms is unimodal (i.e. decreasing then increasing) on the interval | 1204 } |
| 984 # [x; x+2pi]. However, if we do the optimization for example on [x-pi; x+pi], | 1205 asysm <- function(y, lambda, p, eps, exclude_index) { |
| 985 # instead of being decreasing then increasing, it might be increasing then | 1206 # Baseline estimation with asymmetric least squares |
| 986 # decreasing in which case optimize, thinking it is a valley will have to choose | 1207 # y: signal |
| 987 # between the left or the right of this hill and if it chooses wrong, it will end | 1208 # lambda: smoothing parameter (generally 1e5 to 1e8) |
| 988 # up at like x-pi while the minimum is close to x+pi. | 1209 # p: asymmetry parameter (generally 0.001) |
| 989 | 1210 # d: order of differences in penalty (generally 2) |
| 990 # Supposing that rms is unimodal, the classical 1D unimodal optimization will | 1211 # eps: 1e-8 in ptw package |
| 991 # work in either [-pi;pi] or [0;2pi] (this is not easy to be convinced by that I | 1212 m <- length(y) |
| 992 # agree) and we can check which one it is simply by the following trick | 1213 w <- rep(1, m) |
| 993 | 1214 i <- 1 |
| 994 f0 <- rms(0, Data[k, ],meth = type.zopc) | 1215 repeat { |
| 995 fpi <- rms(pi, Data[k, ], meth = type.zopc) | 1216 z <- difsmw(y, lambda, w, d = 2) |
| 996 if (f0 < fpi) { | 1217 w0 <- w |
| 997 interval <- c(-pi, pi) | 1218 p_vect <- rep((1 - p), m) # if y <= z + eps |
| 998 } else { | 1219 p_vect[y > z + eps | y < 0] <- p # if y > z + eps | y < 0 |
| 999 interval <- c(0, 2 * pi) | 1220 if (!is.null(exclude_index)) { |
| 1000 } | 1221 p_vect[exclude_index] <- 0 # if exclude area |
| 1001 | 1222 } |
| 1002 # graphs of rms criteria | 1223 |
| 1003 debug_plot <- F # rms should not plot anything now, only when called by optimize | 1224 w <- p_vect |
| 1004 if (!is.null(plot_rms) && rnames[k] %in% plot_rms) { | 1225 # w <- p * (y > z + eps | y < 0) + (1 - p) * (y <= z + eps) |
| 1005 x <- seq(min(interval), max(interval), length.out = 100) | 1226 |
| 1006 y <- rep(1, 100) | 1227 if (sum(abs(w - w0)) == 0) { |
| 1007 for (K in (1:100)) { | 1228 break |
| 1008 y[K] <- rms(x[K], Data[k, ], meth = type.zopc) | 1229 } |
| 1009 } | 1230 i <- i + 1 |
| 1010 if (createWindow == TRUE) { | 1231 if (i > maxIter) { |
| 1011 grDevices::dev.new(noRStudioGD = FALSE) | 1232 warning("cannot find Baseline estimation in asysm") |
| 1012 } | 1233 break |
| 1013 graphics::plot(x, y, main = paste("Criterion maximization \n", | 1234 } |
| 1014 rownames(Data)[k]), ylim = c(0, 1.1), | 1235 } |
| 1015 ylab = "positiveness criterion", xlab = "angle ") | 1236 return(z) |
| 1016 debug_plot <- T | 1237 } |
| 1017 } | 1238 } |
| 1018 | 1239 |
| 1019 # Best angle | 1240 # Baseline estimation ---------------------------------------------- |
| 1020 best <- stats::optimize(rms, interval = interval, maximum = TRUE, | 1241 Baseline <- matrix(NA, nrow = nrow(Spectrum_data), ncol = ncol(Spectrum_data)) |
| 1021 y = Data[k,], meth = type.zopc) | 1242 |
| 1022 ang <- best[["maximum"]] | 1243 # for (k in 1:n) { |
| 1023 | 1244 # Baseline[k, ] <- asysm(y = Spectrum_data[k, ], lambda = lambda, p = p, eps = eps) |
| 1024 | 1245 |
| 1025 if (debug_plot) { | 1246 if (ptw.bc) { |
| 1026 graphics::abline(v = ang, col = "black") | 1247 Baseline <- apply(Spectrum_data, 1, asysm, |
| 1027 graphics::text(x = (ang+0.1*ang), y = (y[ang]-0.1*y[ang]), labels = round(ang, 3)) | 1248 lambda = lambda, p = p, |
| 1028 } | 1249 eps = eps |
| 1029 | 1250 ) |
| 1030 # Spectrum rotation | 1251 } else { |
| 1031 Spectrum_data[k, ] <- Spectrum_data[k, ] * exp(complex(real = 0, imaginary = ang)) | 1252 Baseline <- apply(Spectrum_data, 1, asysm, |
| 1032 Angle <- c(Angle, ang) | 1253 lambda = lambda, p = p, |
| 1033 } | 1254 eps = eps, exclude_index = exclude_index |
| 1034 | 1255 ) |
| 1035 | 1256 } |
| 1036 | 1257 |
| 1037 | 1258 |
| 1038 } else { | 1259 Spectrum_data <- Spectrum_data - t(Baseline) |
| 1039 # type.zopc is "manual" ------------------------------------------------------- | 1260 # } |
| 1040 # if Angle is already specified and no optimisation is needed | 1261 |
| 1041 Angle <- angle | 1262 # Data finalisation ---------------------------------------------- |
| 1042 | 1263 Spectrum_data <- endTreatment("BaselineCorrection", begin_info, Spectrum_data) # FIXME create removeImaginary filter ?? |
| 1043 if (!is.vector(angle)) { | 1264 |
| 1044 stop("angle is not a vector") | 1265 if (returnBaseline) { |
| 1045 } | 1266 return(list(Spectrum_data = Spectrum_data, Baseline = Baseline)) |
| 1046 | 1267 } else { |
| 1047 if (!is.numeric(angle)) { | 1268 return(Spectrum_data) |
| 1048 stop("angle is not a numeric") | 1269 } |
| 1049 } | 1270 } |
| 1050 | 1271 |
| 1051 if (length(angle) != n) { | |
| 1052 stop(paste("angle has length", length(angle), "and there are", n, "spectra to rotate.")) | |
| 1053 } | |
| 1054 for (k in 1:n) { | |
| 1055 Spectrum_data[k, ] <- Spectrum_data[k, ] * exp(complex(real = 0, imaginary = - angle[k])) | |
| 1056 } | |
| 1057 } | |
| 1058 | |
| 1059 | |
| 1060 # Draw spectra | |
| 1061 if (plot_spectra == TRUE) { | |
| 1062 nn <- ceiling(n/4) | |
| 1063 i <- 1 | |
| 1064 for (k in 1:nn) { | |
| 1065 if (createWindow == TRUE) { | |
| 1066 grDevices::dev.new(noRStudioGD = FALSE) | |
| 1067 } | |
| 1068 graphics::par(mfrow = c(4, 2)) | |
| 1069 while (i <= n) { | |
| 1070 last <- min(i + 4 - 1, n) | |
| 1071 graphics::plot(Re(Spectrum_data[i, ]), type = "l", ylab = "intensity", | |
| 1072 xlab = "Index", main = paste0(rownames(Spectrum_data)[i], " - Real part")) | |
| 1073 graphics::plot(Im(Spectrum_data[i, ]), type = "l", ylab = "intensity", | |
| 1074 xlab = "Index", main = paste0(rownames(Spectrum_data)[i], " - Imaginary part")) | |
| 1075 i <- i + 1 | |
| 1076 } | |
| 1077 i <- last + 1 | |
| 1078 } | |
| 1079 } | |
| 1080 | |
| 1081 | |
| 1082 # Data finalisation ---------------------------------------------- | |
| 1083 | |
| 1084 Spectrum_data <- endTreatment("ZeroOrderPhaseCorrection", begin_info, Spectrum_data) | |
| 1085 if (returnAngle) { | |
| 1086 return(list(Spectrum_data = Spectrum_data, Angle = Angle)) | |
| 1087 } else { | |
| 1088 return(Spectrum_data) | |
| 1089 } | |
| 1090 } | |
| 1091 | 1272 |
| 1092 | 1273 |
| 1093 ## ==================================================== | 1274 ## ==================================================== |
| 1094 # Baseline Correction | 1275 # NegativeValuesZeroing |
| 1095 ## ==================================================== | 1276 ## ==================================================== |
| 1096 BaselineCorrection <- function(Spectrum_data, ptw.bc = TRUE, maxIter = 42, | |
| 1097 lambda.bc = 1e+07, p.bc = 0.05, eps = 1e-08, | |
| 1098 ppm.bc = TRUE, exclude.bc = list(c(5.1,4.5)), | |
| 1099 returnBaseline = F) { | |
| 1100 | |
| 1101 # Data initialisation ---------------------------------------------- | |
| 1102 begin_info <- beginTreatment("BaselineCorrection", Spectrum_data, force.real = T) | |
| 1103 Spectrum_data <- begin_info[["Signal_data"]] | |
| 1104 p <- p.bc | |
| 1105 lambda <- lambda.bc | |
| 1106 n <- dim(Spectrum_data)[1] | |
| 1107 m <- dim(Spectrum_data)[2] | |
| 1108 | |
| 1109 | |
| 1110 # Data check | |
| 1111 checkArg(ptw.bc, c("bool")) | |
| 1112 checkArg(maxIter, c("int", "pos")) | |
| 1113 checkArg(lambda, c("num", "pos0")) | |
| 1114 checkArg(p.bc, c("num", "pos0")) | |
| 1115 checkArg(eps, c("num", "pos0")) | |
| 1116 checkArg(returnBaseline, c("bool")) | |
| 1117 checkArg(ppm.bc, c("bool")) | |
| 1118 checkArg(unlist(exclude.bc), c("num"), can.be.null = TRUE) | |
| 1119 | |
| 1120 # Define the interval where to search for (by defining Data) | |
| 1121 if (is.null(exclude.bc)) { | |
| 1122 exclude_index <- NULL | |
| 1123 } else { | |
| 1124 # if ppm.bc == TRUE, then exclude.bc is in the colnames values, else, in the column | |
| 1125 # index | |
| 1126 if (ppm.bc == TRUE) { | |
| 1127 colindex <- as.numeric(colnames(Spectrum_data)) | |
| 1128 } else { | |
| 1129 colindex <- 1:m | |
| 1130 } | |
| 1131 | |
| 1132 Int <- vector("list", length(exclude.bc)) | |
| 1133 for (i in 1:length(exclude.bc)) { | |
| 1134 Int[[i]] <- indexInterval(colindex, from = exclude.bc[[i]][1], | |
| 1135 to = exclude.bc[[i]][2], inclusive = TRUE) | |
| 1136 } | |
| 1137 exclude_index <- unlist(Int) | |
| 1138 } | |
| 1139 | |
| 1140 # Baseline Correction implementation definition ---------------------- | |
| 1141 | |
| 1142 # 2 Ways: either use the function asysm from the ptw package or by | |
| 1143 # built-in functions | |
| 1144 if (ptw.bc) { | |
| 1145 asysm <- ptw::asysm | |
| 1146 } else { | |
| 1147 difsmw <- function(y, lambda, w, d) { | |
| 1148 # Weighted smoothing with a finite difference penalty cf Eilers, 2003. | |
| 1149 # (A perfect smoother) | |
| 1150 # y: signal to be smoothed | |
| 1151 # lambda: smoothing parameter | |
| 1152 # w: weights (use0 zeros for missing values) | |
| 1153 # d: order of differences in penalty (generally 2) | |
| 1154 m <- length(y) | |
| 1155 W <- Matrix::Diagonal(x=w) | |
| 1156 E <- Matrix::Diagonal(m) | |
| 1157 D <- Matrix::diff(E, differences = d) | |
| 1158 C <- Matrix::chol(W + lambda * t(D) %*% D) | |
| 1159 x <- Matrix::solve(C, Matrix::solve(t(C), w * y)) | |
| 1160 return(as.numeric(x)) | |
| 1161 | |
| 1162 } | |
| 1163 asysm <- function(y, lambda, p, eps, exclude_index) { | |
| 1164 # Baseline estimation with asymmetric least squares | |
| 1165 # y: signal | |
| 1166 # lambda: smoothing parameter (generally 1e5 to 1e8) | |
| 1167 # p: asymmetry parameter (generally 0.001) | |
| 1168 # d: order of differences in penalty (generally 2) | |
| 1169 # eps: 1e-8 in ptw package | |
| 1170 m <- length(y) | |
| 1171 w <- rep(1, m) | |
| 1172 i <- 1 | |
| 1173 repeat { | |
| 1174 z <- difsmw(y, lambda, w, d = 2) | |
| 1175 w0 <- w | |
| 1176 p_vect <- rep((1-p), m) # if y <= z + eps | |
| 1177 p_vect[y > z + eps | y < 0] <- p # if y > z + eps | y < 0 | |
| 1178 if(!is.null(exclude_index)){ | |
| 1179 p_vect[exclude_index] <- 0 # if exclude area | |
| 1180 } | |
| 1181 | |
| 1182 w <- p_vect | |
| 1183 # w <- p * (y > z + eps | y < 0) + (1 - p) * (y <= z + eps) | |
| 1184 | |
| 1185 if (sum(abs(w - w0)) == 0) { | |
| 1186 break | |
| 1187 } | |
| 1188 i <- i + 1 | |
| 1189 if (i > maxIter) { | |
| 1190 warning("cannot find Baseline estimation in asysm") | |
| 1191 break | |
| 1192 } | |
| 1193 } | |
| 1194 return(z) | |
| 1195 } | |
| 1196 } | |
| 1197 | |
| 1198 # Baseline estimation ---------------------------------------------- | |
| 1199 Baseline <- matrix(NA, nrow = nrow(Spectrum_data), ncol = ncol(Spectrum_data)) | |
| 1200 | |
| 1201 # for (k in 1:n) { | |
| 1202 # Baseline[k, ] <- asysm(y = Spectrum_data[k, ], lambda = lambda, p = p, eps = eps) | |
| 1203 | |
| 1204 if (ptw.bc ){ | |
| 1205 Baseline <- apply(Spectrum_data,1, asysm, lambda = lambda, p = p, | |
| 1206 eps = eps) | |
| 1207 }else { | |
| 1208 Baseline <- apply(Spectrum_data,1, asysm, lambda = lambda, p = p, | |
| 1209 eps = eps, exclude_index = exclude_index) | |
| 1210 } | |
| 1211 | |
| 1212 | |
| 1213 Spectrum_data <- Spectrum_data - t(Baseline) | |
| 1214 # } | |
| 1215 | |
| 1216 # Data finalisation ---------------------------------------------- | |
| 1217 Spectrum_data <- endTreatment("BaselineCorrection", begin_info, Spectrum_data) # FIXME create removeImaginary filter ?? | |
| 1218 | |
| 1219 if (returnBaseline) { | |
| 1220 return(list(Spectrum_data = Spectrum_data, Baseline = Baseline)) | |
| 1221 } else { | |
| 1222 return(Spectrum_data) | |
| 1223 } | |
| 1224 } | |
| 1225 | |
| 1226 | |
| 1227 | |
| 1228 ## ==================================================== | |
| 1229 # NegativeValuesZeroing | |
| 1230 ## ==================================================== | |
| 1231 | 1277 |
| 1232 NegativeValuesZeroing <- function(Spectrum_data) { | 1278 NegativeValuesZeroing <- function(Spectrum_data) { |
| 1233 # Data initialisation and checks ---------------------------------------------- | 1279 # Data initialisation and checks ---------------------------------------------- |
| 1234 begin_info <- beginTreatment("NegativeValuesZeroing", Spectrum_data, force.real = T) | 1280 begin_info <- beginTreatment("NegativeValuesZeroing", Spectrum_data, force.real = T) |
| 1235 Spectrum_data <- begin_info[["Signal_data"]] | 1281 Spectrum_data <- begin_info[["Signal_data"]] |
| 1236 | 1282 |
| 1237 # NegativeValuesZeroing ---------------------------------------------- | 1283 # NegativeValuesZeroing ---------------------------------------------- |
| 1238 Spectrum_data[Spectrum_data < 0] <- 0 | 1284 Spectrum_data[Spectrum_data < 0] <- 0 |
| 1239 | 1285 |
| 1240 # Data finalisation ---------------------------------------------- | 1286 # Data finalisation ---------------------------------------------- |
| 1241 return(endTreatment("NegativeValuesZeroing", begin_info, Spectrum_data)) | 1287 return(endTreatment("NegativeValuesZeroing", begin_info, Spectrum_data)) |
| 1242 } | 1288 } |
| 1243 | |
| 1244 |
