Mercurial > repos > mbernt > proteomicsr_intensity_workflow
view intensity_workflow.xml @ 0:31212f7e7611 draft default tip
planemo upload for repository https://github.com/bernt-matthias/mb-galaxy-tools/tree/master/tools/proteomicsr commit a73787be689a9af5641ff1b594c9a35d29093247-dirty
author | mbernt |
---|---|
date | Tue, 19 Dec 2023 15:50:36 +0000 |
parents | |
children |
line wrap: on
line source
<tool id="proteomicsr_intensity_workflow" name="proteomicsr: intensity workflow" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="21.05"> <macros> <import>macros.xml</import> </macros> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ Rscript '$rscript' && mv Rdata/dat_calculated.csv . ]]></command> <configfiles> <configfile name="rscript"><![CDATA[ library(proteomicsr) @READ_INPUTS@ #set controlSamples = 'c("' + '", "'.join(str($control_samples).split(",")) + '")' null <- run_intensity_workflow( @COMMON_WF_PARAMETERS@, control_samples = $controlSamples, comparisons_relevant = NULL, ## if NULL, script continues with all possible comparisons. Otherwise, a vector should be provided, e.g. c("treatment1_vs_ctrl", "treatment2_vs_ctrl", "treatment2_vs_treatment1") run_vsn = $run_vsn, #if $impute.run_imputation == "TRUE" run_imputation = $impute.run_imputation, imp_fun = $impute.imp_fun, imp_q = $impute.imp_q, impute_completely_missing_only = $impute_completely_missing_only, #end if ) ]]></configfile> </configfiles> <inputs> <param argument="control_samples" type="text" label="Control samples" help="Comma separated list of sample names, as used in the input table"/> <expand macro="common_wf_paramerters"> <param argument="run_vsn" type="boolean" truevalue="TRUE" falsevalue="FALSE" checked="true" label="Apply variance stabilization using the DEP package" help=""/> <conditional name="impute"> <param argument="run_imputation" type="select" label="Apply imputation using the DEP package" help="If TRUE, variance stabilization is performed anyway and also the parameters imp_fun, imp_q, and impute_completely_missing_only should be double-checked and adjusted if necessary"> <option value="TRUE">TRUE</option> <option value="FALSE" selected="true">FALSE</option> </param> <when value="TRUE"> <param argument="impute_completely_missing_only" type="boolean" truevalue="TRUE" falsevalue="FALSE" checked="true" label="Decide which missing data should be imputed." help=""/> <param argument="imp_fun" type="select" label="Method for imputation" help=""> <option value="MLE">Maximum likelihood-based imputation method using the EM algorithm</option> <option value="bpca">Bayesian missing value imputation</option> <option value="knn">Nearest neighbour averaging</option> <option value="QRILC"> Imputation of left-censored missing data using random draws from a truncated distribution with parameters estimated using quantile regression</option> <option value="MinDet">Imputation of left-censored missing data using a deterministic minimal value approach</option> <option value="MinProb" selected="true"> Imputation of left-censored missing data by random draws from a Gaussian distribution centred to a minimal value</option> <option value="min">Replaces the missing values by the smallest non-missing value in the data</option> <option value="zero">Replaces the missing values by 0</option> <option value="nbavg">Average neighbour imputation for fractions collected along a fractionation/separation gradient</option> <option value="none">No imputation</option> </param> <param argument="imp_q" type="float" value="0.01" min="0" max="1" label="q-th quantile for left-censored imputation" help="The minimal value observed is estimated as being the q-th quantile of the observed values in that sample."/> </when> <when value="FALSE"/> </conditional> </expand> <param name="out_select" type="select" multiple="true" optional="true" label="Optional outputs"> <option value="tables">Detailed tables</option> <option value="plots">Plots</option> </param> </inputs> <outputs> <data name="dat_calculated" format="csv" from_work_dir="dat_calculated.csv"/> <collection name="output" type="list" label="${tool.name} on ${on_string}: additional tables"> <discover_datasets pattern="__name_and_ext__" directory="Rdata"/> <filter>out_select and "tables" in out_select</filter> </collection> <collection name="plots" type="list" label="${tool.name} on ${on_string}: plots"> <discover_datasets pattern="__name_and_ext__" directory="Plots"/> <filter>out_select and "plots" in out_select</filter> </collection> </outputs> <tests> <test expect_num_outputs="1"> <param name="sampleTable" value="sampleTable.csv" ftype="csv"/> <param name="control_samples" value="control_04h_plusLPS_vs_control_04h_noLPS"/> <output name="dat_calculated"> <assert_contents> <has_n_lines n="4269"/> <has_n_columns sep="," n="31"/> </assert_contents> </output> </test> </tests> <help><![CDATA[ Intensity workflow 1. Evaluating data quality 2. Identification (and removal) of outliers (param: remove_outliers) 3. Log2 transformation 4. Optional: median normalization (param: median_normalize) 5. Filtering for reliably identified candidates (param: number_replicates_reliable, reliable_all_comparisons) 6. Optional: variance stabilization (param: run_vsn) 7. Optional: imputation, which includes variance stabilization as data preparation step (param: run_imputation, imp_fun, imp_q, impute_completely_missing_only) 8. Principal component analysis of processed dataCalculation of average log2 fold changes and (adjusted) p-values (param: control_samples, comparisons_relevant, alternative, var.equal, paired, pvalue_adjustment) 9. Visualization of the results (param: pvalue_decision, significance_cutoff, color_up, color_none, color_down) ]]></help> <expand macro="citations"/> </tool>