changeset 2:224e0cf4aaeb draft

planemo upload for repository https://github.com/ohsu-comp-bio/UNetCoreograph commit cb09eb9d2fa0feae993ae994b6beae05972c644b
author goeckslab
date Thu, 01 Sep 2022 22:43:42 +0000
parents 57f1260ca94e
children ee92746d141a
files Dockerfile LICENSE README.md UNet2DtCycifTRAINCoreograph.py UNetCoreograph.py coreograph.xml images/TMA_MAP.jpg images/TMA_MAP.tif images/coreographbanner.png images/coreographbannerv2.png images/coreographbannerv3.png images/coreographbannerv4.png images/coreographbannerv5.png images/probmap.jpg images/probmap.tif images/raw.jpg images/raw.tif macros.xml model/checkpoint model/datasetMean.data model/datasetStDev.data model/hp.data model/model.ckpt.data-00000-of-00001 model/model.ckpt.index model/model.ckpt.meta test-data/coreograph_test.tiff toolbox/PartitionOfImage.py toolbox/__pycache__/PartitionOfImage.cpython-36.pyc toolbox/__pycache__/__init__.cpython-36.pyc toolbox/__pycache__/ftools.cpython-36.pyc toolbox/__pycache__/imtools.cpython-36.pyc toolbox/ftools.py toolbox/imtools.py
diffstat 33 files changed, 70 insertions(+), 2098 deletions(-) [+]
line wrap: on
line diff
--- a/Dockerfile	Fri Mar 11 23:40:51 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,12 +0,0 @@
-FROM tensorflow/tensorflow:1.15.0-py3
-
-RUN apt-get update
-RUN DEBIAN_FRONTEND=noninteractive TZ=Etc/UTC apt-get -y install tzdata
-RUN apt-get install -y python3-opencv
-RUN apt-get install -y libtiff5-dev git
-
-RUN pip install cython scikit-image==0.14.2 matplotlib tifffile==2020.2.16 scipy==1.1.0 opencv-python==4.3.0.36
-
-RUN pip install git+https://github.com/FZJ-INM1-BDA/pytiff.git@0701f28e5862c26024e8daa34201005b16db4c8f
-
-COPY . /app
--- a/LICENSE	Fri Mar 11 23:40:51 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,21 +0,0 @@
-MIT License
-
-Copyright (c) 2020 HMS-IDAC
-
-Permission is hereby granted, free of charge, to any person obtaining a copy
-of this software and associated documentation files (the "Software"), to deal
-in the Software without restriction, including without limitation the rights
-to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
-copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all
-copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
-IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
-FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
-AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
-LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
-OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
-SOFTWARE.
--- a/README.md	Fri Mar 11 23:40:51 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,26 +0,0 @@
-![map](/images/coreographbannerv5.png)
-
-*Great*....yet **another** TMA dearray program. What does *this* one do?
-
-Coreograph uses UNet, a deep learning model, to identify complete/incomplete tissue cores on a tissue microarray. It has been trained on 9 TMA slides of different sizes and tissue types. 
-
-<img src="/images/raw.jpg" width="425" height="315" /> <img src="/images/probmap.jpg" width="425" height="315" />
-
-Training sets were acquired at 0.2micron/pixel resolution and downsampled 1/32 times to speed up performance. Once the center of each core has been identifed, active contours is used to generate a tissue mask of each core that can aid downstream single cell segmentation. A GPU is not required but will reduce computation time.
-
-*Coreograph exports these files:**
-1. individual cores as tiff stacks with user-selectable channel ranges
-2. binary tissue masks (saved in the 'mask' subfolder)
-3. a TMA map showing the labels and outlines of each core for quality control purposes
-
-![map](/images/TMA_MAP.jpg)
-
-*Instructions for use:**
-`python UNetCoreograph.py`
-1. `--imagePath` : the path to the image file. Should be tif or ome.tif
-2. `--outputPath` : the path to save the above-mentioned files
-3. `--downsampleFactor` : how many times to downsample the raw image file. Default is 5 times to match the training data.
-4. `--channel` : which is the channel to feed into UNet and generate probabiltiy maps from. This is usually a DAPI channel
-5. `--buffer` : the extra space around a core before cropping it. A value of 2 means there is twice the width of the core added as buffer around it. 2 is default
-6. `--outputChan` : a range of channels to be exported. -1 is default and will export all channels (takes awhile). Select a single channel or a continuous range. --outputChan 0 10 will export channel 0 up to (and including) channel 10
-
--- a/UNet2DtCycifTRAINCoreograph.py	Fri Mar 11 23:40:51 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,529 +0,0 @@
-import numpy as np
-from scipy import misc
-import tensorflow as tf
-import shutil
-import scipy.io as sio
-import os,fnmatch,PIL,glob
-
-import sys
-sys.path.insert(0, 'C:\\Users\\Public\\Documents\\ImageScience')
-from toolbox.imtools import *
-from toolbox.ftools import *
-from toolbox.PartitionOfImage import PI2D
-
-
-def concat3(lst):
-		return tf.concat(lst,3)
-
-class UNet2D:
-	hp = None # hyper-parameters
-	nn = None # network
-	tfTraining = None # if training or not (to handle batch norm)
-	tfData = None # data placeholder
-	Session = None
-	DatasetMean = 0
-	DatasetStDev = 0
-
-	def setupWithHP(hp):
-		UNet2D.setup(hp['imSize'],
-					 hp['nChannels'],
-					 hp['nClasses'],
-					 hp['nOut0'],
-					 hp['featMapsFact'],
-					 hp['downSampFact'],
-					 hp['ks'],
-					 hp['nExtraConvs'],
-					 hp['stdDev0'],
-					 hp['nLayers'],
-					 hp['batchSize'])
-
-	def setup(imSize,nChannels,nClasses,nOut0,featMapsFact,downSampFact,kernelSize,nExtraConvs,stdDev0,nDownSampLayers,batchSize):
-		UNet2D.hp = {'imSize':imSize,
-					 'nClasses':nClasses,
-					 'nChannels':nChannels,
-					 'nExtraConvs':nExtraConvs,
-					 'nLayers':nDownSampLayers,
-					 'featMapsFact':featMapsFact,
-					 'downSampFact':downSampFact,
-					 'ks':kernelSize,
-					 'nOut0':nOut0,
-					 'stdDev0':stdDev0,
-					 'batchSize':batchSize}
-
-		nOutX = [UNet2D.hp['nChannels'],UNet2D.hp['nOut0']]
-		dsfX = []
-		for i in range(UNet2D.hp['nLayers']):
-			nOutX.append(nOutX[-1]*UNet2D.hp['featMapsFact'])
-			dsfX.append(UNet2D.hp['downSampFact'])
-
-
-		# --------------------------------------------------
-		# downsampling layer
-		# --------------------------------------------------
-
-		with tf.name_scope('placeholders'):
-			UNet2D.tfTraining = tf.placeholder(tf.bool, name='training')
-			UNet2D.tfData = tf.placeholder("float", shape=[None,UNet2D.hp['imSize'],UNet2D.hp['imSize'],UNet2D.hp['nChannels']],name='data')
-
-		def down_samp_layer(data,index):
-			with tf.name_scope('ld%d' % index):
-				ldXWeights1 = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index], nOutX[index+1]], stddev=stdDev0),name='kernel1')
-				ldXWeightsExtra = []
-				for i in range(nExtraConvs):
-					ldXWeightsExtra.append(tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index+1], nOutX[index+1]], stddev=stdDev0),name='kernelExtra%d' % i))
-				
-				c00 = tf.nn.conv2d(data, ldXWeights1, strides=[1, 1, 1, 1], padding='SAME')
-				for i in range(nExtraConvs):
-					c00 = tf.nn.conv2d(tf.nn.relu(c00), ldXWeightsExtra[i], strides=[1, 1, 1, 1], padding='SAME')
-
-				ldXWeightsShortcut = tf.Variable(tf.truncated_normal([1, 1, nOutX[index], nOutX[index+1]], stddev=stdDev0),name='shortcutWeights')
-				shortcut = tf.nn.conv2d(data, ldXWeightsShortcut, strides=[1, 1, 1, 1], padding='SAME')
-
-				bn = tf.layers.batch_normalization(tf.nn.relu(c00+shortcut), training=UNet2D.tfTraining)
-
-				return tf.nn.max_pool(bn, ksize=[1, dsfX[index], dsfX[index], 1], strides=[1, dsfX[index], dsfX[index], 1], padding='SAME',name='maxpool')
-
-		# --------------------------------------------------
-		# bottom layer
-		# --------------------------------------------------
-
-		with tf.name_scope('lb'):
-			lbWeights1 = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[UNet2D.hp['nLayers']], nOutX[UNet2D.hp['nLayers']+1]], stddev=stdDev0),name='kernel1')
-			def lb(hidden):
-				return tf.nn.relu(tf.nn.conv2d(hidden, lbWeights1, strides=[1, 1, 1, 1], padding='SAME'),name='conv')
-
-		# --------------------------------------------------
-		# downsampling
-		# --------------------------------------------------
-
-		with tf.name_scope('downsampling'):    
-			dsX = []
-			dsX.append(UNet2D.tfData)
-
-			for i in range(UNet2D.hp['nLayers']):
-				dsX.append(down_samp_layer(dsX[i],i))
-
-			b = lb(dsX[UNet2D.hp['nLayers']])
-
-		# --------------------------------------------------
-		# upsampling layer
-		# --------------------------------------------------
-
-		def up_samp_layer(data,index):
-			with tf.name_scope('lu%d' % index):
-				luXWeights1    = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index+1], nOutX[index+2]], stddev=stdDev0),name='kernel1')
-				luXWeights2    = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index]+nOutX[index+1], nOutX[index+1]], stddev=stdDev0),name='kernel2')
-				luXWeightsExtra = []
-				for i in range(nExtraConvs):
-					luXWeightsExtra.append(tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index+1], nOutX[index+1]], stddev=stdDev0),name='kernel2Extra%d' % i))
-				
-				outSize = UNet2D.hp['imSize']
-				for i in range(index):
-					outSize /= dsfX[i]
-				outSize = int(outSize)
-
-				outputShape = [UNet2D.hp['batchSize'],outSize,outSize,nOutX[index+1]]
-				us = tf.nn.relu(tf.nn.conv2d_transpose(data, luXWeights1, outputShape, strides=[1, dsfX[index], dsfX[index], 1], padding='SAME'),name='conv1')
-				cc = concat3([dsX[index],us]) 
-				cv = tf.nn.relu(tf.nn.conv2d(cc, luXWeights2, strides=[1, 1, 1, 1], padding='SAME'),name='conv2')
-				for i in range(nExtraConvs):
-					cv = tf.nn.relu(tf.nn.conv2d(cv, luXWeightsExtra[i], strides=[1, 1, 1, 1], padding='SAME'),name='conv2Extra%d' % i)
-				return cv
-
-		# --------------------------------------------------
-		# final (top) layer
-		# --------------------------------------------------
-
-		with tf.name_scope('lt'):
-			ltWeights1    = tf.Variable(tf.truncated_normal([1, 1, nOutX[1], nClasses], stddev=stdDev0),name='kernel')
-			def lt(hidden):
-				return tf.nn.conv2d(hidden, ltWeights1, strides=[1, 1, 1, 1], padding='SAME',name='conv')
-
-
-		# --------------------------------------------------
-		# upsampling
-		# --------------------------------------------------
-
-		with tf.name_scope('upsampling'):
-			usX = []
-			usX.append(b)
-
-			for i in range(UNet2D.hp['nLayers']):
-				usX.append(up_samp_layer(usX[i],UNet2D.hp['nLayers']-1-i))
-
-			t = lt(usX[UNet2D.hp['nLayers']])
-
-
-		sm = tf.nn.softmax(t,-1)
-		UNet2D.nn = sm
-
-
-	def train(imPath,logPath,modelPath,pmPath,nTrain,nValid,nTest,restoreVariables,nSteps,gpuIndex,testPMIndex):
-		os.environ['CUDA_VISIBLE_DEVICES']= '%d' % gpuIndex
-
-		outLogPath = logPath
-		trainWriterPath = pathjoin(logPath,'Train')
-		validWriterPath = pathjoin(logPath,'Valid')
-		outModelPath = pathjoin(modelPath,'model.ckpt')
-		outPMPath = pmPath
-		
-		batchSize = UNet2D.hp['batchSize']
-		imSize = UNet2D.hp['imSize']
-		nChannels = UNet2D.hp['nChannels']
-		nClasses = UNet2D.hp['nClasses']
-
-		# --------------------------------------------------
-		# data
-		# --------------------------------------------------
-
-		Train = np.zeros((nTrain,imSize,imSize,nChannels))
-		Valid = np.zeros((nValid,imSize,imSize,nChannels))
-		Test = np.zeros((nTest,imSize,imSize,nChannels))
-		LTrain = np.zeros((nTrain,imSize,imSize,nClasses))
-		LValid = np.zeros((nValid,imSize,imSize,nClasses))
-		LTest = np.zeros((nTest,imSize,imSize,nClasses))
-
-		print('loading data, computing mean / st dev')
-		if not os.path.exists(modelPath):
-			os.makedirs(modelPath)
-		if restoreVariables:
-		 	datasetMean = loadData(pathjoin(modelPath,'datasetMean.data'))
-		 	datasetStDev = loadData(pathjoin(modelPath,'datasetStDev.data'))
-		else:
-			datasetMean = 0.09
-			datasetStDev = 0.09
-			#for iSample in range(nTrain+nValid+nTest):
-			#	I = im2double(tifread('%s/I%05d_Img.tif' % (imPath,iSample)))
-			#	datasetMean += np.mean(I)
-			#	datasetStDev += np.std(I)
-			#datasetMean /= (nTrain+nValid+nTest)
-			#datasetStDev /= (nTrain+nValid+nTest)
-			saveData(datasetMean, pathjoin(modelPath,'datasetMean.data'))
-			saveData(datasetStDev, pathjoin(modelPath,'datasetStDev.data'))
-
-		perm = np.arange(nTrain+nValid+nTest)
-		np.random.shuffle(perm)
-
-		for iSample in range(0, nTrain):
-			path = '%s/I%05d_Img.tif' % (imPath,perm[iSample])
-			im = im2double(tifread(path))
-			#im = im[0, 0, 0, :, :]
-			Train[iSample,:,:,0] = (im-datasetMean)/datasetStDev
-			path = '%s/I%05d_Ant.tif' % (imPath,perm[iSample])
-			im = tifread(path)
-			for i in range(nClasses):
-				LTrain[iSample,:,:,i] = (im == i+1)
-
-		for iSample in range(0, nValid):
-			path = '%s/I%05d_Img.tif' % (imPath,perm[nTrain+iSample])
-			im = im2double(tifread(path))
-			#im = im[0, 0, 0, :, :]
-			Valid[iSample,:,:,0] = (im-datasetMean)/datasetStDev
-			path = '%s/I%05d_Ant.tif' % (imPath,perm[nTrain+iSample])
-			im = tifread(path)
-			for i in range(nClasses):
-				LValid[iSample,:,:,i] = (im == i+1)
-
-		for iSample in range(0, nTest):
-			path = '%s/I%05d_Img.tif' % (imPath,perm[nTrain+nValid+iSample])
-			im = im2double(tifread(path))
-			#im = im[0, 0, 0, :, :]
-			Test[iSample,:,:,0] = (im-datasetMean)/datasetStDev
-			path = '%s/I%05d_Ant.tif' % (imPath,perm[nTrain+nValid+iSample])
-			im = tifread(path)
-			for i in range(nClasses):
-				LTest[iSample,:,:,i] = (im == i+1)
-
-		# --------------------------------------------------
-		# optimization
-		# --------------------------------------------------
-
-		tfLabels = tf.placeholder("float", shape=[None,imSize,imSize,nClasses],name='labels')
-
-		globalStep = tf.Variable(0,trainable=False)
-		learningRate0 = 0.05
-		decaySteps = 1000
-		decayRate = 0.95
-		learningRate = tf.train.exponential_decay(learningRate0,globalStep,decaySteps,decayRate,staircase=True)
-
-		with tf.name_scope('optim'):
-			loss = tf.reduce_mean(-tf.reduce_sum(tf.multiply(tfLabels,tf.log(UNet2D.nn)),3))
-			updateOps = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
-			# optimizer = tf.train.MomentumOptimizer(1e-3,0.9)
-			optimizer = tf.train.MomentumOptimizer(learningRate,0.9)
-			# optimizer = tf.train.GradientDescentOptimizer(learningRate)
-			with tf.control_dependencies(updateOps):
-				optOp = optimizer.minimize(loss,global_step=globalStep)
-
-		with tf.name_scope('eval'):
-			error = []
-			for iClass in range(nClasses):
-				labels0 = tf.reshape(tf.to_int32(tf.slice(tfLabels,[0,0,0,iClass],[-1,-1,-1,1])),[batchSize,imSize,imSize])
-				predict0 = tf.reshape(tf.to_int32(tf.equal(tf.argmax(UNet2D.nn,3),iClass)),[batchSize,imSize,imSize])
-				correct = tf.multiply(labels0,predict0)
-				nCorrect0 = tf.reduce_sum(correct)
-				nLabels0 = tf.reduce_sum(labels0)
-				error.append(1-tf.to_float(nCorrect0)/tf.to_float(nLabels0))
-			errors = tf.tuple(error)
-
-		# --------------------------------------------------
-		# inspection
-		# --------------------------------------------------
-
-		with tf.name_scope('scalars'):
-			tf.summary.scalar('avg_cross_entropy', loss)
-			for iClass in range(nClasses):
-				tf.summary.scalar('avg_pixel_error_%d' % iClass, error[iClass])
-			tf.summary.scalar('learning_rate', learningRate)
-		with tf.name_scope('images'):
-			#split0 = tf.slice(UNet2D.nn,[0,0,0,0],[-1,-1,-1,1])
-			split0 = tf.slice(UNet2D.nn,[0,0,0,1],[-1,-1,-1,1])
-			split1 = tf.slice(tfLabels, [0, 0, 0, 0], [-1, -1, -1, 1])
-			if nClasses > 2:
-				split2 = tf.slice(UNet2D.nn,[0,0,0,2],[-1,-1,-1,1])
-			tf.summary.image('pm0',split0)
-			tf.summary.image('pm1',split1)
-			if nClasses > 2:
-				tf.summary.image('pm2',split2)
-		merged = tf.summary.merge_all()
-
-
-		# --------------------------------------------------
-		# session
-		# --------------------------------------------------
-
-		saver = tf.train.Saver()
-		sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # config parameter needed to save variables when using GPU
-
-		if os.path.exists(outLogPath):
-			shutil.rmtree(outLogPath)
-		trainWriter = tf.summary.FileWriter(trainWriterPath, sess.graph)
-		validWriter = tf.summary.FileWriter(validWriterPath, sess.graph)
-
-		if restoreVariables:
-			saver.restore(sess, outModelPath)
-			print("Model restored.")
-		else:
-			sess.run(tf.global_variables_initializer())
-
-		# --------------------------------------------------
-		# train
-		# --------------------------------------------------
-
-		batchData = np.zeros((batchSize,imSize,imSize,nChannels))
-		batchLabels = np.zeros((batchSize,imSize,imSize,nClasses))
-		for i in range(nSteps):
-			# train
-
-			perm = np.arange(nTrain)
-			np.random.shuffle(perm)
-
-			for j in range(batchSize):
-				batchData[j,:,:,:] = Train[perm[j],:,:,:]
-				batchLabels[j,:,:,:] = LTrain[perm[j],:,:,:]
-
-			summary,_ = sess.run([merged,optOp],feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 1})
-			trainWriter.add_summary(summary, i)
-
-			# validation
-
-			perm = np.arange(nValid)
-			np.random.shuffle(perm)
-
-			for j in range(batchSize):
-				batchData[j,:,:,:] = Valid[perm[j],:,:,:]
-				batchLabels[j,:,:,:] = LValid[perm[j],:,:,:]
-
-			summary, es = sess.run([merged, errors],feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 0})
-			validWriter.add_summary(summary, i)
-
-			e = np.mean(es)
-			print('step %05d, e: %f' % (i,e))
-
-			if i == 0:
-				if restoreVariables:
-					lowestError = e
-				else:
-					lowestError = np.inf
-
-			if np.mod(i,100) == 0 and e < lowestError:
-				lowestError = e
-				print("Model saved in file: %s" % saver.save(sess, outModelPath))
-
-
-		# --------------------------------------------------
-		# test
-		# --------------------------------------------------
-
-		if not os.path.exists(outPMPath):
-			os.makedirs(outPMPath)
-
-		for i in range(nTest):
-			j = np.mod(i,batchSize)
-
-			batchData[j,:,:,:] = Test[i,:,:,:]
-			batchLabels[j,:,:,:] = LTest[i,:,:,:]
-		 
-			if j == batchSize-1 or i == nTest-1:
-
-				output = sess.run(UNet2D.nn,feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 0})
-
-				for k in range(j+1):
-					pm = output[k,:,:,testPMIndex]
-					gt = batchLabels[k,:,:,testPMIndex]
-					im = np.sqrt(normalize(batchData[k,:,:,0]))
-					imwrite(np.uint8(255*np.concatenate((im,np.concatenate((pm,gt),axis=1)),axis=1)),'%s/I%05d.png' % (outPMPath,i-j+k+1))
-
-
-		# --------------------------------------------------
-		# save hyper-parameters, clean-up
-		# --------------------------------------------------
-
-		saveData(UNet2D.hp,pathjoin(modelPath,'hp.data'))
-
-		trainWriter.close()
-		validWriter.close()
-		sess.close()
-
-	def deploy(imPath,nImages,modelPath,pmPath,gpuIndex,pmIndex):
-		os.environ['CUDA_VISIBLE_DEVICES']= '%d' % gpuIndex
-
-		variablesPath = pathjoin(modelPath,'model.ckpt')
-		outPMPath = pmPath
-
-		hp = loadData(pathjoin(modelPath,'hp.data'))
-		UNet2D.setupWithHP(hp)
-		
-		batchSize = UNet2D.hp['batchSize']
-		imSize = UNet2D.hp['imSize']
-		nChannels = UNet2D.hp['nChannels']
-		nClasses = UNet2D.hp['nClasses']
-
-		# --------------------------------------------------
-		# data
-		# --------------------------------------------------
-
-		Data = np.zeros((nImages,imSize,imSize,nChannels))
-
-		datasetMean = loadData(pathjoin(modelPath,'datasetMean.data'))
-		datasetStDev = loadData(pathjoin(modelPath,'datasetStDev.data'))
-
-		for iSample in range(0, nImages):
-			path = '%s/I%05d_Img.tif' % (imPath,iSample)
-			im = im2double(tifread(path))
-			#im = im[0, 0, 0, :, :]
-			Data[iSample,:,:,0] = (im-datasetMean)/datasetStDev
-
-		# --------------------------------------------------
-		# session
-		# --------------------------------------------------
-
-		saver = tf.train.Saver()
-		sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # config parameter needed to save variables when using GPU
-
-		saver.restore(sess, variablesPath)
-		print("Model restored.")
-
-		# --------------------------------------------------
-		# deploy
-		# --------------------------------------------------
-
-		batchData = np.zeros((batchSize,imSize,imSize,nChannels))
-
-		if not os.path.exists(outPMPath):
-			os.makedirs(outPMPath)
-
-		for i in range(nImages):
-			print(i,nImages)
-
-			j = np.mod(i,batchSize)
-
-			batchData[j,:,:,:] = Data[i,:,:,:]
-		 
-			if j == batchSize-1 or i == nImages-1:
-
-				output = sess.run(UNet2D.nn,feed_dict={UNet2D.tfData: batchData, UNet2D.tfTraining: 0})
-
-				for k in range(j+1):
-					pm = output[k,:,:,pmIndex]
-					im = np.sqrt(normalize(batchData[k,:,:,0]))
-					# imwrite(np.uint8(255*np.concatenate((im,pm),axis=1)),'%s/I%05d.png' % (outPMPath,i-j+k+1))
-					imwrite(np.uint8(255*im),'%s/I%05d_Im.png' % (outPMPath,i-j+k+1))
-					imwrite(np.uint8(255*pm),'%s/I%05d_PM.png' % (outPMPath,i-j+k+1))
-
-
-		# --------------------------------------------------
-		# clean-up
-		# --------------------------------------------------
-
-		sess.close()
-
-	def singleImageInferenceSetup(modelPath,gpuIndex):
-		os.environ['CUDA_VISIBLE_DEVICES']= '%d' % gpuIndex
-
-		variablesPath = pathjoin(modelPath,'model.ckpt')
-
-		hp = loadData(pathjoin(modelPath,'hp.data'))
-		UNet2D.setupWithHP(hp)
-
-		UNet2D.DatasetMean = loadData(pathjoin(modelPath,'datasetMean.data'))
-		UNet2D.DatasetStDev = loadData(pathjoin(modelPath,'datasetStDev.data'))
-		print(UNet2D.DatasetMean)
-		print(UNet2D.DatasetStDev)
-
-		# --------------------------------------------------
-		# session
-		# --------------------------------------------------
-
-		saver = tf.train.Saver()
-		UNet2D.Session = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # config parameter needed to save variables when using GPU
-
-		saver.restore(UNet2D.Session, variablesPath)
-		print("Model restored.")
-
-	def singleImageInferenceCleanup():
-		UNet2D.Session.close()
-
-	def singleImageInference(image,mode,pmIndex):
-		print('Inference...')
-
-		batchSize = UNet2D.hp['batchSize']
-		imSize = UNet2D.hp['imSize']
-		nChannels = UNet2D.hp['nChannels']
-
-		PI2D.setup(image,imSize,int(imSize/8),mode)
-		PI2D.createOutput(nChannels)
-
-		batchData = np.zeros((batchSize,imSize,imSize,nChannels))
-		for i in range(PI2D.NumPatches):
-			j = np.mod(i,batchSize)
-			batchData[j,:,:,0] = (PI2D.getPatch(i)-UNet2D.DatasetMean)/UNet2D.DatasetStDev
-			if j == batchSize-1 or i == PI2D.NumPatches-1:
-				output = UNet2D.Session.run(UNet2D.nn,feed_dict={UNet2D.tfData: batchData, UNet2D.tfTraining: 0})
-				for k in range(j+1):
-					pm = output[k,:,:,pmIndex]
-					PI2D.patchOutput(i-j+k,pm)
-					# PI2D.patchOutput(i-j+k,normalize(imgradmag(PI2D.getPatch(i-j+k),1)))
-
-		return PI2D.getValidOutput()
-
-
-if __name__ == '__main__':
-	logPath = 'D:\\LSP\\UNet\\Coreograph\\TFLogs'
-	modelPath = 'D:\\LSP\\Coreograph\\model-4layersMaskAug20New'
-	pmPath = 'D:\\LSP\\UNet\\Coreograph\\TFProbMaps'
-
-
-	# ----- test 1 -----
-
-	# imPath = 'D:\\LSP\\UNet\\tonsil20x1bin1chan\\tonsilAnnotations'
-	imPath = 'Z:/IDAC/Clarence/LSP/CyCIF/TMA/training data custom unaveraged'
-	# UNet2D.setup(128,1,2,8,2,2,3,1,0.1,2,8)
-	# UNet2D.train(imPath,logPath,modelPath,pmPath,500,100,40,True,20000,1,0)
-	UNet2D.setup(128, 1, 2, 20, 2, 2, 3, 2, 0.03, 4, 32)
-	UNet2D.train(imPath, logPath, modelPath, pmPath, 2053, 513 , 641, True, 10, 1, 1)
-	UNet2D.deploy(imPath,100,modelPath,pmPath,1,1)
-
-
-
-
--- a/UNetCoreograph.py	Fri Mar 11 23:40:51 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,800 +0,0 @@
-import numpy as np
-from scipy import misc as sm
-import shutil
-import scipy.io as sio
-import os
-os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
-import logging
-logging.getLogger('tensorflow').setLevel(logging.FATAL)
-import skimage.exposure as sk
-import cv2
-import argparse
-import pytiff
-import tifffile
-import tensorflow as tf
-from skimage.morphology import *
-from skimage.exposure import rescale_intensity
-from skimage.segmentation import chan_vese, find_boundaries, morphological_chan_vese
-from skimage.measure import regionprops,label, find_contours
-from skimage.transform import resize
-from skimage.filters import gaussian, threshold_otsu
-from skimage.feature import peak_local_max,blob_log
-from skimage.color import gray2rgb as gray2rgb
-import skimage.io as skio
-from scipy.ndimage.morphology import binary_fill_holes
-from skimage import img_as_bool
-from skimage.draw import circle_perimeter
-from scipy.ndimage.filters import uniform_filter
-from scipy.ndimage import gaussian_laplace
-from os.path import *
-from os import listdir, makedirs, remove
-
-
-
-import sys
-from typing import Any
-
-#sys.path.insert(0, 'C:\\Users\\Public\\Documents\\ImageScience')
-from toolbox.imtools import *
-from toolbox.ftools import *
-from toolbox.PartitionOfImage import PI2D
-
-
-def concat3(lst):
-		return tf.concat(lst,3)
-
-class UNet2D:
-	hp = None # hyper-parameters
-	nn = None # network
-	tfTraining = None # if training or not (to handle batch norm)
-	tfData = None # data placeholder
-	Session = None
-	DatasetMean = 0
-	DatasetStDev = 0
-
-	def setupWithHP(hp):
-		UNet2D.setup(hp['imSize'],
-					 hp['nChannels'],
-					 hp['nClasses'],
-					 hp['nOut0'],
-					 hp['featMapsFact'],
-					 hp['downSampFact'],
-					 hp['ks'],
-					 hp['nExtraConvs'],
-					 hp['stdDev0'],
-					 hp['nLayers'],
-					 hp['batchSize'])
-
-	def setup(imSize,nChannels,nClasses,nOut0,featMapsFact,downSampFact,kernelSize,nExtraConvs,stdDev0,nDownSampLayers,batchSize):
-		UNet2D.hp = {'imSize':imSize,
-					 'nClasses':nClasses,
-					 'nChannels':nChannels,
-					 'nExtraConvs':nExtraConvs,
-					 'nLayers':nDownSampLayers,
-					 'featMapsFact':featMapsFact,
-					 'downSampFact':downSampFact,
-					 'ks':kernelSize,
-					 'nOut0':nOut0,
-					 'stdDev0':stdDev0,
-					 'batchSize':batchSize}
-
-		nOutX = [UNet2D.hp['nChannels'],UNet2D.hp['nOut0']]
-		dsfX = []
-		for i in range(UNet2D.hp['nLayers']):
-			nOutX.append(nOutX[-1]*UNet2D.hp['featMapsFact'])
-			dsfX.append(UNet2D.hp['downSampFact'])
-
-
-		# --------------------------------------------------
-		# downsampling layer
-		# --------------------------------------------------
-
-		with tf.name_scope('placeholders'):
-			UNet2D.tfTraining = tf.placeholder(tf.bool, name='training')
-			UNet2D.tfData = tf.placeholder("float", shape=[None,UNet2D.hp['imSize'],UNet2D.hp['imSize'],UNet2D.hp['nChannels']],name='data')
-
-		def down_samp_layer(data,index):
-			with tf.name_scope('ld%d' % index):
-				ldXWeights1 = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index], nOutX[index+1]], stddev=stdDev0),name='kernel1')
-				ldXWeightsExtra = []
-				for i in range(nExtraConvs):
-					ldXWeightsExtra.append(tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index+1], nOutX[index+1]], stddev=stdDev0),name='kernelExtra%d' % i))
-				
-				c00 = tf.nn.conv2d(data, ldXWeights1, strides=[1, 1, 1, 1], padding='SAME')
-				for i in range(nExtraConvs):
-					c00 = tf.nn.conv2d(tf.nn.relu(c00), ldXWeightsExtra[i], strides=[1, 1, 1, 1], padding='SAME')
-
-				ldXWeightsShortcut = tf.Variable(tf.truncated_normal([1, 1, nOutX[index], nOutX[index+1]], stddev=stdDev0),name='shortcutWeights')
-				shortcut = tf.nn.conv2d(data, ldXWeightsShortcut, strides=[1, 1, 1, 1], padding='SAME')
-
-				bn = tf.layers.batch_normalization(tf.nn.relu(c00+shortcut), training=UNet2D.tfTraining)
-
-				return tf.nn.max_pool(bn, ksize=[1, dsfX[index], dsfX[index], 1], strides=[1, dsfX[index], dsfX[index], 1], padding='SAME',name='maxpool')
-
-		# --------------------------------------------------
-		# bottom layer
-		# --------------------------------------------------
-
-		with tf.name_scope('lb'):
-			lbWeights1 = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[UNet2D.hp['nLayers']], nOutX[UNet2D.hp['nLayers']+1]], stddev=stdDev0),name='kernel1')
-			def lb(hidden):
-				return tf.nn.relu(tf.nn.conv2d(hidden, lbWeights1, strides=[1, 1, 1, 1], padding='SAME'),name='conv')
-
-		# --------------------------------------------------
-		# downsampling
-		# --------------------------------------------------
-
-		with tf.name_scope('downsampling'):    
-			dsX = []
-			dsX.append(UNet2D.tfData)
-
-			for i in range(UNet2D.hp['nLayers']):
-				dsX.append(down_samp_layer(dsX[i],i))
-
-			b = lb(dsX[UNet2D.hp['nLayers']])
-
-		# --------------------------------------------------
-		# upsampling layer
-		# --------------------------------------------------
-
-		def up_samp_layer(data,index):
-			with tf.name_scope('lu%d' % index):
-				luXWeights1    = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index+1], nOutX[index+2]], stddev=stdDev0),name='kernel1')
-				luXWeights2    = tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index]+nOutX[index+1], nOutX[index+1]], stddev=stdDev0),name='kernel2')
-				luXWeightsExtra = []
-				for i in range(nExtraConvs):
-					luXWeightsExtra.append(tf.Variable(tf.truncated_normal([UNet2D.hp['ks'], UNet2D.hp['ks'], nOutX[index+1], nOutX[index+1]], stddev=stdDev0),name='kernel2Extra%d' % i))
-				
-				outSize = UNet2D.hp['imSize']
-				for i in range(index):
-					outSize /= dsfX[i]
-				outSize = int(outSize)
-
-				outputShape = [UNet2D.hp['batchSize'],outSize,outSize,nOutX[index+1]]
-				us = tf.nn.relu(tf.nn.conv2d_transpose(data, luXWeights1, outputShape, strides=[1, dsfX[index], dsfX[index], 1], padding='SAME'),name='conv1')
-				cc = concat3([dsX[index],us]) 
-				cv = tf.nn.relu(tf.nn.conv2d(cc, luXWeights2, strides=[1, 1, 1, 1], padding='SAME'),name='conv2')
-				for i in range(nExtraConvs):
-					cv = tf.nn.relu(tf.nn.conv2d(cv, luXWeightsExtra[i], strides=[1, 1, 1, 1], padding='SAME'),name='conv2Extra%d' % i)
-				return cv
-
-		# --------------------------------------------------
-		# final (top) layer
-		# --------------------------------------------------
-
-		with tf.name_scope('lt'):
-			ltWeights1    = tf.Variable(tf.truncated_normal([1, 1, nOutX[1], nClasses], stddev=stdDev0),name='kernel')
-			def lt(hidden):
-				return tf.nn.conv2d(hidden, ltWeights1, strides=[1, 1, 1, 1], padding='SAME',name='conv')
-
-
-		# --------------------------------------------------
-		# upsampling
-		# --------------------------------------------------
-
-		with tf.name_scope('upsampling'):
-			usX = []
-			usX.append(b)
-
-			for i in range(UNet2D.hp['nLayers']):
-				usX.append(up_samp_layer(usX[i],UNet2D.hp['nLayers']-1-i))
-
-			t = lt(usX[UNet2D.hp['nLayers']])
-
-
-		sm = tf.nn.softmax(t,-1)
-		UNet2D.nn = sm
-
-
-	def train(imPath,logPath,modelPath,pmPath,nTrain,nValid,nTest,restoreVariables,nSteps,gpuIndex,testPMIndex):
-		os.environ['CUDA_VISIBLE_DEVICES']= '%d' % gpuIndex
-
-		outLogPath = logPath
-		trainWriterPath = pathjoin(logPath,'Train')
-		validWriterPath = pathjoin(logPath,'Valid')
-		outModelPath = pathjoin(modelPath,'model.ckpt')
-		outPMPath = pmPath
-		
-		batchSize = UNet2D.hp['batchSize']
-		imSize = UNet2D.hp['imSize']
-		nChannels = UNet2D.hp['nChannels']
-		nClasses = UNet2D.hp['nClasses']
-
-		# --------------------------------------------------
-		# data
-		# --------------------------------------------------
-
-		Train = np.zeros((nTrain,imSize,imSize,nChannels))
-		Valid = np.zeros((nValid,imSize,imSize,nChannels))
-		Test = np.zeros((nTest,imSize,imSize,nChannels))
-		LTrain = np.zeros((nTrain,imSize,imSize,nClasses))
-		LValid = np.zeros((nValid,imSize,imSize,nClasses))
-		LTest = np.zeros((nTest,imSize,imSize,nClasses))
-
-		print('loading data, computing mean / st dev')
-		if not os.path.exists(modelPath):
-			os.makedirs(modelPath)
-		if restoreVariables:
-			datasetMean = loadData(pathjoin(modelPath,'datasetMean.data'))
-			datasetStDev = loadData(pathjoin(modelPath,'datasetStDev.data'))
-		else:
-			datasetMean = 0
-			datasetStDev = 0
-			for iSample in range(nTrain+nValid+nTest):
-				I = im2double(tifread('%s/I%05d_Img.tif' % (imPath,iSample)))
-				datasetMean += np.mean(I)
-				datasetStDev += np.std(I)
-			datasetMean /= (nTrain+nValid+nTest)
-			datasetStDev /= (nTrain+nValid+nTest)
-			saveData(datasetMean, pathjoin(modelPath,'datasetMean.data'))
-			saveData(datasetStDev, pathjoin(modelPath,'datasetStDev.data'))
-
-		perm = np.arange(nTrain+nValid+nTest)
-		np.random.shuffle(perm)
-
-		for iSample in range(0, nTrain):
-			path = '%s/I%05d_Img.tif' % (imPath,perm[iSample])
-			im = im2double(tifread(path))
-			Train[iSample,:,:,0] = (im-datasetMean)/datasetStDev
-			path = '%s/I%05d_Ant.tif' % (imPath,perm[iSample])
-			im = tifread(path)
-			for i in range(nClasses):
-				LTrain[iSample,:,:,i] = (im == i+1)
-
-		for iSample in range(0, nValid):
-			path = '%s/I%05d_Img.tif' % (imPath,perm[nTrain+iSample])
-			im = im2double(tifread(path))
-			Valid[iSample,:,:,0] = (im-datasetMean)/datasetStDev
-			path = '%s/I%05d_Ant.tif' % (imPath,perm[nTrain+iSample])
-			im = tifread(path)
-			for i in range(nClasses):
-				LValid[iSample,:,:,i] = (im == i+1)
-
-		for iSample in range(0, nTest):
-			path = '%s/I%05d_Img.tif' % (imPath,perm[nTrain+nValid+iSample])
-			im = im2double(tifread(path))
-			Test[iSample,:,:,0] = (im-datasetMean)/datasetStDev
-			path = '%s/I%05d_Ant.tif' % (imPath,perm[nTrain+nValid+iSample])
-			im = tifread(path)
-			for i in range(nClasses):
-				LTest[iSample,:,:,i] = (im == i+1)
-
-		# --------------------------------------------------
-		# optimization
-		# --------------------------------------------------
-
-		tfLabels = tf.placeholder("float", shape=[None,imSize,imSize,nClasses],name='labels')
-
-		globalStep = tf.Variable(0,trainable=False)
-		learningRate0 = 0.01
-		decaySteps = 1000
-		decayRate = 0.95
-		learningRate = tf.train.exponential_decay(learningRate0,globalStep,decaySteps,decayRate,staircase=True)
-
-		with tf.name_scope('optim'):
-			loss = tf.reduce_mean(-tf.reduce_sum(tf.multiply(tfLabels,tf.log(UNet2D.nn)),3))
-			updateOps = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
-			# optimizer = tf.train.MomentumOptimizer(1e-3,0.9)
-			optimizer = tf.train.MomentumOptimizer(learningRate,0.9)
-			# optimizer = tf.train.GradientDescentOptimizer(learningRate)
-			with tf.control_dependencies(updateOps):
-				optOp = optimizer.minimize(loss,global_step=globalStep)
-
-		with tf.name_scope('eval'):
-			error = []
-			for iClass in range(nClasses):
-				labels0 = tf.reshape(tf.to_int32(tf.slice(tfLabels,[0,0,0,iClass],[-1,-1,-1,1])),[batchSize,imSize,imSize])
-				predict0 = tf.reshape(tf.to_int32(tf.equal(tf.argmax(UNet2D.nn,3),iClass)),[batchSize,imSize,imSize])
-				correct = tf.multiply(labels0,predict0)
-				nCorrect0 = tf.reduce_sum(correct)
-				nLabels0 = tf.reduce_sum(labels0)
-				error.append(1-tf.to_float(nCorrect0)/tf.to_float(nLabels0))
-			errors = tf.tuple(error)
-
-		# --------------------------------------------------
-		# inspection
-		# --------------------------------------------------
-
-		with tf.name_scope('scalars'):
-			tf.summary.scalar('avg_cross_entropy', loss)
-			for iClass in range(nClasses):
-				tf.summary.scalar('avg_pixel_error_%d' % iClass, error[iClass])
-			tf.summary.scalar('learning_rate', learningRate)
-		with tf.name_scope('images'):
-			split0 = tf.slice(UNet2D.nn,[0,0,0,0],[-1,-1,-1,1])
-			split1 = tf.slice(UNet2D.nn,[0,0,0,1],[-1,-1,-1,1])
-			if nClasses > 2:
-				split2 = tf.slice(UNet2D.nn,[0,0,0,2],[-1,-1,-1,1])
-			tf.summary.image('pm0',split0)
-			tf.summary.image('pm1',split1)
-			if nClasses > 2:
-				tf.summary.image('pm2',split2)
-		merged = tf.summary.merge_all()
-
-
-		# --------------------------------------------------
-		# session
-		# --------------------------------------------------
-
-		saver = tf.train.Saver()
-		sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # config parameter needed to save variables when using GPU
-
-		if os.path.exists(outLogPath):
-			shutil.rmtree(outLogPath)
-		trainWriter = tf.summary.FileWriter(trainWriterPath, sess.graph)
-		validWriter = tf.summary.FileWriter(validWriterPath, sess.graph)
-
-		if restoreVariables:
-			saver.restore(sess, outModelPath)
-			print("Model restored.")
-		else:
-			sess.run(tf.global_variables_initializer())
-
-		# --------------------------------------------------
-		# train
-		# --------------------------------------------------
-
-		batchData = np.zeros((batchSize,imSize,imSize,nChannels))
-		batchLabels = np.zeros((batchSize,imSize,imSize,nClasses))
-		for i in range(nSteps):
-			# train
-
-			perm = np.arange(nTrain)
-			np.random.shuffle(perm)
-
-			for j in range(batchSize):
-				batchData[j,:,:,:] = Train[perm[j],:,:,:]
-				batchLabels[j,:,:,:] = LTrain[perm[j],:,:,:]
-
-			summary,_ = sess.run([merged,optOp],feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 1})
-			trainWriter.add_summary(summary, i)
-
-			# validation
-
-			perm = np.arange(nValid)
-			np.random.shuffle(perm)
-
-			for j in range(batchSize):
-				batchData[j,:,:,:] = Valid[perm[j],:,:,:]
-				batchLabels[j,:,:,:] = LValid[perm[j],:,:,:]
-
-			summary, es = sess.run([merged, errors],feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 0})
-			validWriter.add_summary(summary, i)
-
-			e = np.mean(es)
-			print('step %05d, e: %f' % (i,e))
-
-			if i == 0:
-				if restoreVariables:
-					lowestError = e
-				else:
-					lowestError = np.inf
-
-			if np.mod(i,100) == 0 and e < lowestError:
-				lowestError = e
-				print("Model saved in file: %s" % saver.save(sess, outModelPath))
-
-
-		# --------------------------------------------------
-		# test
-		# --------------------------------------------------
-
-		if not os.path.exists(outPMPath):
-			os.makedirs(outPMPath)
-
-		for i in range(nTest):
-			j = np.mod(i,batchSize)
-
-			batchData[j,:,:,:] = Test[i,:,:,:]
-			batchLabels[j,:,:,:] = LTest[i,:,:,:]
-		 
-			if j == batchSize-1 or i == nTest-1:
-
-				output = sess.run(UNet2D.nn,feed_dict={UNet2D.tfData: batchData, tfLabels: batchLabels, UNet2D.tfTraining: 0})
-
-				for k in range(j+1):
-					pm = output[k,:,:,testPMIndex]
-					gt = batchLabels[k,:,:,testPMIndex]
-					im = np.sqrt(normalize(batchData[k,:,:,0]))
-					imwrite(np.uint8(255*np.concatenate((im,np.concatenate((pm,gt),axis=1)),axis=1)),'%s/I%05d.png' % (outPMPath,i-j+k+1))
-
-
-		# --------------------------------------------------
-		# save hyper-parameters, clean-up
-		# --------------------------------------------------
-
-		saveData(UNet2D.hp,pathjoin(modelPath,'hp.data'))
-
-		trainWriter.close()
-		validWriter.close()
-		sess.close()
-
-	def deploy(imPath,nImages,modelPath,pmPath,gpuIndex,pmIndex):
-		os.environ['CUDA_VISIBLE_DEVICES']= '%d' % gpuIndex
-		variablesPath = pathjoin(modelPath,'model.ckpt')
-		outPMPath = pmPath
-
-		hp = loadData(pathjoin(modelPath,'hp.data'))
-		UNet2D.setupWithHP(hp)
-		
-		batchSize = UNet2D.hp['batchSize']
-		imSize = UNet2D.hp['imSize']
-		nChannels = UNet2D.hp['nChannels']
-		nClasses = UNet2D.hp['nClasses']
-
-		# --------------------------------------------------
-		# data
-		# --------------------------------------------------
-
-		Data = np.zeros((nImages,imSize,imSize,nChannels))
-
-		datasetMean = loadData(pathjoin(modelPath,'datasetMean.data'))
-		datasetStDev = loadData(pathjoin(modelPath,'datasetStDev.data'))
-
-		for iSample in range(0, nImages):
-			path = '%s/I%05d_Img.tif' % (imPath,iSample)
-			im = im2double(tifread(path))
-			Data[iSample,:,:,0] = (im-datasetMean)/datasetStDev
-
-		# --------------------------------------------------
-		# session
-		# --------------------------------------------------
-
-		saver = tf.train.Saver()
-		sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # config parameter needed to save variables when using GPU
-
-		saver.restore(sess, variablesPath)
-		print("Model restored.")
-
-		# --------------------------------------------------
-		# deploy
-		# --------------------------------------------------
-
-		batchData = np.zeros((batchSize,imSize,imSize,nChannels))
-
-		if not os.path.exists(outPMPath):
-			os.makedirs(outPMPath)
-
-		for i in range(nImages):
-			print(i,nImages)
-
-			j = np.mod(i,batchSize)
-
-			batchData[j,:,:,:] = Data[i,:,:,:]
-		 
-			if j == batchSize-1 or i == nImages-1:
-
-				output = sess.run(UNet2D.nn,feed_dict={UNet2D.tfData: batchData, UNet2D.tfTraining: 0})
-
-				for k in range(j+1):
-					pm = output[k,:,:,pmIndex]
-					im = np.sqrt(normalize(batchData[k,:,:,0]))
-					# imwrite(np.uint8(255*np.concatenate((im,pm),axis=1)),'%s/I%05d.png' % (outPMPath,i-j+k+1))
-					imwrite(np.uint8(255*im),'%s/I%05d_Im.png' % (outPMPath,i-j+k+1))
-					imwrite(np.uint8(255*pm),'%s/I%05d_PM.png' % (outPMPath,i-j+k+1))
-
-
-		# --------------------------------------------------
-		# clean-up
-		# --------------------------------------------------
-
-		sess.close()
-
-	def singleImageInferenceSetup(modelPath,gpuIndex):
-		os.environ['CUDA_VISIBLE_DEVICES']= '%d' % gpuIndex
-		variablesPath = pathjoin(modelPath,'model.ckpt')
-		hp = loadData(pathjoin(modelPath,'hp.data'))
-		UNet2D.setupWithHP(hp)
-
-		UNet2D.DatasetMean =loadData(pathjoin(modelPath,'datasetMean.data'))
-		UNet2D.DatasetStDev =  loadData(pathjoin(modelPath,'datasetStDev.data'))
-		print(UNet2D.DatasetMean)
-		print(UNet2D.DatasetStDev)
-
-		# --------------------------------------------------
-		# session
-		# --------------------------------------------------
-
-		saver = tf.train.Saver()
-		UNet2D.Session = tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) # config parameter needed to save variables when using GPU
-		#UNet2D.Session = tf.Session(config=tf.ConfigProto(device_count={'GPU': 0}))
-		saver.restore(UNet2D.Session, variablesPath)
-		print("Model restored.")
-
-	def singleImageInferenceCleanup():
-		UNet2D.Session.close()
-
-	def singleImageInference(image,mode,pmIndex):
-		print('Inference...')
-
-		batchSize = UNet2D.hp['batchSize']
-		imSize = UNet2D.hp['imSize']
-		nChannels = UNet2D.hp['nChannels']
-
-		PI2D.setup(image,imSize,int(imSize/8),mode)
-		PI2D.createOutput(nChannels)
-
-		batchData = np.zeros((batchSize,imSize,imSize,nChannels))
-		for i in range(PI2D.NumPatches):
-			j = np.mod(i,batchSize)
-			batchData[j,:,:,0] = (PI2D.getPatch(i)-UNet2D.DatasetMean)/UNet2D.DatasetStDev
-			if j == batchSize-1 or i == PI2D.NumPatches-1:
-				output = UNet2D.Session.run(UNet2D.nn,feed_dict={UNet2D.tfData: batchData, UNet2D.tfTraining: 0})
-				for k in range(j+1):
-					pm = output[k,:,:,pmIndex]
-					PI2D.patchOutput(i-j+k,pm)
-					# PI2D.patchOutput(i-j+k,normalize(imgradmag(PI2D.getPatch(i-j+k),1)))
-
-		return PI2D.getValidOutput()
-
-
-def identifyNumChan(path):
-
-	s = tifffile.TiffFile(path).series[0]
-	return s.shape[0] if len(s.shape) > 2 else 1
-   # shape = tiff.pages[0].shape
-   # tiff = tifffile.TiffFile(path)
-   # for i, page in enumerate(tiff.pages):
-	#    print(page.shape)
-	#    if page.shape != shape:
-	# 	   numChan = i
-	# 	   return numChan
-	# 	   break
-#	   else:
-#		   raise Exception("Did not find any pyramid subresolutions") 
-
-
-def getProbMaps(I,dsFactor,modelPath):
-   hsize = int((float(I.shape[0]) * float(0.5)))
-   vsize = int((float(I.shape[1]) * float(0.5)))
-   imagesub = cv2.resize(I,(vsize,hsize),cv2.INTER_NEAREST)
-
-   UNet2D.singleImageInferenceSetup(modelPath, 0)
-
-   for iSize in range(dsFactor):
-	   hsize = int((float(I.shape[0]) * float(0.5)))
-	   vsize = int((float(I.shape[1]) * float(0.5)))
-	   I = cv2.resize(I,(vsize,hsize),cv2.INTER_NEAREST)
-   I = im2double(I)
-   I = im2double(sk.rescale_intensity(I, in_range=(np.min(I), np.max(I)), out_range=(0, 0.983)))
-   probMaps = UNet2D.singleImageInference(I,'accumulate',1)
-   UNet2D.singleImageInferenceCleanup()
-   return probMaps 
-
-def coreSegmenterOutput(I,initialmask,findCenter):
-	hsize = int((float(I.shape[0]) * float(0.1)))
-	vsize = int((float(I.shape[1]) * float(0.1)))
-	nucGF = cv2.resize(I,(vsize,hsize),cv2.INTER_CUBIC)
-	#active contours
-	hsize = int(float(nucGF.shape[0]))
-	vsize = int(float(nucGF.shape[1]))
-	initialmask = cv2.resize(initialmask,(vsize,hsize),cv2.INTER_NEAREST)
-	initialmask = dilation(initialmask,disk(15)) >0
-
-	nucGF = gaussian(nucGF,0.7)
-	nucGF=nucGF/np.amax(nucGF)
-	
-	nuclearMask = morphological_chan_vese(nucGF, 100, init_level_set=initialmask, smoothing=10,lambda1=1.001, lambda2=1)
-	
-	TMAmask = nuclearMask
-	TMAmask = remove_small_objects(TMAmask>0,round(TMAmask.shape[0])*round(TMAmask.shape[1])*0.005)
-	TMAlabel = label(TMAmask)
-# find object closest to center
-	if findCenter==True:
-		
-		stats= regionprops(TMAlabel)
-		counter=1
-		minDistance =-1
-		index =[]
-		for props in stats:
-			centroid = props.centroid
-			distanceFromCenter = np.sqrt((centroid[0]-nucGF.shape[0]/2)**2+(centroid[1]-nucGF.shape[1]/2)**2)
-	#		if distanceFromCenter<0.6/2*np.sqrt(TMAlabel.shape[0]*TMAlabel.shape[1]):
-			if distanceFromCenter<minDistance or minDistance==-1 :
-				minDistance =distanceFromCenter
-				index = counter
-			counter=counter+1
-	#		dist = 0.6/2*np.sqrt(TMAlabel.shape[0]*TMAlabel.shape[1])
-		TMAmask = morphology.binary_closing(TMAlabel==index,disk(3))
-
-	return TMAmask
-
-def overlayOutline(outline,img):
-	img2 = img.copy()
-	stacked_img = np.stack((img2,)*3, axis=-1)
-	stacked_img[outline > 0] = [1, 0, 0]
-	imshowpair(img2,stacked_img)
-
-def imshowpair(A,B):
-	plt.imshow(A,cmap='Purples')
-	plt.imshow(B,cmap='Greens',alpha=0.5)
-	plt.show()
-
-
-if __name__ == '__main__':
-	parser=argparse.ArgumentParser()
-	parser.add_argument("--imagePath")
-	parser.add_argument("--outputPath")
-	parser.add_argument("--maskPath")
-	parser.add_argument("--tissue", action='store_true')
-	parser.add_argument("--downsampleFactor", type=int, default = 5)
-	parser.add_argument("--channel",type = int, default = 0)
-	parser.add_argument("--buffer",type = float, default = 2)
-	parser.add_argument("--outputChan", type=int, nargs = '+', default=[-1])
-	parser.add_argument("--sensitivity",type = float, default=0.3)
-	parser.add_argument("--useGrid",action='store_true')
-	parser.add_argument("--cluster",action='store_true')
-	args = parser.parse_args()
-
-	outputPath = args.outputPath
-	imagePath =  args.imagePath
-	sensitivity = args.sensitivity
-	scriptPath = os.path.dirname(os.path.realpath(__file__))
-	modelPath = os.path.join(scriptPath, 'model')
-	maskOutputPath = os.path.join(outputPath, 'masks')
-
-	
-#	if not os.path.exists(outputPath):
-#		os.makedirs(outputPath)
-#	else:
-#		shutil.rmtree(outputPath)
-	if not os.path.exists(maskOutputPath):
-		os.makedirs(maskOutputPath)
-	print(
-		'WARNING! IF USING FOR TISSUE SPLITTING, IT IS ADVISED TO SET --downsampleFactor TO HIGHER THAN DEFAULT OF 5')
-	channel = args.channel
-	dsFactor = 1/(2**args.downsampleFactor)
-	I = skio.imread(imagePath, img_num=channel)
-	imagesub = resize(I,(int((float(I.shape[0]) * dsFactor)),int((float(I.shape[1]) * dsFactor))))
-	numChan = identifyNumChan(imagePath)
-
-	outputChan = args.outputChan
-	if len(outputChan)==1:
-		if outputChan[0]==-1:
-			outputChan = [0, numChan-1]
-		else:
-			outputChan.append(outputChan[0])
-	classProbs = getProbMaps(I, args.downsampleFactor, modelPath)
-
-	if not args.tissue:
-		print('TMA mode selected')
-		preMask = gaussian(np.uint8(classProbs*255),1)>0.8
-
-		P = regionprops(label(preMask),cache=False)
-		area = [ele.area for ele in P]
-		if len(P) <3:
-			medArea = np.median(area)
-			maxArea = np.percentile(area,99)
-		else:
-			count=0
-			labelpreMask = np.zeros(preMask.shape,dtype=np.uint32)
-			for props in P:
-					count += 1
-					yi = props.coords[:, 0]
-					xi = props.coords[:, 1]
-					labelpreMask[yi, xi] = count
-					P=regionprops(labelpreMask)
-					area = [ele.area for ele in P]
-			medArea =  np.median(area)
-			maxArea = np.percentile(area,99)
-		preMask = remove_small_objects(preMask,0.2*medArea)
-		coreRad = round(np.sqrt(medArea/np.pi))
-		estCoreDiam = round(np.sqrt(maxArea/np.pi)*1.2*args.buffer)
-
-		#preprocessing
-		fgFiltered = blob_log(preMask,coreRad*0.6,threshold=sensitivity)
-		Imax = np.zeros(preMask.shape,dtype=np.uint8)
-		for iSpot in range(fgFiltered.shape[0]):
-			yi = np.uint32(round(fgFiltered[iSpot, 0]))
-			xi = np.uint32(round(fgFiltered[iSpot, 1]))
-			Imax[yi, xi] = 1
-		Imax = Imax*preMask
-		Idist = distance_transform_edt(1-Imax)
-		markers = label(Imax)
-		coreLabel  = watershed(Idist,markers,watershed_line=True,mask = preMask)
-		P = regionprops(coreLabel)
-		centroids = np.array([ele.centroid for ele in P]) / dsFactor
-		np.savetxt(outputPath + os.path.sep + 'centroidsY-X.txt', np.asarray(centroids), fmt='%10.5f')
-		numCores = len(centroids)
-		print(str(numCores) + ' cores detected!')
-		estCoreDiamX = np.ones(numCores) * estCoreDiam / dsFactor
-		estCoreDiamY = np.ones(numCores) * estCoreDiam / dsFactor
-	else:
-		print('Tissue mode selected')
-		imageblur = 5
-		Iblur = gaussian(np.uint8(255*classProbs), imageblur)
-		coreMask = binary_fill_holes(binary_closing(Iblur > threshold_otsu(Iblur), np.ones((imageblur*2,imageblur*2))))
-		coreMask = remove_small_objects(coreMask, min_size=0.001 * coreMask.shape[0] * coreMask.shape[1])
-
-		## watershed
-		Idist = distance_transform_edt(coreMask)
-		markers = peak_local_max(h_maxima(Idist,20),indices=False)
-		markers = label(markers).astype(np.int8)
-		coreLabel = watershed(-Idist, markers, watershed_line=True,mask = coreMask)
-
-		P = regionprops(coreLabel)
-		centroids = np.array([ele.centroid for ele in P]) / dsFactor
-		np.savetxt(outputPath + os.path.sep + 'centroidsY-X.txt', np.asarray(centroids), fmt='%10.5f')
-		numCores = len(centroids)
-		print(str(numCores) + ' tissues detected!')
-		estCoreDiamX = np.array([(ele.bbox[3]-ele.bbox[1])*1.1 for ele in P]) / dsFactor
-		estCoreDiamY = np.array([(ele.bbox[2]-ele.bbox[0])*1.1 for ele in P]) / dsFactor
-
-	if numCores ==0 & args.cluster:
-		print('No cores detected. Try adjusting the downsample factor')
-		sys.exit(255)
-
-	singleMaskTMA = np.zeros(imagesub.shape)
-	maskTMA = np.zeros(imagesub.shape)
-	bbox = [None] * numCores
-	imagesub = imagesub/np.percentile(imagesub,99.9)
-	imagesub = (imagesub * 255).round().astype(np.uint8)
-	imagesub = gray2rgb(imagesub)
-	x=np.zeros(numCores)
-	xLim=np.zeros(numCores)
-	y=np.zeros(numCores)
-	yLim=np.zeros(numCores)
-	
-# segmenting each core   	
-	#######################
-	for iCore in range(numCores):
-		x[iCore] = centroids[iCore,1] - estCoreDiamX[iCore]/2
-		xLim[iCore] = x[iCore]+estCoreDiamX[iCore]
-		if xLim[iCore] > I.shape[1]:
-			xLim[iCore] = I.shape[1]
-		if x[iCore]<1:
-			x[iCore]=1
-
-		y[iCore] = centroids[iCore,0] - estCoreDiamY[iCore]/2
-		yLim[iCore] = y[iCore] + estCoreDiamY[iCore]
-		if yLim[iCore] > I.shape[0]:
-			yLim[iCore] = I.shape[0]
-		if y[iCore]<1:
-			y[iCore]=1
-
-		bbox[iCore] = [round(x[iCore]), round(y[iCore]), round(xLim[iCore]), round(yLim[iCore])]
-		coreStack = np.zeros((outputChan[1]-outputChan[0]+1,np.int(round(yLim[iCore])-round(y[iCore])-1),np.int(round(xLim[iCore])-round(x[iCore])-1)),dtype='uint16')
-
-		for iChan in range(outputChan[0],outputChan[1]+1):
-			with pytiff.Tiff(imagePath, "r", encoding='utf-8') as handle:
-				handle.set_page(iChan)
-				coreStack[iChan,:,:] =handle[np.uint32(bbox[iCore][1]):np.uint32(bbox[iCore][3]-1), np.uint32(bbox[iCore][0]):np.uint32(bbox[iCore][2]-1)]
-
-		skio.imsave(outputPath + os.path.sep + str(iCore+1)  + '.tif',np.uint16(coreStack),imagej=True,bigtiff=True)
-		with pytiff.Tiff(imagePath, "r", encoding='utf-8') as handle:
-			handle.set_page(args.channel)
-			coreSlice= handle[np.uint32(bbox[iCore][1]):np.uint32(bbox[iCore][3]-1), np.uint32(bbox[iCore][0]):np.uint32(bbox[iCore][2]-1)]
-
-		core = (coreLabel ==(iCore+1))
-		initialmask = core[np.uint32(y[iCore] * dsFactor):np.uint32(yLim[iCore] * dsFactor),
-					  np.uint32(x[iCore] * dsFactor):np.uint32(xLim[iCore] * dsFactor)]
-		if not args.tissue:
-			initialmask = resize(initialmask,size(coreSlice),cv2.INTER_NEAREST)
-
-			singleProbMap = classProbs[np.uint32(y[iCore]*dsFactor):np.uint32(yLim[iCore]*dsFactor),np.uint32(x[iCore]*dsFactor):np.uint32(xLim[iCore]*dsFactor)]
-			singleProbMap = resize(np.uint8(255*singleProbMap),size(coreSlice),cv2.INTER_NEAREST)
-			TMAmask = coreSegmenterOutput(coreSlice,initialmask,False)
-		else:
-			Irs = resize(coreSlice,(int((float(coreSlice.shape[0]) * 0.25)),int((float(coreSlice.shape[1]) * 0.25))))
-			TMAmask = coreSegmenterOutput(Irs, np.uint8(initialmask), False)
-
-		if np.sum(TMAmask)==0:
-			TMAmask = np.ones(TMAmask.shape)
-		vsize = int(float(coreSlice.shape[0]))
-		hsize = int(float(coreSlice.shape[1]))
-		masksub = resize(resize(TMAmask,(vsize,hsize),cv2.INTER_NEAREST),(int((float(coreSlice.shape[0])*dsFactor)),int((float(coreSlice.shape[1])*dsFactor))),cv2.INTER_NEAREST)
-		singleMaskTMA[int(y[iCore]*dsFactor):int(y[iCore]*dsFactor)+masksub.shape[0],int(x[iCore]*dsFactor):int(x[iCore]*dsFactor)+masksub.shape[1]]=masksub
-		maskTMA = maskTMA + resize(singleMaskTMA,maskTMA.shape,cv2.INTER_NEAREST)
-
-		cv2.putText(imagesub, str(iCore+1), (int(P[iCore].centroid[1]),int(P[iCore].centroid[0])), 0, 0.5, (0,255,0), 1, cv2.LINE_AA)
-		
-		skio.imsave(maskOutputPath + os.path.sep + str(iCore+1)  + '_mask.tif',np.uint8(TMAmask))
-		print('Segmented core/tissue ' + str(iCore+1))
-		
-	boundaries = find_boundaries(maskTMA)
-	imagesub[boundaries==1] = 255
-	skio.imsave(outputPath + os.path.sep + 'TMA_MAP.tif' ,imagesub)
-	print('Segmented all cores/tissues!')
-
-#restore GPU to 0
-	#image load using tifffile
--- a/coreograph.xml	Fri Mar 11 23:40:51 2022 +0000
+++ b/coreograph.xml	Thu Sep 01 22:43:42 2022 +0000
@@ -1,51 +1,39 @@
-<tool id="unet_coreograph" name="UNetCoreograph" version="@VERSION@.3" profile="17.09">
-    <description>Coreograph uses UNet, a deep learning model, to identify complete/incomplete tissue cores on a tissue microarray. It has been trained on 9 TMA slides of different sizes and tissue types.</description>
+<tool id="unet_coreograph" name="UNetCoreograph" version="@TOOL_VERSION@+galaxy@VERSION_SUFFIX@" profile="19.01">
+    <description>TMA core detection and dearraying</description>
     <macros>
         <import>macros.xml</import>
     </macros>
  
     <expand macro="requirements"/>
-    @VERSION_CMD@
+    <expand macro="version_cmd"/>
 
     <command detect_errors="exit_code"><![CDATA[
-        #set $type_corrected = str($source_image)[:-3]+'ome.tif'
-        ln -s $source_image `basename $type_corrected`;
-
+        #set $type_corrected = 'image.' + str($source_image.file_ext)
+        ln -s '$source_image' '$type_corrected' &&
+        
         @CMD_BEGIN@
 
         python \$UNET_PATH
-        --imagePath `basename $type_corrected`
+        --imagePath '$type_corrected'
         --downsampleFactor $downsamplefactor
         --channel $channel
         --buffer $buffer
         --sensitivity $sensitivity
-
-        ##if $usegrid
-        ##--useGrid
-        ##end if
-
-        #if $cluster
-        --cluster
-        #end if
-
-        #if $tissue
-        --tissue
-        #end if
-
-        --outputPath .;
+        $cluster
+        $tissue
+        --outputPath '.'
         
     ]]></command>
 
 
     <inputs>
-        <param name="source_image" type="data" format="tiff" label="Registered TIFF"/>
+        <param name="source_image" type="data" format="tiff,ome.tiff" label="Registered TIFF"/>
         <param name="downsamplefactor" type="integer" value="5" label="Down Sample Factor"/>
         <param name="channel" type="integer" value="0" label="Channel"/>
         <param name="buffer" type="float" value="2.0" label="Buffer"/>
         <param name="sensitivity" type="float" value="0.3" label="Sensitivity"/>
-        <!--<param name="usegrid" type="boolean" label="Use Grid"/>-->
-        <param name="cluster" type="boolean" checked="false" label="Cluster"/>
-        <param name="tissue" type="boolean" checked="false" label="Tissue"/>
+        <param name="cluster" type="boolean" truevalue="--cluster" falsevalue="" checked="false" label="Cluster"/>
+        <param name="tissue" type="boolean" truevalue="--tissue" falsevalue="" checked="false" label="Tissue"/>
     </inputs>
 
     <outputs>
@@ -57,7 +45,56 @@
         </collection>
         <data name="TMA_MAP" format="tiff" label="${tool.name} on ${on_string}: TMA Map" from_work_dir="TMA_MAP.tif"/>
     </outputs>
+    <tests>
+        <test>
+            <param name="source_image" value="coreograph_test.tiff" />
+            <output_collection name="tma_sections" type="list">
+                <element name="1" ftype="tiff">
+                    <assert_contents>
+                        <has_size value="18000" delta="1000" />
+                    </assert_contents>
+                </element>
+                <element name="2" ftype="tiff">
+                    <assert_contents>
+                        <has_size value="18000" delta="1000" />
+                    </assert_contents>
+                </element>
+            </output_collection>
+            <output_collection name="masks" type="list">
+                <element name="1" ftype="tiff">
+                    <assert_contents>
+                        <has_size value="345" delta="100" />
+                    </assert_contents>
+                </element>
+                <element name="2" ftype="tiff">
+                    <assert_contents>
+                        <has_size value="345" delta="100" />
+                    </assert_contents>
+                </element>
+            </output_collection>
+            <output name="TMA_MAP" ftype="tiff">
+                <assert_contents>
+                    <has_size value="530" delta="100" />
+                </assert_contents>
+            </output>
+        </test>
+    </tests>
     <help><![CDATA[
+-------------------        
+UNet Coreograph
+-------------------
+**Coreograph** uses UNet, a deep learning model, to identify complete/incomplete tissue cores on a tissue microarray. It has been trained on 9 TMA slides of different sizes and tissue types
+
+Training sets were acquired at 0.2micron/pixel resolution and downsampled 1/32 times to speed up performance. Once the center of each core has been identifed, active contours is used to generate a tissue mask of each core that can aid downstream single cell segmentation. A GPU is not required but will reduce computation time.
+
+**Inputs**
+A tif or ome.tiff image multiple tissues, such as a tissue microarray.
+
+**Outputs**
+Coreograph exports these files:
+1. individual cores as tiff stacks with user-selectable channel ranges
+2. binary tissue masks (saved in the 'mask' subfolder)
+3. a TMA map showing the labels and outlines of each core for quality control purposes
     ]]></help>
     <expand macro="citations" />
 </tool>
Binary file images/TMA_MAP.jpg has changed
Binary file images/TMA_MAP.tif has changed
Binary file images/coreographbanner.png has changed
Binary file images/coreographbannerv2.png has changed
Binary file images/coreographbannerv3.png has changed
Binary file images/coreographbannerv4.png has changed
Binary file images/coreographbannerv5.png has changed
Binary file images/probmap.jpg has changed
Binary file images/probmap.tif has changed
Binary file images/raw.jpg has changed
Binary file images/raw.tif has changed
--- a/macros.xml	Fri Mar 11 23:40:51 2022 +0000
+++ b/macros.xml	Thu Sep 01 22:43:42 2022 +0000
@@ -2,7 +2,7 @@
 <macros>
     <xml name="requirements">
         <requirements>
-            <container type="docker">labsyspharm/unetcoreograph:@VERSION@</container>
+            <!--
             <requirement type="package" version="3.6">python</requirement>
             <requirement type="package" version="1.15.1">tensorflow-estimator</requirement>
             <requirement type="package" version="1.15">tensorflow</requirement>
@@ -13,24 +13,27 @@
             <requirement type="package" version="1.1.0">scipy</requirement>
             <requirement type="package">opencv</requirement>
             <requirement type="package" version="0.8.1">pytiff</requirement>
+            -->
+            <container type="docker">labsyspharm/unetcoreograph:@TOOL_VERSION@</container>
         </requirements>
     </xml>
 
     <xml name="version_cmd">
-        <version_command>echo @VERSION@</version_command>
+        <version_command>echo @TOOL_VERSION@</version_command>
     </xml>
     <xml name="citations">
         <citations>
         </citations>
     </xml>
 
-    <token name="@VERSION@">2.2.8</token>
+    <token name="@TOOL_VERSION@">2.2.8</token>
+    <token name="@VERSION_SUFFIX@">0</token>
     <token name="@CMD_BEGIN@"><![CDATA[
-    UNET_PATH="";
+    UNET_PATH="" &&
     if [ -f "/app/UNetCoreograph.py" ]; then
         export UNET_PATH="/app/UNetCoreograph.py";
     else
         export UNET_PATH="${__tool_directory__}/UNetCoreograph.py";
-    fi;
+    fi &&
     ]]></token>
 </macros>
--- a/model/checkpoint	Fri Mar 11 23:40:51 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,2 +0,0 @@
-model_checkpoint_path: "D:\\LSP\\Coreograph\\model-4layersMaskAug20New\\model.ckpt"
-all_model_checkpoint_paths: "D:\\LSP\\Coreograph\\model-4layersMaskAug20New\\model.ckpt"
--- a/model/datasetMean.data	Fri Mar 11 23:40:51 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,3 +0,0 @@
-€G?·
-=p£×
-.
\ No newline at end of file
--- a/model/datasetStDev.data	Fri Mar 11 23:40:51 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,3 +0,0 @@
-€G?·
-=p£×
-.
\ No newline at end of file
Binary file model/hp.data has changed
Binary file model/model.ckpt.data-00000-of-00001 has changed
Binary file model/model.ckpt.index has changed
Binary file model/model.ckpt.meta has changed
Binary file test-data/coreograph_test.tiff has changed
--- a/toolbox/PartitionOfImage.py	Fri Mar 11 23:40:51 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,305 +0,0 @@
-import numpy as np
-from toolbox.imtools import *
-# from toolbox.ftools import *
-# import sys
-
-class PI2D:
-    Image = None
-    PaddedImage = None
-    PatchSize = 128
-    Margin = 14
-    SubPatchSize = 100
-    PC = None # patch coordinates
-    NumPatches = 0
-    Output = None
-    Count = None
-    NR = None
-    NC = None
-    NRPI = None
-    NCPI = None
-    Mode = None
-    W = None
-
-    def setup(image,patchSize,margin,mode):
-        PI2D.Image = image
-        PI2D.PatchSize = patchSize
-        PI2D.Margin = margin
-        subPatchSize = patchSize-2*margin
-        PI2D.SubPatchSize = subPatchSize
-
-        W = np.ones((patchSize,patchSize))
-        W[[0,-1],:] = 0
-        W[:,[0,-1]] = 0
-        for i in range(1,2*margin):
-            v = i/(2*margin)
-            W[i,i:-i] = v
-            W[-i-1,i:-i] = v
-            W[i:-i,i] = v
-            W[i:-i,-i-1] = v
-        PI2D.W = W
-
-        if len(image.shape) == 2:
-            nr,nc = image.shape
-        elif len(image.shape) == 3: # multi-channel image
-            nz,nr,nc = image.shape
-
-        PI2D.NR = nr
-        PI2D.NC = nc
-
-        npr = int(np.ceil(nr/subPatchSize)) # number of patch rows
-        npc = int(np.ceil(nc/subPatchSize)) # number of patch cols
-
-        nrpi = npr*subPatchSize+2*margin # number of rows in padded image 
-        ncpi = npc*subPatchSize+2*margin # number of cols in padded image 
-
-        PI2D.NRPI = nrpi
-        PI2D.NCPI = ncpi
-
-        if len(image.shape) == 2:
-            PI2D.PaddedImage = np.zeros((nrpi,ncpi))
-            PI2D.PaddedImage[margin:margin+nr,margin:margin+nc] = image
-        elif len(image.shape) == 3:
-            PI2D.PaddedImage = np.zeros((nz,nrpi,ncpi))
-            PI2D.PaddedImage[:,margin:margin+nr,margin:margin+nc] = image
-
-        PI2D.PC = [] # patch coordinates [r0,r1,c0,c1]
-        for i in range(npr):
-            r0 = i*subPatchSize
-            r1 = r0+patchSize
-            for j in range(npc):
-                c0 = j*subPatchSize
-                c1 = c0+patchSize
-                PI2D.PC.append([r0,r1,c0,c1])
-
-        PI2D.NumPatches = len(PI2D.PC)
-        PI2D.Mode = mode # 'replace' or 'accumulate'
-
-    def getPatch(i):
-        r0,r1,c0,c1 = PI2D.PC[i]
-        if len(PI2D.PaddedImage.shape) == 2:
-            return PI2D.PaddedImage[r0:r1,c0:c1]
-        if len(PI2D.PaddedImage.shape) == 3:
-            return PI2D.PaddedImage[:,r0:r1,c0:c1]
-
-    def createOutput(nChannels):
-        if nChannels == 1:
-            PI2D.Output = np.zeros((PI2D.NRPI,PI2D.NCPI),np.float16)
-        else:
-            PI2D.Output = np.zeros((nChannels,PI2D.NRPI,PI2D.NCPI),np.float16)
-        if PI2D.Mode == 'accumulate':
-            PI2D.Count = np.zeros((PI2D.NRPI,PI2D.NCPI),np.float16)
-
-    def patchOutput(i,P):
-        r0,r1,c0,c1 = PI2D.PC[i]
-        if PI2D.Mode == 'accumulate':
-            PI2D.Count[r0:r1,c0:c1] += PI2D.W
-        if len(P.shape) == 2:
-            if PI2D.Mode == 'accumulate':
-                PI2D.Output[r0:r1,c0:c1] += np.multiply(P,PI2D.W)
-            elif PI2D.Mode == 'replace':
-                PI2D.Output[r0:r1,c0:c1] = P
-        elif len(P.shape) == 3:
-            if PI2D.Mode == 'accumulate':
-                for i in range(P.shape[0]):
-                    PI2D.Output[i,r0:r1,c0:c1] += np.multiply(P[i,:,:],PI2D.W)
-            elif PI2D.Mode == 'replace':
-                PI2D.Output[:,r0:r1,c0:c1] = P
-
-    def getValidOutput():
-        margin = PI2D.Margin
-        nr, nc = PI2D.NR, PI2D.NC
-        if PI2D.Mode == 'accumulate':
-            C = PI2D.Count[margin:margin+nr,margin:margin+nc]
-        if len(PI2D.Output.shape) == 2:
-            if PI2D.Mode == 'accumulate':
-                return np.divide(PI2D.Output[margin:margin+nr,margin:margin+nc],C)
-            if PI2D.Mode == 'replace':
-                return PI2D.Output[margin:margin+nr,margin:margin+nc]
-        if len(PI2D.Output.shape) == 3:
-            if PI2D.Mode == 'accumulate':
-                for i in range(PI2D.Output.shape[0]):
-                    PI2D.Output[i,margin:margin+nr,margin:margin+nc] = np.divide(PI2D.Output[i,margin:margin+nr,margin:margin+nc],C)
-            return PI2D.Output[:,margin:margin+nr,margin:margin+nc]
-
-
-    def demo():
-        I = np.random.rand(128,128)
-        # PI2D.setup(I,128,14)
-        PI2D.setup(I,64,4,'replace')
-
-        nChannels = 2
-        PI2D.createOutput(nChannels)
-
-        for i in range(PI2D.NumPatches):
-            P = PI2D.getPatch(i)
-            Q = np.zeros((nChannels,P.shape[0],P.shape[1]))
-            for j in range(nChannels):
-                Q[j,:,:] = P
-            PI2D.patchOutput(i,Q)
-
-        J = PI2D.getValidOutput()
-        J = J[0,:,:]
-
-        D = np.abs(I-J)
-        print(np.max(D))
-
-        K = cat(1,cat(1,I,J),D)
-        imshow(K)
-
-
-class PI3D:
-    Image = None
-    PaddedImage = None
-    PatchSize = 128
-    Margin = 14
-    SubPatchSize = 100
-    PC = None # patch coordinates
-    NumPatches = 0
-    Output = None
-    Count = None
-    NR = None # rows
-    NC = None # cols
-    NZ = None # planes
-    NRPI = None
-    NCPI = None
-    NZPI = None
-    Mode = None
-    W = None
-
-    def setup(image,patchSize,margin,mode):
-        PI3D.Image = image
-        PI3D.PatchSize = patchSize
-        PI3D.Margin = margin
-        subPatchSize = patchSize-2*margin
-        PI3D.SubPatchSize = subPatchSize
-
-        W = np.ones((patchSize,patchSize,patchSize))
-        W[[0,-1],:,:] = 0
-        W[:,[0,-1],:] = 0
-        W[:,:,[0,-1]] = 0
-        for i in range(1,2*margin):
-            v = i/(2*margin)
-            W[[i,-i-1],i:-i,i:-i] = v
-            W[i:-i,[i,-i-1],i:-i] = v
-            W[i:-i,i:-i,[i,-i-1]] = v
-
-        PI3D.W = W
-
-        if len(image.shape) == 3:
-            nz,nr,nc = image.shape
-        elif len(image.shape) == 4: # multi-channel image
-            nz,nw,nr,nc = image.shape
-
-        PI3D.NR = nr
-        PI3D.NC = nc
-        PI3D.NZ = nz
-
-        npr = int(np.ceil(nr/subPatchSize)) # number of patch rows
-        npc = int(np.ceil(nc/subPatchSize)) # number of patch cols
-        npz = int(np.ceil(nz/subPatchSize)) # number of patch planes
-
-        nrpi = npr*subPatchSize+2*margin # number of rows in padded image 
-        ncpi = npc*subPatchSize+2*margin # number of cols in padded image 
-        nzpi = npz*subPatchSize+2*margin # number of plns in padded image 
-
-        PI3D.NRPI = nrpi
-        PI3D.NCPI = ncpi
-        PI3D.NZPI = nzpi
-
-        if len(image.shape) == 3:
-            PI3D.PaddedImage = np.zeros((nzpi,nrpi,ncpi))
-            PI3D.PaddedImage[margin:margin+nz,margin:margin+nr,margin:margin+nc] = image
-        elif len(image.shape) == 4:
-            PI3D.PaddedImage = np.zeros((nzpi,nw,nrpi,ncpi))
-            PI3D.PaddedImage[margin:margin+nz,:,margin:margin+nr,margin:margin+nc] = image
-
-        PI3D.PC = [] # patch coordinates [z0,z1,r0,r1,c0,c1]
-        for iZ in range(npz):
-            z0 = iZ*subPatchSize
-            z1 = z0+patchSize
-            for i in range(npr):
-                r0 = i*subPatchSize
-                r1 = r0+patchSize
-                for j in range(npc):
-                    c0 = j*subPatchSize
-                    c1 = c0+patchSize
-                    PI3D.PC.append([z0,z1,r0,r1,c0,c1])
-
-        PI3D.NumPatches = len(PI3D.PC)
-        PI3D.Mode = mode # 'replace' or 'accumulate'
-
-    def getPatch(i):
-        z0,z1,r0,r1,c0,c1 = PI3D.PC[i]
-        if len(PI3D.PaddedImage.shape) == 3:
-            return PI3D.PaddedImage[z0:z1,r0:r1,c0:c1]
-        if len(PI3D.PaddedImage.shape) == 4:
-            return PI3D.PaddedImage[z0:z1,:,r0:r1,c0:c1]
-
-    def createOutput(nChannels):
-        if nChannels == 1:
-            PI3D.Output = np.zeros((PI3D.NZPI,PI3D.NRPI,PI3D.NCPI))
-        else:
-            PI3D.Output = np.zeros((PI3D.NZPI,nChannels,PI3D.NRPI,PI3D.NCPI))
-        if PI3D.Mode == 'accumulate':
-            PI3D.Count = np.zeros((PI3D.NZPI,PI3D.NRPI,PI3D.NCPI))
-
-    def patchOutput(i,P):
-        z0,z1,r0,r1,c0,c1 = PI3D.PC[i]
-        if PI3D.Mode == 'accumulate':
-            PI3D.Count[z0:z1,r0:r1,c0:c1] += PI3D.W
-        if len(P.shape) == 3:
-            if PI3D.Mode == 'accumulate':
-                PI3D.Output[z0:z1,r0:r1,c0:c1] += np.multiply(P,PI3D.W)
-            elif PI3D.Mode == 'replace':
-                PI3D.Output[z0:z1,r0:r1,c0:c1] = P
-        elif len(P.shape) == 4:
-            if PI3D.Mode == 'accumulate':
-                for i in range(P.shape[1]):
-                    PI3D.Output[z0:z1,i,r0:r1,c0:c1] += np.multiply(P[:,i,:,:],PI3D.W)
-            elif PI3D.Mode == 'replace':
-                PI3D.Output[z0:z1,:,r0:r1,c0:c1] = P
-
-    def getValidOutput():
-        margin = PI3D.Margin
-        nz, nr, nc = PI3D.NZ, PI3D.NR, PI3D.NC
-        if PI3D.Mode == 'accumulate':
-            C = PI3D.Count[margin:margin+nz,margin:margin+nr,margin:margin+nc]
-        if len(PI3D.Output.shape) == 3:
-            if PI3D.Mode == 'accumulate':
-                return np.divide(PI3D.Output[margin:margin+nz,margin:margin+nr,margin:margin+nc],C)
-            if PI3D.Mode == 'replace':
-                return PI3D.Output[margin:margin+nz,margin:margin+nr,margin:margin+nc]
-        if len(PI3D.Output.shape) == 4:
-            if PI3D.Mode == 'accumulate':
-                for i in range(PI3D.Output.shape[1]):
-                    PI3D.Output[margin:margin+nz,i,margin:margin+nr,margin:margin+nc] = np.divide(PI3D.Output[margin:margin+nz,i,margin:margin+nr,margin:margin+nc],C)
-            return PI3D.Output[margin:margin+nz,:,margin:margin+nr,margin:margin+nc]
-
-
-    def demo():
-        I = np.random.rand(128,128,128)
-        PI3D.setup(I,64,4,'accumulate')
-
-        nChannels = 2
-        PI3D.createOutput(nChannels)
-
-        for i in range(PI3D.NumPatches):
-            P = PI3D.getPatch(i)
-            Q = np.zeros((P.shape[0],nChannels,P.shape[1],P.shape[2]))
-            for j in range(nChannels):
-                Q[:,j,:,:] = P
-            PI3D.patchOutput(i,Q)
-
-        J = PI3D.getValidOutput()
-        J = J[:,0,:,:]
-
-        D = np.abs(I-J)
-        print(np.max(D))
-
-        pI = I[64,:,:]
-        pJ = J[64,:,:]
-        pD = D[64,:,:]
-
-        K = cat(1,cat(1,pI,pJ),pD)
-        imshow(K)
-
Binary file toolbox/__pycache__/PartitionOfImage.cpython-36.pyc has changed
Binary file toolbox/__pycache__/__init__.cpython-36.pyc has changed
Binary file toolbox/__pycache__/ftools.cpython-36.pyc has changed
Binary file toolbox/__pycache__/imtools.cpython-36.pyc has changed
--- a/toolbox/ftools.py	Fri Mar 11 23:40:51 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,55 +0,0 @@
-from os.path import *
-from os import listdir, makedirs, remove
-import pickle
-import shutil
-
-def fileparts(path): # path = file path
-    [p,f] = split(path)
-    [n,e] = splitext(f)
-    return [p,n,e]
-
-def listfiles(path,token): # path = folder path
-    l = []
-    for f in listdir(path):
-        fullPath = join(path,f)
-        if isfile(fullPath) and token in f:
-            l.append(fullPath)
-    l.sort()
-    return l
-
-def listsubdirs(path): # path = folder path
-    l = []
-    for f in listdir(path):
-        fullPath = join(path,f)
-        if isdir(fullPath):
-            l.append(fullPath)
-    l.sort()
-    return l
-
-def pathjoin(p,ne): # '/path/to/folder', 'name.extension' (or a subfolder)
-    return join(p,ne)
-
-def saveData(data,path):
-    print('saving data')
-    dataFile = open(path, 'wb')
-    pickle.dump(data, dataFile)
-
-def loadData(path):
-    print('loading data')
-    dataFile = open(path, 'rb')
-    return pickle.load(dataFile)
-
-def createFolderIfNonExistent(path):
-    if not exists(path): # from os.path
-        makedirs(path)
-
-def moveFile(fullPathSource,folderPathDestination):
-    [p,n,e] = fileparts(fullPathSource)
-    shutil.move(fullPathSource,pathjoin(folderPathDestination,n+e))
-
-def copyFile(fullPathSource,folderPathDestination):
-    [p,n,e] = fileparts(fullPathSource)
-    shutil.copy(fullPathSource,pathjoin(folderPathDestination,n+e))
-
-def removeFile(path):
-    remove(path)
\ No newline at end of file
--- a/toolbox/imtools.py	Fri Mar 11 23:40:51 2022 +0000
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,312 +0,0 @@
-import matplotlib.pyplot as plt
-import tifffile
-import os
-import numpy as np
-from skimage import io as skio
-from scipy.ndimage import *
-from skimage.morphology import *
-from skimage.transform import resize
-
-def tifread(path):
-    return tifffile.imread(path)
-
-def tifwrite(I,path):
-    tifffile.imsave(path, I)
-
-def imshow(I,**kwargs):
-    if not kwargs:
-        plt.imshow(I,cmap='gray')
-    else:
-        plt.imshow(I,**kwargs)
-        
-    plt.axis('off')
-    plt.show()
-
-def imshowlist(L,**kwargs):
-    n = len(L)
-    for i in range(n):
-        plt.subplot(1, n, i+1)
-        if not kwargs:
-            plt.imshow(L[i],cmap='gray')
-        else:
-            plt.imshow(L[i],**kwargs)
-        plt.axis('off')
-    plt.show()
-
-def imread(path):
-    return skio.imread(path)
-
-def imwrite(I,path):
-    skio.imsave(path,I)
-
-def im2double(I):
-    if I.dtype == 'uint16':
-        return I.astype('float64')/65535
-    elif I.dtype == 'uint8':
-        return I.astype('float64')/255
-    elif I.dtype == 'float32':
-        return I.astype('float64')
-    elif I.dtype == 'float64':
-        return I
-    else:
-        print('returned original image type: ', I.dtype)
-        return I
-
-def size(I):
-    return list(I.shape)
-
-def imresizeDouble(I,sizeOut): # input and output are double
-    return resize(I,(sizeOut[0],sizeOut[1]),mode='reflect')
-
-def imresize3Double(I,sizeOut): # input and output are double
-    return resize(I,(sizeOut[0],sizeOut[1],sizeOut[2]),mode='reflect')
-
-def imresizeUInt8(I,sizeOut): # input and output are UInt8
-    return np.uint8(resize(I.astype(float),(sizeOut[0],sizeOut[1]),mode='reflect',order=0))
-
-def imresize3UInt8(I,sizeOut): # input and output are UInt8
-    return np.uint8(resize(I.astype(float),(sizeOut[0],sizeOut[1],sizeOut[2]),mode='reflect',order=0))
-
-def normalize(I):
-    m = np.min(I)
-    M = np.max(I)
-    if M > m:
-        return (I-m)/(M-m)
-    else:
-        return I
-
-def snormalize(I):
-    m = np.mean(I)
-    s = np.std(I)
-    if s > 0:
-        return (I-m)/s
-    else:
-        return I
-
-def cat(a,I,J):
-    return np.concatenate((I,J),axis=a)
-
-def imerode(I,r):
-    return binary_erosion(I, disk(r))
-
-def imdilate(I,r):
-    return binary_dilation(I, disk(r))
-
-def imerode3(I,r):
-    return morphology.binary_erosion(I, ball(r))
-
-def imdilate3(I,r):
-    return morphology.binary_dilation(I, ball(r))
-
-def sphericalStructuralElement(imShape,fRadius):
-    if len(imShape) == 2:
-        return disk(fRadius,dtype=float)
-    if len(imShape) == 3:
-        return ball(fRadius,dtype=float)
-
-def medfilt(I,filterRadius):
-    return median_filter(I,footprint=sphericalStructuralElement(I.shape,filterRadius))
-
-def maxfilt(I,filterRadius):
-    return maximum_filter(I,footprint=sphericalStructuralElement(I.shape,filterRadius))
-
-def minfilt(I,filterRadius):
-    return minimum_filter(I,footprint=sphericalStructuralElement(I.shape,filterRadius))
-
-def ptlfilt(I,percentile,filterRadius):
-    return percentile_filter(I,percentile,footprint=sphericalStructuralElement(I.shape,filterRadius))
-
-def imgaussfilt(I,sigma,**kwargs):
-    return gaussian_filter(I,sigma,**kwargs)
-
-def imlogfilt(I,sigma,**kwargs):
-    return -gaussian_laplace(I,sigma,**kwargs)
-
-def imgradmag(I,sigma):
-    if len(I.shape) == 2:
-        dx = imgaussfilt(I,sigma,order=[0,1])
-        dy = imgaussfilt(I,sigma,order=[1,0])
-        return np.sqrt(dx**2+dy**2)
-    if len(I.shape) == 3:
-        dx = imgaussfilt(I,sigma,order=[0,0,1])
-        dy = imgaussfilt(I,sigma,order=[0,1,0])
-        dz = imgaussfilt(I,sigma,order=[1,0,0])
-        return np.sqrt(dx**2+dy**2+dz**2)
-
-def localstats(I,radius,justfeatnames=False):
-    ptls = [10,30,50,70,90]
-    featNames = []
-    for i in range(len(ptls)):
-        featNames.append('locPtl%d' % ptls[i])
-    if justfeatnames == True:
-        return featNames
-    sI = size(I)
-    nFeats = len(ptls)
-    F = np.zeros((sI[0],sI[1],nFeats))
-    for i in range(nFeats):
-        F[:,:,i] = ptlfilt(I,ptls[i],radius)
-    return F
-
-def localstats3(I,radius,justfeatnames=False):
-    ptls = [10,30,50,70,90]
-    featNames = []
-    for i in range(len(ptls)):
-        featNames.append('locPtl%d' % ptls[i])
-    if justfeatnames == True:
-        return featNames
-    sI = size(I)
-    nFeats = len(ptls)
-    F = np.zeros((sI[0],sI[1],sI[2],nFeats))
-    for i in range(nFeats):
-        F[:,:,:,i] = ptlfilt(I,ptls[i],radius)
-    return F
-
-def imderivatives(I,sigmas,justfeatnames=False):
-    if type(sigmas) is not list:
-        sigmas = [sigmas]
-    derivPerSigmaFeatNames = ['d0','dx','dy','dxx','dxy','dyy','normGrad','normHessDiag']
-    if justfeatnames == True:
-        featNames = [];
-        for i in range(len(sigmas)):
-            for j in range(len(derivPerSigmaFeatNames)):
-                featNames.append('derivSigma%d%s' % (sigmas[i],derivPerSigmaFeatNames[j]))
-        return featNames
-    nDerivativesPerSigma = len(derivPerSigmaFeatNames)
-    nDerivatives = len(sigmas)*nDerivativesPerSigma
-    sI = size(I)
-    D = np.zeros((sI[0],sI[1],nDerivatives))
-    for i in range(len(sigmas)):
-        sigma = sigmas[i]
-        dx = imgaussfilt(I,sigma,order=[0,1])
-        dy = imgaussfilt(I,sigma,order=[1,0])
-        dxx = imgaussfilt(I,sigma,order=[0,2])
-        dyy = imgaussfilt(I,sigma,order=[2,0])
-        D[:,:,nDerivativesPerSigma*i  ] = imgaussfilt(I,sigma)
-        D[:,:,nDerivativesPerSigma*i+1] = dx
-        D[:,:,nDerivativesPerSigma*i+2] = dy
-        D[:,:,nDerivativesPerSigma*i+3] = dxx
-        D[:,:,nDerivativesPerSigma*i+4] = imgaussfilt(I,sigma,order=[1,1])
-        D[:,:,nDerivativesPerSigma*i+5] = dyy
-        D[:,:,nDerivativesPerSigma*i+6] = np.sqrt(dx**2+dy**2)
-        D[:,:,nDerivativesPerSigma*i+7] = np.sqrt(dxx**2+dyy**2)
-    return D
-    # derivatives are indexed by the last dimension, which is good for ML features but not for visualization,
-    # in which case the expected dimensions are [plane,channel,y(row),x(col)]; to obtain that ordering, do
-    # D = np.moveaxis(D,[0,3,1,2],[0,1,2,3])
-
-def imderivatives3(I,sigmas,justfeatnames=False):
-    if type(sigmas) is not list:
-        sigmas = [sigmas]
-
-    derivPerSigmaFeatNames = ['d0','dx','dy','dz','dxx','dxy','dxz','dyy','dyz','dzz','normGrad','normHessDiag']
-
-    # derivPerSigmaFeatNames = ['d0','normGrad','normHessDiag']
-
-    if justfeatnames == True:
-        featNames = [];
-        for i in range(len(sigmas)):
-            for j in range(len(derivPerSigmaFeatNames)):
-                featNames.append('derivSigma%d%s' % (sigmas[i],derivPerSigmaFeatNames[j]))
-        return featNames
-    nDerivativesPerSigma = len(derivPerSigmaFeatNames)
-    nDerivatives = len(sigmas)*nDerivativesPerSigma
-    sI = size(I)
-    D = np.zeros((sI[0],sI[1],sI[2],nDerivatives)) # plane, channel, y, x
-    for i in range(len(sigmas)):
-        sigma = sigmas[i]
-        dx  = imgaussfilt(I,sigma,order=[0,0,1]) # z, y, x
-        dy  = imgaussfilt(I,sigma,order=[0,1,0])
-        dz  = imgaussfilt(I,sigma,order=[1,0,0])
-        dxx = imgaussfilt(I,sigma,order=[0,0,2])
-        dyy = imgaussfilt(I,sigma,order=[0,2,0])
-        dzz = imgaussfilt(I,sigma,order=[2,0,0])
-
-        D[:,:,:,nDerivativesPerSigma*i   ] = imgaussfilt(I,sigma)
-        D[:,:,:,nDerivativesPerSigma*i+1 ] = dx
-        D[:,:,:,nDerivativesPerSigma*i+2 ] = dy
-        D[:,:,:,nDerivativesPerSigma*i+3 ] = dz
-        D[:,:,:,nDerivativesPerSigma*i+4 ] = dxx
-        D[:,:,:,nDerivativesPerSigma*i+5 ] = imgaussfilt(I,sigma,order=[0,1,1])
-        D[:,:,:,nDerivativesPerSigma*i+6 ] = imgaussfilt(I,sigma,order=[1,0,1])
-        D[:,:,:,nDerivativesPerSigma*i+7 ] = dyy
-        D[:,:,:,nDerivativesPerSigma*i+8 ] = imgaussfilt(I,sigma,order=[1,1,0])
-        D[:,:,:,nDerivativesPerSigma*i+9 ] = dzz
-        D[:,:,:,nDerivativesPerSigma*i+10] = np.sqrt(dx**2+dy**2+dz**2)
-        D[:,:,:,nDerivativesPerSigma*i+11] = np.sqrt(dxx**2+dyy**2+dzz**2)
-
-        # D[:,:,:,nDerivativesPerSigma*i   ] = imgaussfilt(I,sigma)
-        # D[:,:,:,nDerivativesPerSigma*i+1 ] = np.sqrt(dx**2+dy**2+dz**2)
-        # D[:,:,:,nDerivativesPerSigma*i+2 ] = np.sqrt(dxx**2+dyy**2+dzz**2)
-    return D
-    # derivatives are indexed by the last dimension, which is good for ML features but not for visualization,
-    # in which case the expected dimensions are [plane,y(row),x(col)]; to obtain that ordering, do
-    # D = np.moveaxis(D,[2,0,1],[0,1,2])
-
-def imfeatures(I=[],sigmaDeriv=1,sigmaLoG=1,locStatsRad=0,justfeatnames=False):
-    if type(sigmaDeriv) is not list:
-        sigmaDeriv = [sigmaDeriv]
-    if type(sigmaLoG) is not list:
-        sigmaLoG = [sigmaLoG]
-    derivFeatNames = imderivatives([],sigmaDeriv,justfeatnames=True)
-    nLoGFeats = len(sigmaLoG)
-    locStatsFeatNames = []
-    if locStatsRad > 1:
-        locStatsFeatNames = localstats([],locStatsRad,justfeatnames=True)
-    nLocStatsFeats = len(locStatsFeatNames)
-    if justfeatnames == True:
-        featNames = derivFeatNames
-        for i in range(nLoGFeats):
-            featNames.append('logSigma%d' % sigmaLoG[i])
-        for i in range(nLocStatsFeats):
-            featNames.append(locStatsFeatNames[i])
-        return featNames
-    nDerivFeats = len(derivFeatNames)
-    nFeatures = nDerivFeats+nLoGFeats+nLocStatsFeats
-    sI = size(I)
-    F = np.zeros((sI[0],sI[1],nFeatures))
-    F[:,:,:nDerivFeats] = imderivatives(I,sigmaDeriv)
-    for i in range(nLoGFeats):
-        F[:,:,nDerivFeats+i] = imlogfilt(I,sigmaLoG[i])
-    if locStatsRad > 1:
-        F[:,:,nDerivFeats+nLoGFeats:] = localstats(I,locStatsRad)
-    return F
-
-def imfeatures3(I=[],sigmaDeriv=2,sigmaLoG=2,locStatsRad=0,justfeatnames=False):
-    if type(sigmaDeriv) is not list:
-        sigmaDeriv = [sigmaDeriv]
-    if type(sigmaLoG) is not list:
-        sigmaLoG = [sigmaLoG]
-    derivFeatNames = imderivatives3([],sigmaDeriv,justfeatnames=True)
-    nLoGFeats = len(sigmaLoG)
-    locStatsFeatNames = []
-    if locStatsRad > 1:
-        locStatsFeatNames = localstats3([],locStatsRad,justfeatnames=True)
-    nLocStatsFeats = len(locStatsFeatNames)
-    if justfeatnames == True:
-        featNames = derivFeatNames
-        for i in range(nLoGFeats):
-            featNames.append('logSigma%d' % sigmaLoG[i])
-        for i in range(nLocStatsFeats):
-            featNames.append(locStatsFeatNames[i])
-        return featNames
-    nDerivFeats = len(derivFeatNames)
-    nFeatures = nDerivFeats+nLoGFeats+nLocStatsFeats
-    sI = size(I)
-    F = np.zeros((sI[0],sI[1],sI[2],nFeatures))
-    F[:,:,:,:nDerivFeats] = imderivatives3(I,sigmaDeriv)
-    for i in range(nLoGFeats):
-        F[:,:,:,nDerivFeats+i] = imlogfilt(I,sigmaLoG[i])
-    if locStatsRad > 1:
-        F[:,:,:,nDerivFeats+nLoGFeats:] = localstats3(I,locStatsRad)
-    return F
-
-def stack2list(S):
-    L = []
-    for i in range(size(S)[2]):
-        L.append(S[:,:,i])
-    return L
-
-def thrsegment(I,wsBlr,wsThr): # basic threshold segmentation
-    G = imgaussfilt(I,sigma=(1-wsBlr)+wsBlr*5) # min 1, max 5
-    M = G > wsThr
-    return M
\ No newline at end of file