0
|
1 ### pipeline ###
|
|
2 # Complete a single iteration, which consists of:
|
|
3 # - Doing pca
|
|
4 # - Clustering, if required
|
|
5 # - Finding outliers
|
|
6 # - Setting up plots
|
|
7 # Outputs a list containing all the data regarding this iteration
|
|
8 single_iteration = function(outdir, basename, ped_data, xsamples, numsds,
|
|
9 cmethod, tmethod, control_tag, cases_tag, ethnicity_data=NULL) {
|
|
10 it_data = list()
|
|
11 it_data$old_xsamples = xsamples
|
|
12 # get data and do pca
|
|
13 pca_data = do_pca(ped_data)
|
|
14 it_data$pca_data = pca_data
|
|
15 it_data$plots = list()
|
|
16 plot_number = 1
|
|
17
|
|
18 # plot controls and cases
|
|
19 if (!is.null(control_tag) || !is.null(cases_tag)) {
|
|
20 it_data$plots[[plot_number]] = setup_cvc_plot(pca_data, control_tag, cases_tag)
|
|
21 plot_number = plot_number + 1
|
|
22 }
|
|
23
|
|
24 # if we have ethnicity data, setup a special plot
|
|
25 if (!is.null(ethnicity_data)) {
|
|
26 it_data$plots[[plot_number]] = setup_ethnicity_plot(pca_data, ethnicity_data)
|
|
27 plot_number = plot_number + 1
|
|
28 }
|
|
29
|
|
30 if (cmethod == "none") {
|
|
31 # get outliers by sd
|
|
32 all_outliers = outliers_by_sd(pca_data, xsamples, numsds)
|
|
33 new_xsamples = union(xsamples, pca_data$ids[all_outliers])
|
|
34 it_data$xsamples = new_xsamples
|
|
35 # prepare outlier plot
|
|
36 it_data$plots[[plot_number]] = setup_ol_plot(pca_data, all_outliers)
|
|
37 plot_number = plot_number + 1
|
|
38 # prepare sd plot
|
|
39 it_data$plots[[plot_number]] = setup_sd_plot(pca_data)
|
|
40 plot_number = plot_number + 1
|
|
41 } else {
|
|
42 # do clustering
|
|
43 if (cmethod == "dbscan") {
|
|
44 emax = 2
|
|
45 mp = 7
|
|
46 clusters = automated_dbscan(pca_data, emax, mp)
|
|
47 } else if (cmethod == "hclust") {
|
|
48 clusters = automated_hclust(pca_data)
|
|
49 } else {
|
|
50 clusters = automated_hclust(pca_data)
|
|
51 }
|
|
52
|
|
53 # get outliers
|
|
54 cluster_outliers = which(clusters == 0)
|
|
55 # get rejected clusters
|
|
56 centers = find_cluster_centers(clusters, pca_data$values)
|
|
57 if (tmethod == "mcd") {
|
|
58 rc = find_cluster_outliers_mcd(clusters, centers, pca_data, numsds, 2)
|
|
59 } else if (tmethod == "sd") {
|
|
60 rc = find_cluster_outliers_sd(clusters, centers, pca_data, numsds)
|
|
61 } else if (tmethod == "dbscan_outliers_only") {
|
|
62 rc = 0
|
|
63 }
|
|
64 rc_indices = which(clusters %in% rc)
|
|
65 all_ol = union(cluster_outliers, rc_indices)
|
|
66 # it is possible that all samples get removed, in which case program will crash.
|
|
67 # so do not remove them
|
|
68 if (length(all_ol) == nrow(ped_data)) {
|
|
69 new_xsamples = xsamples
|
|
70 } else {
|
|
71 new_xsamples = union(xsamples, pca_data$ids[all_ol])
|
|
72 }
|
|
73 it_data$xsamples = new_xsamples
|
|
74 # prepare plot
|
|
75 it_data$plots[[plot_number]] = setup_cluster_plot(pca_data, clusters, rc=rc)
|
|
76 plot_number = plot_number + 1
|
|
77 }
|
|
78 it_data$outliers = setdiff(new_xsamples, xsamples)
|
|
79 it_data$num_plots = plot_number - 1
|
|
80 return(it_data)
|
|
81 }
|
|
82
|
|
83 # basically an inner join on a list of ids, and a table of ethnicity data
|
|
84 # if eth_data == null, then the second column is filled with NAs
|
|
85 add_ethnicity_data = function(ids, eth_data) {
|
|
86 n = length(ids)
|
|
87 if (!is.null(eth_data)) {
|
|
88 output = matrix(nrow=n, ncol=ncol(eth_data))
|
|
89 colnames(output) = colnames(eth_data)
|
|
90 if (n > 0) {
|
|
91 for (i in 1:n) {
|
|
92 this_id = ids[i]
|
|
93 if (this_id %in% rownames(eth_data)) {
|
|
94 this_row = unlist(lapply(eth_data[this_id, ], as.character), use.names=FALSE)
|
|
95 } else {
|
|
96 this_row = c(this_id, rep(NA, ncol(output)-1))
|
|
97 }
|
|
98 output[i, ] = this_row
|
|
99 }
|
|
100 }
|
|
101 } else {
|
|
102 output = cbind(ids, rep(NA, n))
|
|
103 colnames(output) = c("IID", "Population")
|
|
104 }
|
|
105 return(output)
|
|
106 }
|
|
107
|
|
108 generate_directory_name = function(outdir, basename, iteration) {
|
|
109 newdir = paste0("output_", basename, "_iteration_", iteration - 1)
|
|
110 full_path = paste0(outdir, "/", newdir)
|
|
111 return(full_path)
|
|
112 } |