diff id_converter.py @ 16:b6607b7e683f draft

planemo upload commit f2b3d1ff6bea930b2ce32c009e4d3de39a17edfb-dirty
author proteore
date Mon, 28 Jan 2019 11:08:47 -0500
parents
children 1e45ea50f145
line wrap: on
line diff
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/id_converter.py	Mon Jan 28 11:08:47 2019 -0500
@@ -0,0 +1,183 @@
+import sys, os, argparse, re, csv
+
+def get_args() :
+    parser = argparse.ArgumentParser()
+    parser.add_argument("-d", "--ref_file", help="path to reference file: <species>_id_mapping.tsv", required=True)
+    parser.add_argument("--input_type", help="type of input (list of id or filename)", required=True)
+    parser.add_argument("-t", "--id_type", help="type of input IDs", required=True)
+    parser.add_argument("-i", "--input", help="list of IDs (text or filename)", required=True)
+    parser.add_argument("-c", "--column_number", help="list of IDs (text or filename)")
+    parser.add_argument("--header", help="true/false if your file contains a header")
+    parser.add_argument("--target_ids", help="target IDs to map to", required=True)
+    parser.add_argument("-o", "--output", help="output filename", required=True)
+    args = parser.parse_args()
+    return args
+
+#return list of (unique) ids from string
+def get_input_ids_from_string(input) :
+    ids_list = list(set(re.split(r'\s+',input.replace("\r","").replace("\n"," ").replace("\t"," "))))
+    if "" in ids_list : ids_list.remove("")
+    #if "NA" in ids_list : ids_list.remove("NA")
+    return ids_list
+
+#return input_file and list of unique ids from input file path
+def get_input_ids_from_file(input,nb_col,header) :
+    with open(input, "r") as csv_file :
+        input_file= list(csv.reader(csv_file, delimiter='\t'))
+
+    input_file, ids_list = one_id_one_line(input_file,nb_col,header)
+    if "" in ids_list : ids_list.remove("")
+    #if "NA" in ids_list : ids_list.remove("NA")
+
+    return input_file, ids_list
+
+#return input file by adding lines when there are more than one id per line
+def one_id_one_line(input_file,nb_col,header) :
+
+    if header : 
+        new_file = [input_file[0]]
+        input_file = input_file[1:]
+    else : 
+        new_file=[]
+    ids_list=[]
+
+    for line in input_file :
+        if line != [] and set(line) != {''}: 
+            line[nb_col] = re.sub(r"\s+","",line[nb_col])
+            if ";" in line[nb_col] :
+                ids = line[nb_col].split(";")
+                for id in ids :
+                    new_file.append(line[:nb_col]+[id]+line[nb_col+1:])
+                    ids_list.append(id)
+            else : 
+                new_file.append(line)
+                ids_list.append(line[nb_col])
+
+    ids_list= list(set(ids_list))
+
+    return new_file, ids_list
+
+#return the column number in int format
+def nb_col_to_int(nb_col):
+    try :
+        nb_col = int(nb_col.replace("c", "")) - 1
+        return nb_col
+    except :
+        sys.exit("Please specify the column where you would like to apply the filter with valid format")
+
+#replace all blank cells to NA
+def blank_to_NA(csv_file) :
+    tmp=[]
+    for line in csv_file :
+        line = ["NA" if cell=="" or cell==" " or cell=="NaN" else cell for cell in line]
+        tmp.append(line)
+    
+    return tmp
+
+def str2bool(v):
+    if v.lower() in ('yes', 'true', 't', 'y', '1'):
+        return True
+    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
+        return False
+    else:
+        raise argparse.ArgumentTypeError('Boolean value expected.')
+
+#return result dictionary
+def map_to_dictionary(ids,ids_dictionary,id_in,id_out) :
+    
+    result_dict = {}
+    for id in ids : 
+        for target_id in id_out :
+            if id in ids_dictionary :
+                res = ";".join(ids_dictionary[id][target_id])
+            else :
+                res=""
+            
+            if id in result_dict :
+                result_dict[id].append(res)
+            else :
+                result_dict[id]=[res]
+
+    return result_dict
+
+#create empty dictionary with index for tab
+def create_ids_dictionary (ids_list) :
+    ids_dictionary = {}
+    ids_dictionary_index={}
+    for i,id in enumerate(ids_list) :
+        ids_dictionary_index[i]=id
+            
+    return(ids_dictionary,ids_dictionary_index)
+
+def main():
+    
+    #Get args from command line
+    args = get_args()
+    target_ids = args.target_ids.split(",")
+    header=False
+    if args.id_type in target_ids : target_ids.remove(args.id_type)
+    if args.input_type=="file" :
+        args.column_number = nb_col_to_int(args.column_number)
+        header = str2bool(args.header)
+
+    #Get ref file to build dictionary
+    csv.field_size_limit(sys.maxsize) # to handle big files
+    with open(args.ref_file, "r") as csv_file :
+        tab = csv.reader(csv_file, delimiter='\t')
+        tab = [line for line in tab]
+
+    ids_list=tab[0]
+        
+    #create empty dictionary and dictionary index
+    ids_dictionary, ids_dictionary_index = create_ids_dictionary(ids_list)
+
+    #fill dictionary and sub dictionaries with ids
+    id_index = ids_list.index(args.id_type)
+    for line in tab[1:] :
+        ref_ids=line[id_index]
+        other_id_type_index = [accession_id for accession_id in ids_dictionary_index.keys() if accession_id!=id_index]
+        for id in ref_ids.replace(" ","").split(";") :       #if there's more than one id, one key per id (example : GO)
+            if id not in ids_dictionary :      #if the key is not created yet
+                ids_dictionary[id]={}
+            for other_id_type in other_id_type_index :
+                if ids_dictionary_index[other_id_type] not in ids_dictionary[id] :
+                    ids_dictionary[id][ids_dictionary_index[other_id_type]] = set(line[other_id_type].replace(" ","").split(";"))
+                else :
+                    ids_dictionary[id][ids_dictionary_index[other_id_type]] |= set(line[other_id_type].replace(" ","").split(";"))
+                if len(ids_dictionary[id][ids_dictionary_index[other_id_type]]) > 1 and '' in ids_dictionary[id][ids_dictionary_index[other_id_type]] : 
+                    ids_dictionary[id][ids_dictionary_index[other_id_type]].remove('')
+
+    #Get file and/or ids from input 
+    if args.input_type == "list" :
+        ids = get_input_ids_from_string(args.input)
+    elif args.input_type == "file" :
+        input_file, ids = get_input_ids_from_file(args.input,args.column_number,args.header)
+
+    #Mapping ids
+    result_dict = map_to_dictionary(ids,ids_dictionary,args.id_type,target_ids)
+
+    #creating output file 
+    if header : 
+        output_file=[input_file[0]+target_ids]
+        input_file = input_file[1:]
+    else :
+        output_file=[[args.id_type]+target_ids]
+
+    if args.input_type=="file" :
+        for line in input_file :
+            output_file.append(line+result_dict[line[args.column_number]])
+    elif args.input_type=="list" :
+        for id in ids :
+            output_file.append([id]+result_dict[id])
+
+    #convert blank to NA
+    output_file = blank_to_NA(output_file)
+
+    #write output file 
+    with open(args.output,"w") as output :
+        writer = csv.writer(output,delimiter="\t")
+        writer.writerows(output_file)
+
+if __name__ == "__main__":
+    main()
+