Mercurial > repos > proteore > proteore_id_converter
diff id_converter.py @ 16:b6607b7e683f draft
planemo upload commit f2b3d1ff6bea930b2ce32c009e4d3de39a17edfb-dirty
author | proteore |
---|---|
date | Mon, 28 Jan 2019 11:08:47 -0500 |
parents | |
children | 1e45ea50f145 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/id_converter.py Mon Jan 28 11:08:47 2019 -0500 @@ -0,0 +1,183 @@ +import sys, os, argparse, re, csv + +def get_args() : + parser = argparse.ArgumentParser() + parser.add_argument("-d", "--ref_file", help="path to reference file: <species>_id_mapping.tsv", required=True) + parser.add_argument("--input_type", help="type of input (list of id or filename)", required=True) + parser.add_argument("-t", "--id_type", help="type of input IDs", required=True) + parser.add_argument("-i", "--input", help="list of IDs (text or filename)", required=True) + parser.add_argument("-c", "--column_number", help="list of IDs (text or filename)") + parser.add_argument("--header", help="true/false if your file contains a header") + parser.add_argument("--target_ids", help="target IDs to map to", required=True) + parser.add_argument("-o", "--output", help="output filename", required=True) + args = parser.parse_args() + return args + +#return list of (unique) ids from string +def get_input_ids_from_string(input) : + ids_list = list(set(re.split(r'\s+',input.replace("\r","").replace("\n"," ").replace("\t"," ")))) + if "" in ids_list : ids_list.remove("") + #if "NA" in ids_list : ids_list.remove("NA") + return ids_list + +#return input_file and list of unique ids from input file path +def get_input_ids_from_file(input,nb_col,header) : + with open(input, "r") as csv_file : + input_file= list(csv.reader(csv_file, delimiter='\t')) + + input_file, ids_list = one_id_one_line(input_file,nb_col,header) + if "" in ids_list : ids_list.remove("") + #if "NA" in ids_list : ids_list.remove("NA") + + return input_file, ids_list + +#return input file by adding lines when there are more than one id per line +def one_id_one_line(input_file,nb_col,header) : + + if header : + new_file = [input_file[0]] + input_file = input_file[1:] + else : + new_file=[] + ids_list=[] + + for line in input_file : + if line != [] and set(line) != {''}: + line[nb_col] = re.sub(r"\s+","",line[nb_col]) + if ";" in line[nb_col] : + ids = line[nb_col].split(";") + for id in ids : + new_file.append(line[:nb_col]+[id]+line[nb_col+1:]) + ids_list.append(id) + else : + new_file.append(line) + ids_list.append(line[nb_col]) + + ids_list= list(set(ids_list)) + + return new_file, ids_list + +#return the column number in int format +def nb_col_to_int(nb_col): + try : + nb_col = int(nb_col.replace("c", "")) - 1 + return nb_col + except : + sys.exit("Please specify the column where you would like to apply the filter with valid format") + +#replace all blank cells to NA +def blank_to_NA(csv_file) : + tmp=[] + for line in csv_file : + line = ["NA" if cell=="" or cell==" " or cell=="NaN" else cell for cell in line] + tmp.append(line) + + return tmp + +def str2bool(v): + if v.lower() in ('yes', 'true', 't', 'y', '1'): + return True + elif v.lower() in ('no', 'false', 'f', 'n', '0'): + return False + else: + raise argparse.ArgumentTypeError('Boolean value expected.') + +#return result dictionary +def map_to_dictionary(ids,ids_dictionary,id_in,id_out) : + + result_dict = {} + for id in ids : + for target_id in id_out : + if id in ids_dictionary : + res = ";".join(ids_dictionary[id][target_id]) + else : + res="" + + if id in result_dict : + result_dict[id].append(res) + else : + result_dict[id]=[res] + + return result_dict + +#create empty dictionary with index for tab +def create_ids_dictionary (ids_list) : + ids_dictionary = {} + ids_dictionary_index={} + for i,id in enumerate(ids_list) : + ids_dictionary_index[i]=id + + return(ids_dictionary,ids_dictionary_index) + +def main(): + + #Get args from command line + args = get_args() + target_ids = args.target_ids.split(",") + header=False + if args.id_type in target_ids : target_ids.remove(args.id_type) + if args.input_type=="file" : + args.column_number = nb_col_to_int(args.column_number) + header = str2bool(args.header) + + #Get ref file to build dictionary + csv.field_size_limit(sys.maxsize) # to handle big files + with open(args.ref_file, "r") as csv_file : + tab = csv.reader(csv_file, delimiter='\t') + tab = [line for line in tab] + + ids_list=tab[0] + + #create empty dictionary and dictionary index + ids_dictionary, ids_dictionary_index = create_ids_dictionary(ids_list) + + #fill dictionary and sub dictionaries with ids + id_index = ids_list.index(args.id_type) + for line in tab[1:] : + ref_ids=line[id_index] + other_id_type_index = [accession_id for accession_id in ids_dictionary_index.keys() if accession_id!=id_index] + for id in ref_ids.replace(" ","").split(";") : #if there's more than one id, one key per id (example : GO) + if id not in ids_dictionary : #if the key is not created yet + ids_dictionary[id]={} + for other_id_type in other_id_type_index : + if ids_dictionary_index[other_id_type] not in ids_dictionary[id] : + ids_dictionary[id][ids_dictionary_index[other_id_type]] = set(line[other_id_type].replace(" ","").split(";")) + else : + ids_dictionary[id][ids_dictionary_index[other_id_type]] |= set(line[other_id_type].replace(" ","").split(";")) + if len(ids_dictionary[id][ids_dictionary_index[other_id_type]]) > 1 and '' in ids_dictionary[id][ids_dictionary_index[other_id_type]] : + ids_dictionary[id][ids_dictionary_index[other_id_type]].remove('') + + #Get file and/or ids from input + if args.input_type == "list" : + ids = get_input_ids_from_string(args.input) + elif args.input_type == "file" : + input_file, ids = get_input_ids_from_file(args.input,args.column_number,args.header) + + #Mapping ids + result_dict = map_to_dictionary(ids,ids_dictionary,args.id_type,target_ids) + + #creating output file + if header : + output_file=[input_file[0]+target_ids] + input_file = input_file[1:] + else : + output_file=[[args.id_type]+target_ids] + + if args.input_type=="file" : + for line in input_file : + output_file.append(line+result_dict[line[args.column_number]]) + elif args.input_type=="list" : + for id in ids : + output_file.append([id]+result_dict[id]) + + #convert blank to NA + output_file = blank_to_NA(output_file) + + #write output file + with open(args.output,"w") as output : + writer = csv.writer(output,delimiter="\t") + writer.writerows(output_file) + +if __name__ == "__main__": + main() +