view id_converter.py @ 21:6e65e1c78705 draft default tip

"planemo upload commit 540dd383c0617193db43bf11457011888751b022-dirty"
author proteore
date Thu, 23 Jan 2020 08:43:51 -0500
parents 9d758344d36e
children
line wrap: on
line source

import sys, os, argparse, re, csv, itertools

def get_args() :
    parser = argparse.ArgumentParser()
    parser.add_argument("-d", "--ref_file", help="path to reference file: <species>_id_mapping.tsv", required=True)
    parser.add_argument("--input_type", help="type of input (list of id or filename)", required=True)
    parser.add_argument("-t", "--id_type", help="type of input IDs", required=True)
    parser.add_argument("-i", "--input", help="list of IDs (text or filename)", required=True)
    parser.add_argument("-c", "--column_number", help="list of IDs (text or filename)")
    parser.add_argument("--header", help="true/false if your file contains a header")
    parser.add_argument("--target_ids", help="target IDs to map to", required=True)
    parser.add_argument("-o", "--output", help="output filename", required=True)
    args = parser.parse_args()
    return args

#return list of (unique) ids from string
def get_input_ids_from_string(input) :
    ids_list = list(set(re.split(r'\s+',input.replace("\r","").replace("\n"," ").replace("\t"," "))))
    if "" in ids_list : ids_list.remove("")
    #if "NA" in ids_list : ids_list.remove("NA")
    return ids_list

#return input_file and list of unique ids from input file path
def get_input_ids_from_file(input,nb_col,header) :
    with open(input, "r") as csv_file :
        input_file= list(csv.reader(csv_file, delimiter='\t'))

    input_file, ids_list = one_id_one_line(input_file,nb_col,header)
    if "" in ids_list : ids_list.remove("")
    #if "NA" in ids_list : ids_list.remove("NA")

    return input_file, ids_list

#return input file by adding lines when there are more than one id per line
def one_id_one_line(input_file,nb_col,header) :

    if header : 
        new_file = [input_file[0]]
        input_file = input_file[1:]
    else : 
        new_file=[]
    ids_list=[]

    for line in input_file :
        if line != [] and set(line) != {''}: 
            line[nb_col] = re.sub(r"\s+","",line[nb_col])
            if line[nb_col] == "" : line[nb_col]='NA'
            if ";" in line[nb_col] :
                ids = line[nb_col].split(";")
                for id in ids :
                    new_file.append(line[:nb_col]+[id]+line[nb_col+1:])
                    ids_list.append(id)
            else : 
                new_file.append(line)
                ids_list.append(line[nb_col])

    ids_list= list(set(ids_list))

    return new_file, ids_list

#not used
def output_one_id_one_line(line,convert_ids,target_ids):

    #ids_not_processed = ["GI","PDB","GO","PIR","MIM","UniGene","BioGrid","STRING"]  #ids with multiple ids per line in output file
    ids_not_processed = ["UniProt-AC","UniProt-AC_reviewed","UniProt-ID","GeneID","RefSeq","GI","PDB","GO","PIR","MIM","UniGene","Ensembl_Gene","Ensembl_Transcript","Ensembl_Protein","BioGrid","STRING","KEGG"] # All Ids
    ids_not_processed = [id for id in ids_not_processed if id in target_ids]    #ids present in target_ids with multiple ids per line in output file

    for id_not_processed in ids_not_processed :
        index = target_ids.index(id_not_processed)
        convert_ids[index] = [";".join(convert_ids[index])]

    res = itertools.product(*convert_ids)   #getting all possibilities between lists of ids
    res = [list(e) for e in res]            #convert to lists
    res = [line+list(ids) for ids in res]   #adding the rest of the line

    return(res)
        
#return the column number in int format
def nb_col_to_int(nb_col):
    try :
        nb_col = int(nb_col.replace("c", "")) - 1
        return nb_col
    except :
        sys.exit("Please specify the column where you would like to apply the filter with valid format")

#replace all blank cells to NA
def blank_to_NA(csv_file) :
    tmp=[]
    for line in csv_file :
        line = ["NA" if cell=="" or cell==" " or cell=="NaN" else cell for cell in line]
        tmp.append(line)
    
    return tmp

def str2bool(v):
    if v.lower() in ('yes', 'true', 't', 'y', '1'):
        return True
    elif v.lower() in ('no', 'false', 'f', 'n', '0'):
        return False
    else:
        raise argparse.ArgumentTypeError('Boolean value expected.')

#return result dictionary
def map_to_dictionary(ids,ids_dictionary,id_in,id_out) :
    
    result_dict = {}
    for id in ids : 
        for target_id in id_out :
            if id in ids_dictionary :
                res = ids_dictionary[id][target_id]
            else :
                res=""
            
            if id in result_dict :
                result_dict[id].append(res)
            else :
                result_dict[id]=[res]

    return result_dict

#create empty dictionary with index for tab
def create_ids_dictionary (ids_list) :
    ids_dictionary = {}
    ids_dictionary_index={}
    for i,id in enumerate(ids_list) :
        ids_dictionary_index[i]=id
            
    return(ids_dictionary,ids_dictionary_index)

def create_header(input_file,ncol,id_type,target_ids):
    col_names = list(range(1,len(input_file[0])+1))
    col_names = ["col"+str(e) for e in col_names]
    col_names[ncol]=id_type
    col_names = col_names+target_ids
    return(col_names)

def main():
    
    #Get args from command line
    args = get_args()
    target_ids = args.target_ids.split(",")
    header=False
    if args.id_type in target_ids : target_ids.remove(args.id_type)
    if args.input_type=="file" :
        args.column_number = nb_col_to_int(args.column_number)
        header = str2bool(args.header)
    

    #Get ref file to build dictionary
    csv.field_size_limit(sys.maxsize) # to handle big files
    with open(args.ref_file, "r") as csv_file :
        tab = csv.reader(csv_file, delimiter='\t')
        tab = [line for line in tab]

    ids_list=tab[0]
        
    #create empty dictionary and dictionary index
    ids_dictionary, ids_dictionary_index = create_ids_dictionary(ids_list)

    #fill dictionary and sub dictionaries with ids
    id_index = ids_list.index(args.id_type)
    for line in tab[1:] :
        ref_ids=line[id_index]
        other_id_type_index = [accession_id for accession_id in ids_dictionary_index.keys() if accession_id!=id_index]
        for id in ref_ids.replace(" ","").split(";") :       #if there's more than one id, one key per id (example : GO)
            if id not in ids_dictionary :      #if the key is not created yet
                ids_dictionary[id]={}
            for other_id_type in other_id_type_index :
                if ids_dictionary_index[other_id_type] not in ids_dictionary[id] :
                    ids_dictionary[id][ids_dictionary_index[other_id_type]] = set(line[other_id_type].replace("NA","").replace(" ","").split(";"))
                else :
                    ids_dictionary[id][ids_dictionary_index[other_id_type]] |= set(line[other_id_type].replace("NA","").replace(" ","").split(";"))
                if len(ids_dictionary[id][ids_dictionary_index[other_id_type]]) > 1 and '' in ids_dictionary[id][ids_dictionary_index[other_id_type]] : 
                    ids_dictionary[id][ids_dictionary_index[other_id_type]].remove('')

    #Get file and/or ids from input 
    if args.input_type == "list" :
        ids = get_input_ids_from_string(args.input)
    elif args.input_type == "file" :
        input_file, ids = get_input_ids_from_file(args.input,args.column_number,header)

    #Mapping ids
    result_dict = map_to_dictionary(ids,ids_dictionary,args.id_type,target_ids)

    #creating output file 
    with open(args.output,"w") as output :
        writer = csv.writer(output,delimiter="\t")
        #writer.writerows(output_file)

        #write header
        if header : 
            writer.writerow(input_file[0]+target_ids)
            input_file = input_file[1:]  
        elif args.input_type=="file":
            col_names = create_header(input_file,args.column_number,args.id_type,target_ids)
            writer.writerow(col_names)
        else : 
            writer.writerow([args.id_type]+target_ids)

        #write lines 
        previous_line=""
        if args.input_type=="file" :
            for line in input_file :
                res = [";".join(list(res_ids)) for res_ids in result_dict[line[args.column_number]]]
                line = ["NA" if cell=="" or cell==" " or cell=="NaN" else cell for cell in line+res]
                if previous_line != line :
                    writer.writerow(line)
                    previous_line=line
        elif args.input_type=="list" :
            for id in ids :
                res = [";".join(list(res_ids)) for res_ids in result_dict[id]]
                line = ["NA" if cell=="" or cell==" " or cell=="NaN" else cell for cell in [id]+res]
                if previous_line != line :
                    writer.writerow(line)
                    previous_line=line

        #print ("output file created")

if __name__ == "__main__":
    main()