Mercurial > repos > q2d2 > qiime2__composition__ancombc2
changeset 2:be06c0928b48 draft default tip
planemo upload for repository https://github.com/qiime2/galaxy-tools/tree/main/tools/suite_qiime2__composition commit 64ed09f1f1c680ad8373d261bd6be43a4f8a8d5b
| author | q2d2 |
|---|---|
| date | Sat, 01 Nov 2025 17:09:40 +0000 |
| parents | d6add7288bb0 |
| children | |
| files | qiime2__composition__ancombc2.xml test-data/ancombc.test0.table.qza test-data/ancombc.test1.table.qza test-data/ancombc2.test0.table.qza test-data/ancombc2.test1.table.qza |
| diffstat | 5 files changed, 6 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/qiime2__composition__ancombc2.xml Tue Jul 15 21:47:33 2025 +0000 +++ b/qiime2__composition__ancombc2.xml Sat Nov 01 17:09:40 2025 +0000 @@ -6,17 +6,17 @@ --> <!-- This tool was automatically generated by: - q2galaxy (version: 2025.7.0) + q2galaxy (version: 2025.10.0) for: - qiime2 (version: 2025.7.0) + qiime2 (version: 2025.10.0) --> -<tool name="qiime2 composition ancombc2" id="qiime2__composition__ancombc2" version="2025.7.0+q2galaxy.2025.7.0" profile="22.05" license="BSD-3-Clause"> +<tool name="qiime2 composition ancombc2" id="qiime2__composition__ancombc2" version="2025.10.0+q2galaxy.2025.10.0" profile="22.05" license="BSD-3-Clause"> <description>ANCOM-BC2: Analysis of Composition of Microbiomes with Bias Correction 2.</description> <xrefs> <xref type="bio.tools">qiime2</xref> </xrefs> <requirements> - <container type="docker">quay.io/qiime2/amplicon:2025.7</container> + <container type="docker">quay.io/qiime2/amplicon:2025.10</container> </requirements> <version_command>q2galaxy version composition</version_command> <command detect_errors="exit_code">q2galaxy run composition ancombc2 '$inputs'</command> @@ -163,6 +163,8 @@ ------------ Calls the `ancombc2` function of the ANCOMBC software package. See the ANCOM-BC2 publication and source code for details. +Sensitivity Analysis for Pseudo-Count Addition: To assess robustness, a series of pseudo-counts (0.01 to 0.5, in 0.01 increments) is added to zero counts, and a linear model is fitted to the bias-corrected log-abundance data for each. A sensitivity score is calculated as the proportion of p-values above the specified alpha. Taxa with consistent significance across all pseudo-counts, and agreement with complete-data results, are flagged as robust (diff_robust = TRUE). Note: Results depend on the selected alpha value. + Examples: ---------
