Mercurial > repos > recetox > ipapy2_gibbs_sampler_add
view ipapy2_gibbs_sampler_add.xml @ 0:428abc41a101 draft default tip
planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/ipapy2 commit 64b61ff2823b4f54868c0ab7a4c0dc49eaf2979a
author | recetox |
---|---|
date | Fri, 16 May 2025 08:01:46 +0000 |
parents | |
children |
line wrap: on
line source
<tool id="ipapy2_gibbs_sampler_add" name="ipaPy2 gibbs sampler additive" version="@TOOL_VERSION@+galaxy0" profile="@PROFILE@"> <macros> <import>macros.xml</import> </macros> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ python3 '${__tool_directory__}/ipapy2_gibbs_sampler_add.py' --input_dataset_mapped_isotope_patterns '${mapped_isotope_patterns}' '${mapped_isotope_patterns.ext}' --input_dataset_annotations '${annotations}' '${annotations.ext}' --noits '${noits}' --burn '${burn}' --delta_add '${delta_add}' --all_out '${all_out}' #if $zs: --zs '${zs}' '${zs.ext}' #else: --zs '' '' #end if #if $zs_out: --zs_out '${zs_out}' '${zs_out.ext}' #else: --zs_out '' '' #end if --output_dataset '${annotations_out}' '${annotations_out.ext}' ]]></command> <inputs> <expand macro="gibbs"/> <param name="delta_add" type="float" value="1" min="0" label="adducts weight" help="parameter used when computing the conditional priors. The parameter must be positive. The smaller the parameter the more weight the adducts connections have on the posterior probabilities. Default 1." /> </inputs> <outputs> <data label="${tool.name} annotations on ${on_string}" name="annotations_out" format_source="mapped_isotope_patterns"/> <data label="${tool.name} zs on ${on_string}" name="zs_out" format="txt"> <filter>options['all_out']</filter> </data> </outputs> <tests> <test expect_num_outputs="2"> <param name="mapped_isotope_patterns" value="mapped_isotope_patterns.csv"/> <param name="annotations" value="clean_annotations.csv"/> <param name="noits" value="1000"/> <param name="delta_add" value="0.1"/> <!-- Not the best way to test, but the results are stochastic hence difficult to test--> <output name="annotations_out"> <assert_contents> <has_n_columns n="15" sep=","/> <has_n_lines n="15" delta="5" /> <has_line line="id,name,formula,adduct,m/z,charge,RT range,ppm,isotope pattern score,fragmentation pattern score,prior,post,post Gibbs,chi-square pval,peak_id" /> </assert_contents> </output> </test> </tests> <help><![CDATA[ .. _ipapy2_gibbs_sampler_add: ======================================= ipaPy2 Gibbs Sampler Additive Tool ======================================= **Tool Description** This tool implements a Gibbs sampler for the IPA (Integrated Probabilistic Annotation) model, focusing on additive (adducts-based) connections between features. It refines metabolite annotation probabilities by iteratively sampling from the posterior distribution, considering relationships between features that can be explained by known adduct transformations. How it works ------------ - The Gibbs sampler updates annotation probabilities by considering **adducts connections**: relationships between features that can be explained by known adduct transformations. - The influence of adducts connections is controlled by the ``adducts weight`` (`delta_add`) parameter: smaller values increase the influence of adducts connections on the posterior probabilities. - The process is stochastic, so results may vary between runs. - Optionally, the sampler can output the sampled states (`zs_out`) for further analysis. Inputs ------ 1. **Mapped isotope patterns** Dataset containing mapped isotope patterns (e.g., output from the ipaPy2 map isotope patterns tool). 2. **Annotations** Initial annotation table to be refined by the Gibbs sampler. 3. **Number of iterations (`noits`)** Number of Gibbs sampler iterations to perform. 4. **Burn-in (`burn`)** Number of initial iterations to discard (burn-in period). 5. **Adducts weight (`delta_add`)** Parameter used when computing the conditional priors. Must be positive. The smaller the value, the more weight adducts connections have on the posterior probabilities (default: 1). 6. **All out (`all_out`)** If enabled, outputs all intermediate results including sampled states. 7. **zs** (Optional) Input file for initial state of the sampler. Outputs ------- - **annotations_out** Refined annotation table with updated posterior probabilities. - **zs_out** (Optional) File containing sampled states from the Gibbs sampler (if `all_out` is enabled). Example ------- Suppose you have mapped isotope patterns and an initial annotation table. You can run the Gibbs sampler as follows: .. code-block:: mapped_isotope_patterns.csv clean_annotations.csv Set the number of iterations (e.g., ``noits = 1000``) and the adducts weight (e.g., ``delta_add = 0.1``), then run the tool. The output will be a refined annotation table and, optionally, a file with sampled states. Notes ----- - The results are stochastic; repeated runs may yield slightly different outputs. - For best results, ensure all input files are correctly formatted and contain the required columns. - The tool supports multiple file formats (CSV, TSV, Parquet, Tabular) for flexibility. References ---------- - For more details on the Gibbs sampling algorithm and its application in metabolomics, refer to the ipaPy2 documentation or associated publications. ]]></help> <expand macro="citations"/> </tool>