Mercurial > repos > recetox > ipapy2_ms1_annotation
view ipapy2_MS1_annotation.xml @ 0:7f84a8a5edde draft default tip
planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/ipapy2 commit 64b61ff2823b4f54868c0ab7a4c0dc49eaf2979a
author | recetox |
---|---|
date | Fri, 16 May 2025 08:00:41 +0000 |
parents | |
children |
line wrap: on
line source
<tool id="ipapy2_MS1_annotation" name="ipaPy2 MS1 annotation" version="@TOOL_VERSION@+galaxy0" profile="@PROFILE@"> <description>annotate clustered features using a supplied MS1 database</description> <macros> <import>macros.xml</import> </macros> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ #set $computed_ppmthr = float($ppm) * 2 python3 '${__tool_directory__}/ipapy2_MS1_annotation.py' --input_dataset_database '${mapped_isotope_patterns}' '${mapped_isotope_patterns.ext}' --input_dataset_adducts '${all_adducts}' '${all_adducts.ext}' --ppm ${ppm} --ratiosd ${ratiosd} #if $ppmunk --ppmunk ${ppmunk} #else --ppmunk ${ppm} #end if --ratiounk ${ratiounk} #if $ppmthr --ppmthr ${ppmthr} #else --ppmthr ${computed_ppmthr} #end if --pRTNone ${pRTNone} --pRTout ${pRTout} --output_dataset '${MS1_annotations}' '${MS1_annotations.ext}' --ncores \${GALAXY_SLOTS:-1} ]]></command> <inputs> <param label="Mapped isotope patterns" name="mapped_isotope_patterns" type="data" format="csv,tsv,tabular,parquet" help="A dataset containing the MS1 data. Ideally obtained from map_isotope_patterns" /> <param label="all possible adducts" name="all_adducts" type="data" format="csv,tsv,tabular,parquet" help="A dataset containing the information on all the possible adducts given the database. Ideally obtained from compute_all_adducts" /> <expand macro="ppm"/> <section name="unknown" title="settings for the identification of unknowns"> <expand macro="ms_unknown"/> </section> <section name="optional_settings" title="optional settings"> <expand macro="ms_options"/> </section> </inputs> <outputs> <data label="${tool.name} on ${on_string}" name="MS1_annotations" format_source="mapped_isotope_patterns"/> </outputs> <tests> <test> <param name="mapped_isotope_patterns" value="mapped_isotope_patterns.csv"/> <param name="all_adducts" value="all_adducts.csv"/> <param name="ppm" value="3"/> <output name="MS1_annotations" file="MS1_annotations.csv" lines_diff="20"/> </test> </tests> <help><![CDATA[ .. _ipapy2_ms1_annotation: ========================== ipaPy2 MS1 Annotation Tool ========================== **Tool Description** This tool annotates clustered features in your dataset using MS1 information and a supplied adducts table. It calculates prior and posterior probabilities for each feature, leveraging mass, retention time (RT), chemical knowledge, and isotope patterns to provide high-confidence annotations. How it works ------------ - **Prior probabilities** are calculated using only the mass information. - **Posterior probabilities** incorporate mass, RT, prior knowledge, and isotope patterns for more accurate annotation. - The tool matches features in your data to possible adducts and database entries, considering user-defined tolerances for mass (ppm) and other optional parameters. Inputs ------ 1. **Mapped isotope patterns** Dataset containing MS1 data, ideally obtained from the ``map_isotope_patterns`` tool. 2. **All possible adducts** Table listing all possible adducts for the database, ideally obtained from the ``compute_all_adducts`` tool. 3. **Parameters** - **ppm**: Mass tolerance in parts per million for matching. - **Unknown settings**: Parameters for handling unknowns, such as ppm and ratio thresholds. - **Optional settings**: Additional parameters for advanced annotation control. Outputs ------- - **MS1_annotations** Annotated dataset with additional columns describing the best-matching database entries, probabilities, and isotope pattern scores. Example ------- Suppose you have mapped isotope patterns and a list of all adducts. You can use this tool to annotate your features as follows: .. code-block:: mapped_isotope_patterns.csv all_adducts.csv Set the desired tolerances (e.g., ``ppm = 3``) and run the tool. The output will be a table with annotations for each feature. Notes ----- - For best results, ensure your input files are correctly formatted and contain the required columns. - The tool is designed to be flexible and can handle various input formats (CSV, TSV, Parquet, Tabular). References ---------- - For more details on the annotation algorithm and scoring, refer to the ipaPy2 documentation or associated publications. ]]></help> <expand macro="citations"/> </tool>