Mercurial > repos > recetox > ipapy2_ms2_annotation
view ipapy2_MS2_annotation.xml @ 0:6a23970e8093 draft default tip
planemo upload for repository https://github.com/RECETOX/galaxytools/tree/master/tools/ipapy2 commit 64b61ff2823b4f54868c0ab7a4c0dc49eaf2979a
author | recetox |
---|---|
date | Fri, 16 May 2025 08:01:15 +0000 |
parents | |
children |
line wrap: on
line source
<tool id="ipapy2_MS2_annotation" name="ipaPy2 MS2 annotation" version="@TOOL_VERSION@+galaxy0" profile="@PROFILE@"> <description>annotate features from MS2 using a supplied MS2 database</description> <macros> <import>macros.xml</import> </macros> <expand macro="requirements"/> <command detect_errors="exit_code"><![CDATA[ #set $computed_ppmthr = float($ppm) * 2 python3 '${__tool_directory__}/ipapy2_MS2_annotation.py' --input_dataset_mapped_isotope_patterns '${mapped_isotope_patterns}' '${mapped_isotope_patterns.ext}' --input_dataset_MS2 '${MS2_fragmentation_data}' '${MS2_fragmentation_data.ext}' --input_dataset_adducts '${all_adducts}' '${all_adducts.ext}' --input_dataset_MS2_DB '${MS2_DB}' '${MS2_DB.ext}' --ppm ${ppm} --ratiosd ${ratiosd} #if $ppmunk --ppmunk ${ppmunk} #else --ppmunk ${ppm} #end if --ratiounk ${ratiounk} #if $ppmthr --ppmthr ${ppmthr} #else --ppmthr ${computed_ppmthr} #end if --pRTNone ${pRTNone} --pRTout ${pRTout} --mzdCS ${mzdCS} --ppmCS ${ppmCS} --CSunk ${CSunk} --evfilt ${evfilt} --output_dataset '${MS2_annotations}' '${MS2_annotations.ext}' --ncores \${GALAXY_SLOTS:-1} ]]></command> <inputs> <param label="Mapped isotope patterns" name="mapped_isotope_patterns" type="data" format="csv,tsv,tabular,parquet" help="A dataset containing the MS1 data. Ideally obtained from map_isotope_patterns" /> <param label="MS2 fragmentation data" name="MS2_fragmentation_data" type="data" format="csv,tsv,tabular,parquet" help="A dataset containing the MS2 data. (If a csv file fails kindly use a tsv file.)" /> <param label="all possible adducts table" name="all_adducts" type="data" format="csv,tsv,tabular,parquet" help="A dataset containing the information on all the possible adducts given the database." /> <param label="MS2 Database" name="MS2_DB" type="data" format="csv,tsv,tabular,parquet" help="A dataset containing the database containing the MS2 information." /> <expand macro="ppm"/> <section name="unknown" title="unknown settings"> <expand macro="ms_unknown"/> <param name="CSunk" type="float" value="0.7"> <label>cosine similarity for unknown</label> <help>cosine similarity score associated with the 'unknown' annotation. Default 0.7.</help> </param> </section> <section name="optional_settings" title="optional settings"> <expand macro="ms_options"/> <param name="mzdCS" type="integer" value="0" label="MS2 mz threshold"> <help>maximum mz difference allowed when computing cosine similarity scores. If one wants to use this parameter instead of ppmCS, this must be set to 0. Default 0.</help> </param> <param name="ppmCS" type="integer" value="10" label="maximum ppm for cosine similarity scores"> <help>maximum ppm allowed when computing cosine similarity scores. If one wants to use this parameter instead of mzdCS, this must be set to 0. Default 10.</help> </param> <param name="evfilt" type="select" label="same collision energy"> <help>If true, only spectrum acquired with the same collision energy are considered. Default value False.</help> <option value="False">False</option> <option value="True">True</option> </param> </section> </inputs> <outputs> <data label="${tool.name} on ${on_string}" name="MS2_annotations" format_source="mapped_isotope_patterns"/> </outputs> <tests> <test> <param name="mapped_isotope_patterns" value="mapped_isotope_patterns.csv"/> <param name="MS2_fragmentation_data" value="MS2_fragmentation_data.tsv"/> <param name="all_adducts" value="all_adducts.csv"/> <param name="MS2_DB" value="MS2_DB.csv"/> <param name="ppm" value="3"/> <output name="MS2_annotations"> <assert_contents> <has_n_columns n="13" sep=","/> <has_n_lines n="158" delta="5" /> </assert_contents> </output> </test> </tests> <help><![CDATA[ .. _ipapy2_ms2_annotation: ========================== ipaPy2 MS2 Annotation Tool ========================== **Tool Description** This tool performs annotation of features in your dataset using MS2 fragmentation data and a supplied MS2 database. It integrates MS1 and MS2 information to provide high-confidence annotations, leveraging prior and posterior probabilities based on mass, retention time (RT), known chemical knowledge, and isotope patterns. How it works ------------ - **Prior probabilities** are calculated using only the mass information. - **Posterior probabilities** incorporate mass, RT, prior knowledge, and isotope patterns for more accurate annotation. - The tool matches features in your data to entries in the MS2 database, considering user-defined tolerances for mass (ppm), retention time, and cosine similarity thresholds for spectral matching. Inputs ------ 1. **Mapped isotope patterns** Dataset containing MS1 data, ideally obtained from the ``map_isotope_patterns`` tool. 2. **MS2 fragmentation data** Dataset with MS2 spectra. If a CSV file fails, try using a TSV file. 3. **All possible adducts table** Table listing all possible adducts for the database. 4. **MS2 Database** Reference database containing MS2 information for annotation. 5. **Parameters** - **ppm**: Mass tolerance in parts per million for matching. - **Cosine similarity thresholds**: - ``mzdCS``: Maximum m/z difference for cosine similarity (set to 0 to use ``ppmCS``). - ``ppmCS``: Maximum ppm for cosine similarity (set to 0 to use ``mzdCS``). - **evfilt**: If set to True, only spectra acquired with the same collision energy are considered. - **Unknown settings**: Parameters for handling unknowns, such as cosine similarity threshold for unknown annotations. Outputs ------- - **MS2_annotations** Annotated dataset with additional columns describing the best-matching database entries, probabilities, and spectral similarity scores. Example ------- Suppose you have mapped isotope patterns, MS2 fragmentation data, a list of all adducts, and an MS2 database. You can use this tool to annotate your features as follows: .. code-block:: mapped_isotope_patterns.csv MS2_fragmentation_data.tsv all_adducts.csv MS2_DB.csv Set the desired tolerances (e.g., ``ppm = 3``) and run the tool. The output will be a table with annotations for each feature. Notes ----- - For best results, ensure your input files are correctly formatted and contain the required columns. - If you encounter issues with CSV files, try converting them to TSV format. - The tool is designed to be flexible and can handle various input formats (CSV, TSV, Parquet, Tabular). References ---------- - For more details on the annotation algorithm and scoring, refer to the ipaPy2 documentation or associated publications. ]]></help> <expand macro="citations"/> </tool>