### view env/lib/python3.9/site-packages/networkx/algorithms/approximation/tests/test_approx_clust_coeff.py @ 0:4f3585e2f14bdraftdefaulttip

author shellac Mon, 22 Mar 2021 18:12:50 +0000
line wrap: on
line source
```
import networkx as nx
from networkx.algorithms.approximation import average_clustering

# This approximation has to be be exact in regular graphs
# with no triangles or with all possible triangles.

def test_petersen():
# Actual coefficient is 0
G = nx.petersen_graph()
assert average_clustering(G, trials=int(len(G) / 2)) == nx.average_clustering(G)

def test_petersen_seed():
# Actual coefficient is 0
G = nx.petersen_graph()
assert average_clustering(
G, trials=int(len(G) / 2), seed=1
) == nx.average_clustering(G)

def test_tetrahedral():
# Actual coefficient is 1
G = nx.tetrahedral_graph()
assert average_clustering(G, trials=int(len(G) / 2)) == nx.average_clustering(G)

def test_dodecahedral():
# Actual coefficient is 0
G = nx.dodecahedral_graph()
assert average_clustering(G, trials=int(len(G) / 2)) == nx.average_clustering(G)

def test_empty():
G = nx.empty_graph(5)
assert average_clustering(G, trials=int(len(G) / 2)) == 0

def test_complete():
G = nx.complete_graph(5)
assert average_clustering(G, trials=int(len(G) / 2)) == 1
G = nx.complete_graph(7)
assert average_clustering(G, trials=int(len(G) / 2)) == 1
```