comparison dose_response.R @ 0:082e9d22c38d draft

planemo upload for repository https://github.com/bernt-matthias/mb-galaxy-tools/tools/tox_tools/baseline_calculator commit 3aebdcc7c5b266a30262402934ffaad2a58adbcb
author ufz
date Mon, 10 Jun 2024 11:57:52 +0000
parents
children 8a1b524ed9d8
comparison
equal deleted inserted replaced
-1:000000000000 0:082e9d22c38d
1 library(drc)
2 library(ggplot2)
3
4 fit_models <- function(data, concentration_col, response_col) {
5 models <- list(
6 LL.2 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = LL.2(), type = "binomial"),
7 LL.3 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = LL.3(), type = "binomial"),
8 LL.4 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = LL.4(), type = "binomial"),
9 LL.5 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = LL.5(), type = "binomial"),
10 W1.4 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = W1.4(), type = "binomial"),
11 W2.4 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = W2.4(), type = "binomial")
12 )
13 return(models)
14 }
15
16 select_best_model <- function(models) {
17 aic_values <- sapply(models, AIC)
18 best_model_name <- names(which.min(aic_values))
19 best_model <- models[[best_model_name]]
20 return(list(name = best_model_name, model = best_model))
21 }
22
23 calculate_ec_values <- function(model) {
24 ec50 <- ED(model, 50, type = "relative")
25 ec25 <- ED(model, 25, type = "relative")
26 ec10 <- ED(model, 10, type = "relative")
27 return(list(EC50 = ec50, EC25 = ec25, EC10 = ec10))
28 }
29
30 plot_dose_response <- function(model, data, ec_values, concentration_col, response_col, plot_file) {
31 concentration_grid <- seq(min(data[[concentration_col]]), max(data[[concentration_col]]), length.out = 100)
32 prediction_data <- data.frame(concentration_grid)
33 colnames(prediction_data) <- concentration_col
34 predicted_values <- predict(model, newdata = prediction_data, type = "response")
35 prediction_data$response <- predicted_values
36 p <- ggplot(data, aes_string(x = concentration_col, y = response_col)) +
37 geom_point(color = "red") +
38 geom_line(data = prediction_data, aes_string(x = concentration_col, y = "response"), color = "blue") +
39 geom_vline(xintercept = ec_values$EC10[1], color = "green", linetype = "dashed") +
40 geom_vline(xintercept = ec_values$EC50[1], color = "purple", linetype = "dashed") +
41 labs(title = "Dose-Response Curve", x = "Concentration", y = "Effect") +
42 theme_minimal() +
43 theme(
44 panel.background = element_rect(fill = "white", color = NA),
45 plot.background = element_rect(fill = "white", color = NA)
46 )
47
48 ggsave(filename = plot_file, plot = p, device = "jpg")
49 }
50
51 dose_response_analysis <- function(data, concentration_col, response_col, plot_file, ec_file) {
52 models <- fit_models(data, concentration_col, response_col)
53 best_model_info <- select_best_model(models)
54 ec_values <- calculate_ec_values(best_model_info$model)
55 plot_dose_response(best_model_info$model, data, ec_values, concentration_col, response_col, plot_file)
56
57 ec_data <- data.frame(
58 EC10 = ec_values$EC10[1],
59 EC25 = ec_values$EC25[1],
60 EC50 = ec_values$EC50[1]
61 )
62 write.csv(ec_data, ec_file, row.names = FALSE)
63
64 return(list(best_model = best_model_info$name, ec_values = ec_values))
65 }
66
67 args <- commandArgs(trailingOnly = TRUE)
68
69 data_file <- args[1]
70 concentration_col <- args[2]
71 response_col <- args[3]
72 plot_file <- args[4]
73 ec_file <- args[5]
74
75 data <- read.csv(data_file, header = TRUE)
76 dose_response_analysis(data, concentration_col, response_col, plot_file, ec_file)