diff dose_response.R @ 2:c122403ac78a draft

planemo upload for repository https://github.com/bernt-matthias/mb-galaxy-tools/tools/tox_tools/baseline_calculator commit 61a3d9a20a9a90d551dd5f7503be781dc28f4b75
author ufz
date Wed, 18 Dec 2024 09:11:40 +0000
parents 8a1b524ed9d8
children 2aa9da0a84a4
line wrap: on
line diff
--- a/dose_response.R	Tue Oct 08 12:41:07 2024 +0000
+++ b/dose_response.R	Wed Dec 18 09:11:40 2024 +0000
@@ -4,11 +4,10 @@
 fit_models <- function(data, concentration_col, response_col) {
     models <- list(
         LL.2 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = LL.2(), type = "binomial"),
-        LL.3 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = LL.3(), type = "binomial"),
         LL.4 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = LL.4(), type = "binomial"),
-        LL.5 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = LL.5(), type = "binomial"),
         W1.4 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = W1.4(), type = "binomial"),
-        W2.4 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = W2.4(), type = "binomial")
+        W2.4 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = W2.4(), type = "binomial"),
+        BC.5 = drm(data[[response_col]] ~ data[[concentration_col]], data = data, fct = BC.5(), type = "binomial")
     )
     return(models)
 }
@@ -27,45 +26,81 @@
     return(list(EC50 = ec50, EC25 = ec25, EC10 = ec10))
 }
 
-plot_dose_response <- function(model, data, ec_values, concentration_col, response_col, plot_file) {
+plot_dose_response <- function(model, data, ec_values, concentration_col, response_col, plot_file, compound_name, concentration_unit) {
+    # Generate a grid of concentration values for predictions
     concentration_grid <- seq(min(data[[concentration_col]]), max(data[[concentration_col]]), length.out = 100)
     prediction_data <- data.frame(concentration_grid)
     colnames(prediction_data) <- concentration_col
-    predicted_values <- predict(model, newdata = prediction_data, type = "response")
-    prediction_data$response <- predicted_values
+
+    # Compute predictions with confidence intervals
+    predictions <- predict(model, newdata = prediction_data, type = "response", interval = "confidence")
+    prediction_data$resp <- predictions[, 1]
+    prediction_data$lower <- predictions[, 2]
+    prediction_data$upper <- predictions[, 3]
+
+    print(prediction_data)
+
+    data$rep <- factor(data$rep)
+
+    # Create the plot
     p <- ggplot(data, aes_string(x = concentration_col, y = response_col)) +
-        geom_point(color = "red") +
-        geom_line(data = prediction_data, aes_string(x = concentration_col, y = "response"), color = "blue") +
+        geom_point(aes(colour = rep)) + # Original data points
+        geom_line(data = prediction_data, aes_string(x = "conc", y = "resp"), color = "blue") + # Predicted curve
+        geom_ribbon(data = prediction_data, aes_string(x = "conc", ymin = "lower", ymax = "upper"), alpha = 0.2, fill = "blue") + # Confidence intervals
         geom_vline(xintercept = ec_values$EC10[1], color = "green", linetype = "dashed") +
-        geom_vline(xintercept = ec_values$EC50[1], color = "purple", linetype = "dashed") +
-        labs(title = "Dose-Response Curve", x = "Concentration", y = "Effect") +
+        geom_vline(xintercept = ec_values$EC50[1], color = "red", linetype = "dashed") +
+        labs(
+            title = paste(compound_name, "- Dose-Response Curve"),
+            x = paste("Dose [", concentration_unit, "]"),
+            y = "Response %"
+        ) +
         theme_minimal() +
         theme(
             panel.background = element_rect(fill = "white", color = NA),
             plot.background = element_rect(fill = "white", color = NA)
         )
 
-    jpeg(filename = plot_file)
+    # Save the plot to a file
+    jpeg(filename = plot_file, width = 480, height = 480, res = 72)
     print(p)
     dev.off()
 }
 
-dose_response_analysis <- function(data, concentration_col, response_col, plot_file, ec_file) {
+dose_response_analysis <- function(data, concentration_col, response_col, plot_file, ec_file, compound_name, concentration_unit) {
+    # Ensure column names are correctly selected
     concentration_col <- colnames(data)[as.integer(concentration_col)]
     response_col <- colnames(data)[as.integer(response_col)]
+
+    # Fit models and select the best one
     models <- fit_models(data, concentration_col, response_col)
     best_model_info <- select_best_model(models)
-    ec_values <- calculate_ec_values(best_model_info$model)
-    plot_dose_response(best_model_info$model, data, ec_values, concentration_col, response_col, plot_file)
+    best_model <- best_model_info$model
+    best_model_name <- best_model_info$name
+
+    # Calculate EC values
+    ec_values <- calculate_ec_values(best_model)
 
+    # Plot the dose-response curve
+    plot_dose_response(best_model, data, ec_values, concentration_col, response_col, plot_file, compound_name, concentration_unit)
+
+    # Get model summary and AIC value
+    model_summary <- summary(best_model)
+    model_aic <- AIC(best_model)
+
+    # Prepare EC values data frame with additional information
     ec_data <- data.frame(
-        EC10 = ec_values$EC10[1],
-        EC25 = ec_values$EC25[1],
-        EC50 = ec_values$EC50[1]
+        Metric = c("chemical_name", "EC10", "EC25", "EC50", "AIC"),
+        Value = c(compound_name, ec_values$EC10[1], ec_values$EC25[1], ec_values$EC50[1], model_aic)
     )
+
+    # Write EC values, AIC, and model summary to the output file
     write.table(ec_data, ec_file, sep = "\t", row.names = FALSE, col.names = TRUE, quote = FALSE)
 
-    return(list(best_model = best_model_info$name, ec_values = ec_values))
+    # Append the model summary to the file
+    cat("\nModel Summary:\n", file = ec_file, append = TRUE)
+    capture.output(model_summary, file = ec_file, append = TRUE)
+
+    return(list(best_model = best_model_name, ec_values = ec_values))
 }
 
 args <- commandArgs(trailingOnly = TRUE)
@@ -75,6 +110,9 @@
 response_col <- args[3]
 plot_file <- args[4]
 ec_file <- args[5]
+compound_name <- args[6]
+concentration_unit <- args[7]
 
 data <- read.csv(data_file, header = TRUE, sep = "\t")
-dose_response_analysis(data, concentration_col, response_col, plot_file, ec_file)
+print(data)
+dose_response_analysis(data, concentration_col, response_col, plot_file, ec_file, compound_name, concentration_unit)