Mercurial > repos > vmarcon > normalization
view normalization.R @ 0:79f00bc83ecc draft default tip
planemo upload commit a2411926bebc2ca3bb31215899a9f18a67e59556
author | vmarcon |
---|---|
date | Thu, 18 Jan 2018 06:20:30 -0500 |
parents | |
children |
line wrap: on
line source
# R Script implementing different kind of normalisation # Input : a file containing a table with numeric values # except for the first column containing sample names # and the first line containing variable names # separator expected is <TAB> # # Normalization method : # log, DESeq2, Rlog, Standard_score, Pareto, TSS, TSS+CLR, Pareto # # Ouptut : input table with values normalized according # to the normalization procedure chosen #----------------------------------------------------------------- # Authors : luc.jouneau(at)inra.fr # valentin.marcon(at)inra.fr # Version : 0.9 # Date : 30/08/2017 #----------------------------------------------------------------- normalization=function( ########################################################## # Function input ########################################################## #Possible values : "log", "DESeq2", "Rlog", "Standard_score", "Pareto", "TSS", "TSS_CLR" transformation_method="Standard_score", na_encoding="NA", #Path to file containg table of values (separator="tab") input_file="", #Path to file produced after transformation output_file="out/table_out.txt", #Path to file containing messages for user if something bad happens log_file="log/normalization_report.html", #Boolean flag (0/1) indicating if variables are in line or in columns variable_in_line="1") { ########################################################## # Read and verify data ########################################################## #1°) Checks valids for all modules if (variable_in_line=="1") { column_use="individual" line_use="variable" } else { line_use="individual" column_use="variable" } log_error=function(message="") { cat("<HTML><HEAD><TITLE>Normalization report</TITLE></HEAD><BODY>\n",file=log_file,append=F,sep="") cat("⚠ An error occurred while trying to read your table.\n<BR>",file=log_file,append=T,sep="") cat("Please check that:\n<BR>",file=log_file,append=T,sep="") cat("<UL>\n",file=log_file,append=T,sep="") cat(" <LI> the table you want to process contains the same number of columns for each line</LI>\n",file=log_file,append=T,sep="") cat(" <LI> the first line of your table is a header line (specifying the name of each ",column_use,")</LI>\n",file=log_file,append=T,sep="") cat(" <LI> the first column of your table specifies the name of each ",line_use,"</LI>\n",file=log_file,append=T,sep="") cat(" <LI> both individual and variable names should be unique</LI>\n",file=log_file,append=T,sep="") cat(" <LI> each value is separated from the other by a <B>TAB</B> character</LI>\n",file=log_file,append=T,sep="") cat(" <LI> except for first line and first column, table should contain a numeric value</LI>\n",file=log_file,append=T,sep="") cat(" <LI> this value may contain character '.' as decimal separator or '",na_encoding,"' for missing values</LI>\n",file=log_file,append=T,sep="") cat("</UL>\n",file=log_file,append=T,sep="") cat("-------<BR>\nError messages recieved :<BR><FONT color=red>\n",conditionMessage(message),"</FONT>\n",file=log_file,append=T,sep="") cat("</BODY></HTML>\n",file=log_file,append=T,sep="") q(save="no",status=1) } tab_in=tryCatch( { tab_in=read.table(file=input_file,sep="\t",header=T,quote="\"",na.strings=na_encoding,check.names=FALSE) }, error=function(cond) { log_error(message=cond) return(NA) }, warning=function(cond) { log_error(message=cond) return(NA) }, finally={ #Do nothing special } ) if (ncol(tab_in)<2) { log_error(simpleCondition("The table you want to normalize contains less than two columns.")) } rn=as.character(tab_in[,1]) if (length(rn)!=length(unique(rn))) { duplicated_rownames=table(rn) duplicated_rownames=duplicated_rownames[duplicated_rownames>1] duplicated_rownames=names(duplicated_rownames) if (length(duplicated_rownames)>3) { duplicated_rownames=c(duplicated_rownames[1:3],"...") } duplicated_rownames=paste(duplicated_rownames,collapse=", ") log_error(simpleCondition( paste("The table you want to normalize have duplicated values in the first column (", line_use," names) - duplicated ",line_use," names : ",duplicated_rownames,sep="") )) } tab=tab_in[,-1] rownames(tab)=rn #Check all columns are numeric tab=as.matrix(tab) cell.with.na=c() for (i in 1:ncol(tab)) { na.v1=is.na(tab[,i]) na.v2=is.na(as.numeric(tab[,i])) if (sum(na.v1)!=sum(na.v2)) { sel=which(na.v1!=na.v2) sel=sel[1] value=tab[sel,i] log_error(simpleCondition( paste("Column '",colnames(tab)[i],"' of your table contains non numeric values. Please check its content (on line #",sel," : value='",value,"').",sep="") )) } if (length(cell.with.na)==0 & sum(na.v1)!=0) { cell.with.na=c(i,which(na.v1)[1]) } } #2°) Checks only valid for normalization module if (transformation_method %in% c("DESeq2","Rlog")) { #Check there is no missing values if (length(cell.with.na)!=0) { log_error(simpleCondition( paste("Column '",colnames(tab)[cell.with.na[1]],"' of your table contains missing values (see line #",cell.with.na[2],").\n", transformation_method," normalization does not accept missing values. ",sep="") )) } } if (transformation_method %in% c("DESeq2","Rlog","TSS","TSS_CLR")) { #Check values are integer for (i in 1:ncol(tab)) { if (!is.integer(tab[,i])) { sel=which(!is.integer(tab[,i])) sel=sel[1] value=tab[sel,i] log_error(simpleCondition( paste("Column '",colnames(tab)[i],"' of your table contains non integer values.\n", transformation_method," normalization only accepts integer values. ", "Please check its content (on line #",sel," : value=",value,").",sep="") )) } } } if (transformation_method %in% c("log","TSS","TSS_CLR","DESeq2","Rlog")) { #Check values are positive for (i in 1:ncol(tab)) { if (sum(tab[,i]>=0 | is.na(tab[,i]))!=nrow(tab)) { sel=which(tab[,i]<0) sel=sel[1] value=tab[sel,i] log_error(simpleCondition( paste("Column '",colnames(tab)[i],"' of your table contains negative values.\n", transformation_method," normalization only accepts positive or null values. ", "Please check its content (on line #",sel," : value=",value,").",sep="") )) } } } ########################################################## # End of data checks ########################################################## ### Transpose if variable are in line ### if (variable_in_line=="1") { #Transpose matrix tab=t(tab) } ########################################################## ### Value transformation ########################################################## #Avoid null values when there is a log transformation na.replaced=c() log.transformed=FALSE if (transformation_method %in% c("log","TSS_CLR")) { log.transformed=TRUE for (idx_col in 1:ncol(tab)) { sel=tab[,idx_col]==0 na.replaced=cbind(na.replaced,sel) tab[sel,idx_col]=1e-2 } } ### log ### if (transformation_method=="log") { tab=log2(tab) } ### DESeq2 or Rlog ### if (transformation_method %in% c("DESeq2","Rlog")) { library(DESeq2) n <- ncol(tab) dds <- DESeqDataSetFromMatrix(tab, colData = data.frame(condition = c("a", rep("b", n - 1))), design = formula(~ condition)) colnames(dds) <- colnames(tab) dds <- estimateSizeFactors(dds) tab <- switch(transformation_method, DESeq2 = counts(dds, normalized = TRUE), Rlog = assay(rlogTransformation(dds)) ) } ### Standard_score ### if (transformation_method=="Standard_score") { tab=scale(tab) } ### Pareto ### if (transformation_method=="Pareto") { tab.centered <- apply(tab, 2, function(x) x - mean(x,na.rm=TRUE)) tab.sc <- apply(tab.centered, 2, function(x) x/sqrt(sd(x,na.rm=TRUE))) tab=tab.sc } ### TSS ### if (transformation_method=="TSS") { tab= t(apply(tab, 1, function(x) x/sum(x,na.rm=TRUE))) } ### TSS + CLR avec function de mixOmics ### if (transformation_method=="TSS_CLR") { #From http://stackoverflow.com/questions/2602583/geometric-mean-is-there-a-built-in geometric.mean = function(x, na.rm=TRUE){ exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x)) } tab = t(apply(tab+1e-2,1,function(x) log(x/geometric.mean(x,na.rm=TRUE)))) } #If there is a log transformation put 0 where there was NA if (log.transformed) { for (idx_col in 1:ncol(tab)) { tab[na.replaced[,idx_col],idx_col]=0 } } #If there are missing values, replace it with NA_enconding for (idx_col in 1:ncol(tab)) { sel=is.na(tab[,idx_col]) tab[sel,idx_col]=na_encoding } ########################################################## # Prepare and write output table ########################################################## if (variable_in_line=="1") { #Transpose matrix again tab=t(tab) } tab_out=cbind(rownames(tab),tab) colnames(tab_out)[1]=colnames(tab_in)[1] write.table(file=output_file,tab_out,sep="\t",row.names=F,quote=F) ########################################################## # Treatment successfull ########################################################## cat("<HTML><HEAD><TITLE>Normalization report</TITLE></HEAD><BODY>\n",file=log_file,append=F,sep="") cat(paste("➔ You choose to apply the transformation method :",transformation_method,"<BR>"),file=log_file,append=F,sep="") cat("✓ Your normalization process is successfull !<BR>",file=log_file,append=T,sep="") cat("</BODY></HTML>\n",file=log_file,append=T,sep="") q(save="no",status=0) } # end of function ########################################################## # Test ########################################################## #Used for debug : LJO 6/3/2017 #normalization() #setwd("H:/INRA/cati/groupe stats/Galaxy/normalisation") #normalization(transformation_method="Standard_score",na_encoding="NA",input_file="datasets/valid - decathlon.txt",output_file="out/table_out.txt",log_file="log/normalization.html",variable_in_line="0") #normalization(transformation_method="Pareto",na_encoding="NA",input_file="datasets/valid - decathlon.txt",output_file="out/table_out.txt",log_file="log/normalization.html",variable_in_line="1")