Mercurial > repos > vmarcon > summary_statistics
view summary_statistics.R @ 0:46ddb0591d8b draft default tip
planemo upload commit a2411926bebc2ca3bb31215899a9f18a67e59556
author | vmarcon |
---|---|
date | Thu, 18 Jan 2018 07:44:37 -0500 |
parents | |
children |
line wrap: on
line source
########################################################################### # Quality controls and descriptive analysis plots # ########################################################################### # Authors: Melanie Petera # ########################################################################### # Description : This script allows various displays of data for quality # # control and descriptive analysis. The input data is a matrix of # # quantitative variables, and it returns chosen plots in png format # # and a table with chosen statistics. # ########################################################################### # Specific R packages: # # - edgeR (needed for MA plots) # ########################################################################### # Version 1 (06-06-2014): display boxplot, histogram, density plot, # # MA plot, pairs plot, and return a table of chosen statistics # # (quantiles, mean, variance, standard error of the mean) # ########################################################################### desc_fct <- function(file.in, nacode, table_file, graph_file, stat, chosen.stat, ploting, chosen.plot, log_file){ # Parameters: # - file.in: count matrix input (tab-separated) [file name] # - nacode: missing value coding character # - table_file: results file containing table of chosen statistics [file name] # - graph_file: pdf file containing plots for chosen statistics [file name] # - stat: should statistics be calculated? (TRUE/FALSE) # - chosen.stat: character listing the chosen statistics (comma-separated) # - ploting: should graphics be displayed? (TRUE/FALSE) # - chosen.plot: character listing the chosen plots (comma-separated) # - log_file: a log file [file name] ########################################################## # Read and verify data - - - - - - - - - - - - # Checks valids for all modules library(methods) log_error=function(message="") { line_use="line" column_use="column" cat("<HTML><HEAD><TITLE>Normalization report</TITLE></HEAD><BODY>\n",file=log_file,append=F,sep="") cat("⚠ An error occurred while trying to read your table.\n<BR>",file=log_file,append=T,sep="") cat("Please check that:\n<BR>",file=log_file,append=T,sep="") cat("<UL>\n",file=log_file,append=T,sep="") cat(" <LI> the table you want to process contains the same number of columns for each line</LI>\n",file=log_file,append=T,sep="") cat(" <LI> the first line of your table is a header line (specifying the name of each ",column_use,")</LI>\n",file=log_file,append=T,sep="") cat(" <LI> the first column of your table specifies the name of each ",line_use,"</LI>\n",file=log_file,append=T,sep="") cat(" <LI> both individual and variable names should be unique</LI>\n",file=log_file,append=T,sep="") cat(" <LI> each value is separated from the other by a <B>TAB</B> character</LI>\n",file=log_file,append=T,sep="") cat(" <LI> except for first line and first column, table should contain a numeric value</LI>\n",file=log_file,append=T,sep="") cat(" <LI> this value may contain character '.' as decimal separator or '",nacode,"' for missing values</LI>\n",file=log_file,append=T,sep="") cat("</UL>\n",file=log_file,append=T,sep="") cat("-------<BR>\nError messages recieved:<BR><FONT color=red>\n",conditionMessage(message),"</FONT>\n",file=log_file,append=T,sep="") cat("</BODY></HTML>\n",file=log_file,append=T,sep="") q(save="no",status=1) } tab_in=tryCatch( { tab_in=read.table(file.in,header=TRUE,na.strings=nacode,sep="\t",check.names=FALSE,quote="\"") }, error=function(cond) { log_error(message=cond) return(NA) }, warning=function(cond) { log_error(message=cond) return(NA) }, finally={ #Do nothing special } ) if (ncol(tab_in)<2) { log_error(simpleCondition("The table you want to use contains less than two columns.")) } rn=as.character(tab_in[,1]) if (length(rn)!=length(unique(rn))) { duplicated_rownames=table(rn) duplicated_rownames=duplicated_rownames[duplicated_rownames>1] duplicated_rownames=names(duplicated_rownames) if (length(duplicated_rownames)>3) { duplicated_rownames=c(duplicated_rownames[1:3],"...") } duplicated_rownames=paste(duplicated_rownames,collapse=", ") log_error(simpleCondition( paste("The table you want to use have duplicated values in the first column (", " - duplicated names: ",duplicated_rownames,sep="") )) } tab=tab_in[,-1] rownames(tab)=rn #Check all columns are numerical tab=as.matrix(tab) cell.with.na=c() for (i in 1:ncol(tab)) { na.v1=is.na(tab[,i]) na.v2=is.na(as.numeric(tab[,i])) if (sum(na.v1)!=sum(na.v2)) { sel=which(na.v1!=na.v2) sel=sel[1] value=tab[sel,i] log_error(simpleCondition( paste("Column '",colnames(tab)[i],"' of your table contains non numerical values. Please check its content (on line #",sel,": value='",value,"').",sep="") )) } if (length(cell.with.na)==0 & sum(na.v1)!=0) { cell.with.na=c(i,which(na.v1)[1]) } } Dataset <- tab_in ########################################################## # Statistics table computation - - - - - - - - - log="" if(stat=="T" & length(chosen.stat)!=0){ stat.list <- strsplit(chosen.stat,",")[[1]] stat.res <- t(Dataset[0,,drop=FALSE]) numdig <- 5 if("mean" %in% stat.list){ stat.res <- cbind(stat.res,c("Mean",round(colMeans(Dataset[,-1],na.rm=TRUE),digits=numdig))) } if("sd" %in% stat.list){ colSd <- apply(Dataset[,-1],2,sd,na.rm=TRUE) stat.res <- cbind(stat.res,c("Std.Dev",round(colSd,digits=numdig))) } if("variance" %in% stat.list){ colVar <- apply(Dataset[,-1],2,var,na.rm=TRUE) stat.res <- cbind(stat.res,c("Variance",round(colVar,digits=numdig))) } if(("median" %in% stat.list)&&(!("quartile" %in% stat.list))){ colMed <- apply(Dataset[,-1],2,median,na.rm=TRUE) stat.res <- cbind(stat.res,c("Median",round(colMed,digits=numdig))) } if("quartile" %in% stat.list){ colQ <- round(apply(Dataset[,-1],2,quantile,na.rm=TRUE),digits=numdig) stat.res <- cbind(stat.res,c("Min",colQ[1,]),c("Q1",colQ[2,]), c("Median",colQ[3,]),c("Q3",colQ[4,]),c("Max",colQ[5,])) } if("decile" %in% stat.list){ colD <- round(t(apply(Dataset[,-1],2,quantile,na.rm=TRUE,seq(0,1,0.1))),digits=numdig) colD <- rbind(paste("D",seq(0,10,1),sep=""),colD) stat.res <- cbind(stat.res,colD) } write.table(stat.res,table_file,col.names=FALSE,sep="\t",quote=FALSE) log=paste(log,"➔ You choose to compute :",chosen.stat,"<BR>") } # end if(stat) else{ log=paste(log,"➔ You don't choose any stats<BR>") } ########################################################## # Graphics generation - - - - - - - - - - - - - if(ploting=="T" & length(chosen.plot)!=0){ nb_graph_per_row=4 nb_graph=ncol(Dataset)-1 nb_row=round(nb_graph/nb_graph_per_row) nb_empty_plot=nb_graph %% nb_graph_per_row if (nb_empty_plot != 0) { nb_row=nb_row+1 } page_height=3.5 * nb_row pdf(file=graph_file,height=page_height) graph.list <- strsplit(chosen.plot,",")[[1]] #For the pair plot, we stick to the default layout if("pairsplot" %in% graph.list){ pairs(Dataset[,-1]) } #For the other plots, we have 4 plots per line par(mfrow=c(nb_row,nb_graph_per_row),mar=c(3, 3, 3, 1) + 0.1) if("boxplot" %in% graph.list){ for(ech in 2:ncol(Dataset)){ boxplot(Dataset[,ech],main=colnames(Dataset)[ech],xlab=NULL) } #Complete page with empty plots i=0; while (i<nb_empty_plot) {plot.new();i=i+1;} } if("histogram" %in% graph.list){ for(ech in 2:ncol(Dataset)){ hist(Dataset[,ech],main=colnames(Dataset)[ech],xlab=NULL) } #Complete page with empty plots i=0; while (i<nb_empty_plot) {plot.new();i=i+1;} } if("density" %in% graph.list){ for(ech in 2:ncol(Dataset)){ plot(density(Dataset[,ech],na.rm=TRUE),main=colnames(Dataset)[ech]) } #Complete page with empty plots i=0; while (i<nb_empty_plot) {plot.new();i=i+1;} } if("MAplot" %in% graph.list){ if(min(Dataset[,-1],na.rm=TRUE)<0){ cat("\n----\nError: MAplot only available for positive variables\n----",file=log_file,append=T,sep="") q(save="no",status=1) } library(limma) library(edgeR) #Warning : Import also limma package for(ech in 2:(ncol(Dataset)-1)){ for(ech2 in (ech+1):ncol(Dataset)){ temp.pair <- na.omit(Dataset[,c(ech,ech2)]) maPlot(temp.pair[,1],temp.pair[,2],main=paste(colnames(Dataset)[ech],"VS",colnames(Dataset)[ech2])) } } #Do not complete page with empty plots for this plot because it generates nb_variables X nb_variables graphs } #Close pdf device dev.off() log=paste(log,"➔ You choose to plot :",chosen.plot,"<BR>") } # end if(ploting) else{ log=paste(log,"➔ You don't choose any plot<BR>") } ########################################################## # Treatment successfull ########################################################## cat("<HTML><HEAD><TITLE>Summary statistics report</TITLE></HEAD><BODY>\n",file=log_file,append=F,sep="") cat(log,file=log_file,append=T,sep="") cat("✓ Your process is successfull!<BR>",file=log_file,append=T,sep="") cat("</BODY></HTML>\n",file=log_file,append=T,sep="") } # end of function