view mixmodel_script.R @ 0:a4d89d47646f draft default tip

planemo upload for repository https://github.com/workflow4metabolomics/tools-metabolomics commit 8d2ca678d973501b60479a8dc3f212eecd56eab8
author workflow4metabolomics
date Mon, 16 May 2022 09:25:01 +0000
parents
children
line wrap: on
line source

#######  R functions to perform linear mixed model for repeated measures
#######  on a multi var dataset using 3 files as used in W4M
##############################################################################################################
lmRepeated2FF <- function(ids, ifixfact, itime, isubject, ivd, ndim, nameVar=colnames(ids)[[ivd]],
                          pvalCutof = 0.05, dffOption, visu = visu, tit = "", least.confounded = FALSE, outlier.limit = 3) {
   ### function to perform linear mixed model with 1 Fixed factor + Time + random factor subject
   ### based on lmerTest package providing functions giving the same results as SAS proc mixed
   options(scipen = 50, digits = 5)

   if (!is.numeric(ids[[ivd]]))     stop("Dependant variable is not numeric")
   if (!is.factor(ids[[ifixfact]])) stop("fixed factor is not a factor")
   if (!is.factor(ids[[itime]]))    stop("Repeated factor is not a factor")
   if (!is.factor(ids[[isubject]])) stop("Random factor is not a factor")

   ## factors
   time    <- ids[[itime]]
   fixfact <- ids[[ifixfact]]
   subject <- ids[[isubject]]
   # dependant variables
   vd      <- ids[[ivd]]

   # argument of the function instead of re re-running ndim <- defColRes(ids, ifixfact, itime)
   # nfp : number of main factors + model infos (REML, varSubject) + normality test
   nfp <- ndim[1];
   # ncff number of comparison of the fixed factor
   nlff <- ndim[2];  ncff <- ndim[3]
   # nct number of comparison of the time factor
   nlt <- ndim[4]; nct <- ndim[5]
   # nci number of comparison of the interaction
   nli <- ndim[6];  nci <- ndim[7]
   # number of all lmer results
   nresT <- ncff + nct + nci
   ## initialization of the result vector (1 line)
   ## 4 * because nresf for : pvalues + Etimates + lower CI + Upper CI
   res <- data.frame(array(rep(NA, (nfp + 4 * nresT))))
   colnames(res)[1] <- "resultLM"

   ### if at least one subject have data for only 1 time, mixed model is not possible and variable must be skip
   ### after excluding NA, table function is used to seek subjects with only 1 data
   ids <- ids[!is.na(ids[[ivd]]), ]
   skip <- length(which(table(ids[[isubject]]) == 1))

   if (skip == 0) {

      mfl <- lmer(vd ~ time + fixfact + time:fixfact + (1 | subject), ids) # lmer remix

      rsum <- summary(mfl, ddf = dffOption)
      ## test Shapiro Wilks on the residus of the model
      rShapiro <- shapiro.test(rsum$residuals)
      raov <- anova(mfl, ddf = dffOption)
      dlsm1  <- data.frame(difflsmeans(mfl, test.effs = NULL))
      ddlsm1 <- dlsm1
      ## save rownames and factor names
      rn <- rownames(ddlsm1)
      fn <- ddlsm1[, c(1, 2)]
      ## writing the results on a single line
      namesFactEstim <- paste("estimate ", rownames(ddlsm1)[c(1:(nct + ncff))], sep = "")
      namesFactPval <- paste("pvalue ", rownames(ddlsm1)[c(1:(nct + ncff))], sep = "")
      namesInter <- rownames(ddlsm1)[-c(1:(nct + ncff))]
      namesEstimate <- paste("estimate ", namesInter)
      namespvalues <- paste("pvalue ", namesInter)
      namesFactprinc <- c("pval_time", "pval_trt", "pval_inter")
      namesFactEstim <- paste("estimate ", rownames(ddlsm1)[c(1:(nct + ncff))], sep = "")

      namesFactLowerCI <- paste("lowerCI ", rownames(ddlsm1)[c(1:(nct + ncff))], sep = "")
      namesLowerCI <- paste("lowerCI ", namesInter, sep = "")

      namesFactUpperCI <- paste("UpperCI ", rownames(ddlsm1)[c(1:(nct + ncff))], sep = "")
      namesUpperCI <- paste("UpperCI ", namesInter, sep = "")


      ### lmer results on 1 vector row
      # pvalue of shapiro Wilks test of the residuals
      res[1, ] <- rShapiro$p.value; rownames(res)[1] <- "Shapiro.pvalue.residuals"
      res[2, ] <- rsum$varcor$subject[1] ;rownames(res)[2] <- "Subject.Variance"
      res[3, ] <- rsum$devcomp$cmp[7] ; rownames(res)[3] <- "REML"
      ### 3 principal factors pvalues results + shapiro test =>  nfp <- 4
      res[c((nfp - 2):nfp), ] <- raov[, 6]
      rownames(res)[c((nfp - 2):nfp)] <- namesFactprinc

      ####################  Residuals diagnostics for significants variables #########################
      ### Il at least 1 factor is significant and visu=TRUE NL graphics add to pdf
      ## ajout JF du passage de la valeur de p-value cutoff
       if (length(which(raov[, 6] <= pvalCutof)) > 0 & visu == "yes") {
          diagmflF(mfl, title = tit, pvalCutof = pvalCutof, least.confounded = least.confounded,
                   outlier.limit = outlier.limit)
       }

      # pvalue of fixed factor comparisons
      nresf <- nresT
      res[(nfp + 1):(nfp + nct), ] <- ddlsm1[c(1:nct), 9]
      res[(nfp + nct + 1):(nfp + nct + ncff), ] <- ddlsm1[(nct + 1):(nct + ncff), 9]
      rownames(res)[(nfp + 1):(nfp + nct + ncff)] <- namesFactPval
      res[(nfp + nct + ncff + 1):(nfp + nresf), ] <- ddlsm1[(nct + ncff + 1):(nresT), 9]
      rownames(res)[(nfp + nct + ncff + 1):(nfp + nresT)] <- namespvalues
      # Estimate of the difference between levels of factors
      res[(nfp + nresf + 1):(nfp + nresf + nct), ] <- ddlsm1[c(1:nct), 3]
      res[(nfp + nresf + nct + 1):(nfp + nresf + nct + ncff), ] <- ddlsm1[(nct + 1):(nct + ncff), 3]
      rownames(res)[(nfp + nresf + 1):(nfp + nresf + nct + ncff)] <- namesFactEstim
      res[(nfp + nresf + nct + ncff + 1):(nfp + 2 * nresf), ] <- ddlsm1[(nct + ncff + 1):(nresT), 3]
      rownames(res)[(nfp + nresf + nct + ncff + 1):(nfp + 2 * nresf)] <- namesEstimate
      # lower CI of the difference between levels of factors
      nresf <- nresf + nresT
      res[(nfp + nresf + 1):(nfp + nresf + nct), ] <- ddlsm1[c(1:nct), 7]
      res[(nfp + nresf + nct + 1):(nfp + nresf + nct + ncff), ] <- ddlsm1[(nct + 1):(nct + ncff), 7]
      rownames(res)[(nfp + nresf + 1):(nfp + nresf + nct + ncff)] <- namesFactLowerCI
      res[(nfp + nresf + nct + ncff + 1):(nfp + 2 * nresf), ] <- ddlsm1[(nct + ncff + 1):(nresf), 7]
      rownames(res)[(nfp + nresf + nct + ncff + 1):(nfp + nresf + (nresf / 2))] <- namesLowerCI
      # Upper CI of the difference between levels of factors
      nresf <- nresf + nresT
      res[(nfp + nresf + 1):(nfp + nresf + nct), ] <- ddlsm1[c(1:nct), 8]
      res[(nfp + nresf + nct + 1):(nfp + nresf + nct + ncff), ] <- ddlsm1[(nct + 1):(nct + ncff), 8]
      rownames(res)[(nfp + nresf + 1):(nfp + nresf + nct + ncff)] <- namesFactUpperCI
      res[(nfp + nresf + nct + ncff + 1):(nfp + nresf + (nresT)), ] <- ddlsm1[(nct + ncff + 1):(nresT), 8]
      rownames(res)[(nfp + nresf + nct + ncff + 1):(nfp + nresf + (nresT))] <- namesUpperCI

   } else {
      ## one of the subject has only one time, subject can't be a random variable
      ## A repeated measure could be run instead function lme of package nlme, in next version?
      res[1, ] <- NA
      cat("\n Computing impossible for feature ", tit, ": at least one subject has only one time.\n")
   }
   tres <- data.frame(t(res))
   rownames(tres)[1] <- nameVar
   cres <- list(tres, rn, fn)
   return(cres)
}

##############################################################################################################
lmRepeated1FF <- function(ids, ifixfact = 0, itime, isubject, ivd, ndim, nameVar = colnames(ids)[[ivd]],
                          dffOption, pvalCutof = 0.05) {
   ### function to perform linear mixed model with factor Time + random factor subject
   ### based on lmerTest package providing functions giving the same results as SAS proc mixed


   if (!is.numeric(ids[[ivd]]))     stop("Dependant variable is not numeric")
   if (!is.factor(ids[[itime]]))    stop("Repeated factor is not a factor")
   if (!is.factor(ids[[isubject]])) stop("Random factor is not a factor")
   # Could be interesting here to add an experience plan check to give back a specific error message
   # in case time points are missing for some individuals

   time <- ids[[itime]]
   subject <- ids[[isubject]]
   vd <- ids[[ivd]] ## dependant variables (quatitative)

   # nfp : nombre de facteurs principaux + model infos + normality test
   nfp <- ndim[1]
   # nlt number of time levels; nct number of comparisons of the time factor
   nlt <- ndim[4]
   nct <- ndim[5]
   # number of all lmer results
   nresT <- nct
   ## initialization of the result vector (1 line)
   res <- data.frame(array(rep(NA, (nfp + 4 * nresT))))
   colnames(res)[1] <- "resultLM"

   ### if at least one subject have data for only 1 time, mixed model is not possible and variable must be skip
   ### after excluding NA, table function is used to seek subjects with only 1 data
   ids <- ids[!is.na(ids[[ivd]]), ]
   skip <- length(which(table(ids[[isubject]]) == 1))

   if (skip == 0) {

      mfl <- lmer(vd ~ time + (1 | subject), ids) # lmer remix
      rsum <- summary(mfl, ddf = dffOption)
      ## test Shapiro Wilks on the residus of the model
      rShapiro <- shapiro.test(rsum$residuals)
      raov <- anova(mfl, ddf = dffOption)
      ## Sum of square : aov$'Sum Sq', Mean square : aov$`Mean Sq`, proba : aov$`Pr(>F)`

      ## Test of all differences estimates between levels as SAS proc mixed.
      ## results are in diffs.lsmeans.table dataframe
      ## test.effs=NULL perform all pairs comparisons including interaction effect
      dlsm1  <- data.frame(difflsmeans(mfl, test.effs = NULL))
      ddlsm1 <- dlsm1
      ## save rownames and factor names
      rn <- rownames(ddlsm1)
      fn <- ddlsm1[, c(1, 2)]
      ## writing the results on a single line
      namesFactEstim <- paste("estimate ", rownames(ddlsm1)[c(1:(nct))], sep = "")
      namesFactPval  <- paste("pvalue ", rownames(ddlsm1)[c(1:(nct))], sep = "")
      namesFactprinc <- "pval_time"
      namesLowerCI   <- paste("lowerCI ", rownames(ddlsm1)[c(1:(nct))], sep = "")
      namesUpperCI   <- paste("upperCI ", rownames(ddlsm1)[c(1:(nct))], sep = "")

      ### lmer results on 1 vector
      # pvalue of shapiro Wilks test of the residuals
      res[1, ] <- rShapiro$p.value; rownames(res)[1] <- "Shapiro.pvalue.residuals"
      res[2, ] <- rsum$varcor$subject[1] ;rownames(res)[2] <- "Subject.Variance"
      res[3, ] <- rsum$devcomp$cmp[7] ; rownames(res)[3] <- "REML"

      ###  factor time pvalue results + shapiro test
      res[nfp, ] <- raov[, 6]
      rownames(res)[nfp] <- namesFactprinc

      # pvalues of time factor levels comparisons
      res[(nfp + 1):(nfp + nct), ] <- ddlsm1[c(1:nct), 9]
      rownames(res)[(nfp + 1):(nfp + nct)] <- namesFactPval

      # Estimates of time factor levels
      nresf <- nresT
      res[(nfp + nresf + 1):(nfp + nresf + nct), ] <- ddlsm1[c(1:nct), 3]
      rownames(res)[(nfp + nresf + 1):(nfp + nresf + nct)] <- namesFactEstim

      # Lower CI of the difference between levels of factors
      # nresf is incremeted
      nresf <- nresf + nresT
      res[(nfp + nresf + 1):(nfp + nresf + nct), ] <- ddlsm1[c(1:nct), 7]
      rownames(res)[(nfp + nresf + 1):(nfp + nresf + nct)] <- namesLowerCI
      # Lower CI of the difference between levels of factors
      # nresf is incremeted
      nresf <- nresf + nresT
      res[(nfp + nresf + 1):(nfp + nresf + nct), ] <- ddlsm1[c(1:nct), 8]
      rownames(res)[(nfp + nresf + 1):(nfp + nresf + nct)] <- namesUpperCI


   } else {
      ## one of the subject has only one time, subject can't be a random variable
      ## A repeated measure could be run instead function lme of package nlme, next version
       res[1, ] <- NA
       cat("\n Computing impossible for feature ", colnames(ids)[4], ": at least one subject has only one time.\n")
   }
   tres <- data.frame(t(res))
   rownames(tres)[1] <- nameVar
   cres <- list(tres, rn, fn)
   return(cres)

}

##############################################################################################################
defColRes <- function(ids, ifixfact, itime) {
   ## define the size of the result file depending on the numbers of levels of the fixed and time factor.
   ## Numbers of levels define the numbers of comparisons with pvalue and estimate of the difference.
   ## The result file also contains the pvalue of the fixed factor, time factor and interaction
   ## plus Shapiro normality test. This is define by nfp
   ## subscript of fixed factor=0 means no other fixed factor than "time"
   if (ifixfact > 0) {
      nfp <- 6 # shapiro + subject variance + REML + time + fixfact + interaction
      time <- ids[[itime]]
      fixfact <- ids[[ifixfact]]

      cat("\n Levels fixfact: ", levels(fixfact))
      cat("\n Levels time: ", levels(time))

      # ncff number of comparisons of the fixed factor (nlff number of levels of fixed factor)
      nlff <- length(levels(fixfact))
      ncff <- (nlff * (nlff - 1)) / 2
      # nct number of comparison of the time factor (nlt number of levels of time factor)
      nlt <- length(levels(time))
      nct <- (nlt * (nlt - 1)) / 2
      # nci number of comparison of the interaction
      nli <- nlff * nlt
      nci <- (nli * (nli - 1)) / 2
      ndim <- c(NA, NA, NA, NA, NA, NA, NA)

      ndim[1] <- nfp   # pvalues of fixed factor, time factor and interaction (3columns) and shapiro test pvalue
      ndim[2] <- nlff  # number of levels of fixed factor
      ndim[3] <- ncff  # number of comparisons (2by2) of the fixed factor
      ndim[4] <- nlt   # number of levels of time factor
      ndim[5] <- nct   # number of comparisons (2by2) of the time factor
      ndim[6] <- nli   # number of levels of interaction
      ndim[7] <- nci   # number of comparisons (2by2) of the interaction

   }
   else {
      nfp <- 4 # Mandatory columns: shapiro + subject variance + REML + time
      time <- ids[[itime]]
      # nct number of comparison of the time factor
      nlt <- length(levels(time))
      nct <- (nlt * (nlt - 1)) / 2
      ndim <- c(NA, NA, NA, NA, NA, NA, NA)

      ndim[1] <- nfp   # pvalues of shapiro test + subject variance + REML + time factor
      ndim[4] <- nlt   # number of levels of time factor
      ndim[5] <- nct   # number of comparisons (2by2) of the time factor
   }
   return(ndim)
}

##############################################################################################################
lmixedm <- function(datMN,
                    samDF,
                    varDF,
                    fixfact, time, subject,
                    logtr = "none",
                    pvalCutof = 0.05,
                    pvalcorMeth = c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none")[7],
                    dffOption,
                    visu = "no",
                    least.confounded = FALSE,
                    outlier.limit = 3,
                         pdfC,
                         pdfE
                   ) {
   sampids <- samDF
   dataMatrix <- datMN
   varids <- varDF

   options("scipen" = 50, "digits" = 5)
   pvalCutof <- as.numeric(pvalCutof)

   cat("\n dff computation method=", dffOption)
   ### Function running lmer function on a set of variables described in
   ### 3 different dataframes as used by W4M
   ### results are merge with the metadata variables varids
   ### ifixfact, itime, isubject are subscripts of the dependant variables. if only time factor the ifixfat is set to 0 and no diag is performed (visu="no")
   if (fixfact == "none") {
     ifixfact <- 0 ; visu <- "no"
   } else ifixfact <- which(colnames(sampids) == fixfact)
   itime    <- which(colnames(sampids) == time)
   isubject <- which(colnames(sampids) == subject)

   lmmds <- dataMatrix
   if (logtr != "log10" & logtr != "log2") logtr <- "none"
   if (logtr == "log10") lmmds <- log10(lmmds + 1)
   if (logtr == "log2") lmmds <- log2(lmmds + 1)

   dslm <- cbind(sampids, lmmds)

   nvar <- ncol(lmmds)
   firstvar <- ncol(sampids) + 1
   lastvar <- firstvar + ncol(lmmds) - 1

   if (ifixfact > 0)  dslm[[ifixfact]] <- factor(dslm[[ifixfact]])
   dslm[[itime]]    <- factor(dslm[[itime]])
   dslm[[isubject]] <- factor(dslm[[isubject]])
   ## call defColres to define the numbers of test and so the number of columns of results
   ## depends on whether or not there is a fixed factor with time. If only time factor ifixfact=0
   if (ifixfact > 0) {
      ndim <- defColRes(dslm[, c(ifixfact, itime)], ifixfact = 1, itime = 2)
      nColRes <- ndim[1] + (4 * (ndim[3] + ndim[5] + ndim[7]))
      firstpval <- ndim[1] - 2
      lastpval  <- ndim[1] + ndim[3] + ndim[5] + ndim[7]
  } else {
      ndim <- defColRes(dslm[, itime], ifixfact = 0, itime = 1)
      nColRes <- ndim[1] + (4 * (ndim[5]))
      firstpval <- ndim[1]
      lastpval <- ndim[1] + ndim[5]
   }
   ## initialisation of the  result file
   resLM <- data.frame(array(rep(NA, nvar * nColRes), dim = c(nvar, nColRes)))
   rownames(resLM) <- rownames(varids)

   ## PDF initialisation
   if (visu == "yes") {
      pdf(pdfC, onefile = TRUE, height = 15, width = 30)
      par(mfrow = c(1, 3))
   }


   for (i in firstvar:lastvar) {

      subds <- dslm[, c(ifixfact, itime, isubject, i)]

      tryCatch({
         if (ifixfact > 0)
            reslmer <- lmRepeated2FF(subds, ifixfact = 1, itime = 2, isubject = 3, ivd = 4, ndim = ndim, visu = visu,
                                     tit = colnames(dslm)[i], pvalCutof = pvalCutof,
                                     dffOption = dffOption, least.confounded = least.confounded,
                                     outlier.limit = outlier.limit)
         else
            reslmer <- lmRepeated1FF(subds, ifixfact = 0, itime = 1, isubject = 2, ivd = 3, ndim = ndim,
                                     pvalCutof = pvalCutof, dffOption = dffOption)

         resLM[i - firstvar + 1, ] <- reslmer[[1]]
      }, error = function(e) {
        cat("\nERROR with ", rownames(resLM)[i - firstvar + 1], ": ", conditionMessage(e), "\n")
       }
      )

   }

   if (exists("reslmer")) {
      colnames(resLM) <- colnames(reslmer[[1]])
      labelRow <- reslmer[[2]]
      factorRow <- reslmer[[3]]
   } else {
      stop("\n- - - - -\nModel computation impossible for every single variables in the dataset: no result returned.\n- - - - -\n")
   }

   if (visu == "yes") dev.off()


   ## pvalue correction with p.adjust library multtest
   ## Possible methods of pvalue correction
   AdjustMeth <- c("holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr", "none")
   if (length(which(pvalcorMeth == AdjustMeth)) == 0) pvalcorMeth <- "none"

   if (pvalcorMeth != "none") {
      for (k in firstpval:lastpval) {
         resLM[[k]] <- p.adjust(resLM[[k]], method = pvalcorMeth, n = dim(resLM[k])[[1]])

      }
   }

   ## for each variables, set pvalues to NA and estimates = 0 when pvalue of factor > pvalCutof value define by user
   if (ifixfact > 0) {
      ## time effect
      resLM[which(resLM[, firstpval] > pvalCutof), c((lastpval + 1):(lastpval + ndim[5]))] <- 0
      resLM[which(resLM[, firstpval] > pvalCutof), c((ndim[1] + 1):(ndim[1] + ndim[5]))] <- NA
      ## treatment effect
      resLM[which(resLM[, firstpval + 1] > pvalCutof), c((lastpval + ndim[5] + 1):(lastpval + ndim[5] + ndim[3]))] <- 0
      resLM[which(resLM[, firstpval + 1] > pvalCutof), c((ndim[1]  + ndim[5] + 1):(ndim[1] + ndim[5] + ndim[3]))] <- NA
      ## interaction effect
      resLM[which(resLM[, firstpval + 2] > pvalCutof), c((lastpval + ndim[5] + ndim[3] + 1):(lastpval + ndim[5] + ndim[3] + ndim[7]))] <- 0
      resLM[which(resLM[, firstpval + 2] > pvalCutof), c((ndim[1]  + ndim[5] + ndim[3] + 1):(ndim[1]  + ndim[5] + ndim[3] + ndim[7]))] <- NA
   } else {
      ## time effect only
      resLM[which(resLM[, firstpval] > pvalCutof), c((lastpval  + 1):(lastpval  + ndim[5]))] <- 0
      resLM[which(resLM[, firstpval] > pvalCutof), c((firstpval + 1):(firstpval + ndim[5]))] <- NA
   }

   ## for each variable, estimates plots are performed if at least one factor is significant after p-value correction
   pdf(pdfE, onefile = TRUE, height = 15, width = 30)

   ## for each variable (in row)
   for (i in seq_len(nrow(resLM))) {

      ## if any fixed factor + time factor
      if (ifixfact > 0)

         ## if any main factor after p-value correction is significant -> plot estimates and time course
         if (length(which(resLM[i, c(4:6)] < pvalCutof)) > 0) {

            ## Plot of time course by fixfact : data prep with factors and quantitative var to be plot
            subv <- dslm[, colnames(dslm) == rownames(resLM)[i]]
            subds <- data.frame(dslm[[ifixfact]], dslm[[itime]], dslm[[isubject]], subv)
            libvar <- c(fixfact, time, subject)
            colnames(subds) <- c(libvar, rownames(resLM)[i])

            ## Plot of estimates with error bars for all fixed factors and interaction
            rddlsm1 <- t(resLM[i, ])
            pval <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "pvalue"]
            esti <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "estima"]
            loci <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "lowerC"]
            upci <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "UpperC"]
            rddlsm1 <- data.frame(pval, esti, loci, upci, factorRow)
            colnames(rddlsm1) <- c("p.value", "Estimate", "Lower.CI", "Upper.CI", colnames(factorRow))
            rownames(rddlsm1) <- labelRow

            ## function for plotting these 2 graphs
            plot.res.Lmixed(rddlsm1, subds, title = rownames(resLM)[i], pvalCutof = pvalCutof)

         }

      ## if only a time factor
      if (ifixfact == 0)

         ## if time factor after p-value correction is significant -> plot time course
         if (length(which(resLM[i, 4] < pvalCutof)) > 0) {

            ## Plot of time course  : data prep with factors and quantitative var to be plot
            subv <- dslm[, colnames(dslm) == rownames(resLM)[i]]
            subds <- data.frame(dslm[[itime]], dslm[[isubject]], subv)
            libvar <- c(time, subject)
            colnames(subds) <- c(libvar, rownames(resLM)[i])

            ## Plot of estimates with error bars for all fixed factors and interaction
            rddlsm1 <- t(resLM[i, ])
            pval <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "pvalue"]
            esti <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "estima"]
            loci <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "lowerC"]
            upci <- rddlsm1[substr(rownames(rddlsm1), 1, 6) == "upperC"]
            rddlsm1 <- data.frame(pval, esti, loci, upci, factorRow)
            colnames(rddlsm1) <- c("p.value", "Estimate", "Lower.CI", "Upper.CI", colnames(factorRow))
            rownames(rddlsm1) <- labelRow

            ## function for plotting these 2 graphs
            plot.res.Lmixed(rddlsm1, subds, title = rownames(resLM)[i], pvalCutof = pvalCutof)

         }

   }
   dev.off()

   ## return result file with pvalues and estimates (exclude confidence interval used for plotting)
   iCI <- which(substr(colnames(resLM), 4, 7) == "erCI")
   resLM <- resLM[, - iCI]
   resLM <- cbind(varids, resLM)
   return(resLM)
}