Mercurial > repos > yguitton > metams_rungc
view lib_metams.r @ 9:93508ea69eb5 draft default tip
planemo upload for repository https://github.com/workflow4metabolomics/metaMS commit da591ff5cf75541414a83ec00b824e35a7e486d2-dirty
author | workflow4metabolomics |
---|---|
date | Mon, 20 Jul 2020 03:37:06 -0400 |
parents | d1ce2634135f |
children |
line wrap: on
line source
# lib_metams.r version 2.1.1 # R function for metaMS runGC under W4M # author Yann GUITTON CNRS IRISA/LINA Idealg project 2014-2015 # author Yann GUITTON Oniris Laberca 2015-2017 #@author G. Le Corguille # This function will # - load the packages # - display the sessionInfo loadAndDisplayPackages <- function(pkgs) { for(pkg in pkgs) suppressPackageStartupMessages( stopifnot( library(pkg, quietly=TRUE, logical.return=TRUE, character.only=TRUE))) sessioninfo = sessionInfo() cat(sessioninfo$R.version$version.string,"\n") cat("Main packages:\n") for (pkg in names(sessioninfo$otherPkgs)) { cat(paste(pkg,packageVersion(pkg)),"\t") }; cat("\n") cat("Other loaded packages:\n") for (pkg in names(sessioninfo$loadedOnly)) { cat(paste(pkg,packageVersion(pkg)),"\t") }; cat("\n") } #This function list the compatible files within the directory as xcms did #@author Gildas Le Corguille lecorguille@sb-roscoff.fr ABiMS TEAM getMSFiles <- function (directory) { filepattern <- c("[Cc][Dd][Ff]", "[Nn][Cc]", "([Mm][Zz])?[Xx][Mm][Ll]","[Mm][Zz][Dd][Aa][Tt][Aa]", "[Mm][Zz][Mm][Ll]") filepattern <- paste(paste("\\.", filepattern, "$", sep=""),collapse="|") info <- file.info(directory) listed <- list.files(directory[info$isdir], pattern=filepattern,recursive=TRUE, full.names=TRUE) files <- c(directory[!info$isdir], listed) exists <- file.exists(files) files <- files[exists] return(files) } # This function retrieve a xset like object #@author Gildas Le Corguille lecorguille@sb-roscoff.fr getxcmsSetObject <- function(xobject) { # XCMS 1.x if (class(xobject) == "xcmsSet") return (xobject) # XCMS 3.x if (class(xobject) == "XCMSnExp") { # Get the legacy xcmsSet object suppressWarnings(xset <- as(xobject, 'xcmsSet')) if (!is.null(xset@phenoData$sample_group)) sampclass(xset) <- xset@phenoData$sample_group else sampclass(xset) <- "." return (xset) } } #J.Saint-Vanne #Function to correct the file names which can be written like "..alg8.mzData" and we just want "alg8" getCorrectFileName <- function(peaktable,sampleMetadata){ #Try to start for the first sample, avoid description of line with colnamesdontwant i <- 1 while(!(sampleMetadata[1,1] %in% strsplit(colnames(peaktable)[i],"\\.")[[1]])) { if(i < length(peaktable)) { i <- i + 1 } else { break } } #i now correspond to the first column with a sample for(j in 1:(nrow(sampleMetadata))) { col <- j + i-1 #minus 1 cause i is the good column to start and j start at 1 if(col <= length(colnames(peaktable))) { newname <- gsub("(^.*)(\\..*$)","\\1",colnames(peaktable)[col]) if(newname != sampleMetadata[j,1]){ #Correction for 2 points starting the name (I don't know why they are here...) if(".." == gsub("(^\\.+)(.*)","\\1",newname)){ newname <- sub("(^\\.+)(.*)","\\2",newname) } } colnames(peaktable)[col] <- newname } } return(peaktable) } #@author Gildas Le Corguille lecorguille@sb-roscoff.fr # This function get the raw file path from the arguments getRawfilePathFromArguments <- function(singlefile, zipfile, listArguments) { if (!is.null(listArguments[["zipfile"]])) zipfile = listArguments[["zipfile"]] if (!is.null(listArguments[["zipfilePositive"]])) zipfile = listArguments[["zipfilePositive"]] if (!is.null(listArguments[["zipfileNegative"]])) zipfile = listArguments[["zipfileNegative"]] if (!is.null(listArguments[["singlefile_galaxyPath"]])) { singlefile_galaxyPaths = listArguments[["singlefile_galaxyPath"]]; singlefile_sampleNames = listArguments[["singlefile_sampleName"]] } if (!is.null(listArguments[["singlefile_galaxyPathPositive"]])) { singlefile_galaxyPaths = listArguments[["singlefile_galaxyPathPositive"]]; singlefile_sampleNames = listArguments[["singlefile_sampleNamePositive"]] } if (!is.null(listArguments[["singlefile_galaxyPathNegative"]])) { singlefile_galaxyPaths = listArguments[["singlefile_galaxyPathNegative"]]; singlefile_sampleNames = listArguments[["singlefile_sampleNameNegative"]] } if (exists("singlefile_galaxyPaths")){ singlefile_galaxyPaths = unlist(strsplit(singlefile_galaxyPaths,",")) singlefile_sampleNames = unlist(strsplit(singlefile_sampleNames,",")) singlefile=NULL for (singlefile_galaxyPath_i in seq(1:length(singlefile_galaxyPaths))) { singlefile_galaxyPath=singlefile_galaxyPaths[singlefile_galaxyPath_i] singlefile_sampleName=singlefile_sampleNames[singlefile_galaxyPath_i] singlefile[[singlefile_sampleName]] = singlefile_galaxyPath } } for (argument in c("zipfile","zipfilePositive","zipfileNegative","singlefile_galaxyPath","singlefile_sampleName","singlefile_galaxyPathPositive","singlefile_sampleNamePositive","singlefile_galaxyPathNegative","singlefile_sampleNameNegative")) { listArguments[[argument]]=NULL } return(list(zipfile=zipfile, singlefile=singlefile, listArguments=listArguments)) } #@author Gildas Le Corguille lecorguille@sb-roscoff.fr # This function retrieve the raw file in the working directory # - if zipfile: unzip the file with its directory tree # - if singlefiles: set symlink with the good filename retrieveRawfileInTheWorkingDirectory <- function(singlefile, zipfile) { if(!is.null(singlefile) && (length("singlefile")>0)) { for (singlefile_sampleName in names(singlefile)) { singlefile_galaxyPath = singlefile[[singlefile_sampleName]] if(!file.exists(singlefile_galaxyPath)){ error_message=paste("Cannot access the sample:",singlefile_sampleName,"located:",singlefile_galaxyPath,". Please, contact your administrator ... if you have one!") print(error_message); stop(error_message) } file.symlink(singlefile_galaxyPath,singlefile_sampleName) } directory = "." } if(!is.null(zipfile) && (zipfile!="")) { if(!file.exists(zipfile)){ error_message=paste("Cannot access the Zip file:",zipfile,". Please, contact your administrator ... if you have one!") print(error_message) stop(error_message) } #list all file in the zip file #zip_files=unzip(zipfile,list=T)[,"Name"] #unzip suppressWarnings(unzip(zipfile, unzip="unzip")) #get the directory name filesInZip=unzip(zipfile, list=T); directories=unique(unlist(lapply(strsplit(filesInZip$Name,"/"), function(x) x[1]))); directories=directories[!(directories %in% c("__MACOSX")) & file.info(directories)$isdir] directory = "." if (length(directories) == 1) directory = directories cat("files_root_directory\t",directory,"\n") } return (directory) } ##ADDITIONS FROM Y. Guitton getBPC <- function(file,rtcor=NULL, ...) { object <- xcmsRaw(file) sel <- profRange(object, ...) cbind(if (is.null(rtcor)) object@scantime[sel$scanidx] else rtcor ,xcms:::colMax(object@env$profile[sel$massidx,sel$scanidx,drop=FALSE])) } getBPC2s <- function (files, xset = NULL, pdfname="BPCs.pdf", rt = c("raw","corrected"), scanrange=NULL) { require(xcms) #create sampleMetadata, get sampleMetadata and class if(!is.null(xset)) { #When files come from XCMS3 directly before metaMS sampleMetadata <- xset@phenoData } else { #When files come from a zip directory with raw files before metaMS sampleMetadata<-xcms:::phenoDataFromPaths(files) } class<-unique(sampleMetadata[,"class"]) #create phenoData like table classnames<-vector("list",length(class)) for (i in 1:length(class)){ classnames[[i]]<-which( sampleMetadata[,"class"]==class[i]) } N <- dim(sampleMetadata)[1] BPC <- vector("list",N) for (j in 1:N) { BPC[[j]] <- getBPC(files[j]) #good for raw # seems strange for corrected #errors if scanrange used in xcmsSetgeneration if (!is.null(xcmsSet) && rt == "corrected"){ rtcor <- xcmsSet@rt$corrected[[j]] }else{ rtcor <- NULL } BPC[[j]] <- getBPC(files[j],rtcor=rtcor) } pdf(pdfname,w=16,h=10) cols <- rainbow(N) lty = 1:N pch = 1:N #search for max x and max y in BPCs xlim = range(sapply(BPC, function(x) range(x[,1]))) ylim = range(sapply(BPC, function(x) range(x[,2]))) ylim = c(-ylim[2], ylim[2]) ##plot start if (length(class)>2){ for (k in 1:(length(class)-1)){ for (l in (k+1):length(class)){ cat(paste(class[k],"vs",class[l],sep=" ","\n")) plot(0, 0, type="n", xlim = xlim/60, ylim = ylim, main = paste("Base Peak Chromatograms \n","BPCs_",class[k]," vs ",class[l], sep=""), xlab = "Retention Time (min)", ylab = "BPC") colvect<-NULL for (j in 1:length(classnames[[k]])) { bpc <- BPC[[classnames[[k]][j]]] # points(bpc[,1]/60, bpc[,2], col = cols[i], pch = pch[i], type="l") points(bpc[,1]/60, bpc[,2], col = cols[classnames[[k]][j]], pch = pch[classnames[[k]][j]], type="l") colvect<-append(colvect,cols[classnames[[k]][j]]) } for (j in 1:length(classnames[[l]])) { # i=class2names[j] bpc <- BPC[[classnames[[l]][j]]] points(bpc[,1]/60, -bpc[,2], col = cols[classnames[[l]][j]], pch = pch[classnames[[l]][j]], type="l") colvect<-append(colvect,cols[classnames[[l]][j]]) } legend("topright",paste(gsub("(^.+)\\..*$","\\1",basename(files[c(classnames[[k]],classnames[[l]])]))), col = colvect, lty = lty, pch = pch) } } }#end if length >2 if (length(class)==2){ k=1 l=2 colvect<-NULL plot(0, 0, type="n", xlim = xlim/60, ylim = ylim, main = paste("Base Peak Chromatograms \n","BPCs_",class[k],"vs",class[l], sep=""), xlab = "Retention Time (min)", ylab = "BPC") for (j in 1:length(classnames[[k]])) { bpc <- BPC[[classnames[[k]][j]]] # points(bpc[,1]/60, bpc[,2], col = cols[i], pch = pch[i], type="l") points(bpc[,1]/60, bpc[,2], col = cols[classnames[[k]][j]], pch = pch[classnames[[k]][j]], type="l") colvect<-append(colvect,cols[classnames[[k]][j]]) } for (j in 1:length(classnames[[l]])) { # i=class2names[j] bpc <- BPC[[classnames[[l]][j]]] points(bpc[,1]/60, -bpc[,2], col = cols[classnames[[l]][j]], pch = pch[classnames[[l]][j]], type="l") colvect<-append(colvect,cols[classnames[[l]][j]]) } legend("topright",paste(gsub("(^.+)\\..*$","\\1",basename(files[c(classnames[[k]],classnames[[l]])]))), col = colvect, lty = lty, pch = pch) }#end length ==2 if (length(class)==1){ k=1 ylim = range(sapply(BPC, function(x) range(x[,2]))) colvect<-NULL plot(0, 0, type="n", xlim = xlim/60, ylim = ylim, main = paste("Base Peak Chromatograms \n","BPCs_",class[k], sep=""), xlab = "Retention Time (min)", ylab = "BPC") for (j in 1:length(classnames[[k]])) { bpc <- BPC[[classnames[[k]][j]]] # points(bpc[,1]/60, bpc[,2], col = cols[i], pch = pch[i], type="l") points(bpc[,1]/60, bpc[,2], col = cols[classnames[[k]][j]], pch = pch[classnames[[k]][j]], type="l") colvect<-append(colvect,cols[classnames[[k]][j]]) } legend("topright",paste(gsub("(^.+)\\..*$","\\1",basename(files[c(classnames[[k]])]))), col = colvect, lty = lty, pch = pch) }#end length ==1 dev.off() } getTIC <- function(file,rtcor=NULL) { object <- xcmsRaw(file) cbind(if (is.null(rtcor)) object@scantime else rtcor, rawEIC(object,mzrange=range(object@env$mz))$intensity) } ## overlay TIC from all files in current folder or from xcmsSet, create pdf getTIC2s <- function(files, xset=NULL, pdfname="TICs.pdf", rt=c("raw","corrected")) { require(xcms) #create sampleMetadata, get sampleMetadata and class if(!is.null(xset)){ #When files come from XCMS3 before metaMS treatment sampleMetadata<-xset@phenoData } else { #When files come from a zip directory with raw files before metaMS sampleMetadata<-xcms:::phenoDataFromPaths(files) } class<-as.vector(levels(sampleMetadata[,"class"])) #create phenoData like table classnames<-vector("list",length(class)) for (i in 1:length(class)){ classnames[[i]]<-which( sampleMetadata[,"class"]==class[i]) } N <- dim(sampleMetadata)[1] TIC <- vector("list",N) for (i in 1:N) { if (!is.null(xcmsSet) && rt == "corrected") rtcor <- xcmsSet@rt$corrected[[i]] else rtcor <- NULL TIC[[i]] <- getTIC(files[i],rtcor=rtcor) } pdf(pdfname,w=16,h=10) cols <- rainbow(N) lty = 1:N pch = 1:N #search for max x and max y in TICs xlim = range(sapply(TIC, function(x) range(x[,1]))) ylim = range(sapply(TIC, function(x) range(x[,2]))) ylim = c(-ylim[2], ylim[2]) ##plot start if (length(class)>2){ for (k in 1:(length(class)-1)){ for (l in (k+1):length(class)){ cat(paste(class[k],"vs",class[l],"\n",sep=" ")) plot(0, 0, type="n", xlim = xlim/60, ylim = ylim, main = paste("Total Ion Chromatograms \n","TICs_",class[k]," vs ",class[l], sep=""), xlab = "Retention Time (min)", ylab = "TIC") colvect<-NULL for (j in 1:length(classnames[[k]])) { tic <- TIC[[classnames[[k]][j]]] # points(tic[,1]/60, tic[,2], col = cols[i], pch = pch[i], type="l") points(tic[,1]/60, tic[,2], col = cols[classnames[[k]][j]], pch = pch[classnames[[k]][j]], type="l") colvect<-append(colvect,cols[classnames[[k]][j]]) } for (j in 1:length(classnames[[l]])) { # i=class2names[j] tic <- TIC[[classnames[[l]][j]]] points(tic[,1]/60, -tic[,2], col = cols[classnames[[l]][j]], pch = pch[classnames[[l]][j]], type="l") colvect<-append(colvect,cols[classnames[[l]][j]]) } legend("topright",paste(gsub("(^.+)\\..*$","\\1",basename(files[c(classnames[[k]],classnames[[l]])]))), col = colvect, lty = lty, pch = pch) } } }#end if length >2 if (length(class)==2){ k=1 l=2 plot(0, 0, type="n", xlim = xlim/60, ylim = ylim, main = paste("Total Ion Chromatograms \n","TICs_",class[k],"vs",class[l], sep=""), xlab = "Retention Time (min)", ylab = "TIC") colvect<-NULL for (j in 1:length(classnames[[k]])) { tic <- TIC[[classnames[[k]][j]]] # points(tic[,1]/60, tic[,2], col = cols[i], pch = pch[i], type="l") points(tic[,1]/60, tic[,2], col = cols[classnames[[k]][j]], pch = pch[classnames[[k]][j]], type="l") colvect<-append(colvect,cols[classnames[[k]][j]]) } for (j in 1:length(classnames[[l]])) { # i=class2names[j] tic <- TIC[[classnames[[l]][j]]] points(tic[,1]/60, -tic[,2], col = cols[classnames[[l]][j]], pch = pch[classnames[[l]][j]], type="l") colvect<-append(colvect,cols[classnames[[l]][j]]) } legend("topright",paste(gsub("(^.+)\\..*$","\\1",basename(files[c(classnames[[k]],classnames[[l]])]))), col = colvect, lty = lty, pch = pch) }#end length ==2 if (length(class)==1){ k=1 ylim = range(sapply(TIC, function(x) range(x[,2]))) plot(0, 0, type="n", xlim = xlim/60, ylim = ylim, main = paste("Total Ion Chromatograms \n","TICs_",class[k], sep=""), xlab = "Retention Time (min)", ylab = "TIC") colvect<-NULL for (j in 1:length(classnames[[k]])) { tic <- TIC[[classnames[[k]][j]]] # points(tic[,1]/60, tic[,2], col = cols[i], pch = pch[i], type="l") points(tic[,1]/60, tic[,2], col = cols[classnames[[k]][j]], pch = pch[classnames[[k]][j]], type="l") colvect<-append(colvect,cols[classnames[[k]][j]]) } legend("topright",paste(gsub("(^.+)\\..*$","\\1",basename(files[c(classnames[[k]])]))), col = colvect, lty = lty, pch = pch) }#end length ==1 dev.off() } #Update by J.Saint-Vanne ##addition for quality control of peak picking #metaMS EIC and pspectra plotting option #version 20190520 #only for Galaxy plotUnknowns<-function(resGC, unkn="", DB=NULL, fileFrom=NULL){ ##Annotation table each value is a pcgrp associated to the unknown ##NOTE pcgrp index are different between xcmsSet and resGC due to filtering steps in metaMS ##R. Wehrens give me some clues on that and we found a correction #correction of annotation matrix due to pcgrp removal by quality check in runGCresult #matrix of correspondance between an@pspectra and filtered pspectra from runGC #Select only pspectra which correpond to them select in metaMS # col1 = filtered spectra from runGC and col2 = an@spectra allPCGRPs <-lapply(1:length(resGC$xset), function(i) { an <- resGC$xset[[i]] huhn <- an@pspectra[which(sapply(an@pspectra, length) >= metaSetting(resGC$settings, "DBconstruction.minfeat"))] matCORR<-cbind(1:length(huhn), match(huhn, an@pspectra)) }) #Build a new annotation list with sampnames and pseudospectra number from xset helpannotation <- list() for(j in 1:length(resGC$xset)){ helpannotation[[j]] <- resGC$annotation[[j]][1:2] pspvector <- vector() for(i in 1: nrow(helpannotation[[j]])){ #Find corresponding pspec psplink <- allPCGRPs[[j]][match(helpannotation[[j]][i,1],allPCGRPs[[j]]),2] pspvector <- c(pspvector,psplink) #Change the annotation column into sampname column if(helpannotation[[j]][i,2] < 0){ #It's an unknown new_name <- paste("Unknown",abs(as.integer(helpannotation[[j]][i,2]))) helpannotation[[j]][i,2] <- new_name }else{ #It has been found in local database for(k in 1:length(DB)){ if(helpannotation[[j]][i,2] == k){ helpannotation[[j]][i,2] <- DB[[k]]$Name break } } } } helpannotation[[j]] <- cbind(helpannotation[[j]],pspvector) names(helpannotation)[j] <- names(resGC$annotation[j]) } peaktable <- resGC$PeakTable par (mar=c(5, 4, 4, 2) + 0.1) #For each unknown for (l in 1:length(unkn)){ print("la") #recordPlot perpage=3 #if change change layout also! dev.new(width=21/2.54, height=29.7/2.54, file=paste("Unknown_",unkn[l],".pdf", sep="")) #A4 pdf # par(mfrow=c(perpage,2)) layout(matrix(c(1,1,2,3,4,4,5,6,7,7,8,9), 6, 2, byrow = TRUE), widths=rep(c(1,1),perpage), heights=rep(c(1,5),perpage)) # layout.show(6) oma.saved <- par("oma") par(oma = rep.int(0, 4)) par(oma = oma.saved) o.par <- par(mar = rep.int(0, 4)) on.exit(par(o.par)) #For each sample for (c in 1:length(resGC$xset)) { #get sample name sampname<-basename(resGC$xset[[c]]@xcmsSet@filepaths) #remove .cdf, .mzXML filepattern filepattern <- c("[Cc][Dd][Ff]", "[Nn][Cc]", "([Mm][Zz])?[Xx][Mm][Ll]", "[Mm][Zz][Dd][Aa][Tt][Aa]", "[Mm][Zz][Mm][Ll]") filepattern <- paste(paste("\\.", filepattern, "$", sep = ""), collapse = "|") sampname<-gsub(filepattern, "",sampname) title1<-paste(peaktable[unkn[l],1],"from",sampname, sep = " ") an<-resGC$xset[[c]] if(fileFrom == "zipfile") { an@xcmsSet@filepaths <- paste0("./",an@xcmsSet@phenoData[,"class"],"/",basename(an@xcmsSet@filepaths)) }#else { #print(an@xcmsSet@filepaths) #an@xcmsSet@filepaths <- paste0("./",basename(an@xcmsSet@filepaths)) #} #Find the good annotation for this sample for(a in 1:length(helpannotation)){ if(gsub(filepattern, "", names(helpannotation)[a]) == paste0("./",sampname)){ #Find the unkn or the matched std in this sample findunkn <- FALSE for(r in 1:nrow(helpannotation[[a]])){ if(helpannotation[[a]][r,"annotation"] == peaktable[unkn[l],1]){ findunkn <- TRUE pcgrp <- helpannotation[[a]][r,"pspvector"] par (mar=c(0, 0, 0, 0) + 0.1) #Write title print("on plot le new") plot.new() box() text(0.5, 0.5, title1, cex=2) par (mar=c(3, 2.5, 3, 1.5) + 0.1) #Window for EIC print("plot eic") print(an) print(pcgrp) plotEICs(an, pspec=pcgrp, maxlabel=2) #Window for pseudospectra print("plotPsSpectrum") plotPsSpectrum(an, pspec=pcgrp, maxlabel=2) } } if(!findunkn) { par (mar=c(0, 0, 0, 0) + 0.1) #Write title plot.new() box() text(0.5, 0.5, title1, cex=2) #Window for EIC plot.new() box() text(0.5, 0.5, "NOT FOUND", cex=2) #Window for pseudospectra plot.new() box() text(0.5, 0.5, "NOT FOUND", cex=2) } break } } } graphics.off() print("graph off") }#end for unkn[l] print("fin unkn") }#end function