| 539 | 1 # -*- coding: utf-8 -*- | 
|  | 2 """ | 
|  | 3 Created on Mon Jun 3 19:51:00 2019 | 
|  | 4 @author: Narger | 
|  | 5 """ | 
|  | 6 | 
|  | 7 import sys | 
|  | 8 import argparse | 
|  | 9 import os | 
|  | 10 import numpy as np | 
|  | 11 import pandas as pd | 
|  | 12 from sklearn.datasets import make_blobs | 
|  | 13 from sklearn.cluster import KMeans, DBSCAN, AgglomerativeClustering | 
|  | 14 from sklearn.metrics import silhouette_samples, silhouette_score, cluster | 
|  | 15 import matplotlib | 
|  | 16 matplotlib.use('agg') | 
|  | 17 import matplotlib.pyplot as plt | 
|  | 18 import scipy.cluster.hierarchy as shc | 
|  | 19 import matplotlib.cm as cm | 
|  | 20 from typing import Optional, Dict, List | 
| 543 | 21 import os | 
| 539 | 22 | 
|  | 23 ################################# process args ############################### | 
|  | 24 def process_args(args_in :List[str] = None) -> argparse.Namespace: | 
|  | 25     """ | 
|  | 26     Processes command-line arguments. | 
|  | 27 | 
|  | 28     Args: | 
|  | 29         args (list): List of command-line arguments. | 
|  | 30 | 
|  | 31     Returns: | 
|  | 32         Namespace: An object containing parsed arguments. | 
|  | 33     """ | 
|  | 34     parser = argparse.ArgumentParser(usage = '%(prog)s [options]', | 
|  | 35                                      description = 'process some value\'s' + | 
|  | 36                                      ' genes to create class.') | 
|  | 37 | 
|  | 38     parser.add_argument('-ol', '--out_log', | 
|  | 39                         help = "Output log") | 
|  | 40 | 
|  | 41     parser.add_argument('-in', '--input', | 
|  | 42                         type = str, | 
|  | 43                         help = 'input dataset') | 
|  | 44 | 
|  | 45     parser.add_argument('-cy', '--cluster_type', | 
|  | 46                         type = str, | 
|  | 47                         choices = ['kmeans', 'dbscan', 'hierarchy'], | 
|  | 48                         default = 'kmeans', | 
|  | 49                         help = 'choose clustering algorythm') | 
|  | 50 | 
|  | 51     parser.add_argument('-sc', '--scaling', | 
|  | 52                         type = str, | 
|  | 53                         choices = ['true', 'false'], | 
|  | 54                         default = 'true', | 
|  | 55                         help = 'choose if you want to scaling the data') | 
|  | 56 | 
|  | 57     parser.add_argument('-k1', '--k_min', | 
|  | 58                         type = int, | 
|  | 59                         default = 2, | 
|  | 60                         help = 'choose minimun cluster number to be generated') | 
|  | 61 | 
|  | 62     parser.add_argument('-k2', '--k_max', | 
|  | 63                         type = int, | 
|  | 64                         default = 7, | 
|  | 65                         help = 'choose maximum cluster number to be generated') | 
|  | 66 | 
|  | 67     parser.add_argument('-el', '--elbow', | 
|  | 68                         type = str, | 
|  | 69                         default = 'false', | 
|  | 70                         choices = ['true', 'false'], | 
|  | 71                         help = 'choose if you want to generate an elbow plot for kmeans') | 
|  | 72 | 
|  | 73     parser.add_argument('-si', '--silhouette', | 
|  | 74                         type = str, | 
|  | 75                         default = 'false', | 
|  | 76                         choices = ['true', 'false'], | 
|  | 77                         help = 'choose if you want silhouette plots') | 
|  | 78 | 
|  | 79     parser.add_argument('-td', '--tool_dir', | 
|  | 80                         type = str, | 
| 542 | 81                         default = os.path.dirname(os.path.abspath(__file__)), | 
|  | 82                         help = 'your tool directory (default: auto-detected package location)') | 
| 539 | 83 | 
|  | 84     parser.add_argument('-ms', '--min_samples', | 
|  | 85                         type = int, | 
|  | 86                         help = 'min samples for dbscan (optional)') | 
|  | 87 | 
|  | 88     parser.add_argument('-ep', '--eps', | 
|  | 89                         type = float, | 
|  | 90                         help = 'eps for dbscan (optional)') | 
|  | 91 | 
|  | 92     parser.add_argument('-bc', '--best_cluster', | 
|  | 93                         type = str, | 
|  | 94                         help = 'output of best cluster tsv') | 
|  | 95 | 
|  | 96     parser.add_argument( | 
|  | 97         '-idop', '--output_path', | 
|  | 98         type = str, | 
|  | 99         default='clustering/', | 
|  | 100         help = 'output path for maps') | 
|  | 101 | 
|  | 102     args_in = parser.parse_args(args_in) | 
|  | 103     return args_in | 
|  | 104 | 
|  | 105 ########################### warning ########################################### | 
|  | 106 def warning(s :str) -> None: | 
|  | 107     """ | 
|  | 108     Log a warning message to an output log file and print it to the console. | 
|  | 109 | 
|  | 110     Args: | 
|  | 111         s (str): The warning message to be logged and printed. | 
|  | 112 | 
|  | 113     Returns: | 
|  | 114       None | 
|  | 115     """ | 
|  | 116 | 
|  | 117     with open(args.out_log, 'a') as log: | 
|  | 118         log.write(s + "\n\n") | 
|  | 119     print(s) | 
|  | 120 | 
|  | 121 ########################## read dataset ###################################### | 
|  | 122 def read_dataset(dataset :str) -> pd.DataFrame: | 
|  | 123     """ | 
|  | 124     Read dataset from a CSV file and return it as a Pandas DataFrame. | 
|  | 125 | 
|  | 126     Args: | 
|  | 127         dataset (str): the path to the dataset to convert into a DataFrame | 
|  | 128 | 
|  | 129     Returns: | 
|  | 130         pandas.DataFrame: The dataset loaded as a Pandas DataFrame. | 
|  | 131 | 
|  | 132     Raises: | 
|  | 133         pandas.errors.EmptyDataError: If the dataset file is empty. | 
|  | 134         sys.exit: If the dataset file has the wrong format (e.g., fewer than 2 columns) | 
|  | 135     """ | 
|  | 136     try: | 
|  | 137         dataset = pd.read_csv(dataset, sep = '\t', header = 0) | 
|  | 138     except pd.errors.EmptyDataError: | 
|  | 139         sys.exit('Execution aborted: wrong format of dataset\n') | 
|  | 140     if len(dataset.columns) < 2: | 
|  | 141         sys.exit('Execution aborted: wrong format of dataset\n') | 
|  | 142     return dataset | 
|  | 143 | 
|  | 144 ############################ rewrite_input ################################### | 
|  | 145 def rewrite_input(dataset :Dict) -> Dict[str, List[Optional[float]]]: | 
|  | 146     """ | 
|  | 147     Rewrite the dataset as a dictionary of lists instead of as a dictionary of dictionaries. | 
|  | 148 | 
|  | 149     Args: | 
|  | 150         dataset (pandas.DataFrame): The dataset to be rewritten. | 
|  | 151 | 
|  | 152     Returns: | 
|  | 153         dict: The rewritten dataset as a dictionary of lists. | 
|  | 154     """ | 
|  | 155     #Riscrivo il dataset come dizionario di liste, | 
|  | 156     #non come dizionario di dizionari | 
|  | 157     #dataset.pop('Reactions', None) | 
|  | 158 | 
|  | 159     for key, val in dataset.items(): | 
|  | 160         l = [] | 
|  | 161         for i in val: | 
|  | 162             if i == 'None': | 
|  | 163                 l.append(None) | 
|  | 164             else: | 
|  | 165                 l.append(float(i)) | 
|  | 166 | 
|  | 167         dataset[key] = l | 
|  | 168 | 
|  | 169     return dataset | 
|  | 170 | 
|  | 171 ############################## write to csv ################################## | 
|  | 172 def write_to_csv (dataset :pd.DataFrame, labels :List[str], name :str) -> None: | 
|  | 173     """ | 
|  | 174     Write dataset and predicted labels to a CSV file. | 
|  | 175 | 
|  | 176     Args: | 
|  | 177         dataset (pandas.DataFrame): The dataset to be written. | 
|  | 178         labels (list): The predicted labels for each data point. | 
|  | 179         name (str): The name of the output CSV file. | 
|  | 180 | 
|  | 181     Returns: | 
|  | 182         None | 
|  | 183     """ | 
|  | 184     #labels = predict | 
|  | 185     predict = [x+1 for x in labels] | 
|  | 186 | 
|  | 187     classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 188 | 
|  | 189     dest = name | 
|  | 190     classe.to_csv(dest, sep = '\t', index = False, | 
|  | 191                       header = ['Patient_ID', 'Class']) | 
|  | 192 | 
|  | 193 ########################### trova il massimo in lista ######################## | 
|  | 194 def max_index (lista :List[int]) -> int: | 
|  | 195     """ | 
|  | 196     Find the index of the maximum value in a list. | 
|  | 197 | 
|  | 198     Args: | 
|  | 199         lista (list): The list in which we search for the index of the maximum value. | 
|  | 200 | 
|  | 201     Returns: | 
|  | 202         int: The index of the maximum value in the list. | 
|  | 203     """ | 
|  | 204     best = -1 | 
|  | 205     best_index = 0 | 
|  | 206     for i in range(len(lista)): | 
|  | 207         if lista[i] > best: | 
|  | 208             best = lista [i] | 
|  | 209             best_index = i | 
|  | 210 | 
|  | 211     return best_index | 
|  | 212 | 
|  | 213 ################################ kmeans ##################################### | 
|  | 214 def kmeans (k_min: int, k_max: int, dataset: pd.DataFrame, elbow: str, silhouette: str, best_cluster: str) -> None: | 
|  | 215     """ | 
|  | 216     Perform k-means clustering on the given dataset, which is an algorithm used to partition a dataset into groups (clusters) based on their characteristics. | 
|  | 217     The goal is to divide the data into homogeneous groups, where the elements within each group are similar to each other and different from the elements in other groups. | 
|  | 218 | 
|  | 219     Args: | 
|  | 220         k_min (int): The minimum number of clusters to consider. | 
|  | 221         k_max (int): The maximum number of clusters to consider. | 
|  | 222         dataset (pandas.DataFrame): The dataset to perform clustering on. | 
|  | 223         elbow (str): Whether to generate an elbow plot for kmeans ('True' or 'False'). | 
|  | 224         silhouette (str): Whether to generate silhouette plots ('True' or 'False'). | 
|  | 225         best_cluster (str): The file path to save the output of the best cluster. | 
|  | 226 | 
|  | 227     Returns: | 
|  | 228         None | 
|  | 229     """ | 
|  | 230     if not os.path.exists(args.output_path): | 
|  | 231         os.makedirs(args.output_path) | 
|  | 232 | 
|  | 233 | 
|  | 234     if elbow == 'true': | 
|  | 235         elbow = True | 
|  | 236     else: | 
|  | 237         elbow = False | 
|  | 238 | 
|  | 239     if silhouette == 'true': | 
|  | 240         silhouette = True | 
|  | 241     else: | 
|  | 242         silhouette = False | 
|  | 243 | 
|  | 244     range_n_clusters = [i for i in range(k_min, k_max+1)] | 
|  | 245     distortions = [] | 
|  | 246     scores = [] | 
|  | 247     all_labels = [] | 
|  | 248 | 
|  | 249     clusterer = KMeans(n_clusters=1, random_state=10) | 
|  | 250     distortions.append(clusterer.fit(dataset).inertia_) | 
|  | 251 | 
|  | 252 | 
|  | 253     for n_clusters in range_n_clusters: | 
|  | 254         clusterer = KMeans(n_clusters=n_clusters, random_state=10) | 
|  | 255         cluster_labels = clusterer.fit_predict(dataset) | 
|  | 256 | 
|  | 257         all_labels.append(cluster_labels) | 
|  | 258         if n_clusters == 1: | 
|  | 259             silhouette_avg = 0 | 
|  | 260         else: | 
|  | 261             silhouette_avg = silhouette_score(dataset, cluster_labels) | 
|  | 262         scores.append(silhouette_avg) | 
|  | 263         distortions.append(clusterer.fit(dataset).inertia_) | 
|  | 264 | 
|  | 265     best = max_index(scores) + k_min | 
|  | 266 | 
|  | 267     for i in range(len(all_labels)): | 
|  | 268         prefix = '' | 
|  | 269         if (i + k_min == best): | 
|  | 270             prefix = '_BEST' | 
|  | 271 | 
|  | 272         write_to_csv(dataset, all_labels[i], f'{args.output_path}/kmeans_with_' + str(i + k_min) + prefix + '_clusters.tsv') | 
|  | 273 | 
|  | 274 | 
|  | 275         if (prefix == '_BEST'): | 
|  | 276             labels = all_labels[i] | 
|  | 277             predict = [x+1 for x in labels] | 
|  | 278             classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 279             classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | 
|  | 280 | 
|  | 281 | 
|  | 282 | 
|  | 283 | 
|  | 284         if silhouette: | 
|  | 285             silhouette_draw(dataset, all_labels[i], i + k_min, f'{args.output_path}/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | 
|  | 286 | 
|  | 287 | 
|  | 288     if elbow: | 
|  | 289         elbow_plot(distortions, k_min,k_max) | 
|  | 290 | 
|  | 291 | 
|  | 292 | 
|  | 293 | 
|  | 294 | 
|  | 295 ############################## elbow_plot #################################### | 
|  | 296 def elbow_plot (distortions: List[float], k_min: int, k_max: int) -> None: | 
|  | 297     """ | 
|  | 298     Generate an elbow plot to visualize the distortion for different numbers of clusters. | 
|  | 299     The elbow plot is a graphical tool used in clustering analysis to help identifying the appropriate number of clusters by looking for the point where the rate of decrease | 
|  | 300     in distortion sharply decreases, indicating the optimal balance between model complexity and clustering quality. | 
|  | 301 | 
|  | 302     Args: | 
|  | 303         distortions (list): List of distortion values for different numbers of clusters. | 
|  | 304         k_min (int): The minimum number of clusters considered. | 
|  | 305         k_max (int): The maximum number of clusters considered. | 
|  | 306 | 
|  | 307     Returns: | 
|  | 308         None | 
|  | 309     """ | 
|  | 310     plt.figure(0) | 
|  | 311     x = list(range(k_min, k_max + 1)) | 
|  | 312     x.insert(0, 1) | 
|  | 313     plt.plot(x, distortions, marker = 'o') | 
|  | 314     plt.xlabel('Number of clusters (k)') | 
|  | 315     plt.ylabel('Distortion') | 
|  | 316     s = f'{args.output_path}/elbow_plot.png' | 
|  | 317     fig = plt.gcf() | 
|  | 318     fig.set_size_inches(18.5, 10.5, forward = True) | 
|  | 319     fig.savefig(s, dpi=100) | 
|  | 320 | 
|  | 321 | 
|  | 322 ############################## silhouette plot ############################### | 
|  | 323 def silhouette_draw(dataset: pd.DataFrame, labels: List[str], n_clusters: int, path:str) -> None: | 
|  | 324     """ | 
|  | 325     Generate a silhouette plot for the clustering results. | 
|  | 326     The silhouette coefficient is a measure used to evaluate the quality of clusters obtained from a clustering algorithmand it quantifies how similar an object is to its own cluster compared to other clusters. | 
|  | 327     The silhouette coefficient ranges from -1 to 1, where: | 
|  | 328     - A value close to +1 indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters. This implies that the object is in a dense, well-separated cluster. | 
|  | 329     - A value close to 0 indicates that the object is close to the decision boundary between two neighboring clusters. | 
|  | 330     - A value close to -1 indicates that the object may have been assigned to the wrong cluster. | 
|  | 331 | 
|  | 332     Args: | 
|  | 333         dataset (pandas.DataFrame): The dataset used for clustering. | 
|  | 334         labels (list): The cluster labels assigned to each data point. | 
|  | 335         n_clusters (int): The number of clusters. | 
|  | 336         path (str): The path to save the silhouette plot image. | 
|  | 337 | 
|  | 338     Returns: | 
|  | 339         None | 
|  | 340     """ | 
|  | 341     if n_clusters == 1: | 
|  | 342         return None | 
|  | 343 | 
|  | 344     silhouette_avg = silhouette_score(dataset, labels) | 
|  | 345     warning("For n_clusters = " + str(n_clusters) + | 
|  | 346           " The average silhouette_score is: " + str(silhouette_avg)) | 
|  | 347 | 
|  | 348     plt.close('all') | 
|  | 349     # Create a subplot with 1 row and 2 columns | 
|  | 350     fig, (ax1) = plt.subplots(1, 1) | 
|  | 351 | 
|  | 352     fig.set_size_inches(18, 7) | 
|  | 353 | 
|  | 354     # The 1st subplot is the silhouette plot | 
|  | 355     # The silhouette coefficient can range from -1, 1 but in this example all | 
|  | 356     # lie within [-0.1, 1] | 
|  | 357     ax1.set_xlim([-1, 1]) | 
|  | 358     # The (n_clusters+1)*10 is for inserting blank space between silhouette | 
|  | 359     # plots of individual clusters, to demarcate them clearly. | 
|  | 360     ax1.set_ylim([0, len(dataset) + (n_clusters + 1) * 10]) | 
|  | 361 | 
|  | 362     # Compute the silhouette scores for each sample | 
|  | 363     sample_silhouette_values = silhouette_samples(dataset, labels) | 
|  | 364 | 
|  | 365     y_lower = 10 | 
|  | 366     for i in range(n_clusters): | 
|  | 367         # Aggregate the silhouette scores for samples belonging to | 
|  | 368         # cluster i, and sort them | 
|  | 369         ith_cluster_silhouette_values = \ | 
|  | 370         sample_silhouette_values[labels == i] | 
|  | 371 | 
|  | 372         ith_cluster_silhouette_values.sort() | 
|  | 373 | 
|  | 374         size_cluster_i = ith_cluster_silhouette_values.shape[0] | 
|  | 375         y_upper = y_lower + size_cluster_i | 
|  | 376 | 
|  | 377         color = cm.nipy_spectral(float(i) / n_clusters) | 
|  | 378         ax1.fill_betweenx(np.arange(y_lower, y_upper), | 
|  | 379                           0, ith_cluster_silhouette_values, | 
|  | 380                                      facecolor=color, edgecolor=color, alpha=0.7) | 
|  | 381 | 
|  | 382         # Label the silhouette plots with their cluster numbers at the middle | 
|  | 383         ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) | 
|  | 384 | 
|  | 385         # Compute the new y_lower for next plot | 
|  | 386         y_lower = y_upper + 10  # 10 for the 0 samples | 
|  | 387 | 
|  | 388         ax1.set_title("The silhouette plot for the various clusters.") | 
|  | 389         ax1.set_xlabel("The silhouette coefficient values") | 
|  | 390         ax1.set_ylabel("Cluster label") | 
|  | 391 | 
|  | 392         # The vertical line for average silhouette score of all the values | 
|  | 393         ax1.axvline(x=silhouette_avg, color="red", linestyle="--") | 
|  | 394 | 
|  | 395         ax1.set_yticks([])  # Clear the yaxis labels / ticks | 
|  | 396         ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) | 
|  | 397 | 
|  | 398 | 
|  | 399         plt.suptitle(("Silhouette analysis for clustering on sample data " | 
|  | 400                           "with n_clusters = " + str(n_clusters) + "\nAverage silhouette_score = " + str(silhouette_avg)), fontsize=12, fontweight='bold') | 
|  | 401 | 
|  | 402 | 
|  | 403         plt.savefig(path, bbox_inches='tight') | 
|  | 404 | 
|  | 405 ######################## dbscan ############################################## | 
|  | 406 def dbscan(dataset: pd.DataFrame, eps: float, min_samples: float, best_cluster: str) -> None: | 
|  | 407     """ | 
|  | 408     Perform DBSCAN clustering on the given dataset, which is a clustering algorithm that groups together closely packed points based on the notion of density. | 
|  | 409 | 
|  | 410     Args: | 
|  | 411         dataset (pandas.DataFrame): The dataset to be clustered. | 
|  | 412         eps (float): The maximum distance between two samples for one to be considered as in the neighborhood of the other. | 
|  | 413         min_samples (float): The number of samples in a neighborhood for a point to be considered as a core point. | 
|  | 414         best_cluster (str): The file path to save the output of the best cluster. | 
|  | 415 | 
|  | 416     Returns: | 
|  | 417         None | 
|  | 418     """ | 
|  | 419     if not os.path.exists(args.output_path): | 
|  | 420         os.makedirs(args.output_path) | 
|  | 421 | 
|  | 422     if eps is not None: | 
|  | 423         clusterer = DBSCAN(eps = eps, min_samples = min_samples) | 
|  | 424     else: | 
|  | 425         clusterer = DBSCAN() | 
|  | 426 | 
|  | 427     clustering = clusterer.fit(dataset) | 
|  | 428 | 
|  | 429     core_samples_mask = np.zeros_like(clustering.labels_, dtype=bool) | 
|  | 430     core_samples_mask[clustering.core_sample_indices_] = True | 
|  | 431     labels = clustering.labels_ | 
|  | 432 | 
|  | 433     # Number of clusters in labels, ignoring noise if present. | 
|  | 434     n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) | 
|  | 435 | 
|  | 436 | 
|  | 437     labels = labels | 
|  | 438     predict = [x+1 for x in labels] | 
|  | 439     classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 440     classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | 
|  | 441 | 
|  | 442 | 
|  | 443 ########################## hierachical ####################################### | 
|  | 444 def hierachical_agglomerative(dataset: pd.DataFrame, k_min: int, k_max: int, best_cluster: str, silhouette: str) -> None: | 
|  | 445     """ | 
|  | 446     Perform hierarchical agglomerative clustering on the given dataset. | 
|  | 447 | 
|  | 448     Args: | 
|  | 449         dataset (pandas.DataFrame): The dataset to be clustered. | 
|  | 450         k_min (int): The minimum number of clusters to consider. | 
|  | 451         k_max (int): The maximum number of clusters to consider. | 
|  | 452         best_cluster (str): The file path to save the output of the best cluster. | 
|  | 453         silhouette (str): Whether to generate silhouette plots ('True' or 'False'). | 
|  | 454 | 
|  | 455     Returns: | 
|  | 456         None | 
|  | 457     """ | 
|  | 458     if not os.path.exists(args.output_path): | 
|  | 459         os.makedirs(args.output_path) | 
|  | 460 | 
|  | 461     plt.figure(figsize=(10, 7)) | 
|  | 462     plt.title("Customer Dendograms") | 
|  | 463     shc.dendrogram(shc.linkage(dataset, method='ward'), labels=dataset.index.values.tolist()) | 
|  | 464     fig = plt.gcf() | 
|  | 465     fig.savefig(f'{args.output_path}/dendogram.png', dpi=200) | 
|  | 466 | 
|  | 467     range_n_clusters = [i for i in range(k_min, k_max+1)] | 
|  | 468 | 
|  | 469     scores = [] | 
|  | 470     labels = [] | 
|  | 471 | 
|  | 472     n_classi = dataset.shape[0] | 
|  | 473 | 
|  | 474     for n_clusters in range_n_clusters: | 
|  | 475         cluster = AgglomerativeClustering(n_clusters=n_clusters, affinity='euclidean', linkage='ward') | 
|  | 476         cluster.fit_predict(dataset) | 
|  | 477         cluster_labels = cluster.labels_ | 
|  | 478         labels.append(cluster_labels) | 
|  | 479         write_to_csv(dataset, cluster_labels, f'{args.output_path}/hierarchical_with_' + str(n_clusters) + '_clusters.tsv') | 
|  | 480 | 
|  | 481     best = max_index(scores) + k_min | 
|  | 482 | 
|  | 483     for i in range(len(labels)): | 
|  | 484         prefix = '' | 
|  | 485         if (i + k_min == best): | 
|  | 486             prefix = '_BEST' | 
|  | 487         if silhouette == 'true': | 
|  | 488             silhouette_draw(dataset, labels[i], i + k_min, f'{args.output_path}/silhouette_with_' + str(i + k_min) + prefix + '_clusters.png') | 
|  | 489 | 
|  | 490     for i in range(len(labels)): | 
|  | 491         if (i + k_min == best): | 
|  | 492             labels = labels[i] | 
|  | 493             predict = [x+1 for x in labels] | 
|  | 494             classe = (pd.DataFrame(list(zip(dataset.index, predict)))).astype(str) | 
|  | 495             classe.to_csv(best_cluster, sep = '\t', index = False, header = ['Patient_ID', 'Class']) | 
|  | 496 | 
|  | 497 | 
|  | 498 ############################# main ########################################### | 
|  | 499 def main(args_in:List[str] = None) -> None: | 
|  | 500     """ | 
|  | 501     Initializes everything and sets the program in motion based on the fronted input arguments. | 
|  | 502 | 
|  | 503     Returns: | 
|  | 504         None | 
|  | 505     """ | 
|  | 506     global args | 
|  | 507     args = process_args(args_in) | 
|  | 508 | 
|  | 509     if not os.path.exists(args.output_path): | 
|  | 510         os.makedirs(args.output_path) | 
|  | 511 | 
|  | 512     #Data read | 
|  | 513 | 
|  | 514     X = read_dataset(args.input) | 
|  | 515     X = X.iloc[:, 1:] | 
|  | 516     X = pd.DataFrame.to_dict(X, orient='list') | 
|  | 517     X = rewrite_input(X) | 
|  | 518     X = pd.DataFrame.from_dict(X, orient = 'index') | 
|  | 519 | 
|  | 520     for i in X.columns: | 
|  | 521         if any(val is None or np.isnan(val) for val in X[i]): | 
|  | 522             X = X.drop(columns=[i]) | 
|  | 523 | 
|  | 524     if args.scaling == "true": | 
|  | 525         list_to_remove = [] | 
|  | 526         toll_std=1e-8 | 
|  | 527         for i in X.columns: | 
|  | 528             mean_i = X[i].mean() | 
|  | 529             std_i = X[i].std() | 
|  | 530             if std_i >toll_std: | 
|  | 531                 #scaling with mean 0 and std 1 | 
|  | 532                 X[i] = (X[i]-mean_i)/std_i | 
|  | 533             else: | 
|  | 534                 #remove feature because std = 0 during clustering | 
|  | 535                 list_to_remove.append(i) | 
|  | 536         if len(list_to_remove)>0: | 
|  | 537             X = X.drop(columns=list_to_remove) | 
|  | 538 | 
|  | 539     if args.k_max != None: | 
|  | 540        numero_classi = X.shape[0] | 
|  | 541        while args.k_max >= numero_classi: | 
|  | 542           err = 'Skipping k = ' + str(args.k_max) + ' since it is >= number of classes of dataset' | 
|  | 543           warning(err) | 
|  | 544           args.k_max = args.k_max - 1 | 
|  | 545 | 
|  | 546 | 
|  | 547     if args.cluster_type == 'kmeans': | 
|  | 548         kmeans(args.k_min, args.k_max, X, args.elbow, args.silhouette, args.best_cluster) | 
|  | 549 | 
|  | 550     if args.cluster_type == 'dbscan': | 
|  | 551         dbscan(X, args.eps, args.min_samples, args.best_cluster) | 
|  | 552 | 
|  | 553     if args.cluster_type == 'hierarchy': | 
|  | 554         hierachical_agglomerative(X, args.k_min, args.k_max, args.best_cluster, args.silhouette) | 
|  | 555 | 
|  | 556 ############################################################################## | 
|  | 557 if __name__ == "__main__": | 
|  | 558     main() |