Mercurial > repos > ebi-gxa > seurat_find_neighbours
view seurat_find_neighbours.xml @ 4:99d628557c47 draft
"planemo upload for repository https://github.com/ebi-gene-expression-group/container-galaxy-sc-tertiary/ commit 355bb52d2e9d170b1db237e649657cc14e0a047a"
author | ebi-gxa |
---|---|
date | Fri, 04 Mar 2022 07:29:06 +0000 |
parents | ab622ffd7c7f |
children |
line wrap: on
line source
<tool id="seurat_find_neighbours" name="Seurat FindNeighbours" profile="18.01" version="@SEURAT_VERSION@+galaxy0"> <description>constructs a Shared Nearest Neighbor (SNN) Graph</description> <macros> <import>seurat_macros.xml</import> </macros> <expand macro="requirements" /> <expand macro="version" /> <command detect_errors="exit_code"><![CDATA[ seurat-find-neighbours.R @INPUT_OBJECT@ $distance_matrix #if $k_param --k-param '$k_param' #end if $compute_snn #if $prune_snn --prune-snn '$prune_snn' #end if #if $nn_method --nn-method '$nn_method' #end if #if $annoy_metric --annoy-metric '$annoy_metric' #end if #if $graph_name --graph-name '$graph_name' #end if #if $nn_eps and $nn_method == "rann" --nn-eps '$nn_eps' #end if $force_recalc #if $features_file --features '$features_file' #else if $features --features '$features' #end if #if $reduction --reduction '$reduction' #end if #if $dims --dims '$dims' #end if #if $assay --assay '$assay' #end if #if $do_plot $do_plot #end if @OUTPUT_OBJECT@ ]]></command> <inputs> <expand macro="input_object_params"/> <expand macro="output_object_params"/> <param label="Features" optional="true" name="features" argument="--features" type="text" help="Comma-separated list of genes to use for building SNN."/> <param label="Features file" optional="true" name="features_file" argument="--features" type="data" format="txt,tabular" help="Text file with one gene per line to use for building SNN. Overrides Features."/> <param label="Plot SNN on tSNE" optional="true" name="do_plot" argument="--do-plot" type="boolean" truevalue="--do-plot" checked="false" help="Plot SNN graph on tSNE coordinates"/> <param label="Reduction" optional="true" name="reduction" argument="--reduction" type="text" help="Reduction to use as input for building the SNN"/> <param label="Dimensions" optional="true" name="dims" argument="--dims" type="text" help="Dimensions of reduction to use as input. A comma-separated list of the dimensions to use in construction of the SNN graph (e.g. To use the first 5 PCs, pass 1,2,3,4,5)."/> <param label="Assay" optional="true" name="assay" argument="--assay" type="text" help="Assay to use in construction of SNN"/> <param label="Distance matrix" optional="true" name="distance_matrix" argument="--distance-matrix" type="boolean" truevalue="--distance-matrix" falsevalue="" checked="false" help="Boolean value of whether the provided matrix is a distance matrix; note, for objects of class dist, this parameter will be set automatically."/> <param label="k" optional="true" name="k_param" argument="--k-param" type="integer" help="Defines k for the k-nearest neighbor algorithm"/> <param label="Compute SNN" optional="true" name="compute_snn" argument="--compute-snn" type="boolean" truevalue="--compute-snn" falsevalue="" checked="false" help="Also compute the shared nearest neighbor graph"/> <param label="Prune SNN" optional="true" name="prune_snn" argument="--prune-snn" type="float" help="Sets the cutoff for acceptable Jaccard index when computing the neighborhood overlap for the SNN construction. Any edges with values less than or equal to this will be set to 0 and removed from the SNN graph. Essentially sets the strigency of pruning (0 --- no pruning, 1 --- prune everything)."/> <param label="NN method" optional="true" name="nn_method" argument="--nn-method" type="select" help="Method for nearest neighbor finding. Options include: rann (default), annoy"> <option value="rann" selected="true">rann</option> <option value="annoy">annoy</option> </param> <param label="Annoy metric" optional="true" name="annoy_metric" argument="--annoy-metric" type="select" help="Distance metric for annoy. Options include: euclidean (default), cosine, manhattan, and hamming"> <option value="euclidean" selected="true">Euclidean</option> <option value="cosine">Cosine</option> <option value="manhattan">Manhattan</option> <option value="hamming">Hamming</option> </param> <param label="Graph name" optional="true" name="graph_name" argument="--graph-name" type="text" help="Name of graph to use for the clustering algorithm."/> <param label="NN Error bound" optional="true" name="nn_eps" argument="--nn-eps" type="float" help="Error bound when performing nearest neighbor seach using RANN; default of 0.0 implies exact nearest neighbor search"/> <param label="Force recalc" optional="true" name="force_recalc" argument="--force-recalc" type="boolean" truevalue="--force-recalc" falsevalue="" checked="false" help="Force recalculation of SNN"/> </inputs> <outputs> <expand macro="output_files"/> <data name="snn_on_tsne" format="pdf" from_work_dir="snn_on_tsne.pdf" label="${tool.name} on ${on_string}: SNN on tSNE Plot"> <filter>do_plot</filter> </data> </outputs> <tests> <test> <param name="rds_seurat_file" ftype="rdata" value="E-MTAB-6077-3k_features_90_cells-pca.rds"/> <param name="compute_snn" value="True" /> <param name="reduction" value="pca" /> <output name="rds_seurat_file" ftype="rdata" > <assert_contents> <has_size value="5054400" delta="200000"/> </assert_contents> </output> </test> </tests> <help><![CDATA[ .. class:: infomark **What it does** Constructs a Shared Nearest Neighbor (SNN) Graph for a given dataset. We first determine the k-nearest neighbors of each cell. We use this knn graph to construct the SNN graph by calculating the neighborhood overlap (Jaccard index) between every cell and its k.param nearest neighbors. @SEURAT_INTRO@ ----- **Inputs** * Seurat RDS object. Probably the one produced by Seurat create object. * Subset names. A list of attributes to subset on, colon separated (:). * Low thresholds. A minimum value for each of the attributes set in subset names, again, colon separated (:). Optional. * High thresholds. A maximum value for each of the attributes set in subset names, again, colon separated (:). Optional. * Cells to use. A list of cell names/idenfifiers to filter positively by. ----- **Outputs** * Seurat RDS object filtered according to the inputs. .. _Seurat: https://www.nature.com/articles/nbt.4096 .. _Satija Lab: https://satijalab.org/seurat/ @VERSION_HISTORY@ ]]></help> <expand macro="citations" /> </tool>