410
|
1 import argparse
|
|
2 import utils.general_utils as utils
|
|
3 from typing import Optional, List
|
|
4 import os
|
|
5 import numpy as np
|
|
6 import pandas as pd
|
|
7 import cobra
|
|
8 import utils.CBS_backend as CBS_backend
|
|
9 from joblib import Parallel, delayed, cpu_count
|
|
10 from cobra.sampling import OptGPSampler
|
|
11 import sys
|
419
|
12 import utils.model_utils as model_utils
|
410
|
13
|
|
14
|
|
15 ################################# process args ###############################
|
|
16 def process_args(args :List[str] = None) -> argparse.Namespace:
|
|
17 """
|
|
18 Processes command-line arguments.
|
|
19
|
|
20 Args:
|
|
21 args (list): List of command-line arguments.
|
|
22
|
|
23 Returns:
|
|
24 Namespace: An object containing parsed arguments.
|
|
25 """
|
|
26 parser = argparse.ArgumentParser(usage = '%(prog)s [options]',
|
|
27 description = 'process some value\'s')
|
|
28
|
|
29 parser.add_argument("-mo", "--model_upload", type = str,
|
|
30 help = "path to input file with custom rules, if provided")
|
|
31
|
419
|
32 parser.add_argument("-mab", "--model_and_bounds", type = str,
|
|
33 choices = ['True', 'False'],
|
|
34 required = True,
|
|
35 help = "upload mode: True for model+bounds, False for complete models")
|
|
36
|
|
37
|
410
|
38 parser.add_argument('-ol', '--out_log',
|
|
39 help = "Output log")
|
|
40
|
|
41 parser.add_argument('-td', '--tool_dir',
|
|
42 type = str,
|
|
43 required = True,
|
|
44 help = 'your tool directory')
|
|
45
|
|
46 parser.add_argument('-in', '--input',
|
419
|
47 required = True,
|
|
48 type=str,
|
|
49 help = 'input bounds files or complete model files')
|
410
|
50
|
419
|
51 parser.add_argument('-ni', '--name',
|
410
|
52 required = True,
|
|
53 type=str,
|
|
54 help = 'cell names')
|
|
55
|
|
56 parser.add_argument('-a', '--algorithm',
|
|
57 type = str,
|
|
58 choices = ['OPTGP', 'CBS'],
|
|
59 required = True,
|
|
60 help = 'choose sampling algorithm')
|
|
61
|
|
62 parser.add_argument('-th', '--thinning',
|
|
63 type = int,
|
|
64 default= 100,
|
|
65 required=False,
|
|
66 help = 'choose thinning')
|
|
67
|
|
68 parser.add_argument('-ns', '--n_samples',
|
|
69 type = int,
|
|
70 required = True,
|
|
71 help = 'choose how many samples')
|
|
72
|
|
73 parser.add_argument('-sd', '--seed',
|
|
74 type = int,
|
|
75 required = True,
|
|
76 help = 'seed')
|
|
77
|
|
78 parser.add_argument('-nb', '--n_batches',
|
|
79 type = int,
|
|
80 required = True,
|
|
81 help = 'choose how many batches')
|
|
82
|
|
83 parser.add_argument('-ot', '--output_type',
|
|
84 type = str,
|
|
85 required = True,
|
|
86 help = 'output type')
|
|
87
|
|
88 parser.add_argument('-ota', '--output_type_analysis',
|
|
89 type = str,
|
|
90 required = False,
|
|
91 help = 'output type analysis')
|
|
92
|
|
93 parser.add_argument('-idop', '--output_path',
|
|
94 type = str,
|
|
95 default='flux_simulation',
|
|
96 help = 'output path for maps')
|
|
97
|
|
98 ARGS = parser.parse_args(args)
|
|
99 return ARGS
|
|
100
|
|
101 ########################### warning ###########################################
|
|
102 def warning(s :str) -> None:
|
|
103 """
|
|
104 Log a warning message to an output log file and print it to the console.
|
|
105
|
|
106 Args:
|
|
107 s (str): The warning message to be logged and printed.
|
|
108
|
|
109 Returns:
|
|
110 None
|
|
111 """
|
|
112 with open(ARGS.out_log, 'a') as log:
|
|
113 log.write(s + "\n\n")
|
|
114 print(s)
|
|
115
|
|
116
|
|
117 def write_to_file(dataset: pd.DataFrame, name: str, keep_index:bool=False)->None:
|
|
118 dataset.index.name = 'Reactions'
|
|
119 dataset.to_csv(ARGS.output_path + "/" + name + ".csv", sep = '\t', index = keep_index)
|
|
120
|
|
121 ############################ dataset input ####################################
|
|
122 def read_dataset(data :str, name :str) -> pd.DataFrame:
|
|
123 """
|
|
124 Read a dataset from a CSV file and return it as a pandas DataFrame.
|
|
125
|
|
126 Args:
|
|
127 data (str): Path to the CSV file containing the dataset.
|
|
128 name (str): Name of the dataset, used in error messages.
|
|
129
|
|
130 Returns:
|
|
131 pandas.DataFrame: DataFrame containing the dataset.
|
|
132
|
|
133 Raises:
|
|
134 pd.errors.EmptyDataError: If the CSV file is empty.
|
|
135 sys.exit: If the CSV file has the wrong format, the execution is aborted.
|
|
136 """
|
|
137 try:
|
|
138 dataset = pd.read_csv(data, sep = '\t', header = 0, index_col=0, engine='python')
|
|
139 except pd.errors.EmptyDataError:
|
|
140 sys.exit('Execution aborted: wrong format of ' + name + '\n')
|
|
141 if len(dataset.columns) < 2:
|
|
142 sys.exit('Execution aborted: wrong format of ' + name + '\n')
|
|
143 return dataset
|
|
144
|
|
145
|
|
146
|
|
147 def OPTGP_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, thinning:int=100, n_batches:int=1, seed:int=0)-> None:
|
|
148 """
|
|
149 Samples from the OPTGP (Optimal Global Perturbation) algorithm and saves the results to CSV files.
|
|
150
|
|
151 Args:
|
|
152 model (cobra.Model): The COBRA model to sample from.
|
|
153 model_name (str): The name of the model, used in naming output files.
|
|
154 n_samples (int, optional): Number of samples per batch. Default is 1000.
|
|
155 thinning (int, optional): Thinning parameter for the sampler. Default is 100.
|
|
156 n_batches (int, optional): Number of batches to run. Default is 1.
|
|
157 seed (int, optional): Random seed for reproducibility. Default is 0.
|
|
158
|
|
159 Returns:
|
|
160 None
|
|
161 """
|
|
162
|
|
163 for i in range(0, n_batches):
|
|
164 optgp = OptGPSampler(model, thinning, seed)
|
|
165 samples = optgp.sample(n_samples)
|
|
166 samples.to_csv(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_OPTGP.csv', index=False)
|
|
167 seed+=1
|
|
168 samplesTotal = pd.DataFrame()
|
|
169 for i in range(0, n_batches):
|
|
170 samples_batch = pd.read_csv(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_OPTGP.csv')
|
|
171 samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True)
|
|
172
|
|
173 write_to_file(samplesTotal.T, model_name, True)
|
|
174
|
|
175 for i in range(0, n_batches):
|
|
176 os.remove(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_OPTGP.csv')
|
|
177 pass
|
|
178
|
|
179
|
|
180 def CBS_sampler(model:cobra.Model, model_name:str, n_samples:int=1000, n_batches:int=1, seed:int=0)-> None:
|
|
181 """
|
|
182 Samples using the CBS (Constraint-based Sampling) algorithm and saves the results to CSV files.
|
|
183
|
|
184 Args:
|
|
185 model (cobra.Model): The COBRA model to sample from.
|
|
186 model_name (str): The name of the model, used in naming output files.
|
|
187 n_samples (int, optional): Number of samples per batch. Default is 1000.
|
|
188 n_batches (int, optional): Number of batches to run. Default is 1.
|
|
189 seed (int, optional): Random seed for reproducibility. Default is 0.
|
|
190
|
|
191 Returns:
|
|
192 None
|
|
193 """
|
|
194
|
|
195 df_FVA = cobra.flux_analysis.flux_variability_analysis(model,fraction_of_optimum=0).round(6)
|
|
196
|
|
197 df_coefficients = CBS_backend.randomObjectiveFunction(model, n_samples*n_batches, df_FVA, seed=seed)
|
|
198
|
|
199 for i in range(0, n_batches):
|
|
200 samples = pd.DataFrame(columns =[reaction.id for reaction in model.reactions], index = range(n_samples))
|
|
201 try:
|
|
202 CBS_backend.randomObjectiveFunctionSampling(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples], samples)
|
|
203 except Exception as e:
|
|
204 utils.logWarning(
|
|
205 "Warning: GLPK solver has failed for " + model_name + ". Trying with COBRA interface. Error:" + str(e),
|
|
206 ARGS.out_log)
|
|
207 CBS_backend.randomObjectiveFunctionSampling_cobrapy(model, n_samples, df_coefficients.iloc[:,i*n_samples:(i+1)*n_samples],
|
|
208 samples)
|
|
209 utils.logWarning(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv', ARGS.out_log)
|
|
210 samples.to_csv(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv', index=False)
|
|
211
|
|
212 samplesTotal = pd.DataFrame()
|
|
213 for i in range(0, n_batches):
|
|
214 samples_batch = pd.read_csv(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv')
|
|
215 samplesTotal = pd.concat([samplesTotal, samples_batch], ignore_index = True)
|
|
216
|
|
217 write_to_file(samplesTotal.T, model_name, True)
|
|
218
|
|
219 for i in range(0, n_batches):
|
|
220 os.remove(ARGS.output_path + "/" + model_name + '_'+ str(i)+'_CBS.csv')
|
|
221 pass
|
|
222
|
|
223
|
419
|
224
|
|
225 def model_sampler_with_bounds(model_input_original: cobra.Model, bounds_path: str, cell_name: str) -> List[pd.DataFrame]:
|
410
|
226 """
|
419
|
227 MODE 1: Prepares the model with bounds from separate bounds file and performs sampling.
|
410
|
228
|
|
229 Args:
|
|
230 model_input_original (cobra.Model): The original COBRA model.
|
|
231 bounds_path (str): Path to the CSV file containing the bounds dataset.
|
|
232 cell_name (str): Name of the cell, used to generate filenames for output.
|
|
233
|
|
234 Returns:
|
|
235 List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results.
|
|
236 """
|
|
237
|
|
238 model_input = model_input_original.copy()
|
|
239 bounds_df = read_dataset(bounds_path, "bounds dataset")
|
419
|
240
|
|
241 # Apply bounds to model
|
410
|
242 for rxn_index, row in bounds_df.iterrows():
|
419
|
243 try:
|
|
244 model_input.reactions.get_by_id(rxn_index).lower_bound = row.lower_bound
|
|
245 model_input.reactions.get_by_id(rxn_index).upper_bound = row.upper_bound
|
|
246 except KeyError:
|
|
247 warning(f"Warning: Reaction {rxn_index} not found in model. Skipping.")
|
410
|
248
|
419
|
249 return perform_sampling_and_analysis(model_input, cell_name)
|
|
250
|
|
251
|
|
252 def perform_sampling_and_analysis(model_input: cobra.Model, cell_name: str) -> List[pd.DataFrame]:
|
|
253 """
|
|
254 Common function to perform sampling and analysis on a prepared model.
|
|
255
|
|
256 Args:
|
|
257 model_input (cobra.Model): The prepared COBRA model with bounds applied.
|
|
258 cell_name (str): Name of the cell, used to generate filenames for output.
|
|
259
|
|
260 Returns:
|
|
261 List[pd.DataFrame]: A list of DataFrames containing statistics and analysis results.
|
|
262 """
|
410
|
263
|
|
264 if ARGS.algorithm == 'OPTGP':
|
|
265 OPTGP_sampler(model_input, cell_name, ARGS.n_samples, ARGS.thinning, ARGS.n_batches, ARGS.seed)
|
|
266 elif ARGS.algorithm == 'CBS':
|
419
|
267 CBS_sampler(model_input, cell_name, ARGS.n_samples, ARGS.n_batches, ARGS.seed)
|
410
|
268
|
|
269 df_mean, df_median, df_quantiles = fluxes_statistics(cell_name, ARGS.output_types)
|
|
270
|
|
271 if("fluxes" not in ARGS.output_types):
|
419
|
272 os.remove(ARGS.output_path + "/" + cell_name + '.csv')
|
410
|
273
|
419
|
274 returnList = [df_mean, df_median, df_quantiles]
|
410
|
275
|
|
276 df_pFBA, df_FVA, df_sensitivity = fluxes_analysis(model_input, cell_name, ARGS.output_type_analysis)
|
|
277
|
|
278 if("pFBA" in ARGS.output_type_analysis):
|
|
279 returnList.append(df_pFBA)
|
|
280 if("FVA" in ARGS.output_type_analysis):
|
|
281 returnList.append(df_FVA)
|
|
282 if("sensitivity" in ARGS.output_type_analysis):
|
|
283 returnList.append(df_sensitivity)
|
|
284
|
|
285 return returnList
|
|
286
|
|
287 def fluxes_statistics(model_name: str, output_types:List)-> List[pd.DataFrame]:
|
|
288 """
|
|
289 Computes statistics (mean, median, quantiles) for the fluxes.
|
|
290
|
|
291 Args:
|
|
292 model_name (str): Name of the model, used in filename for input.
|
|
293 output_types (List[str]): Types of statistics to compute (mean, median, quantiles).
|
|
294
|
|
295 Returns:
|
|
296 List[pd.DataFrame]: List of DataFrames containing mean, median, and quantiles statistics.
|
|
297 """
|
|
298
|
|
299 df_mean = pd.DataFrame()
|
|
300 df_median= pd.DataFrame()
|
|
301 df_quantiles= pd.DataFrame()
|
|
302
|
|
303 df_samples = pd.read_csv(ARGS.output_path + "/" + model_name + '.csv', sep = '\t', index_col = 0).T
|
|
304 df_samples = df_samples.round(8)
|
|
305
|
|
306 for output_type in output_types:
|
|
307 if(output_type == "mean"):
|
|
308 df_mean = df_samples.mean()
|
|
309 df_mean = df_mean.to_frame().T
|
|
310 df_mean = df_mean.reset_index(drop=True)
|
|
311 df_mean.index = [model_name]
|
|
312 elif(output_type == "median"):
|
|
313 df_median = df_samples.median()
|
|
314 df_median = df_median.to_frame().T
|
|
315 df_median = df_median.reset_index(drop=True)
|
|
316 df_median.index = [model_name]
|
|
317 elif(output_type == "quantiles"):
|
|
318 newRow = []
|
|
319 cols = []
|
|
320 for rxn in df_samples.columns:
|
|
321 quantiles = df_samples[rxn].quantile([0.25, 0.50, 0.75])
|
|
322 newRow.append(quantiles[0.25])
|
|
323 cols.append(rxn + "_q1")
|
|
324 newRow.append(quantiles[0.5])
|
|
325 cols.append(rxn + "_q2")
|
|
326 newRow.append(quantiles[0.75])
|
|
327 cols.append(rxn + "_q3")
|
|
328 df_quantiles = pd.DataFrame(columns=cols)
|
|
329 df_quantiles.loc[0] = newRow
|
|
330 df_quantiles = df_quantiles.reset_index(drop=True)
|
|
331 df_quantiles.index = [model_name]
|
|
332
|
|
333 return df_mean, df_median, df_quantiles
|
|
334
|
|
335 def fluxes_analysis(model:cobra.Model, model_name:str, output_types:List)-> List[pd.DataFrame]:
|
|
336 """
|
|
337 Performs flux analysis including pFBA, FVA, and sensitivity analysis.
|
|
338
|
|
339 Args:
|
|
340 model (cobra.Model): The COBRA model to analyze.
|
|
341 model_name (str): Name of the model, used in filenames for output.
|
|
342 output_types (List[str]): Types of analysis to perform (pFBA, FVA, sensitivity).
|
|
343
|
|
344 Returns:
|
|
345 List[pd.DataFrame]: List of DataFrames containing pFBA, FVA, and sensitivity analysis results.
|
|
346 """
|
|
347
|
|
348 df_pFBA = pd.DataFrame()
|
|
349 df_FVA= pd.DataFrame()
|
|
350 df_sensitivity= pd.DataFrame()
|
|
351
|
|
352 for output_type in output_types:
|
|
353 if(output_type == "pFBA"):
|
|
354 model.objective = "Biomass"
|
|
355 solution = cobra.flux_analysis.pfba(model)
|
|
356 fluxes = solution.fluxes
|
419
|
357 df_pFBA.loc[0,[rxn.id for rxn in model.reactions]] = fluxes.tolist()
|
410
|
358 df_pFBA = df_pFBA.reset_index(drop=True)
|
|
359 df_pFBA.index = [model_name]
|
|
360 df_pFBA = df_pFBA.astype(float).round(6)
|
|
361 elif(output_type == "FVA"):
|
|
362 fva = cobra.flux_analysis.flux_variability_analysis(model, fraction_of_optimum=0, processes=1).round(8)
|
|
363 columns = []
|
|
364 for rxn in fva.index.to_list():
|
|
365 columns.append(rxn + "_min")
|
|
366 columns.append(rxn + "_max")
|
|
367 df_FVA= pd.DataFrame(columns = columns)
|
|
368 for index_rxn, row in fva.iterrows():
|
|
369 df_FVA.loc[0, index_rxn+ "_min"] = fva.loc[index_rxn, "minimum"]
|
|
370 df_FVA.loc[0, index_rxn+ "_max"] = fva.loc[index_rxn, "maximum"]
|
|
371 df_FVA = df_FVA.reset_index(drop=True)
|
|
372 df_FVA.index = [model_name]
|
|
373 df_FVA = df_FVA.astype(float).round(6)
|
|
374 elif(output_type == "sensitivity"):
|
|
375 model.objective = "Biomass"
|
|
376 solution_original = model.optimize().objective_value
|
|
377 reactions = model.reactions
|
|
378 single = cobra.flux_analysis.single_reaction_deletion(model)
|
|
379 newRow = []
|
|
380 df_sensitivity = pd.DataFrame(columns = [rxn.id for rxn in reactions], index = [model_name])
|
|
381 for rxn in reactions:
|
|
382 newRow.append(single.knockout[rxn.id].growth.values[0]/solution_original)
|
|
383 df_sensitivity.loc[model_name] = newRow
|
|
384 df_sensitivity = df_sensitivity.astype(float).round(6)
|
|
385 return df_pFBA, df_FVA, df_sensitivity
|
|
386
|
|
387 ############################# main ###########################################
|
|
388 def main(args :List[str] = None) -> None:
|
|
389 """
|
|
390 Initializes everything and sets the program in motion based on the fronted input arguments.
|
|
391
|
|
392 Returns:
|
|
393 None
|
|
394 """
|
|
395
|
419
|
396 num_processors = max(1, cpu_count() - 1)
|
410
|
397
|
|
398 global ARGS
|
|
399 ARGS = process_args(args)
|
|
400
|
|
401 if not os.path.exists(ARGS.output_path):
|
|
402 os.makedirs(ARGS.output_path)
|
419
|
403
|
|
404 #ARGS.bounds = ARGS.input.split(",")
|
|
405 #ARGS.bounds_name = ARGS.name.split(",")
|
|
406 #ARGS.output_types = ARGS.output_type.split(",")
|
|
407 #ARGS.output_type_analysis = ARGS.output_type_analysis.split(",")
|
|
408
|
|
409 # --- Normalize inputs (the tool may pass comma-separated --input and either --name or --names) ---
|
421
|
410 ARGS.input_files = ARGS.input.split(",") if ARGS.input else []
|
419
|
411 ARGS.file_names = ARGS.name.split(",")
|
|
412 # output types (required) -> list
|
421
|
413 ARGS.output_types = ARGS.output_type.split(",") if ARGS.output_type else []
|
419
|
414 # optional analysis output types -> list or empty
|
421
|
415 ARGS.output_type_analysis = ARGS.output_type_analysis.split(",") if ARGS.output_type_analysis else []
|
419
|
416
|
421
|
417 print("=== INPUT FILES ===")
|
|
418 print(ARGS.input_files)
|
|
419 print(ARGS.file_names)
|
|
420 print(ARGS.output_type)
|
|
421 print(ARGS.output_types)
|
|
422 print(ARGS.output_type_analysis)
|
410
|
423
|
419
|
424 if ARGS.model_and_bounds == "True":
|
|
425 # MODE 1: Model + bounds (separate files)
|
|
426 print("=== MODE 1: Model + Bounds (separate files) ===")
|
|
427
|
|
428 # Load base model
|
|
429 if not ARGS.model_upload:
|
|
430 sys.exit("Error: model_upload is required for Mode 1")
|
410
|
431
|
419
|
432 base_model = model_utils.build_cobra_model_from_csv(ARGS.model_upload)
|
410
|
433
|
419
|
434 validation = model_utils.validate_model(base_model)
|
|
435
|
|
436 print("\n=== VALIDAZIONE MODELLO ===")
|
|
437 for key, value in validation.items():
|
|
438 print(f"{key}: {value}")
|
|
439
|
|
440 #Set solver verbosity to 1 to see warning and error messages only.
|
|
441 base_model.solver.configuration.verbosity = 1
|
410
|
442
|
419
|
443 # Process each bounds file with the base model
|
|
444 results = Parallel(n_jobs=num_processors)(
|
|
445 delayed(model_sampler_with_bounds)(base_model, bounds_file, cell_name)
|
|
446 for bounds_file, cell_name in zip(ARGS.input_files, ARGS.file_names)
|
|
447 )
|
410
|
448
|
419
|
449 else:
|
|
450 # MODE 2: Multiple complete models
|
|
451 print("=== MODE 2: Multiple complete models ===")
|
|
452
|
|
453 # Process each complete model file
|
|
454 results = Parallel(n_jobs=num_processors)(
|
|
455 delayed(perform_sampling_and_analysis)(model_utils.build_cobra_model_from_csv(model_file), cell_name)
|
|
456 for model_file, cell_name in zip(ARGS.input_files, ARGS.file_names)
|
|
457 )
|
410
|
458
|
|
459
|
|
460 all_mean = pd.concat([result[0] for result in results], ignore_index=False)
|
|
461 all_median = pd.concat([result[1] for result in results], ignore_index=False)
|
|
462 all_quantiles = pd.concat([result[2] for result in results], ignore_index=False)
|
|
463
|
|
464 if("mean" in ARGS.output_types):
|
|
465 all_mean = all_mean.fillna(0.0)
|
|
466 all_mean = all_mean.sort_index()
|
|
467 write_to_file(all_mean.T, "mean", True)
|
|
468
|
|
469 if("median" in ARGS.output_types):
|
|
470 all_median = all_median.fillna(0.0)
|
|
471 all_median = all_median.sort_index()
|
|
472 write_to_file(all_median.T, "median", True)
|
|
473
|
|
474 if("quantiles" in ARGS.output_types):
|
|
475 all_quantiles = all_quantiles.fillna(0.0)
|
|
476 all_quantiles = all_quantiles.sort_index()
|
|
477 write_to_file(all_quantiles.T, "quantiles", True)
|
|
478
|
|
479 index_result = 3
|
|
480 if("pFBA" in ARGS.output_type_analysis):
|
|
481 all_pFBA = pd.concat([result[index_result] for result in results], ignore_index=False)
|
|
482 all_pFBA = all_pFBA.sort_index()
|
|
483 write_to_file(all_pFBA.T, "pFBA", True)
|
|
484 index_result+=1
|
|
485 if("FVA" in ARGS.output_type_analysis):
|
|
486 all_FVA= pd.concat([result[index_result] for result in results], ignore_index=False)
|
|
487 all_FVA = all_FVA.sort_index()
|
|
488 write_to_file(all_FVA.T, "FVA", True)
|
|
489 index_result+=1
|
|
490 if("sensitivity" in ARGS.output_type_analysis):
|
|
491 all_sensitivity = pd.concat([result[index_result] for result in results], ignore_index=False)
|
|
492 all_sensitivity = all_sensitivity.sort_index()
|
|
493 write_to_file(all_sensitivity.T, "sensitivity", True)
|
|
494
|
|
495 pass
|
|
496
|
|
497 ##############################################################################
|
|
498 if __name__ == "__main__":
|
|
499 main() |